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Abstract Motivated by a model for the perception of textures by the visual cortex
in primates, we analyze the bifurcation of periodic patterns for nonlinear equations
describing the state of a system defined on the space of structure tensors, when these
equations are further invariant with respect to the isometries of this space. We show
that the problem reduces to a bifurcation problem in the hyperbolic plane D (Poincaré
disc). We make use of the concept of a periodic lattice in D to further reduce the prob-
lem to one on a compact Riemann surface D/Γ , where Γ is a cocompact, torsion-free
Fuchsian group. The knowledge of the symmetry group of this surface allows us to
use the machinery of equivariant bifurcation theory. Solutions which generically bi-
furcate are called “H-planforms”, by analogy with the “planforms” introduced for
pattern formation in Euclidean space. This concept is applied to the case of an octag-
onal periodic pattern, where we are able to classify all possible H-planforms satis-
fying the hypotheses of the Equivariant Branching Lemma. These patterns are, how-
ever, not straightforward to compute, even numerically, and in the last section we
describe a method for computation illustrated with a selection of images of octagonal
H-planforms.
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1 Introduction

In a recent paper (Chossat and Faugeras 2009) a model for the visual perception of
textures by the cortex was proposed, which assumes that populations of neurons in
each so-called “hypercolumn” of the visual cortex layer V1 are sensitive to informa-
tion carried by the structure tensor of the image (in fact, of a small part of it, since
each hypercolumn is dedicated to a specific part of the visual field). The structure
tensor is a 2 × 2 positive definite, symmetric matrix, the eigenvalues of which char-
acterize to some extent the image geometric properties like the presence and position
of an edge, the contrast, etc. This led one to write the average membrane potential
V of the populations of neurons in a hypercolumn as a function of the structure ten-
sor (and time). The equations that govern the evolution of the average membrane
potential are

∂V

∂τ
(T , τ ) = −αV (T , τ ) +

∫
H

w(T , T ′)S
(
V (T ′, τ )

)
dT ′ + I (T , τ ), (1)

where T , T ′ ∈ SDP(2) (the space of structure tensors), S is a smooth function
R → R of sigmoid type (S(x) → ±1 as x → ±∞), I corresponds to some input
signal coming from different brain areas such as the thalamus, and w(T , T ′) is a
function which expresses the interaction between the populations of neurons of types
T and T ′ in the hypercolumn. We can introduce a distance on the set of structure
tensors by noting that it has the structure of a homogeneous space for the group of
invertible matrices GL(2,R) acting by a coordinate change on quadratic forms asso-
ciated with the structure tensors (Weil 1957): for any T ∈ SDP(2) and G ∈ GL(2,R),
we define G · T = tGT G. This induces a Riemannian metric on the tangent space:
gT (A,B) = tr(T −1AT −1B) and the corresponding distance in SDP(2) is given by
Moakher (2005)

d0(T1, T2) =
√

log2 λ1 + log2 λ2, (2)

where λ1, λ2 are the eigenvalues of T −1
1 T2. Because of its invariance this distance is

biologically plausible since the neurons have no obvious way of knowing in which
coordinate system are expressed the components of the structure tensors and this
leads to the assumption that the function w is insensitive to coordinate changes in
SDP(2). This implies that w is in fact a function of the distance d0:

w(T , T ′) = f
(
d0(T , T ′)

)
. (3)

As a consequence, (1) is invariant under the action of the isometry group GL(2,R).
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Assume now that there is no input: I = 0, and that V = 0 is a solution of (1) (we
can assume w.l.o.g. that S(0) = 0). If the slope μ = S′(0) is small enough, small
perturbations of this basic state are damped to 0 and the basic state is stable. We can
however expect that if μ exceeds a critical value an instability will grow and lead to
a new state which need not be invariant under the action of GL(2,R). In other words,
we expect pattern formation through spontaneous symmetry breaking, a phenom-
enon which has been widely studied in other contexts in the last 40 years (see Hoyle
2006 for a review). From the mathematical point of view the theoretical framework
is the well-established bifurcation theory with symmetry (Golubitsky et al. 1988;
Chossat and Lauterbach 2000). There is, however, a basic difference between the
problem at hand and previous studies in pattern formation and symmetry-breaking
bifurcation: the symmetries (isometries) are not Euclidean. Moreover, the group
GL(2,R) being non compact, the spectrum of the equivariant linear operators is con-
tinuous and eigenvalues have infinite multiplicity in general. This is also true when
the symmetry group is the group of displacements and reflections in Euclidean space.
In this case, a rational approach is to restrict the analysis to the bifurcation of patterns
which are periodic (in space) with a period equal to 2π/k where k is the wave number
of the most unstable Fourier modes. This hypothesis is supported by observations (to
some extent) and it provides a framework which is suitable for the bifurcation analy-
sis. Namely, the spectrum of operators restricted to functions which are invariant on
a periodic lattice is discrete and consists of eigenvalues with finite multiplicity. This
allows one to fully exploit the power of equivariant bifurcation theory and to describe
the different types of bifurcated solutions by their (remaining) symmetries.

We would like to proceed in a similar way for (1), that is, to consider solutions
which are periodic in the space of structure tensors (one has to give a precise mean-
ing to this statement) and then apply equivariant bifurcation methods to describe the
set of solutions. We are not addressing here the question of the relevance of look-
ing for such solutions, neither from the neurophysiological point of view, nor even
from the point of view of their stability under perturbations which do not have the
same periodicity (or no periodicity at all). Let us mention the fact that in Chossat and
Faugeras (2009) we identified families of subgroups of the group of isometries of the
set of structure tensors that naturally arose from the analysis of the retinal input to the
hypercolumns in visual area V1. These subgroups, which we called neuronal Fuch-
sian groups, have the property that the membrane potential functions are invariant
under their action. This is one example of the neurophysiological relevance of look-
ing for solutions of (1) that are periodic in this sense but it certainly does not give the
final answer: These difficult questions will be addressed subsequently. Let us point
out that, on the other hand, a classification of possible periodic patterns should be
largely independent of the model equations as long as these equations share some
basic properties (like GL(2,R) invariance). In this paper we shall therefore not focus
on (1) and our results would apply equally to other models such as reaction–diffusion
or Swift–Hohenberg equations with Laplace–Beltrami operator in SDP(2)).

The structure of the paper is as follows.

1. In Sect. 2 we introduce the necessary basic material from hyperbolic geometry.
Periodic lattices and functions are defined in SDP(2) and it will be shown that
the problem can be decoupled and reduced to looking for periodic patterns in the
hyperbolic plane (we shall work with its Poincaré disc representation D).
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2. In Sect. 3 we set the bifurcation problem for periodic patterns in D. Applying the
equivariant branching lemma (Golubitsky et al. 1988) (or isolated stratum princi-
ple in the variational case), this leads us to defining hyperbolic planforms, which
are the hyperbolic counterparts of the planforms defined in the Euclidean case (see
Dionne and Golubitsky 1992).

3. In Sect. 4 the methods of Sect. 3 are applied to the case of a regular octagonal
pattern for which we can describe all planforms which result from the application
of the equivariant branching lemma.

4. In Sect. 5 we compute eigenvalues and eigenfunctions of the Laplace–Beltrami
operator in the hyperbolic octagon in order to exhibit hyperbolic planforms which
satisfy certain isotropy conditions.

2 Periodic Lattices and Functions in the Space of Structure Tensors

2.1 The Space SDP(2)

The following decomposition will prove to be very convenient. Let ξ2 be the deter-
minant of T ∈ SDP(2). We set ξ > 0 by convention. Writing T = ξ T ′, we see that
SDP(2) = R

+∗ × SSDP(2) where SSDP(2) denotes the subspace of tensors with de-
terminant 1. In the open cone SDP(2) the surface SSDP(2) is a hyperboloid sheet
and it can be shown that it carries a metric induced by the metric g which is just
the usual metric of the hyperbolic plane. The isometry group of displacements in
SSDP(2) is the special linear group SL(2,R), and indeed we may also write the
group of orientation-preserving isometries GL+(2,R) = SL(2,R) × R

+∗ acting on a
tensor T = (T ′, ξ) by

(Γ,α) · (T ′, ξ) = (
tΓ T ′Γ,α2ξ

)
. (4)

We now identify SDP(2) with the “half” open cylinder D × R
+∗ , where D is the

Poincaré disc, through the following change of variables.
Let T = ( x1 x3

x3 x2

)
with x1 > 0 and x1x2 − x2

3 > 0. We set

xi = z3x̃i , i = 1,2,3, z3 > 0, x̃1x̃2 − x̃2
3 = 1.

Now the hyperbolic plane SSDP(2) is further identified with D through the change
of coordinates ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃1 = (1 + z1)
2 + z2

2

1 − z2
1 − z2

2

,

x̃2 = (1 − z1)
2 + z2

2

1 − z2
1 − z2

2

,

x̃3 = 2z2

1 − z2
1 − z2

2

.

(5)

These formulas define a diffeomorphism

Θ : (x1, x2, x3) ∈ SDP(2) �→ (z1, z2, z3) ∈ D × R
+∗ . (6)
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The group of direct isometries (displacements) in D × R
+∗ is SU(1,1) × R

+∗ where

SU(1,1) = ( α β

β̄ ᾱ

)
with |α|2 − |β|2 = 1. Including orientation reversing isometries

would replace SU(1,1) by U(1,1).

Proposition 1 The metric carried to D × R
+∗ by Θ is (up to a normalization coeffi-

cient)

g1(z1, z2, z3) = 4(dz2
1 + dz2

2)

(1 − z2
1 − z2

2)
2

+ dz2
3

z2
3

. (7)

Proof The fact that the decomposition is diagonal follows directly from the direct
product decomposition and group action (4). In order to compute the precise expres-
sion for the metric, let us first express the form g in SDP(2) in suitable coordinates
of the tangent space (which is the space of symmetric 2 × 2 matrices). Such a basis
is given, for any tensor T , by

∂

∂x1
=

[
1 0
0 0

]
,

∂

∂x2
=

[
0 0
0 1

]
,

∂

∂x3
=

[
0 1
1 0

]
.

Then a straightforward calculation shows that

g(x1, x2, x3) = z−4
3

[
x2

2 dx2
1 + 2x2

3 dx1 dx2 − 4x2x3 dx1 dx3

+ x2
1 dx2

2 − 4x1x3 dx2 dx3 + 2
(
x1x2 + x2

3

)
dx2

3

]
.

The proposition follows by applying the pull-back Θ∗ to this form. �

Corollary 1 The volume element in the zj coordinates is

dV = 4 dz1 dz2 dz3

(1 − z2
1 − z2

2)
2 z3

. (8)

Corollary 2 The Laplace–Beltrami operator in D × R
+∗ in zj coordinates is

� = (1 − z2
1 − z2

2)
2

4

(
∂2

∂z2
1

+ ∂2

∂z2
2

)
+ z3

∂

∂z3
+ z2

3
∂2

∂z2
3

. (9)

We denote by �D the first term on the r.h.s.

Let us now compute the distance d in D × R
+∗ . We set z = (z1, z2, z3) and z′ =

(z′
1, z

′
2, z

′
3). Then we have

Proposition 2

d(z, z′) =
√

d2
(
(z1, z2), (z

′
1, z

′
2)

)2 + log2
(

z3

z′
3

)
(10)

where d2 denotes the distance in the Poincaré disc.
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Proof We start from expression (2), which gives the distance between two tensors T1

and T2. Let T = z3T̃ , T ′ = z′
3T̃

′ and α = z3/z
′
3. We denote by λ, 1/λ the eigenvalues

of T̃ −1T̃ ′. Then

d0(T , T ′)2 = log2 αλ + log2 α

λ
= 2 log2 α + 2 log2 λ = 2 log2 α + d0(T̃ , T̃ ′)2.

But d0(T̃ , T̃ ′) = d2((z1, z2), (z
′
1, z

′
2)); hence the result. �

Note that the distance in D is given by the following formula where z, z′ are
complex numbers in the unit disc:

d2(z, z
′) = 2 arctanh

|z − z′|
|1 − zz′| . (11)

2.2 Periodic Lattices in D × R
+∗

Let us recall first some basic properties of the group of isometries in the hyperbolic
plane (which we shall always identify with the Poincaré disc D in the sequel). We re-
fer to textbooks on hyperbolic geometry for details and proofs. The direct isometries
(preserving the orientation) in D are the elements of the special unitary group, noted
SU(1,1), of 2 × 2 Hermitian matrices with determinant equal to 1. Given

γ =
[

α β

β α

]
such that |α|2 − |β|2 = 1,

the corresponding isometry γ is defined by

γ · z = αz + β

βz + α
, z ∈ D. (12)

Orientation reversing isometries of D are obtained by composing any transformation
(12) with the reflection κ : z �→ z. The full symmetry group of the Poincaré disc is
therefore

U(1,1) = SU(1,1) ∪ κ · SU(1,1).

These isometries preserve angles, however, they do not transform straight lines
into straight lines. Given two points z 
= z′ in D, there is a unique geodesic passing
through them: the portion in D of the circle containing z and z′ and intersecting
the unit circle at right angles. This circle degenerates to a straight line when the
two points lie on the same diameter. Any geodesic uniquely defines the reflection
through it. Reflections are orientation reversing, one representative being complex
conjugation: κ · z = z.

We distinguish three different kinds of direct isometry in D, according to which
conjugacy class of the following one parameter subgroups it belongs.
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Definition 1 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K =
{
rϕ =

[
eiϕ/2 0

0 e−iϕ/2

]
, ϕ ∈ S1

}
,

A =
{
at =

[
cosh t/2 sinh t/2
sinh t/2 cosh t/2

]
, t ∈ R

}
,

N =
{
ns =

[
1 + is −is

is 1 − is

]
, s ∈ R

}
.

Note that rϕ · z = eiϕ z for z ∈ D and also, at · 0 = tanh(t). The elements of A are
sometimes called “boosts” (Balazs and Voros 1986). The following theorem is called
the Iwasawa decomposition (Iwaniec 2002).

Theorem 1

SU(1,1) = K · A · N.

The orbits of A converge to the same limit points b±1 = ±1 on the unit circle
when t → ±∞. In particular the diameter (b−1, b1) is the orbit {x = tanh(t), t ∈ R}.
The orbits of N are the circles tangent to the unit circle at b1. These circles are called
horocycles with limit point b1 (N is called the horocyclic group). The orbits of K are
circles inside D (they coincide with Euclidean circles only when they are centered at
the origin).

Isometries of the types K , A, N are, respectively, called elliptic, hyperbolic and
parabolic. Elliptic isometries have one fixed point in D, while hyperbolic isometries
have two fixed points on the boundary ∂D and parabolic isometries have one fixed
point on ∂D (hence “at infinity”). Hyperbolic isometries play the same role as trans-
lations in Euclidean space, while parabolic isometries have no counterpart. There is,
however, one important difference with Euclidean translations: two hyperbolic trans-
lations do not commute in general. The fundamental difference, from this point of
view, between D and the Euclidean plane R

2 is that the latter is itself an Abelian
group, while D � SU(1,1)/SO(2,R) is not a group. This makes its analysis, espe-
cially its Fourier analysis, harder and less intuitive.

We can now define a (periodic) lattice in D and in D × R
∗. Let Γ be a discrete

subgroup of SU(1,1) such that the orbits of points in D under the action of Γ have
no accumulation point in D. This is a Fuchsian group. To any Fuchsian group we can
associate a fundamental domain, which is the closure, denoted FΓ , of an open set
o
FΓ ⊂ D with the following properties (Katok 1992):

(i) if γ 
= Id ∈ Γ , then γFΓ ∩ o
FΓ = ∅;

(ii)
⋃

γ∈Γ γFΓ = D.

Hence FΓ generates a periodic tiling (or tessellation) of D. A fundamental domain
need not be a compact subset of D (it may have vertices on the circle at infinity ∂D).
When it does, Γ is called a cocompact Fuchsian group. In this case Γ contains no
parabolic element, its area is finite and a fundamental domain can always be built as
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Fig. 1 The triangle τ , also
noted T (2,3,8). The values of
l, m, and n are l = 8, m = 2 and
n = 3

a polygon (the Dirichlet region; see Katok 1992). As mentioned in the introduction
we identified in Chossat and Faugeras (2009) a family of Fuchsian groups, some of
them compact, that naturally arose from the analysis of the symmetries in the spatial
distribution of the photoreceptors in the retina.

The following definition is just a translation to the hyperbolic plane of the defini-
tion of an Euclidean lattice.

Definition 2 A lattice group of D is a cocompact Fuchsian group which contains no
elliptic element.

The action of a lattice group has no fixed point, therefore the quotient surface D/Γ

is a (compact) manifold and it is in fact a Riemann surface. It follows from Koebe’s
uniformization theorem that any compact Riemann surface is isomorphic to a lattice’s
fundamental domain of D if and only if it has genus g ≥ 2 (Katok 1992). The case
g = 1 corresponds to lattices in the Euclidean plane (in this case there are three kinds
of fundamental domains: rectangles, squares and hexagons). The simplest lattice in
D, with genus 2, is generated by an octagon and will be studied in detail in Sect. 4.

Given a lattice, we may ask what the symmetry group is of the fundamental do-
main FΓ , identified with the quotient surface D/Γ . Indeed, this information will play
a fundamental role in the subsequent bifurcation analysis. In the case of Euclidean
lattice, the quotient R

2/Γ is a torus T (genus one surface), and the group of auto-
morphisms is H � T where H is the holohedry of the lattice: H = D2,D4 or D6 for
the rectangle, square and hexagonal lattices, respectively. In the hyperbolic case the
group of automorphisms of the surface is finite. In order to build this group we need
first to introduce some additional definitions.

Tilings of the hyperbolic plane can be generated by reflections through the edges
of a triangle τ with vertices P , Q, R and angles π/�, π/m and π/n, respectively,
where �, m, n are integers such that 1/� + 1/m + 1/n < 1 (Katok 1992).

Remember that reflections are orientation-reversing isometries. We note κ , κ ′ and
κ ′′ the reflections through the edges PQ, QR and RP , respectively (see Fig. 1). The
group generated by these reflections contains an index 2 Fuchsian subgroup Λ called
a triangle group, which always contains elliptic elements because the product of the
reflections through two adjacent edges of a polygon is elliptic with fixed point at the
corresponding vertex. One easily shows that Λ is generated by the rotations of angles
2π/l, 2π/m and 2π/n around the vertices P , Q, R, respectively. A fundamental
domain of Λ is the “quadrangle” FΛ = τ ∪ κτ (Katok 1992). Note that FΛ � D/Λ is
a sphere (genus 0 surface) obtained by identifying the three edges of τ . The subgroup
of hyperbolic translations in Λ is a lattice group Γ , normal in Λ, whose fundamental
domain is filled with copies of the basic tile τ . The group of orientation-preserving
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automorphisms of FΓ � D/Γ is therefore G = Λ/Γ . From the algebraic point of
view, G is generated by the three elements a, b, c satisfying the relations a� = bm =
cn = 1 and a · b · c = 1. We say that G is an (l,m,n) group. Taking account of
orientation-reversing isometries, the full symmetry group of FΓ is G∗ = G ∪ κG =
G � Z2(κ). This is also a tiling group of FΓ with tile τ : the orbit G∗τ fills FΓ and
its elements can only intersect at their edges.

Given a lattice, how to determine the groups G and G∗? The following theorem
gives conditions for this (Broughton et al. 2001).

Theorem 2 An (l,m,n) group G is the tiling rotation group of a compact Riemann
surface of genus g if and only if its order satisfies the Riemann–Hurwitz relation

|G| = 2g − 2

1 − ( 1
�

+ 1
m

+ 1
n
)
.

It can be shown that the following bound holds: |G| ≤ 84(g − 1), and that the
bound can be reached when g = 3, for example, but not when g = 2 (Broughton et
al. 2001) (the largest order of G when g = 2 is 48, with (l,m,n) = (2,3,8), and this
corresponds to the case of a tessellation by regular octagons, which will be considered
in detail in Sect. 4). Tables of triangle groups for surfaces of genus up to 13 can be
found in Broughton et al. (2001).

These definitions extend naturally to SDP(2) � D × R
∗ as follows.

Definition 3 A lattice group of D × R
∗ is a subgroup of the form Γ × Ξ where Γ

is a lattice group acting in D and Ξ is a non trivial discrete subgroup of R
∗.

Any discrete subgroup of R
∗ is generated by a positive number a and can be

further identified with Z: Ξ = {an, n ∈ Z}. A fundamental domain for Γ × Ξ is a
“box” FΓ × [1, a].

2.3 Plane Waves in SDP(2)

Let us first recall the Euclidean setting for functions defined in R
3 (we could take any

other R
n, n > 0). In this case every function of the form eλk·r where k ∈ R

3 is a unit
vector, is an eigenfunction of the Laplace operator in R

3:

�eλk·r = −λ2eλk·r, r ∈ R
3.

The fact that the eigenvalues do not depend upon the direction of the wave vector k
reflects the rotational invariance of the Laplace operator. Moreover, if we take λ = iα,
α ∈ R, then eλk·r is invariant under translations in R

2 by any vector e satisfying the
condition k · e = 2nπ where n ∈ Z (it clearly does not depend upon the coordinate
along the axis orthogonal to k). The functions eiαk·r are elementary spatial waves
in R

3.
Now, given α > 0 and a basis of unit vectors {k1,k2,k3} of R

3, we can define
the translation group L spanned by ei , i = 1,2,3, such that ki · ej = 2π/αδij . Hence
L is a lattice group of R

3. It defines a periodic tiling, the fundamental domain of
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which is a compact cell which we may identify with the quotient space R
3/L and

which we can identify with a 3-torus. Any smooth enough function in R
3 which

is invariant under the action of L can be expanded in a Fourier series of elemen-
tary spatial waves eiα(mk1+nk2+pk3)·r, m,n,p ∈ Z. The Laplace operator in the space
of square-integrable functions in R

3/L is self-adjoint and its spectrum consists of
real isolated eigenvalues with finite multiplicities. The multiplicity depends on the
holohedry of the lattice, which we defined in the previous section (the largest sub-
group of O(3) leaving invariant the lattice). There are finitely many holohedries (see
Miller 1972 for details). It follows from the above considerations that by restricting
the analysis to classes of functions which are invariant under the action of a lattice
group, one can apply standard techniques of equivariant bifurcation theory to as-
sert the generic existence of branches of solutions of Euclidean invariant bifurcation
problems, which are spatially periodic with respect to lattice groups and whose prop-
erties are largely determined by the holohedry of the lattice (Golubitsky et al. 1988;
Dionne and Golubitsky 1992). Note that also this was the approach of Bressloff et al.
(2002) for the analysis of the occurrence of visual hallucinations in the cortex.

We wish to apply the same idea to bifurcation problems defined in SDP(2). For
this we need to define elementary eigenfunctions of the Laplace–Beltrami operator
such that spatially periodic functions (in a sense to be defined later) can be expanded
in series of these elementary “waves” in SDP(2). In the sequel � will denote the
Laplace–Beltrami operator in SDP(2) or, equivalently, in D × R

+∗ .
Let b be a point on the circle ∂D, which we may take equal to b1 = 1 after a

suitable rotation. For z ∈ D, we define the “inner product” 〈z, b〉 as the algebraic
distance to the origin of the (unique) horocycle based at b and passing through z.
This distance is defined as the hyperbolic signed length of the segment Oξ where
ξ is the intersection point of the horocycle and the line (geodesic) Ob. Note that
〈z, b〉 does not depend on the position of z on the horocycle. In other words, 〈z, b〉 is
invariant under the action of the one parameter group N (see definition above). The
“hyperbolic plane waves”

eρ,b(z) = e(iρ+ 1
2 )〈z,b〉, ρ ∈ C, (13)

satisfy

−�D eρ,b =
(

ρ2 + 1

4

)
eρ,b,

where �D is defined in Corollary 2. These are the elementary eigenfunctions with
which Helgason built a Fourier transform theory for the Poincaré disc; see Helga-
son (2000). It follows from Helgason’s theory that any eigenfunction of �D can be
expressed as an integral over the boundary elements:

Theorem 3 (Helgason 2000) Any eigenfunction of the operator −�D admits a de-
composition of the form ∫

∂D

eρ,b(z)dTρ(b),

where Tρ is a distribution defined on the circle ∂D and the eigenvalue is ρ2 + 1
4 .
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Real eigenvalues −(ρ2 + 1
4 ) of �D correspond to taking ρ real or ρ ∈ iR. The

latter case is irrelevant for our study as it corresponds to exponentially diverging
eigenfunctions. Therefore the real spectrum of � is continuous and is bounded from
above by −1/4. By using (9) we extend Theorem 3 to D × R

+∗ :

Corollary 3 (i) Let us note z = (z1, z2, z3) ∈ D × R
+∗ and z = z1 + iz2. The function

ψρ,b,β(z) = eρ,b(z) ei logβ log z3 (14)

satisfies the relation �ψρ,b,β = −(ρ2 + 1
4 + log2 β)ψρ,b,β .

(ii) Any eigenfunction of � admits a decomposition of the form

ei logβ log z3

∫
∂D

eρ,b(z)dTρ(b). (15)

From there we can extend the definition (and properties) of the Fourier transform
in the hyperbolic plane given by Helgason (2000) to the space D × R

+∗ :

Definition 4 Given a function f on D × R
+∗ , its Fourier transform is defined by

f̃ (ρ, b,β) =
∫

D×R
+∗

f (z)e−ρ,b(z)e
−i logβ log z3 dz. (16)

In the following we will look for solutions of bifurcation problems in D ×
R

+∗ , which are invariant under the action of a lattice group: (γ, ξ) · u(z, z3) =
u(γ −1z, ξ−1z3) = u(z, z3) for γ ∈ Γ , ξ ∈ Ξ . This boils down to looking for the prob-
lem restricted to a fundamental domain with suitable boundary conditions imposed
by the Γ -periodicity, or, equivalently, to looking for the solutions of the problem
projected onto the orbit space D/Γ × R

+∗ /Ξ (which inherits a Riemannian structure
from D × R

+∗ ). Because the fundamental domain is compact, it follows from general
spectral theory that −� is self-adjoint, non negative and has compact resolvent in
L2(D/Γ × R

+∗ /Ξ) (Buser 1992). Hence its spectrum consists of real positive and
isolated eigenvalues of finite multiplicity.

Coming back to Theorem 3, we observe that those eigenvalues λ of −�D which
correspond to Γ -invariant eigenfunctions, must have ρ ∈ R or ρ ∈ iR. The case ρ real
corresponds to the Euclidean situation of planar waves with a given wave number,
the role of which is played by ρ in D. In this case the eigenvalues of −�D satisfy
1/4 < λ. On the other hand there is no Euclidean equivalent of the case ρ ∈ iR,
for which the eigenvalues 0 ≤ λ ≤ 1/4 are in finite number. It turns out that such
“exceptional” eigenvalues do not occur for “simple” groups such as the octagonal
group to be considered in more details in the Sect. 4. This follows from formulas
which give lower bounds for these eigenvalues. Let us give two examples of such
estimates (derived by Buser 1992; see also Iwaniec 2002): (i) if g is the genus of the
surface D/Γ , there are at most 3g−2 exceptional eigenvalues; (ii) if d is the diameter
of the fundamental domain, then the smallest (non zero) eigenvalue is bounded from
below by (4π sinh d

2 )−2.
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Suppose now that the eigenfunction in Theorem 3 is Γ -periodic. Then the dis-
tribution Tρ satisfies the following equivariance relation (Pollicott 1989). Let γ (θ)

denote the image of θ ∈ ∂D under the action of γ ∈ Γ . Then

Tρ(γ · θ) = ∣∣γ ′(θ)
∣∣ 1

2 +iρ
Tρ(θ).

As observed by Series (1987), this condition is not compatible with Tρ being a “nice”
function. In fact, not only does there not exist any explicit formula for these eigen-
functions, but their approximate computation is itself an uneasy task. The above
equivariance condition is responsible for having only a discrete number of values
of ρ such that the corresponding eigenfunctions of −�D are Γ invariant. We shall
come back to this point in subsequent sections.

3 Bifurcation of Patterns in SDP(2)

We now consider again (1), which we set in D × R
+∗ by the change of coordinates

(6). Assuming I = 0 (no external input) and the invariance hypothesis (3) for the con-
nectivity function w, and after the choice of time scale such that α = 1, the equation
reads

∂V

∂τ
= −V + μw ∗ V + R(V ), (17)

where

• μ = S′(0),
• w ∗ V denotes the convolution product

∫
D×R

+∗ w(z, z′)V (z′)dz′ (with w(z, z′) =
f (d(z, z′))),

• R(V ) stands for the remainder terms in the integral part of (3). This implies
R′(0) = 0.

It is further assumed that f is a “Mexican hat” function, typically of the form

f (x) = 1√
2πσ 2

1

e
− x2

2σ2
1 − θ

1√
2πσ 2

2

e
− x2

2σ2
2 ,

where σ1 < σ2 and θ ≤ 1.
Let us look at the linear stability of the trivial solution of (17) against perturbations

in the form of hyperbolic waves (14) with ρ ∈ R. This boils down to looking for σ ’s
such that

σ = −1 + μŵ,

where ŵ is the hyperbolic Fourier transform of w as defined in Definition 16. The nu-
merical calculation shows that for each value of ρ and β , there exists a value μ(ρ,β)

such that if μ < μ(ρ,β) then all σ ’s are negative, while σ = 0 at μ = μ(ρ,β). The
“neutral stability surface” defined by μ(ρ,β) is typically convex and reaches a min-
imum μc at some values ρc, βc. Therefore, when μ < μc the trivial state V = 0 is
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stable against such perturbations, while it becomes marginally stable when μ = μc
with critical modes ψρc,b,βc , for any b ∈ S1 (rotational invariance). Therefore, a bi-
furcation takes place at this critical value.

The situation is absolutely similar if instead of (17) we consider systems of PDEs
in D × R

+∗ with pattern selection behavior and with U(1,1) × R+∗ invariance. A par-
adigm for such systems is the “Laplace–Beltrami” version of the Swift–Hohenberg
equation,

∂u

∂t
= μu − (� + α)2u + u2, α ∈ R

+∗ , (18)

with � as in (9).
It is inconceivable to solve the bifurcation problem at this level of generality, be-

cause the fact that the spectrum is continuous plus that each eigenvalue σ has an
infinite multiplicity (indifference to b) makes impossible the use of the classical tools
of bifurcation theory. As in the Euclidean case of pattern formation, we therefore
want to look for solutions in the restricted class of patterns which are spatially pe-
riodic. In the present framework, this means looking for bifurcating patterns which
are invariant under the action of a lattice group Γ × Z

+∗ in SU(1,1) × R
+∗ . There is,

however, an immediate big difference with the Euclidean case. While in the latter any
critical wave number αc can be associated with a periodic lattice (of period 2π/αc),
in the hyperbolic case not every value of ρc can be associated with a lattice in D.

Let us consider for example the Swift–Hohenberg equation (18) in the 2D space
D. To study the linear stability of the trivial state u = 0, we look at solutions of the
linear equation

∂u

∂t
= μu − (� + α)2u

in the form eσ t eρ,b(z) where eρ,b are the hyperbolic plane waves defined in (13),
ρ ∈ R and b ∈ S1. Solutions must satisfy the relation

σ = μ −
(

α − 1

4
− ρ2

)2

.

Assuming α > 1/4, it follows that the neutral stability curve μ = (α − 1
4 − ρ2)2 at-

tains its minimum at μ = 0 and ρ = ρc =
√

α − 1
4 > 0. The instability occurs when

μ becomes positive and the “most unstable” modes are those for which ρ = ρc. Mim-
icking the method classically applied in the Euclidean setting, we would like to re-
strict this bifurcation problem to solutions which are periodic with respect to a lattice
group Γ in D, the fundamental domain of which is a regular polygon (the lattice
forms a regular tessellation of D). This implies that we look for eigenmodes of the
form

∫
∂D

eρc,b(z)dTρc(b) which are invariant under the action of Γ , and we know
from Sect. 2.3 that this can only occur for a discrete set of values of ρc. But the size
of a regular polygon with a given number of vertices is fixed in hyperbolic geometry,
a consequence of the Gauss–Bonnet formula (Katok 1992). In contrast, in the Euclid-
ean case, any value of the wave number allows the generation of lattice-invariant
eigenmodes with a regular fundamental polygon which can be either a square or a
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hexagon. It follows that, although we can look for the bifurcation of spatially pe-
riodic solutions associated with a given tessellation in D, these patterns will not in
general correspond to the most unstable perturbations unless the parameters in the
equations (the coefficient α in the Swift–Hohenberg equation) are tuned so that it
happens this way. However, the values of ρ for Γ invariant eigenmodes can only be
known approximately. The question of the observability of such patterns is open.

We henceforth look for patterns in D × R
+∗ which are invariant under a lattice Γ

in D and which are periodic, with period 2π/βc, in R
+∗ . This boils down to looking

for solutions in the space L2(D/Γ × R
+∗ /βcZ

+∗ ). Note that R
+∗ /βcZ

+∗ � S1. With a
suitable inner product this space admits an orthonormal Hilbert basis which is made
of functions of the form

Ψ (z)eni log(βc) log(z3), z ∈ D, n ∈ N,

where Ψ are the eigenfunctions of � in L2(D/Γ ). As we mentioned in the previ-
ous section, these eigenfunctions are not known explicitly. By restricting the “neutral
stability surface” μ(ρ,β) to those values which correspond to eigenfunctions with
Γ × βcZ

+∗ periodicity, we obtain a discrete set of points on this surface with one
minimum μ0 associated with a value ρ0 of ρ and β0 of β . In general this minimum
is unique. Moreover, the multiplicity of the 0 eigenvalue is now finite and this eigen-
value is semi-simple. Let us call X the eigenspace associated with the 0 eigenvalue
(therefore X is the kernel of the critical linear operator).

The full symmetry group of D/Γ × S1 is equal to G∗ × O(2) where G∗ is the
(finite) group of automorphisms in U(1,1) of the Riemann surface D/Γ (notation
of Sect. 2.2) and O(2) is the symmetry group of the circle (generated by S1 and
by reflection across a diameter). The equation restricted to this class of Γ × βcZ

+∗ -
periodic patterns is invariant under the action of G∗ × O(2). We can therefore apply
an equivariant Lyapunov–Schmidt reduction to this bifurcation problem (Chossat and
Lauterbach 2000), leading to a bifurcation equation in X:

f (x,μ) = 0, x ∈ X, (19)

where f : X×R → X is smooth, f (0,0) = 0, ∂xf (0,0) is not invertible and f (·,μ)

commutes with the action of G∗ ×O(2) in X: if we denote by (g, x) �→ g ·x the action
of the group in X, then f (g · x,μ) = g ·f (x,μ) for all triples (g, x,μ). The problem
is now to find the non trivial solutions (x(μ),μ) of (19) such that x(0) = 0.

For this, the methods of equivariant bifurcation theory can be applied. In particu-
lar, we can apply the equivariant branching lemma (see Golubitsky et al. 1988 for a
detailed exposition).

Theorem 4 Suppose the action of G∗ × O(2) is absolutely irreducible in X (i.e. real
equivariant linear maps in X are scalar multiple of the identity). Then (19) has the
trivial solution x = 0 for all μ. Let H be an isotropy subgroup of G∗ × O(2) such
that the subspace XH = {x ∈ X | H · x = x} is one dimensional. Then generically a
branch of solutions (x(μ),μ) of (19) exists, such that: (i) x(0) = 0 (bifurcation from
the trivial solution), (ii) x(μ) ∈ XH for all μ. The conjugacy class of H (or isotropy
type) is called “symmetry breaking”.
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Let us briefly recall the meaning of this theorem. By equivariance of f , any sub-
space XH of X defined as in the theorem, is invariant under f . Indeed if x ∈ XH ,
then for all h ∈ H we have h · f (x,μ) = f (h · x,μ) = f (x,μ). By the irreducibil-
ity assumption, if H = G∗ × O(2), then {x ∈ X | H · x = x} = {0}. Therefore
f (0,μ) = 0 for all μ. Now the assumption of absolute irreducibility implies that
∂xf (0,μ) = a(μ)IdX where a is a smooth real function such that a(0) = 0 and gener-
ically a′(0) 
= 0. It follows that if now H is a subgroup such that dimXH = 1, then
(19) restricted to this subspace reduces to a scalar equation 0 = a′(0)μx + xh(x,μ)

(with h(0,0) = 0), which has a branch of non trivial solutions by the implicit function
theorem.

Remark 1 The word “generically” can be interpreted as follows: the result will fail
only if additional degeneracies are introduced in the equations. See Chossat and
Lauterbach (2000) and Golubitsky et al. (1988) for a rigorous definition and proof.

Remark 2 The assumption of absolute irreducibility is itself generic (in the above
stated sense) for one parameter steady-state bifurcation problems. A given irreducible
representation of a compact or finite group need not be absolutely irreducible, this fact
has to be proven.

Remark 3 Theorem 4 does not necessarily give an account of all possible branches
of solutions of (19) (Chossat and Lauterbach 2000). It gives nevertheless a large set
of generic ones. To go further it is necessary to compute the equivariant structure of
f , or at least of its Taylor expansion to a sufficient order. The same is true if one
wants to determine the stability of the bifurcated solutions within the class of Γ × S1

periodic solutions of the initial evolution equation.

Remark 4 If there exists an element g0 in the group which acts non trivially on the
axis XH (meaning that for any x ∈ XH , g0 · x = −x), then the bifurcation equation
restricted to XH is an odd function of x, hence the function h defined above is even,
and therefore it is easy to check that in this case, the bifurcation is one-sided and of
pitchfork type (bifurcated solutions in XH come by pairs ±x(μ)). Such a g0 exists if
and only if the group N(H)/H , where N(H) is the normalizer of H in G∗ × O(2),
is non trivial.

This theorem, together with the knowledge of the lattices and the (absolutely) ir-
reducible representations of the groups G∗, gives us a mean to classify the periodic
patterns which can occur in D ×R

+∗ . By analogy with the Euclidean case (bifurcation
of spatially periodic solutions in the Euclidean space), we call H-planforms the solu-
tions of a U(1,1) (resp. GL(2R)) invariant bifurcation problem in D (resp. D × R

+∗ ),
which are invariant by a lattice group Γ (resp. Γ × S1).

Being interested here in the classification of solutions rather than in their actual
computation for a specific equation, all that remains to be done is to determine the
absolutely real irreducible representations of the group G∗ × O(2) and the computa-
tion of the dimensions of the subspaces XH ). For this purpose we can get rid of the
S1 component of the domain of periodicity. Indeed, let H = H1 × H2 be an isotropy
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subgroup for the representation R of G∗ × O(2) acting in X. Then X = V ⊗ W and
R = S ⊗ T , where S is an irreducible representation G∗ in V and T is an irreducible
representation of O(2) in W (Serre 1978), and therefore H1 acts in V and H2 acts in
W . Now we have the following lemma, the proof of which is straightforward:

Lemma 1 dim(XH ) = 1 if and only if dim(V H1) = dim(WH2) = 1.

Now, the irreducible real representations of O(2) are well-known: they are either
one dimensional (in which case every point is rotationally invariant) or two dimen-
sional, and in the latter case the only possible one dimensional subspaces WH2 are
the reflection symmetry axes in R

2 (which are all equivalent under rotations in O(2)).
It follows that the classification is essentially obtained from the classification of the
isotropy subgroups H1 of the irreducible representations of G∗.

Once the irreducible representations are known, this can be achieved by applying
the “trace formula” (Golubitsky et al. 1988; Chossat and Lauterbach 2000):

Proposition 3 Let H be a subgroup of G∗ acting in a space V by a representation
ρ : G∗ → Aut(V ), then

dim
(
V H

) = 1

|H |
∑
h∈H

tr
(
ρ(h)

)
. (20)

Note that tr(ρ) is the character of the representation ρ (a homomorphism G∗ →
C). What is really needed in order to apply the equivariant branching lemma is there-
fore the character table of the representations. In the next section we investigate this
classification in the case when the lattice is the regular octagonal group.

4 A Case Study: The Octagonal Lattice

According to the comment following Lemma 1, in all of this section we only consider
the classification of isotropy subgroups satisfying the conditions of the equivariant
branching lemma in the Poincaré disc D.

4.1 The Octagonal Lattice and Its Symmetries

Among all lattices in the hyperbolic plane, the octagonal lattice is the simplest one.
As before we use the Poincaré disc representation of the hyperbolic plane. Then the
octagonal lattice group Γ is generated by the following four hyperbolic translations
(boosts) (Balazs and Voros 1986):

g0 =
(

1 + √
2

√
2 + 2

√
2√

2 + 2
√

2 1 + √
2

)
(21)

and gj = rjπ/4g0r−jπ/4, j = 1,2,3, where rϕ indicates the rotation of angle ϕ around
the origin in D. The fundamental domain of the lattice is a regular octagon O as
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shown in the figures. The opposite sides of the octagon are identified by periodicity,
so that the corresponding quotient surface D/Γ is isomorphic to a “double dough-
nut” (genus two surface) (Balazs and Voros 1986). Note that the same octagon is also
the fundamental domain of another group, not isomorphic to Γ , obtained by identi-
fying not the opposite sides but pairs of sides as indicated in figure. This is called the
Gutzwiller octagon. A procedure of classification of the lattices using graphs is pre-
sented in Sausset and Tarjus (2007). For us, however, there is no difference between
the two kinds of octagon, because we are really interested in the full symmetry group
of the pattern generated by Γ , which includes the rotations rjπ/4, j = 1, . . . ,8, and
therefore the boosts rπ/2g

−1
0 , g1r−π/2 and their conjugates by the rotation rπ , which

are precisely the generators of the Gutzwiller lattice group.
We now determine what is the full symmetry group G∗ of the octagonal lattice, or

equivalently, of the surface D/Γ . Clearly the symmetry group of the octagon itself
is part of it. This is the dihedral group D8 generated by the rotation rπ/4 and by the
reflection κ through the real axis, but there is more. We have seen in Sect. 2.2 that
the group G∗ = Λ/Γ , Λ being the triangle group generated by reflections through
the edges of a triangle τ which tiles (by the action of Λ/Γ ) the surface D/Γ . The
smallest triangle (up to symmetry) with these properties is the one shown in Fig. 1. It
has angles π/8, π/2 and π/3 at vertices P = O (the center of D), Q, R, respectively,
and its area is, by Gauss–Bonnet formula, equal to π/24. There are exactly 96 copies
of τ filling the octagon, hence |G∗| = 96. The index 2 subgroup G of orientation-
preserving transformations in G∗ has therefore 48 elements. This is the bound of
|G| for genus 2 surfaces mentioned in the comments after Theorem 2. In Broughton
(1991) it has been found that G � GL(2,3), the group of invertible 2 × 2 matrices
over the 3 element field Z3. In summary:

Proposition 4 The full symmetry group G∗ of D/Γ is G ∪ κG where G � GL(2,3)

has 48 elements.

The isomorphism between GL(2,3) and G can be built as follows. We use the
notation Z3 = {0,1,2} and we call ρ the rotation by π/4 centered at P (mod Γ ), σ

the rotation by π centered at Q (mod Γ ) and ε the rotation by 2π/3 centered at R

(mod Γ ). In the notations of Sect. 2.2, a = σ , b = ε, c = ρ, and ρσε = 1. Then we
can take

ρ =
(

0 2
2 2

)
, σ =

(
2 0
0 1

)
, ε =

(
2 1
2 0

)

since these matrices satisfy the conditions ρ8 = σ 2 = ε3 = Id and ρσε = Id. Note
that ρ4 = −Id where Id is the identity matrix. We shall subsequently use this notation.
The group GL(2,3), therefore the group G, is made of eight conjugacy classes, which
we list in Table 1, indicating one representative, the number of elements in each class
and their order. This result is classical and can be found, e.g., in Lang (1993).

We now turn to the full symmetry group G∗ which is generated by G and κ , the
reflection through the real axis in D and which maps the octagon O to itself. We write
κ ′ = ρκ the reflection through the side PR of the triangle τ . Note that (i) κ ′ preserves
also O, (ii) κ ′′ = εκ ′ = σκ is the reflection through the third side QR.
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Table 1 Conjugacy classes of
G � GL(2,3) Representative Id ρ ρ2 −Id ρ5 σ ε −ε

Order 1 8 4 2 8 2 3 6

# Elements 1 6 6 1 6 12 8 8

Table 2 Conjugacy classes of
G∗, orientation-preserving
transformations

Class number 1 2 3 4 5 6 7

Representative Id ρ ρ2 −Id σ ε −ε

Order 1 8 4 2 2 3 6

# Elements 1 12 6 1 12 8 8

Table 3 Conjugacy classes of
G∗, orientation reversing
transformations

Class number 8 9 10 11 12 13

Representative κ κ ′ σ̂ κ ρσ̂ κ εκ −εκ

Order 2 2 8 4 12 12

# Elements 8 8 12 12 4 4

In what follows we rely on the group algebra software GAP (GAP, http://www.gap
-system.org/). For this we have first identified a presentation for G � GL(2,3) con-
sidered as an abstract group, then a presentation for G∗. The presentation for GL(2,3)

can be obtained with the command “P := PresentationViaCosetTable(GL(2,3))” and
the relations are shown with the command “TzPrintRelators(P)”:

Lemma 2 (i) As an abstract group, G is presented with two generators a and b and
three relations a2 = 1, b3 = 1 and (abab−1ab−1)2 = 1.

(ii) As an abstract group, G∗ is presented with three generators a, b and c and
six relations: the three relations for G plus the three relations c2 = 1, (ca)2 = 1 and
(cb)2 = 1.

(iii) These abstract elements can be identified with automorphisms of D/Γ as
follows: a = σ , b = ε and c = κ ′′.

Applying the above lemma we find with GAP that the 96 element group G∗ has
13 conjugacy classes which are listed in Table 2 for direct isometries and in Table 3
for isometries which reverse orientation. GAP gives representatives of the conjugacy
classes in the abstract presentation, which in general have complicated expressions.
In some cases we have chosen other representatives, using in particular the 8-fold
generator. To simplify some expressions in Tables 2 to 5 we also use the notation

σ̂ = εσε−1, σ̃ = ρ2σρ−2,

where σ̂ is the rotation by π centered at Ŝ (mod Γ ) and σ̃ is the rotation by π centered
at S̃ (mod Γ ); see Fig. 2.

We shall also need in Sect. 4.3 the list of subgroups of G∗ together with their
decomposition in conjugacy classes (in G∗) in order to apply the trace formula (20).
Here again we rely on GAP to obtain the necessary information.

Then representatives of each class are determined by inspection. These data are
listed in Tables 4 (subgroups of G) and 5 (subgroups containing orientation reversing

http://www.gap-system.org/
http://www.gap-system.org/
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Table 4 Subgroups of G ⊂ G∗ (up to conjugacy). The last column provides data about their conjugacy
subclasses (in G∗)

Subgroup Order Generators Subclasses: representatives (# elements)

G0 � SL(2,3) 24 〈ρ2, ε〉 {Id (1), −Id (1), ρ2 (6), ε (8), −ε (8)}

D̃8 16 〈ρ, σ̂ 〉 {Id (1), −Id (1), ρ (4), ρ2 (6), σ̂ (4)}

D̃6 12 〈−ε, σ̃ 〉 {Id (1), −Id (1), σ̃ (6), ε (2), −ε (2)}

C8 8 〈ρ〉 {Id (1), −Id (1), ρ (4), ρ2 (2)}

Q8 8 〈ρ2, σρ2σ 〉 {Id (1), −Id (1), ρ2 (6)}

D̃4 8 〈ρ2, σ̂ 〉 {Id (1), −Id (1), ρ2 (2), σ̂ (4)}

C̃6 6 〈−ε〉 {Id (1), −Id (1), ε (2), −ε (2)}

D̃3 6 〈ε, σ̃ 〉 {Id (1), ε (2), σ̃ (3)}

C4 4 〈ρ2〉 {Id (1), −Id (1), ρ2 (2)}

D̃2 4 〈−Id, σ 〉 {Id (1), −Id (1), σ (2)}

C̃3 3 〈ε〉 {Id (1), ε (2)}

C2 2 〈−Id〉 {Id (1), −Id (1)}

C̃2 2 〈σ 〉 {Id (1), σ (1)}

elements). The subgroups are listed up to conjugacy in G∗, the subgroups of order
two are not listed. The rationale for the notations is as follows.

• G0 is an index 2 subgroup of G. Seen as a subgroup of GL(2,3) it is SL(2,3), the
subgroup of determinant 1 matrices. It contains no order 2 elements except −Id
and no order 8 elements.

• Cn, C̃n, C′
n, denote order n cyclic groups. The notation Cn is standard for the

n-fold rotation group centered at the origin.
• Dn denotes a group isomorphic to the dihedral group of order 2n, generated by an

n-fold rotation and a reflection. Hence D8 is the symmetry group of the octagon.
The notation D̃n is used for a 2n element group which has an n-fold rotation and
a 2-fold rotation as generators. For example D̃8 = 〈ρ, σ̂ 〉, and one can verify that
σ̂ ρσ̂−1 = ρ3, which makes D̃8 a quasidihedral group (Gorenstein 1980).

• Q8 is a usual notation for the 8 element quaternionic group.
• The notation Hnκ indicates a group generated by the group Hn and κ . Same thing

if replacing κ by κ ′. For example C̃3κ ′ is the 6 element group generated by C̃3
and κ ′.

4.2 The Irreducible Representations of G∗

There are 13 conjugacy classes and therefore we know there are 13 complex ir-
reducible representations of G∗, the characters of which will be denoted χj , j =
1, . . . ,13. The character table, as computed by GAP, is shown in Table 6.

The character of the identity is equal to the dimension of the corresponding rep-
resentation. It follows from Table 6 that there are four irreducible representations of
dimension 1, two of dimension 2, four of dimension 3 and three of dimension 4. In
the following we shall denote the irreducible representations by their character: χj is
the representation with this character.
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Table 5 Subgroups of G∗, not in G (up to conjugacy). The last column provides data about their conju-
gacy subclasses (in G∗). C̃4 is a subgroup conjugate to C4 with generator (ρ2σ)2

Subgroup Order Generators Subclasses: representatives (# elements)

G0κ 48 〈G0, κ〉 G0 ∪ {κ (6), ρσ̂κ (2), εκ (8), −εκ (8)}

G0κ ′ 48 〈G0, κ ′〉 G0 ∪ {κ ′ (12), σ̂ κ (12)}

D̃8κ 32 〈D̃8, κ〉 D̃8 ∪ {κ (6), κ ′ (4), σ̂ κ (4), ρσ̂κ (2) }

D̃6κ ′ 24 〈D̃6, κ ′〉 D̃6 ∪ {κ ′ (6), εκ (2), −εκ (2), ρσ̂κ (2)}

C8κ (= D8) 16 〈C8, κ〉 C8 ∪ {κ (4), κ ′ (4)}

C′
8κ

16 〈ρ2σ, κ〉 C8 ∪ {κ (2), ρσ̂κ (2), σ̂ κ (4)}

Q8κ 16 〈Q8, κ〉 Q8 ∪ {κ (6), ρσ̂κ (2)}

Q8κ ′ 16 〈Q8, κ ′〉 Q8 ∪ {κ ′ (4), σ̂ κ (4)}

D̃4κ 16 〈D̃4, κ〉 D̃4 ∪ {κ (4), σ̂ κ (4)}

D̃4κ ′ 16 〈D̃4, κ ′〉 D̃4 ∪ {κ (2), κ ′ (4), ρσ̂κ (2)}

C′
12 12 〈εκ〉 C̃6 ∪ {εκ (2), −εκ (2), ρσ̂κ (2)}

C̃6κ ′ 12 〈C̃6, κ ′〉 C̃6 ∪ {κ ′ (6)}

C′
8 8 〈̂σκ〉 C4 ∪ {σ̂ κ (4)}

C4κ (= D4) 8 〈C4, κ〉 C4 ∪ {κ (4)}

C4κ ′ 8 〈C4, κ ′〉 C4 ∪ {κ ′ (4)}

D̃2κ 8 〈D̃2, κ〉 D̃2 ∪ {κ (2), κ ′ (2)}

C′
4κ

8 〈C′
4, κ〉 C′

4 ∪ {ρ2 (2), κ (2)}

C′
4κ ′ 8 〈C′

4, κ ′〉 C′
4 ∪ {σ (2), κ ′ (2)}

C̃3κ ′ 6 〈C̃3, κ ′〉 C̃3 ∪ {κ ′ (3)}

C′
4 4 〈ρσ̂κ〉 {Id (1), −Id (1), ρσ̂κ (2)}

C2κ 4 〈−Id, κ〉 {Id (1), −Id (1), κ (2)}

C2k′ 4 〈−Id, κ ′〉 {Id (1), −Id (1), κ ′ (2)}

C̃2k 4 〈σ, κ〉 {Id (1), σ (1), κ (1), κ ′ (1)}

C̃′
2κ

4 〈̃σ, κ〉 {Id (1), σ̃ (1), κ (1), κ ′ (1)}

C1κ 2 〈κ〉 {Id (1), κ (1)}

C1κ ′ 2 〈κ ′〉 {Id (1), κ ′ (1)}

Lemma 3 All irreducible representations of G∗ listed in Table 6 are real absolutely
irreducible.

Proof This is clear for the one dimensional representations whose characters are real.
For the two dimensional representations, let us consider the dihedral subgroup

D3 generated by the 3-fold symmetry ε and the reflection κ ′. The representations of
D3 in either the representation plane of χ5 and χ6 have characters χj (ε) = −1 and
χj (κ

′) = 0 (j = 5 or 6). These are the characters of the 2D irreducible representation
of D3, which is absolutely irreducible, and therefore the representations χ5 and χ6
of G∗ are also absolutely irreducible. Indeed if any real linear map which commutes
with the elements of a subgroup is a scalar multiple of the identity, then this is a
fortiori true for the maps which commute with the full group.

For the three dimensional representations χ7 to χ10, let us first remark that if we
write C2 = {Id,−Id}, then G/C2 � O, the octahedral group. Its subgroup T (tetra-
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Fig. 2 Tessellation of the
regular hyperbolic octagon with
the triangle T (2,3,8), colored
in purple in the plot. We define
two points Ŝ and S̃. Ŝ is the
center of the rotation σ̂ by π

(mod Γ ); see Sect. 4.1. S̃ is the
center of the rotation σ̃ by π

(mod Γ ); see Sect. 4.1

Table 6 Irreducible characters of G∗

Class # 1 2 3 4 5 6 7 8 9 10 11 12 13

Representative Id ρ ρ2 −Id σ ε −ε κ κ ′ σ̂ κ ρσ̂ κ εκ −εκ

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 −1 1 1 −1 1 1 1 −1 −1 1 1 1

χ3 1 −1 1 1 −1 1 1 −1 1 1 −1 −1 −1

χ4 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1

χ5 2 0 2 2 0 −1 −1 −2 0 0 −2 1 1

χ6 2 0 2 2 0 −1 −1 2 0 0 2 −1 −1

χ7 3 1 −1 3 −1 0 0 −1 −1 1 3 0 0

χ8 3 1 −1 3 −1 0 0 1 1 −1 −3 0 0

χ9 3 −1 −1 3 1 0 0 1 −1 1 −3 0 0

χ10 3 −1 −1 3 1 0 0 −1 1 −1 3 0 0

χ11 4 0 0 −4 0 −2 2 0 0 0 0 0 0

χ12 4 0 0 −4 0 1 −1 0 0 0 0
√

3 −√
3

χ13 4 0 0 −4 0 1 −1 0 0 0 0 −√
3

√
3

hedral group) can easily be identified with the 12 element group generated by the
“pairs” {Id,−Id}, {ε,−ε} and {ρ2,−ρ2}. Now we consider the representation of G

defined by the action of χj restricted to G (for each 3D χj ). One can check easily
from the character table that it projects onto a representation of G∗/C2, the character
of which is given by the value of χj on the corresponding conjugacy classes, and in
particular the character for the representation of the group T is given, for any j = 7
to 10, by χj ({Id,−Id}) = 3, χj ({ε,−ε}) = 0 and χj ({ρ2,−ρ2}) = −1. But this is
the character of the irreducible representation of T (Miller 1972), which is absolutely
irreducible (natural action of T in R

3). Hence the three dimensional representations
of G∗ are absolutely irreducible by the same argument as above.
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It remains to prove the result for the four dimensional representations χ11, χ12 and
χ13. For this we consider the action of the group D8 generated by ρ and κ , as defined
by either one of these 4D irreducible representations of G∗. We observe from the
character table that, in all cases, the character of this action is χ(ρ) = 0, χ(ρ2) = 0,
χ(−Id) = −4, χ(ρ3) = 0 (ρ and ρ3 are conjugate in G∗), and χ(κ) = χ(κ ′) = 0. We
can determine the isotypic decomposition for this action of D8 from these character
values. The character tables of the four one dimensional and three two dimensional
irreducible representations of D8 can be computed easily either by hand (see Miller
1972 for the method) or using computer group algebra software like GAP. For all one
dimensional characters the value at −Id is 1, while for all two dimensional characters,
the value at −Id is −2. Since χ(−Id) = −4, it is therefore not possible to have one di-
mensional representations in this isotypic decomposition. It must therefore be the sum
of two representations of dimension 2. Moreover, since χ(ρ) = χ(ρ2) = χ(ρ3) = 0,
it cannot be twice the same representation. In fact it must be the sum of the repre-
sentations whose character values at ρ are

√
2 and −√

2, respectively. Now, these
representations are absolutely irreducible (a well-know fact which is straightforward
to check), hence any D8-equivariant matrix which commutes with this action decom-
poses into a direct sum of two scalar 2 × 2 matrices λI2 and μI2 where λ and μ are
real. But the representation of G∗ is irreducible, hence λ = μ, which proves that it is
also absolutely irreducible. �

4.3 The Octagonal H-planforms

We can now apply Lemma 1 in order to determine the H-planforms for the octagonal
lattice.

Theorem 5 The irreducible representations of G∗ admit H-planforms with the fol-
lowing isotropy types:

• χ1: G∗;
• χ2: G0κ ;
• χ3: G0κ ′ ;
• χ4: G � GL(2,3);
• χ5: D̃8, Q8κ ′ ;
• χ6: D̃8κ ;
• χ7: C′

8κ , C′
12, C4κ ′ ;

• χ8: C8κ , C̃6κ ′ , D̃2κ ;
• χ9: D̃6, D̃4κ ;
• χ10: D̃6κ ′ , D̃4κ ′ ;
• χ11: C̃2κ , C̃′

2κ ;
• χ12: D̃3, C̃3κ ′ , C̃2κ , C̃′

2κ ;
• χ13: D̃3, C̃3κ ′ , C̃2κ , C̃′

2κ .

Proof For the one dimensional representations of G∗ this is straightforward: each el-
ement whose character image is +1 belongs to the isotropy group. The result follows
therefore directly from the character table and the list of subgroups of G∗. For the
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higher dimensional irreducible representations we need to find those isotropy sub-
groups H such that (see (20)):

1 = dim
(
V H

) = 1

|H |
∑
h∈H

χj (h),

where χj denotes the character of the j th irreducible representation. This can be done
in a systematic way by using the character Table 6 and applying the data on subgroups
and their conjugacy classes listed in 4 and 5. The calculations are cumbersome but
can be slightly simplified by noting that if H ⊂ H ′ and dim(V H ) = 0 (a case which
occurs many times), then not only H is not symmetry breaking, but also H ′ is not,
since H ⊂ H ′ ⇒ V H ′ ⊂ V H .

The following lemma is also useful, as it eliminates most candidates in the case of
4D representations.

Lemma 4 If a subgroup H contains −Id, then for j = 11,12 or 13, one has∑
h∈H χj (h) = 0.

Proof of the lemma In all three cases the result follows from the relations: (i)
χj (−Id) = −χj (Id), (ii) χ(−ε) = −χ(ε) and χ(−εκ) = −χ(εκ), (iii) χj (s) = 0
for all s which is not conjugate to one in (i) or (ii). �

For the lower dimensional representations it is possible to reduce the problem to
known situations and to provide bifurcation diagrams without any further calcula-
tions. The next theorem provides this information. Stability of the solutions has to
be understood here with respect to perturbations with the same octagonal periodic-
ity in D and under the condition that, in L2(D/Γ ), the corresponding representation
corresponds to the “most unstable” modes (“neutral modes” at bifurcation).

Theorem 6 For the one and two dimensional representations, the generic bifurcation
diagrams have the following properties:

• χ1: transcritical branch, exchange of stability principle holds.
• χ2, χ3 and χ4: pictchfork bifurcation, exchange of stability principle holds.
• χ5: same as bifurcation with hexagonal symmetry in the plane; see Fig. 3.
• χ6: same as bifurcation with triangular symmetry in the plane. In particular

H-planforms are always unstable on both sides of the bifurcation point unless the
subcritical branch bends back sufficiently near the bifurcation point (see Fig. 4).

Proof (i) For the one dimensional representations, this follows from classical bifur-
cation theory: in χ1 there is no symmetry breaking, hence generically the bifurcation
is of transcritical type and the trivial and bifurcated solutions exchange stability at the
bifurcation point. In the three other cases, a symmetry exists which acts by reversing
direction on the axis as can be seen from Table 6. For example in χ2 this can be taken
as σ (but also κ ′ does the same thing). Hence the bifurcation is of pitchfork type and
exchange of stability holds.
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Fig. 3 Bifurcation diagram for the case χ5. Dotted lines: unstable branches

Fig. 4 Bifurcation diagram for
the case χ6. Dotted lines:
unstable branches

(ii) For χ5, note that the subgroup Q8 acts trivially on any point of this plane
(dim(V Q8) = 2). In fact Q8 is the isotropy group of the principal stratum in this
group action. Now, G � GL(2,3) = Q8 � D3, hence G∗/Q8 � D3 � Z2 � D6, the
symmetry group of an hexagon. This group action is isomorphic to the natural action
of D6 in the plane. It follows that the problem reduces in this case to a bifurcation
problem with the action of D6 in the plane; see Golubitsky et al. (1988) for details.

(iii) In the case of χ6, the maximal subgroup which keeps every point in the plane
fixed is the 16 element group Q8κ . It follows that the problem reduces to a bifurcation
problem in the plane with symmetry G∗/Q8κ � D3. Details on this bifurcation can
be found in Golubitsky et al. (1988). �

Remark 1 A similar reduction can be made with the three dimensional representa-
tions. Indeed it can be seen that the principal isotropy type (which keeps all points in
the three dimensional representation space fixed) is C′

4 for χ7 and χ10, and C2 for χ8

and χ9. In the first case, this leads to reducing the problem to one with G∗/C′
4 � O

symmetry, where O is the 24 element group of direct symmetries (rotations) of a
cube. However, there are two irreducible representations of dimension 3 of O (Miller
1972), and it turns out that χ7 corresponds to one of them (the “natural” action of
O in R

3), while χ10 corresponds to the other representation. This explains why there
are three types of H-planforms for χ7 and only two for χ10. Similarly, the principal
isotropy type for χ8 and χ9 is the two element group C2, and G∗/C2 � O�Z2. Then
the same remark holds for these cases as for the previous ones.

Remark 2 In the four dimensional cases, the principal isotropy type is the trivial
group, hence no reduction can be made. Bifurcation in this case (and in the three
dimensional cases as well) will be the subject of a forthcoming paper.
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5 Computing the H-planforms

It follows from the definition that H-planforms are eigenfunctions of the Laplace–
Beltrami operator in D which satisfy certain isotropy conditions: (i) being invariant
under a lattice group Γ and (ii) being invariant under the action of an isotropy sub-
group of the symmetry group of the fundamental domain D/Γ (mod Γ ). Therefore
in order to exhibit H-planforms, we need first to compute eigenvalues and eigenfunc-
tions of � in D, and second to find those eigenfunctions which satisfy the desired
isotropy conditions. In this section we tackle this question in the case where the lat-
tice has the regular octagon as a fundamental domain.

Over the past decades, computing the eigenmodes of the Laplace–Beltrami oper-
ator on compact manifolds has received much interest from physicists. The main ap-
plications are certainly in quantum chaos (Balazs and Voros 1986; Aurich and Steiner
1989, 1993; Schmit 1991; Cornish and Turok 1998) and in cosmology (Inoue 1999;
Cornish and Spergel 1999; Lehoucq et al. 2002).

To our knowledge, the interest in such computation was sparkled by the study
of classical and quantum mechanics on surfaces of constant negative curvature, and
the connections between them (for an overview on the subject see Balazs and Voros
1986). To be more precise, quantum chaology can be defined as the study of the semi-
classical behavior characteristic of systems whose classical motion exhibits chaos, for
example the classical free motion of a mass point on a compact surface of constant
negative curvature (as it is the most chaotic possible). In Balazs and Voros (1986),
Aurich and Steiner (1989), Cornish and Turok (1998), the authors studied the time-
independent Schroedinger equation on the compact Riemannian surface of constant
curvature −1 and genus 2, which is topologically equivalent to the regular octagon
with four periodic boundary conditions. This is the same as solving the eigenvalue
problem for Γ invariant eigenmodes in D. The first computations have been per-
formed using the finite-element method on “desymmetrized” domains of the hyper-
bolic octagon with a mixture of Dirichlet and Neumann boundary conditions (Balazs
and Voros 1986; Schmit 1991). We explain the procedure of desymmetrization in
the next subsection. Aurich and Steiner (1989) were the first to compute the eigen-
modes on the whole octagon with periodic boundary conditions. They began with
the finite-element method of type P 2 and were able to exhibit the first 100 eigenval-
ues. In Aurich and Steiner (1993), the same authors used the direct boundary-element
method on an asymmetric octagon to reach the 20 000th eigenvalue.

There is also a strong interest of cosmologists for ringing the eigenmodes of the
Laplace–Beltrami operator on compact surfaces. Indeed this is necessary in order to
evaluate the cosmic microwave background anisotropy in multiply-connected com-
pact cosmological models. For some models, this computation is performed on a
compact hyperbolic 3-space called the Thurston manifold, and Inoue computed the
first eigenmodes of Thurston space such that each corresponding eigenvalue λ satis-
fies λ ≤ 10 with the direct boundary-element method (Inoue 1999). For three dimen-
sional spherical spaces, several methods have been proposed: the “ghosts method”
(Cornish and Spergel 1999), the averaging method and the projection method. All
these methods are explained and summarized in Lehoucq et al. (2002).

Our aim is different, in that we do not want to compute all the eigenvalues of
the Laplace–Beltrami operator, but instead want to calculate the H-planforms with
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the isotropy types listed in Theorem 5. The methods of numerical computation are,
however, similar, and one question is to choose the method best suited to our goal.
For the H-planforms associated to irreducible representations of dimension 1 (i.e. for
(χi)i=1,...,4), we use a desymmetrization of the octagon with a reformulation of the
boundary conditions. For H-planforms associated with irreducible representations of
dimension ≥2, the desymmetrization of the octagon is also possible, but it is much
more complicated, as noticed by Balazs and Voros (1986). This will therefore be the
subject of another paper. Here we only identify some H-planforms of specific isotropy
types. In order to find these H-planforms, we use the finite-element method with
periodic boundary conditions. This choice is dictated by the fact that this method will
allow us to compute all the first n eigenmodes and among all these we will identify
those which correspond to a given isotropy group. As explained before, if we have
used the direct boundary-element method, we would have reached any eigenmode
but the search for H-planforms would also have became more random. Indeed, each
iteration of this method gives only one eigenmode while the finite-element method
provides n eigenmodes depending on the precision of the discretization. This is why
we prefer to use this last method in order to find some H-planforms associated with
irreducible representations of dimension ≥2, although it is much more complicated
to implement because of the periodic boundary conditions.

5.1 Desymmetrization of the Octagon

We have already seen that the fundamental domain T (2,3,8) of the group G∗ gen-
erates a tiling of the octagon. Desymmetrization consists in separating the individual
solutions according to the symmetry classes of G∗. This entails solving the eigen-
value problem in certain irreducible subregions of the fundamental domain, such as
T (2,3,8), using special boundary conditions for these subregions. In effect the pe-
riodicity conditions in the original domain (octagon) may produce Dirichlet or Neu-
mann conditions on the boundaries of these subregions. The symmetry group G∗ has
a smaller fundamental domain, the triangle T (2,3,8) (see Fig. 1), which is 1

96 th of
the original octagon. The method of desymmetrization can be applied to many other
techniques than finite-element methods (Fässler and Stiefel 1992).

We now focus on the four one dimensional irreducible representations (χi)i=1,...,4
acting upon the generators as indicated in Table 6. One can find in the book of Fässler
and Stiefel (1992, Chap. 3) the principle of desymmetrization in the context of dihe-
dral symmetry. We follow their method in the case of the symmetry group G∗. The
first step is to attribute one number (value) to each of the 96 triangles that tessellate
the octagon under the action of G∗ (see 2), according to the character values ob-
tained from Table 6, i.e. ±1 depending on the conjugacy class (remember we restrict
ourselves to the one dimensional representations χ1 to χ4).

Let us take the example of the first irreducible representation χ1 and explain how
we obtain the domain and the boundary conditions depicted in Fig. 5. Table 6 shows
that all 96 triangles end up with the same value, 1. This means that the eigenfunc-
tion we are looking for is even under all the 96 elements in G∗, and it follows that it
must satisfy Neumann boundary conditions on all the edges of the tessellation of the
hyperbolic octagon (Balazs and Voros 1986; Aurich and Steiner 1989). Finally, it is
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Fig. 5 Boundary conditions for
the one dimensional irreducible
representations. (a) boundary
conditions for χ1, corresponding
to the isotropy group G∗.
(b) boundary conditions for χ2
corresponding to the isotropy
group GOκ . (c) boundary
conditions for χ3 corresponding
to the isotropy group G0κ ′ .
(d) boundary conditions for χ4
corresponding to the isotropy
group G

(a) χ1 : G∗.

(b) χ2 : G0κ .

sufficient to solve the eigenproblem on the reduced domain T (2,3,8) with Neumann
boundary conditions on its three edges. For the four one dimensional representations
one has to choose the correct combination of Neumann and Dirichlet boundary con-
ditions, as shown in Fig. 5.

The representations of dimension ≥2 require the same number of values as their
dimension. For example there are two basis vectors determining the function values
in the case of an irreducible representation of dimension 2. Table 6 is then no longer
sufficient to set the values of the function on each triangle, and one has to explicitly
write the matrices of the irreducible representation in order to obtain the suitable
conditions. This is why we have restricted ourselves to the four one dimensional
representations as described in the previous paragraphs.
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Fig. 5 (Continued)

(c) χ3 : G0κ ′ .

(d) χ4 : G.

5.2 Numerical Experiments

As there exists an extensive literature on the finite-element methods (see for an
overview Ciarlet and Lions 1991; Allaire 2005) and as numerical analysis is not the
main goal of this article, we do not detail the method itself but rather focus on the
way to actually compute the eigenmodes of the Laplace–Beltrami operator.

Desymmetrized Problem For the four problems depicted in Fig. 5, we use the mesh
generator Mesh2D from Matlab to tessellate the triangle T (2,3,8) with 2995 nodes
and we implement the finite-element method of order 1. Our results are presented
in Fig. 6 and are in a good agreement with those obtained by Balazs and Voros
(1986) and Aurich and Steiner (1989). Once we have computed the eigenfunction
in T (2,3,8), we extend it to the whole octagon by applying the generators of G∗. We
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(a) χ1 : G∗, the corresponding (b) χ2 : G0κ , the corresponding
eigenvalue is λ = 23.0790. eigenvalue is λ = 91.4865.

(c) χ3 : G0κ ′ , the corresponding (d) χ4 : G, the corresponding
eigenvalue is λ = 32.6757. eigenvalue is λ = 222.5434.

Fig. 6 The four H-planforms with their corresponding eigenvalue associated with the four irreducible
representations of dimension 1; see text

superimpose in Fig. 6(a) the tessellation of the octagon by the 96 triangles in order to
allow the reader to see the symmetry class of G∗.

Non Desymmetrized Problem As discussed previously, we also present some H-
planforms of higher dimension. We mesh the full octagon with 3641 nodes in such a
way that the resulting mesh enjoys a D8-symmetry; see Fig. 7.

We implement, in the finite-element method of order 1, the periodic boundary
conditions of the eigenproblem and obtain the first 100 eigenvalues of the octagon.
Our results are in agreement with those of Aurich and Steiner reported in Aurich and
Steiner (1989). Instead of giving a table of all the eigenvalues, we prefer to plot the
staircase function N(λ) = �{λn|λn ≤ λ} for comparison with Weyl’s law. Weyl’s law
is, in its simplest version, a statement on the asymptotic growth of the eigenvalues of
the Laplace–Beltrami operator on bounded domains. If Ω is a given bounded domain
of R

2, then the staircase function has the following asymptotic behavior: N(λ) =
|Ω|
4π

λ + o(λ) as λ → ∞. We recall that in the case of the hyperbolic octagon, one has
|Ω| = 4π and hence N(λ) ∼ λ as λ → ∞. As can be seen in Fig. 8 the asymptotic
law describes the staircase well down to the smallest eigenvalues, which confirms the
validity of our numerical results.
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Fig. 7 A mesh of the octagon
with 3641 nodes which is used
for the method of finite
elements. It leads to matrices of
dimension 3641 × 3641

Fig. 8 The staircase function
N(λ), in dark, is shown in
comparison with Weyl’s law
N(λ) ∼ λ as λ → ∞

We show in Fig. 9 two H-planforms, with D̃8 and D̃8κ isotropy, respectively. These
two H-planforms belong to irreducible representations of dimension 2: χ5 for 9(a)
and χ6 for 9(b) and 10(a).

We finally present in Fig. 10 three H-planforms, with C8κ , D̃4κ and D̃4κ ′ isotropy.
These three H-planforms belong to irreducible representations of dimension 3: χ8 for
10(a), χ9 for 10(b) and χ10 for 10(c).

In Figs. 6, 9 and 10, we have plotted, for convenience, the corresponding
H-planforms in the octagon only. Nevertheless, H-planforms are periodic in the
Poincaré disc, as stated before, and in Fig. 11, we plot the H-planform with G0κ ′
isotropy type of Fig. 6(c). We recall that the octagonal lattice group Γ is generated
by the four boosts gj of Sect. 4.1. Then, once the H-planform is calculated, we report
it periodically in the whole Poincaré disc by the actions of there four boosts and ob-
tain Fig. 11. Note that it is arduous to tessellate the entire disc and this is why there
remain some untessellated areas in the figure.
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(a) χ5: D̃8, the corresponding (b) χ6: D̃8κ , the corresponding
eigenvalue is λ = 73.7323. eigenvalue is λ = 8.2501.

Fig. 9 Two H-planforms with their corresponding eigenvalue associated to the two irreducible represen-
tations of dimension 2; see text

(a) χ8: C8κ , the corresponding (b) χ9: D̃4κ , the corresponding
eigenvalue is λ = 3.8432. eigenvalue is λ = 28.0888.

(c) χ10: D̃4κ ′ , the corresponding
eigenvalue is λ = 15.0518.

Fig. 10 Three H-planforms with their corresponding eigenvalues associated to three irreducible represen-
tations of dimension 3; see text

Remark The finite-element method relies on a variational principle and thus yields
upper bounds for the eigenvalues. Note that it is not well-suited to compute high
eigenvalues. Thus, if one wants to compute, for example, the first 125 eigenvalues,
then the finite-element method provides a very good approximation to the true eigen-
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Fig. 11 Extension of the G0κ ′
H-planform on the Poincaré disk

values. If, however, one wants to reach the 2000th eigenvalue by the finite-element
method one needs to use matrices of size at least 106 × 106, which is untractable for
desktop or laptop computers and requires going to more powerful architectures. This
is why the direct boundary-element method should be preferred for such computa-
tions (Aurich and Steiner 1993).

6 Conclusion

In this paper, we have analyzed the bifurcation of periodic patterns for neural field
equations describing the state of a system defined on the space of structure tensors,
when these equations are further invariant under the isometries in this space. We
have made use of the concept of periodic lattice in D (Poincaré disc) to further re-
duce the problem to one on a compact Riemann surface D/Γ , where Γ is a co-
compact, torsion-free Fuchsian group. Successfully, we have applied the machinery
of equivariant bifurcation theory in the case of an octagonal periodic pattern, where
we have been able to classify all possible H-planforms satisfying the hypotheses of
the equivariant branching lemma. In the last section, we have described a method
to compute these patterns and illustrated it with a selection of images of octagonal
H-planforms.

There are several questions which are raised by this analysis.

(i) The first one is that of the interpretation of these H-planforms for the modeling
of the visual cortex. At this moment we believe that they could be involved in
the process of defining texture tuning curves in a way that would resemble the
definition of orientation tuning curves in the related ring model of orientation
selectivity (Hansel and Sompolinsky 1997; Shriki et al. 2003; Ermentrout 1998;
Dayan and Abbott 2001; Bressloff et al. 2000, 2001; Veltz and Faugeras 2010).
Another fascinating possibility is that they could be related to neural illusions
caused by the existence of several stable stationary solutions to (1) when, e.g.,
the slope of the sigmoid at the origin becomes larger than that at which sev-
eral branches of solutions bifurcate from the trivial one. These neural illusions
would be functions of membrane potential values that would not correspond
to the actual thalamic input and could be expressed as combinations of these
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H-planforms. This is of course still very speculative but very much worth in-
vestigating. In a next step, taking account of the spatial extension of the visual
cortex will have to be investigated, in the spirit of Bressloff et al. (2001).

(ii) The second one is about the observability of such patterns in a natural system
or under direct simulation of the evolution equations. Indeed, not only there is a
high degeneracy of the bifurcation problem if one removes the assumption that
all perturbations respect the periodicity of the pattern, which is also the case for
patterns in Euclidean space, but in addition there is a “rigidity” of the lattices in
hyperbolic space which, as explained in Sect. 3, could make the observation of
such patterns unlikely. We may, however, imagine mechanisms such as “spatial
frequency locking” which could overcome this difficulty.

(iii) The third one is that of a more effective computation of H-planforms for a given
isotropy type. As we have seen in the last section, a desymmetrization of the do-
main allowed us to calculate all the H-planforms with isotropy types associated
to irreducible representations of dimension 1. For irreducible representations of
dimension ≥2 the computation becomes more intricate as the desymmetrization
method is no longer straightforward and remains misunderstood. Naturally, one
solution would be to elaborate a general algorithm which, for a given isotropy
type, computes systematically the associated H-planform. We think that such an
algorithm would be of interests for quantum physicists and cosmologists.

These questions will be the subject of further studies.
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