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Abstract

In this paper we study neural field models with delays which define a useful framework for mod-
eling macroscopic parts of the cortex involving several populations of neurons. Nonlinear delayed
integro-differential equations describe the spatio-temporal behavior of these fields. Using methods
from the theory of delay differential equations, we show the existence and uniqueness of a solution of
these equations. A Lyapunov analysis gives us sufficient conditions for the solutions to be asymptot-
ically stable. We also present a fairly detailed study of the numerical computation of these solutions.
This is, to our knowledge, the first time that a serious analysis of the problem of the existence and
uniqueness of a solution of these equations has been performed. Another original contribution of
ours is the definition of a Lyapunov functional and the result of stability it implies. We illustrate
our numerical schemes on a variety of examples that are relevant to modeling in neuroscience.

Keywords: Neural fields; nonlinear integro-differential equations; delays; Lyapunov functional; pattern
formation; numerical schemes.

1 Introduction

Delays arise naturally when we model neurobiological systems. For example, the finite-velocity propa-
gation of action potentials, or the dendritic and synaptic processing can generate delays on the order
of milliseconds. Effective delays can also be induced by the spike-generation dynamics. First, the de-
lay due to propagation of action potentials along the axon depends on the travelled distance as well
as on the type of neurons. Indeed, conduction velocities in the axon can range from about 1m.s−1

along unmyelinated axons to more than 100m.s−1 along myelinated ones [10, 20]. This is one of the
reasons why significant time delays can emerge in certain brain structures. Second, some cells may have
synapses or gap junctions on dendrites far from the cell body. In this case, there can also be a delay
associated with the propagation of the action potential along the dendrite. Another delay can occur at
a synaptic contact point in the transduction of an electrical signal into a biochemical signal and back
again to a post-synaptic potential. Hence, the growing interest in understanding network models with
space-dependent delays [2, 3, 8, 9, 14, 15, 16, 17, 18, 22].

In this paper, we focus on space-dependent delays. In particular we incorporate delays in the well-
known Wilson and Cowan [23, 24] and Amari [1] models for neural fields. In order to cover both axonal
and dendritic delays and contrary to most of the papers on the subject, we deal with very general delay
integro-differential equations without specifying the form of the delays.

We present a general mathematical framework for the modeling of neural fields which is based on tools
of delay-differential equation analysis and an original presentation and analysis of numerical schemes.
We illustrate our results with numerical experiments. In section 2 we briefly introduce the equations,
in section 3 we analyse the problem of the existence and uniqueness of their solutions. In section 4 we
study the problem of their asymptotic stability. In the penultimate section, we present some numerical
schemes for the actual computation of the solutions. Each numerical scheme is illustrated by numerical
experiments. We conclude in section 6.
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2 The models

Neural field models first appeared in the 50’s, but the theory really took off in the 70’s with the works
of Wilson and Cowan [23, 24] and Amari [1]. Neural fields are continuous networks of interacting
neural masses, describing the dynamics of the cortical tissue at the population level. These neural field
models of population firing rate activity can be described, when delays are not taken into account by
the following integro-differential equations:

∂tV(r, t) = −LV(r, t) +
∫

Ω

W(r, r′, t)S(V(r′, t))dr′ + Iext(r, t) (1)

Let us briefly describe the various elements that appear in this equation before extending it to the case
of delays.

We consider n interacting populations of neurons whose state is described by their membrane poten-
tial V, a vector of dimension n. The function S : Rn → Rn is defined by S(x) = [S1(x1), . . . , Sn(xn)]T

where Si is sigmoidal. The functions Si satisfy the properties introduced in the following definition:

Definition 2.0.1. For all i = 1, . . . , n Si and S′i are positive and bounded (S′i is the derivative of the
function Si). We note S′im = supx S′i(x), Sm = maxi supx Si(x) and DSm = maxi S′im. Finally we
define DS as the diagonal matrix diag(S′i).

The relation between the firing rate νi of population i and its membrane potential Vi is given by the
relation νi = Si(Vi).

The neuronal populations are distributed over some continuum, a bounded open subset Ω of Rq,
q = 1, 2, 3. The variables r and r′ in (1) belong to Ω. The n × n matrix L is assumed to be diagonal,
L = diag(l1, · · · , ln), where the positive number li characterize the dynamics of the ith population,
i = 1, · · · , n. The n × n matrix function W(r, r′, t) describes how the populations at point r′ influence
those at point r at time t. More precisely, Wi,j(r, r′, t) describes how population j at point r′ influences
population i at point r at time t. Finally Iext(r, t) is an external current that models external sources of
excitation.

It is now straightforward to extend (1) to take into account space dependent delays. We introduce
the n-dimensional vector function d(r, r′) and assume its components to be non negative. di(r, r′) is
the time it takes for the information about the ith population at location r′ to reach the populations at
location r. Having said this we rewrite (1) as follows

∂tV(r, t) = −LV(r, t) +
∫

Ω

W(r, r′, t)S(V(r′, t− d(r, r′)))dr′ + Iext(r, t) (2)

Equation (2) deals with vector quantities. We can also write the corresponding equation for each coor-
dinate i in J1, nK:

∂tVi(r, t) = −liVi(r, t) +
n∑
j=1

∫
Ω

Wi,j(r, r, t)Sj(Vj(r′, t− dj(r, r′)))dr′ + Iiext(r, t)

3 Existence and uniqueness of a solution

In this section we deal with the problem of the existence and uniqueness of a solution to (2) for a given
initial condition. We first introduce the framework in which this equation makes sense.
We start with the assumption that the state vector V is a differentiable (resp., square integrable) func-
tion of the time (resp. the space) variable. Let Ω be an open subset of Rq where q = 1, 2, 3 and F be
the set L2(Ω,Rn) of the square integrable functions from Ω to Rn. The Fischer-Riesz’s theorem ensures

that F is a Banach space for the norm: ‖ψ‖F =
√∑n

i=1

∫
Ω
ψ2
i (r)dr for all ψ ∈ F . We denote by I an

interval of R containing 0.
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3.1 The well-posedness of (2)

We define the Banach space C = C([−d, 0],F) of the continuous functions from [−d, 0] to F where

d = supΩ×Ω d with the norm: ‖φ‖C
def
= supt∈[−d,0] ‖φ(t)‖F = supt∈[−d,0]

√∑n
i=1

∫
Ω
φ2
i (r, t)dr. We need

to introduce the following norms:

∀W ∈ L2(Ω2,Mn(R)) ‖W‖F =

√√√√ n∑
i,j=1

∫
Ω2
W 2
ij(r, r′)drdr′

∀W ∈ C(I, L2(Ω2,Mn(R))) ‖W‖∞,F = sup
t∈I
‖W (t)‖F

We use the traditional notation introduced by Hale in [12]:

Xt(θ) = X(t+ θ) θ ∈ [−d, 0]

when Xt ∈ C for all t ≥ 0. Equation (2) is formally recast as a retarded functional differential equation
on the Banach space F with initial value φ ∈ C:{

V̇(t) = f(t,Vt)
V0 = φ

(3)

where V(t) is thought of as a mapping V : I → F . This means that V(t) is a function defined in Ω by
V(t)(r) = V(r, t), similarly we have Vt(θ)(r) = V(r, t + θ). The function f from I × C is equal to the
righthand side of (2):

f(t,Vt)(r) = −LVt(r, 0) +
∫

Ω

W(r, r′, t)S(Vt(r′,−d(r, r′)))dr′ + Iext(r, t) ∀t ≥ 0 ∀r ∈ Ω

this means that ∀ψ ∈ C:

f(t, ψ)(r) = −Lψ(r, 0) +
∫

Ω

W(r, r′, t)S(ψ(r′,−d(r, r′)))dr′ + Iext(r, t) ∀r ∈ Ω

We define by Ω̄ the closure of Ω.

Lemma 3.1.1. If the following assumptions are satisfied:

• W ∈ C(R, L2
(
Ω2,Mn(R)

)
),

• d ∈ C(Ω̄2,Rn+),

• the external current Iext ∈ C(I,F),

then f is well defined and is from I × C to F .

Proof.

Since we work in an open bounded set Ω, if φ ∈ C then S(φ) ∈ F .

•• Let t ∈ I and ψ ∈ C. We introduce the mapping:

F : (t, ψ)→ F (t, ψ) such that F (t, ψ)(r) =
∫

Ω

W(r, r′, t)ψ(r′,−d(r, r′))dr′

We prove that F (t, ψ) belongs to F . We look at the i-th component:

(
F (t, ψ)(r)

)
i
≤

n∑
j=1

[∫
Ω

W 2
i,j(r, r

′, t)dr′
]1/2 [∫

Ω

ψ2
j (r′,−dj(r, r′))dr′

]1/2
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≤
n∑
j=1

[∫
Ω

W 2
i,j(r, r

′, t)dr′
]1/2

sup
s∈[−d,0]

[∫
Ω

ψ2
j (r′, s)dr′

]1/2

≤

 n∑
j=1

∫
Ω

W 2
i,j(r, r

′, t)dr′

1/2  n∑
j=1

sup
s∈[−d,0]

‖ψj(s)‖22

1/2

= ‖ψ‖C

 n∑
j=1

∫
Ω

W 2
i,j(r, r

′, t)dr′

1/2

So:

‖F (t, ψ)‖2F =
n∑
i=1

∫
Ω

 n∑
j=1

∫
Ω

Wi,j(r, r′, t)ψj(r′,−dj(r, r′))dr′
2

dr

≤
n∑
i=1

∫
Ω

‖ψ‖2C
n∑
j=1

∫
Ω

W 2
i,j(r, r

′, t)dr′dr ≤ ‖ψ‖2C‖W(t)‖2F

• Then it is easy to see that f(t, ψ) is well-defined and belongs to F .

3.2 Existence and uniqueness of a solution

In this section we will deal with the problem of the existence and uniqueness of a solution to (3). Let
I = [0,+∞[. Let us show existence and uniqueness on [−d,+∞[.

Theorem 3.2.1. If the following hypotheses are satisfied:
- W ∈ C(I, L2(Ω2,Mn(R))),
- the external current Iext ∈ C(I,F),
- d ∈ C(Ω2

,Rn+),
Then for any φ ∈ C, there exists a unique solution V ∈ C1([0,+∞[,F) ∩ C([−d,+∞[,F).

Proof. Let T > 0 and show the existence and uniqueness on [−d, T ].
We have already proved that f from I × C to F is well defined.
Let us prove that f is continuous with respect to (t, ψ):

f(t, ψ1)(r)− f(s, ψ2)(r) = −L(ψ1(r, 0)− ψ2(r, 0)) +
∫

Ω

(W(r, r′, t)−W(r, r′, s))S(ψ1(r′,−d(r, r′)))dr′

+
∫

Ω

W(r, r′, s)(S(ψ1(r′,−d(r, r′)))− S(ψ2(r′,−d(r, r′))))dr′ + Iext(r, t)− Iext(r, s)

It follows that:

‖f(t, ψ1)− f(s, ψ2)‖F ≤ lm‖ψ1 − ψ2‖C +
√
n|Ω|Sm‖W(., ., t)−W(., ., s)‖F

+DSm‖W (., ., s)‖F ‖ψ1 − ψ2‖C + ‖Iext(., t)− Iext(., s)‖F
Where lm = maxi=1,...,n(li).
Because of the hypotheses on the continuity we can choose |t − s| small enough so that ‖W(., ., t) −
W(., ., s)‖F and ‖Iext(., t)− Iext(., s)‖F are arbitrarily small. Since W is continuous it is bounded in the
neighborhood of s. This proves the continuity of f .
From the previous inequality we have:

‖f(t, ψ1)− f(t, ψ2)‖F ≤ lm‖ψ1 − ψ2‖C +DSm‖W (., ., t)‖F ‖ψ1 − ψ2‖C
This proves the Lipschitz continuity of f with respect to its second argument. We apply theorem 2.3 of
Hale [12], and conclude that there is a unique continuous function V defined on [−d, T ] that satisfies (3).
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So this solution V ∈ C([−d, T ],F) and lemma 2.1 p.40 of Hale [12] ensures that t 7→ Vt ∈ C([0, T ], C).
However, we have proved that f ∈ C(I × C,F). It is then easy to see that t 7→ f(t,Vt) is in C([0, T ],F).
This implies that V̇ ∈ C([0, T ],F) and so V ∈ C1([0, T ],F). We obtain that ∀T > 0 there exists a
solution on [−d, T ] satisfying V ∈ C1([0, T ],F) ∩ C([−d, T ],F). If the maximum interval of existence is
upper bounded, we can apply the previous analysis near this bound and extend the interval of existence,
which is a contradiction. Finally the maximum interval of existence is [−d,∞[.

3.3 Some remarks about the case Ω = Rq

Some very interesting work has been done on equation (2) in the case of a one-dimensional infinite con-
tinuum, Ω = R, and more rarely in the case of a two-dimensional infinite continuum, Ω = R2. The reader
is referred to the review papers by Venkov [22] and by Hutt and Atay [2] as well as to [15, 14, 9, 3].
Aside from the fact that an infinite cortex is unrealistic, the case Ω = Rq raises some interesting mathe-
matical questions. Indeed, we no longer have finite delays, so we cannot use the previous theorems. The
work of Wu [25] provides the beginning of an answer.

4 Linear stability analysis in the autonomous case

The goal of this section is to work at a fixed point V0 of (2) and study a linear retarded functional
differential equation. The theory introduced by Hale in [12] is based on autonomous systems, this is
why we need to impose that the connectivity does not depend on the time t, we note W(r, r′). For
the moment, we impose that W ∈ L2(Ω2,Mn(R)). This section is divided into three parts. First we
perform the linearization of (2) at a fixed point, then we study the stability by the method of Lyapunov
functional, and finally we explain and compare our study to previous work.

4.1 The linearization

Let V0 be a fixed point of (2), i.e. V0 satisfies:

0 = −LV0(r) +
∫

Ω

W(r, r′)S(V0(r′))dr′ + Iext(r) ∀r ∈ Ω

We define a new connectivity:

∀(r, r′) ∈ Ω2 W̃(r, r′) = W(r, r′) ·DS(V0(r′))

Proposition 4.1.1. Let Ω be an open set and W ∈ L2(Ω2,Mn(R)) then W̃ ∈ L2(Ω2,Mn(R)).

Proof.

∀1 ≤ i, j ≤ n
(
W̃(r, r′)

)
i,j

= W̃i,j(r, r′) =
n∑
k=1

Wi,k(r, r′)DS(V0(r′))k,j

then

∀1 ≤ i, j ≤ n W̃i,j(r, r′)2 ≤ n
n∑
k=1

Wi,k(r, r′)2
(
DS(V0(r′))k,j

)2 ≤ nDS2
m

n∑
k=1

Wi,k(r, r′)2

And we have the following inequalities:∫
Ω2
W̃i,j(r, r′)2drdr′ ≤ nDS2

m

∫
Ω2
Wi,j(r, r′)2drdr′ <∞ because W ∈ L2(Ω2,MN (R)).

We can conclude, thanks to Fubini’s theorem, that W̃ ∈ L2(Ω2,Mn(R)).
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We are now able to define on F the linearized equation around V0:

∂tU(r, t) = −LU(r, t) +
∫

Ω

W̃(r, r′)U(r′, t− d(r, r′))dr′ ∀t ≥ 0 ∀r ∈ Ω (4)

If 0 is asymptotically stable for (4) then V0 is also asymptotically stable for (2). This result, already
known in finite dimensions, is non trivial to establish in infinite dimensions because it requires the study
of the characteristic values of the infinitesimal generator associated to (4).

4.2 Stability by the method of Lyapunov functionals

4.2.1 Theoretical results

In this part we generalize an article published by Hale in 1963 [11] by extending his results to equations
defined in an infinite dimensional space.
Let C = C([−d, 0],F) be the space of continuous functions taking the interval [−d, 0] into the Banach
space F . If x is any continuous function defined on [−d, T [, T > 0, then xt will denote an element of C
for each t ∈ [0, T [ defined by xt(θ) = x(t + θ), −d ≤ θ ≤ 0. If f is any function mapping C into F , we
can define the following functional-differential equation:{

dx
dt (t) = f(xt) t ≥ 0
x0 = φ

(5)

Hypothesis 4.2.1. In the following, we assume that H = {φ ∈ C : ‖φ‖ < H} where H > 0, f(0) = 0
and f is locally Lipschitz in H.

Lemma 4.2.1. If x(φ) is a solution of (5) with initial function φ at 0, defined on [−d,∞[ and ‖xt(φ)‖ ≤
H1 < H for all t ≥ 0, then the family of functions {xt(φ), t ≥ 0} belongs to a compact set of C.

Proof. As f is locally Lipschitz in H, for any H1 < H there exists a constant L such that ‖f(φ)‖ ≤ L
for all φ with ‖φ‖ ≤ H1. Moreover, for all t ≥ 0, xt(φ) ∈ C i.e xt(φ)(θ) = x(φ)(t+ θ) for all θ ∈ [−d, 0].
If ‖xt(φ)‖ ≤ H1 < H for all t ≥ 0, then ẋ(t) = f(xt) ≤ L and so ‖x(φ)(t)‖ ≤ ‖x(φ)(0)‖+ tL with 0 ≤ t.
But, x(φ) is a continuous function on [−d,∞[ and ‖x(φ)(t)‖ ≤ at + b for all t ≥ 0 and a > 0, b ≥ 0 so
x(φ) is uniformly continuous on [−d,∞[.
Consequently, {xt(φ), t ≥ 0} is uniformly equicontinuous. Arzela-Ascoli’s theorem gives the conclusion.

Definition 4.2.1. An element ψ of C is in ω(φ), the ω-limit set of φ, if x(φ) is defined on [−d,∞[
and there is a sequence of nonnegative real numbers tn → ∞ as n → ∞ such that ‖xtn(φ)− ψ‖ → 0 as
n→∞.

Lemma 4.2.2. If φ ∈ C is such that the solution of (5) with initial function φ at 0 is defined on
[−d,∞[ and ‖xt(φ)‖ ≤ H1 < H for all t ≥ 0, then ω(φ) is a nonempty, compact, invariant set and
dist(xt(φ), ω(φ))→ 0 as t→∞.

Proof. Let be tn a sequence of nonnegative real numbers such as tn → ∞ as n → ∞. The sequence(
xtn(φ)

)
n

is included in a compact set of C thanks to lemma 4.2.1, so there exists a convergent subsequence
and its limit is by definition in ω(φ) which is nonempty.
Let now ψn be a convergent sequence of ω(φ) with ψ = limtn→∞ ψn. For each n there exists a sequence
tnm such that xtnm(φ) → ψn as m → ∞. We choose m(n) in order to have tn

def= tnm(n) > n and
‖xtn(φ) − ψn‖ < 1

n . So we have ‖xtn(φ) − ψ‖ → 0 as n → ∞ and ψ ∈ ω(φ). Thus ω(φ) is closed and
since, according to lemma 4.2.1, it is included in a compact set, it is compact. The proof also shows that
dist(xt(φ), ω(φ))→ 0 as t→∞ and it is easy to verify that ω(φ) is an invariant set.

Definition 4.2.2. If V is a continuous scalar function defined on H, we denote by V̇ its derivative along
the solutions of (5) which is defined as:

V̇(xt(φ)) = lim sup
h→0+

1
h

(
V(xt+h(φ))− V(xt(φ))

)
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We say that V : C → R+ is a Lyapunov functional on a set G ∈ C relative to (5) if V is continuous on
Ḡ(the closure of G) and V̇ ≤ 0 on G.
Let M be the largest set in {φ ∈ Ḡ : V̇(φ) = 0} which is invariant with respect to (5).

Theorem 4.2.1. If V is a Lyapunov function on Ul = {φ ∈ C : V(φ) < l} and there is a constant K
such that φ ∈ Ul implies ‖φ(0)‖ < K, then any solution xt(φ) of (5) with φ ∈ Ul satisfies xt(φ)→M as
t→∞.

Proof. If φ ∈ Ul and V̇ ≤ 0 on Ul, then xt(φ) ∈ Ul and ‖x(φ)(t)‖ ≤ K for t ≥ 0 which implies that
xt(φ) is bounded. By the lemma 4.2.2 ω(φ) is an invariant, nonempty compact set. Since V(xt(φ)) is
nonincreasing and bounded below, V(xt(φ)) has a limit l0 < l as t → ∞. Since V is continuous on Ūl,
V(ψ) = l0 for ψ ∈ ω(φ), or ψ ∈ ω(φ) is invariant so V̇(ψ) = 0. Consequently ω(φ) is in M and lemma
4.2.2 implies that xt(φ)→M as t→∞.

Theorem 4.2.2. Suppose that there exists a Lyapunov function V defined on C which satisfies the
following conditions:

1. u(‖φ(0)‖F ) ≤ V(φ) ≤ v(‖φ‖C) where u and v are continuous nondecreasing real functions, u(s)
and v(s) are positive for s > 0, and u(0) = v(0) = 0.

2. u(s)→∞ as t→∞.

3. V̇(φ) ≤ −w(‖φ(0)‖F ) where w is a continuous nondecreasing real function, positive for s > 0, and
such that w(0) = 0.

Then the solution x = 0 of (5) is uniformly asymptotically stable and all solutions of (5) approach zero
as t→∞.

Proof. The fact that the solution x = 0 of (5) is uniformly asymptotically stable is proved in [12], theorem
2.1. For the second part, we apply theorem 4.2.1 with M = {0} since it is easy to verify that all the
conditions of the theorem are satisfied.

4.2.2 The Lyapunov functional

We now define a Lyapunov function for equation (4) and use these theoretical results in order to study
the stability of the 0 solution.

Rescaling the equation In order to establish a stability bound, we rescale equation (4) by t
λ where

λ is a parameter which will be chosen later. Equation (4) becomes:

∂tU(r, t) = −λLU(r, t) + λ

∫
Ω

W̃(r, r′)U(r′, t− d(r, r′)
λ

)dr′ ∀t ≥ 0 (6)

We recall that the above equation means: ∀i = 1, . . . , n and ∀t ≥ 0:

∂tUi(r, t) = −λliUi(r, t) + λ

n∑
j=1

∫
Ω

W̃i,j(r, r′)Uj(r′, t−
dj(r, r′)

λ
)dr′

Definition of the Lyapunov functional We now introduce the Lyapunov functional that will allow
us to conclude on the stability of (6). We use the notation introduced in the previous section, Ut means
that, for all t ≥ 0 we have Ut(θ) = U(t+ θ) for all θ ∈ [−d, 0].

V(Ut) =
1
2

n∑
i=1

∫
Ω

l−1
i Ui(r, t)2dr +

∫
Ω

β(r)
n∑
i=1

∫
Ω

∫ 0

− di(r,r
′)

λ

Ui(r′, t+ θ)2dθdr′dr

where β ∈ L1(Ω,R) is defined below in (8).
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Deriving the Lyapunov functional We want to obtain the derivative of V, and for this, we recall
the following result:

Lemma 4.2.3.
d

dt

(∫ 0

d(r,r′)
λ

f(r′, t+ θ)2dθ

)
= f(r′, t)2 − f(r′, t− d(r, r′)

λ
)2

Proof. ∫ 0

d(r,r′)
λ

f(r′, t+ θ)2dθ =
∫ t

t− d(r,r
′)

λ

f(r′, θ)2dθ

The lemma follows directly from this equality.

We define the derivative of V by:

V̇(Ut) =
d

dt
V(Ut)

Thanks to lemma 4.2.3 we have:

V̇(Ut) =
n∑
i=1

∫
Ω

Ui(r, t)∂tUi(r, t)dr +
∫

Ω

β(r)
n∑
i=1

∫
Ω

(
Ui(r′, t)2 − Ui(r′, t−

di(r, r′)
λ

)2

)
dr′dr =

− λ
n∑
i=1

∫
Ω

Ui(r, t)2dr + λ

n∑
i=1

∫
Ω

Ui(r, t)
n∑
j=1

∫
Ω

l−1
i W̃i,j(r, r′)Uj(r′, t−

dj(r, r′)
λ

)dr′dr+(∫
Ω

β(r)dr

)
n∑
i=1

∫
Ω

Ui(r, t)2dr −
∫

Ω

β(r)
n∑
i=1

∫
Ω

Ui(r′, t−
di(r, r′)

λ
)2dr′dr

The choice of β We now have choose an acceptable β. We want to bound the derivative V̇(Ut) by a

quadratic form in the variablesX =
√∑n

i=1

∫
Ω
Ui(r, t)2dr and Y =

√∫
Ω
β(r)

(∑n
j=1

∫
Ω
Uj(r′, t− dj(r,r′)

λ )2dr′
)
dr.

We already know that:

V̇(Ut) =

(∫
Ω

β(r)dr − λ

)
X2 + λ

n∑
i=1

∫
Ω

Ui(r, t)
n∑
j=1

∫
Ω

l−1
i W̃i,j(r, r′)Uj(r′, t−

dj(r, r′)
λ

)dr′dr − Y 2,

thus, it remains to bound

Γ(U) =
n∑
i=1

∫
Ω

Ui(r, t)
n∑
j=1

∫
Ω

l−1
i W̃i,j(r, r′)Uj(r′, t−

dj(r, r′)
λ

)dr′dr (7)

by a homogeneous polynomial of degree two in X and Y .
Using the Cauchy-Schwarz inequality in L2(R) and Rn, we get:

n∑
j=1

∫
Ω

l−1
i W̃i,j(r, r′)Uj(r′, t−

dj(r, r′)
λ

)dr′ ≤

n∑
j=1

√∫
Ω

l−2
i W̃i,j(r, r′)2dr′

√∫
Ω

Uj(r′, t−
dj(r, r′)

λ
)2dr′ ≤

√√√√ n∑
j=1

∫
Ω

l−2
i W̃i,j(r, r′)2dr′

√√√√ n∑
j=1

∫
Ω

Uj(r′, t−
dj(r, r′)

λ
)2dr′.

We substitute this inequality in Γ(U):
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Γ(U) ≤
n∑
i=1

∫
Ω

Ui(r, t)

√√√√ n∑
j=1

∫
Ω

l−2
i W̃i,j(r, r′)2dr′

√√√√ n∑
j=1

∫
Ω

Uj(r′, t−
dj(r, r′)

λ
)2dr′dr

Once again, by the Cauchy-Schwarz inequality in L2(R) and Rn, we have:

Γ(U) ≤
n∑
i=1

√∫
Ω

Ui(r, t)2dr

√√√√∫
Ω

( n∑
j=1

∫
Ω

l−2
i W̃i,j(r, r′)2dr′

)( n∑
j=1

∫
Ω

Uj(r′, t−
dj(r, r′)

λ
)2dr′

)
dr ≤

√√√√ n∑
i=1

∫
Ω

Ui(r, t)2dr

√√√√ N∑
i=1

∫
Ω

( n∑
j=1

∫
Ω

l−2
i W̃i,j(r, r′)2dr′

)( n∑
j=1

∫
Ω

Uj(r′, t−
dj(r, r′)

λ
)2dr′

)
dr =

√√√√ n∑
i=1

∫
Ω

Ui(r, t)2dr

√√√√∫
Ω

( n∑
i,j=1

∫
Ω

l−2
i W̃i,j(r, r′)2dr′

)( n∑
j=1

∫
Ω

Uj(r′, t−
dj(r, r′)

λ
)2dr′

)
dr

This suggests the following choice:

β(r) =
n∑

i,j=1

∫
Ω

l−2
i W̃i,j(r, r′)2dr′ (8)

The result We have

V̇(Ut) ≤
n∑
i=1

∫
Ω

(∫
Ω

β(r)dr − λ

)
Ui(r, t)2dr −

∫
Ω

β(r)
n∑
i=1

∫
Ω

Ui(r′, t−
di(r, r′)

λ
)2dr′dr+

λ

√√√√ n∑
i=1

∫
Ω

Ui(r, t)2dr

√√√√∫
Ω

β(r)
( n∑
j=1

∫
Ω

Uj(r′, t−
dj(r, r′)

λ
)2dr′

)
dr.

If we note

X =

√√√√ n∑
i=1

∫
Ω

Ui(r, t)2dr Y =

√√√√∫
Ω

β(r)
( n∑
j=1

∫
Ω

Uj(r′, t−
dj(r, r′)

λ
)2dr′

)
dr,

we have:

V̇(Ut) ≤

(∫
Ω

β(r)dr − λ

)
X2 + λXY − Y 2.

We recall that if W ∈ L2(Ω2,Mn(R)):

‖W‖F =

√√√√ n∑
i,j=1

∫
Ω

∫
Ω

Wi,j(r, r′)2dr′dr

This leads us to the following proposition.

Proposition 4.2.1. If
∫

Ω
β(r)dr < λ− λ2

4 then V̇(Ut) < −ε
∑n
i=1

∫
Ω
Ui(r, t)2dr,

where ε = λ− λ2

4 −
∫

Ω
β(r)dr.

Proof. As we have:

V̇(Ut) ≤
( ∫

Ω

β(r)dr − λ
)
X2 + λXY − Y 2,
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if
∫

Ω
β(r)dr < λ− λ2

4 then ε = λ− λ2

4 −
∫

Ω
β(r)dr and:

( ∫
Ω

β(r)dr − λ
)
X2 + λXY − Y 2 =

− (Y − λX
2

)2 +
λ2X2

4
+
( ∫

Ω

β(r)dr − λ
)
X2 =

− (Y − X

2
)2 − εX2 ≤ −εX2,

then V̇(Ut) ≤ −ε
∫

Ω
U(r, t)2dr.

We therefore choose for λ the maximum of the function Λ : x 7→ x − x2

4 which is reached for x = 2
and is equal to Λ(2) = 1. We rewrite

∫
Ω
β(r)dr in the convenient form∫

Ω

β(r)dr = ‖L− 1
2 W̃L−

1
2 ‖2F , (9)

and state the following theorem.

Theorem 4.2.3. If ‖L− 1
2 W̃L−

1
2 ‖F < 1 then V0 is uniformly asymptotically stable.

Proof. Let

V(φ) =
1
2

n∑
i=1

∫
Ω

l−1
i φi(r, 0)2dr +

∫
Ω

β(r)
n∑
i=1

∫
Ω

∫ 0

− di(r,r
′)

2

φi(r′, θ)2dθdr′dr,

where

β(r) =
n∑

i,j=1

∫
Ω

l−2
i W̃i,j(r, r′)2dr′

The following conditions are satisfied:
• There exists u, v that satisfy: u(‖φ(0)‖F ) ≤ V(φ) ≤ v(‖φ‖C) where u and v are continuous nonde-
creasing real functions, u(s) and v(s) are positive for s > 0 and u(0) = v(0) = 0. Indeed l−1

m

2 ‖φ(0)‖2F ≤
V(φ) ≤ ( `

−1

2 + d`−2‖W̃‖2F )‖φ‖2C and hence u(s) = l−1
m

2 s2 and v(s) = ( `
−1

2 + d`−2‖W̃‖2F )s2.
• Thanks to proposition 4.2.1 we have V̇(φ) ≤ −w(‖φ(0)‖F ) and w(s) = εs2 so w(s) > 0 if s > 0, w is a
continuous nondecreasing function.
So we can apply theorem 4.2.2 for functional equations and 0 is asymptotically stable for equation (4)
and so is V0 for (2).

4.3 Discussion of the bound

We have presented a method which gives a bound for the asymptotic stability. To our knowledge, Wu in
[25] was the first to establish a bound of stability for general retarded functional differential equations.
In our notations his bound can be written ‖W̃‖F < `e−`d which has the advantage to take into account
the delays but has also the disadvantage to be very conservative. Atay and Hutt in [2] find a bound in
the case of a one population equation, with Ω = R. We can recover a similar bound in our framework
by changing the form of β. Indeed, we can bound (7) by:√√√√ n∑

i=1

∫
Ω

Ui(r, t)2dr

√√√√∫
Ω

( n∑
i,j=1

∫
Ω

`−2W̃i,j(r, r′)2dr′
)( n∑

j=1

∫
Ω

Uj(r′, t−
dj(r, r′)

λ
)2dr′

)
dr,

and choose β(r) =
∑n
i,j=1

∫
Ω
`−2W̃i,j(r, r′)2dr′ and so if ‖W̃‖F < ` then V0 is asymptotically stable.

This shows that this bound is better than the one obtained by Wu.
Finally we see that our bound ‖L− 1

2 W̃L−
1
2 ‖F < 1 obtained by the method of Lyapunov functional is

the less conservative.
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5 Numerical schemes

The aim of this section is to numerically solve equation (2) for different n and q. We remind the reader
that n is the number of populations of neurons and q is the spatial dimension. This implies developing a
numerical scheme that approaches the solution of our equation, and to prove that this scheme effectively
converges to the solution.

To our knowledge, only in the paper of Hutt et al. [17] and in the thesis of N.A. Venkov [21], has
a numerical scheme been explicitly developed, but without really dealing with such numerical analysis
questions as convergence. Notice also that most papers [2, 15, 17, 22, 14] that dealt with neural field
equations with space-dependent delays only studied an equation of the type of (2) for n = q = 1 and
Ω = R. In this section, we present new results concerning the cases n = 1, 2 with Ω an open bounded
set of R, and n = 2 with Ω a square region of R2.

Several computer codes have been developed in the last decades for the numerical integration of
functional differential equations, for an overview see [4]. dde23, written in Matlab, can efficiently solve
delay differential equations with constant delays. The code was developed by L.F. Shampine and S.
Thompson [19]. We decided to make it the center of our numerical investigation. The main motivation
of this choice was that this solver can deal with delay equations with a large number of constant delays.
This turns out to be a big advantage, as shown later. We have divided this section into three parts.
The first is dedicated to the study of (2) in one space dimension i.e. q = 1, with only one population
of neurons whereas in the second part we deal with the richer case of two populations. The third part
covers the case of one population of neurons in two dimensions in space. In each part we develop and
analyse a numerical scheme which we illustrate with numerical experiments.

5.1 One space dimension, one population of neurons

In order to illustrate the notions that we have developed, we take the example of equation (2) in the case
n = q = 1, which is the most often studied case. Let us consider the scalar integro-differential equation:{

∂tv(x, t) = −αv(x, t) +
∫

Ω
W (x, y)S

(
v(y, t− d̃(x, y))

)
dy + Iext(x, t) t ≥ 0

v(x, t) = φ(x, t) t ∈ [−d, 0]
(10)

where d = sup
Ω

2 d̃(x, y) and Ω =] − l, l[. Note that most authors choose d̃(x, y) = |x−y|
c because of

its biological relevance. The numerical scheme that we are about to present can be used with a more
general functional form of the delay. It is only for the numerical experiments that we return to the more
biologically plausible form.
We assume that the connectivity function satisfies:

∀x, y ∈ R W (x, y) = w(|x− y|).

Such connectivity functions are called homogeneous, since they are translation invariant, and isotropic,
since w is only a function of |x|. This implies that populations near the edges of the domain Ω receive
fewer connections than populations in the middle. This implies that spatially uniform activities are not
transformed to spatially uniform outputs.

We make the hypothesis that the delay is also a function of |x − y| and that d̃(0) = 0. We write
d̃(|x− y|) for d̃(x, y).
Finally, we assume that (10) has a unique solution v defined on [−d,+∞[.

5.1.1 Discretization scheme

We discretize Ω in order to turn (10) into a finite number of equations. For this purpose we introduce
h = |Ω|

m , m ∈ N∗ = N \ {0},
∀i ∈ J1,m+ 1K xi = −l + (i− 1)h,

and obtain the m+ 1 equations:

dv

dt
(xi, t) = −αv(xi, t) +

∫
Ω

w(xi − y)S
(
v(y, t− d̃(|xi − y|))

)
dy + Iext(xi, t),

11



which define the discretization of (10):{
dṽ
dt (t) = −αṽ(t) + w · S(ṽ)(t) + Ĩext(t) = F (t, ṽ(t), ṽt) t ≥ 0
ṽ(t) = φ̃(t) t ∈ [−d, 0].

(11)

ṽ(t) ∈ Rm+1, ṽ(t)i = v(xi, t) and the same definition holds for Ĩext and φ̃. Moreover,

w · S(ṽ)(t)i =
∫

Ω

w(xi − y)S
(
v(y, t− d̃(|xi − y|))

)
dy

If we want to obtain constant delays, we have to discretize the integral term. For this, we use the
trapezoidal rule

∫ b
a
f(x)dx ∼= b−a

2

(
f(a) + f(b)

)
. For all i = 1, . . . ,m+ 1 we have:∫ l

−l
w(xi − y)S

(
v(y, t− d̃(|xi − y|))

)
dy =

m∑
k=1

∫ xk+1

xk

w(xi − y)S
(
v(y, t− d̃(|xi − y|))

)
dy.

But by the trapezoidal rule:∫ xk+1

xk

w(xi − y)S
(
v(y, t− d̃(|xi − y|))

)
dy ∼=

h
w(xi − xk)S

(
v(xk, t− d̃(|xi − xk|))

)
+ w(xi − xk+1)S

(
v(xk+1, t− d̃(|xi − xk+1|))

)
2

,

which implies∫ l

−l
w(xi − y)S

(
v(y, t− d̃(|xi − y|))

)
dy ∼=

h

2

(
w(xi − x1)S

(
v(x1, t− d̃(|xi − x1|))

)
+ w(xi − xm+1)S

(
v(xm+1, t− d̃(|xi − xm+1|))

))
+ h

m−1∑
k=2

w(xi − xk)S
(
v(xk, t− d̃(|xi − xk|))

)
For each i = 1, . . . ,m+ 1 we have:

dv

dt
(xi, t) ∼= −αv(xi, t) + Iext(xi, t) +

h

2
w(xi − x1)S

(
v(x1, t− d̃(|xi − x1|))

)
+
h

2
w(xi − xm+1)S

(
v(xm+1, t− d̃(|xi − xm+1|))

)
+ h

m−1∑
k=2

w(xi − xk)S
(
v(xk, t− d̃(|xi − xk|))

)
Using the fact that xi − xk = (i− k)h we end up with the following numerical scheme, where vi(t) is an
approximation of v(xi, t):

∀i = 1 . . .m+ 1
dvi
dt

(t) = −αvi(t) + Iiext(t) +
h

2
w
(
(i− 1)h

)
S
(
v1(t− d̃(|i− 1|h))

)
+
h

2
w
(
(i−m− 1)h

)
S
(
vm+1(t− d̃(|i−m− 1|h))

)
+ h

m−1∑
k=2

w
(
(i− k)h

)
S
(
vk(t− d̃(|i− k|h))

)
In order to rewrite the previous equation in vector form we define the three vectors

V (t) =

 v1(t)
...

vm+1(t)

 Φ(t) =

 φ1(t)
...

φm+1(t)

 Iext(t) =

 I1
ext(t)

...
Im+1
ext (t)

 ,

and the following matrices of Mm+1(R) the space of the square matrices of size m+ 1×m+ 1:
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Definition 5.1.1. Let Eu and Ed be the following two matrices in Mm+1(R):

Eu =



0 1 0 . . . 0
...

. . . . . . . . .
...

... (0)
. . . . . . 0

... (0) (0)
. . . 1

0 . . . . . . . . . 0


Ed = ETu

We then define ∀k = 1, . . . ,m
Ek = E0(Eku + Ekd ),

with E0 =



1
2 0 . . . . . . 0

0 1
. . . (0) 0

...
. . . . . . . . .

...
... (0)

. . . 1 0
0 . . . . . . 0 1

2


.

This leads to the following proposition:

Proposition 5.1.1. The trapezoidal rule applied to (11) leads to the following numerical scheme:{
dV
dt (t) = −αV (t) +

∑m
k=0 hw(kh)EkS(V (t− d̃(kh))) + Iext(t)

def
= f(t, V (t), V (t− τ1), . . . , V (t− τm))

V (t) = Φ(t) t ∈ [−d, 0]
(12)

where V (t) is an approximation of ṽ(t) and τi = d̃(ih)

We remind the reader that our initial goal was to compute the solutions of (2). At this step of our
study, we can directly solve (12) with the function dde23 which is based on a step-by-step method.
Bellen and Zennaro have studied in detail numerical methods for delay differential equations and the
interested reader can find in their remarkable book [4] a survey of the step-by-step method.

5.1.2 Remark

For our numerical experiments, as mentioned above, we use the specific function dde23. We observe that
the fact of dealing with constant delays constrains the choice of the quadrature rule. Indeed, we cannot
use adaptative methods to discretize the integral because we would no longer have constant delays in
our schemes. We see that if we use the method of discretization presented above, the quadrature rule
will impose the error of convergence of our scheme. For example, with the trapezoidal rule, we cannot
do better than O(h2). If we use Simpson’s rule, we can have O(h4) at best.

These estimates hold under the assumption that the solution is very smooth in time (which is not a
problem), but also in space. Indeed, with the example of the trapezoidal rule if f is C2 on an interval
[a, b] the error of the rule is − (b−a)3

12m2 f
(2)(ξ) for some ξ ∈ [a, b], where m is the number of subintervals

used on the interval [a, b]. In our case we have to look at the second derivative of the functions Wi : y →
w(xi − y)S

(
v(y, t − d̃(y − xi))

)
on [xi, xi+1] for i = 1, · · · ,m. If we want to control the error, we have

to impose that the solution is, at least, C2 in time and in space. The quadrature rule preconditions the
error of discretization with the consequence that even if we use a very accurate scheme in time (it is the
case with dde23), the error will remain of the same order as the quadrature.

5.1.3 Convergence

We now provide a brief sketch of the proof of the convergence of our numerical scheme.
We assume for simplicity that there is no external input. We fix x ∈ Ω and apply the trapezoidal rule
to (10) with the same discretization as in the previous section.
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We have:

∂tv(x, t) ∼= Qm(vt)
def
= −αv(x, t) +

h

2
w(x− x1)S

(
v(x1, t− d̃(|x− x1|))

)
+
h

2
w(x− xm+1)S

(
v(xm+1, t− d̃(|x− xm+1|))

)
+ h

m−1∑
k=2

w(x− xk)S
(
v(xk, t− d̃(|x− xk|))

)
,

with:
lim

m→+∞
Qm(vt) = −αv(x, t) +

∫
Ω

W (x, y)S
(
v(y, t− d̃(x, y))

)
dy

def
= Q(vt).

We define the functional space Q = C([−d, 0], C2(Ω)). Clearly Q ∈ Q. Let v be the unique solution
defined on [−d, T ] of {

dv
dt (t) = Q(vt) t ≥ 0
v0 = φ

The proof of this assumption can be directly adapted from the proof on the existence and the uniqueness
of section 3. Then we can apply the theorem on the continuous dependence of the solution of [12].
Indeed, if V is a neighborhood of the compact set K = {(t, vt) : t ∈ [−d, T ]} then Q is bounded on it and
moreover lim

m→+∞
‖Qm −Q‖V = 0. So there exists M > 0 such that for all m > M each solution vm of:{

dv
dt (t) = Qm(vt) t ≥ 0
v0 = φ

exists on [−d, T ] and vm → v uniformly on [−d, T ].

5.1.4 The ring model of orientation tuning

In order to illustrate the previous sections, we study the ring model of orientation. This model of a
hypercolumn in the primary visual cortex was first presented by Ben-Yishai [5] and then detailed by
Hansel and Sompolinsky [13]. Bressloff et al. [6, 7] studied variants of the model by changing the form of
the connectivity in the equations. First, we present the traditional model, add delays to it, and present
some numerical experiments that show their influence.

We consider a network that mimicks the architecture of a cortical hypercolumn. It consists of exci-
tatory and inhibitory neurons that respond selectively to a small oriented visual stimulus in a common
receptive field. The neurons are parametrized by an angle θ, ranging from −π2 to π

2 , that denotes their
preferred orientation. The activity response in the network, which is the mean activity level is governed
by the following equation:

τ∂tM(θ, t) = −M(θ, t) + Sµ

(∫ π
2

−π2
J(θ − θ′)M(θ′, t)

dθ′

π
+ εI(θ − θ0)− θth

)
(13)

τ is a characteristic time assumed to be of the order of a few milliseconds. θth is the neuronal threshold.
The function J(θ) represents how the interaction between neurons depends upon their preferred orienta-
tion. The input to the population of neurons encoding the orientation θ is of the form I(θ − θ0), where
θ0 denotes the orientation for which the external input is maximal. This external current represents the
lateral geniculate nucleus (LGN) input to the hypercolumn of orientations. The nonlinearity Sµ is the
Heaviside function in [5, 6, 13] or a sigmoidal function in [7].

Ben-Yishai et al. [5] were first to propose a model of orientation tuning. They started with a network
of excitatory and inhibitory spiking neurons and derived a mean field approximation that led to equation
(13). The external input and the connectivity functions were set to

I(θ) = 1− β + β cos(2θ) J(θ) = J0 + J1 cos(2θ).

The nonlinearity was piecewise linear, Sµ(x) = 0 for x ≤ 0, Sµ(x) = µx for 0 ≤ x ≤ 1
µ and Sµ(x) = 1

for x ≥ 1
µ . They had 0 ≤ β ≤ 1

2 , J0 < 0, and J1 > 0. Typical values of these parameters were
β = 0.1, J0 = −73, J1 = 110, ε = 1.45, τ = 10, θth = 1.
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Equation (13) is not of the type shown in equation (1). This is why we perform the change of variable

V (θ, t) =
∫ π

2

π
2

J(θ − θ′)M(θ′, t)
dθ′

π
+ εI(θ − θ0)− θth.

This leads to the following equation:

τ∂tV (θ, t) = −V (θ, t) +
∫ π

2

−π2
J(θ − θ′)Sµ

(
V (θ′, t)

)dθ′
π

+ εI(θ − θ0)− θth, (14)

to which we add space-dependent, or rather angle-dependent delays:

τ∂tV (θ, t) = −V (θ, t) +
∫ π

2

−π2
J(θ − θ′)Sµ

(
V (θ′, t− |θ − θ

′|
c

)
)dθ′
π

+ εI(θ − θ0)− θth. (15)

The nonlinearity is the following sigmoidal function:

Sµ(x) =
1

1 + e−µx
− 1

2

We are now in the case of (2) with n = q = 1 and Ω =]− π
2 ,

π
2 [.

Roxin et al. [18] have introduced a constant delay in (13) and shown that it led to a wide variety of
spatio-temporal patterns. Our model should lead to even richer sets of spatio-temporal patterns.

We did not find in the literature a biological value for the parameter c for the ring model. In our
numerical experiments, we set the velocity to c = 0.2rad.s−1.

Numerical experiments confirm that the model with delays is richer. We fix an initial condition close
to zero. Figures 1(a),1(b) and 1(c) show the time evolution of the solution for µ = 1, 3, 10. After a
few oscillations it rapidly converges toward a stationary solution. Figure 1(d) shows the time evolution
with no delays, i.e equation (14). We see that increasing the slope µ of the sigmoid seems to cause the
transient oscillations to persist for longer.

5.2 Two populations of neurons in 1D

We consider two (n=2) one-dimensional (q=1) populations of neurons, population 1 being excitatory
and population 2 being inhibitory. We have the following equations:

{
∂tv1(x, t) = −α1v1(x, t) +

∫ 1

−1

[
w1,1(x− y)S1

(
v1(y, t− |x−y|c1

)
)

+ w1,2(x− y)S2

(
v2(y, t− |x−y|c2

)
)]
dy

∂tv2(x, t) = −α2v2(x, t) +
∫ 1

−1

[
w2,1(x− y)S1

(
v1(y, t− |x−y|c1

)
)

+ w2,2(x− y)S2

(
v2(y, t− |x−y|c2

)
)]
dy

(16)
We assume for simplicity that:

Hypothesis 5.2.1.
α1 = α2 = α c1 = c2 = c

S1(x) = S2(x) = S(x)

wi,j(x) =
ai,j√
2πσ2

i,j

e
− x2

2σ2
i,j ai,2 ≤ 0, ai,1 ≥ 0, i = 1, 2 (17)

5.2.1 Numerical scheme

Let Eu and Ed be the two matrices of Mm+1(R) introduced in definition 5.1.1.
As usual, we use the trapezoidal rule and denote by vi1(t) (resp. vi2(t)) the approximation v1(xi, t)

(resp. v2(xi, t)). V1(t) (resp. V2(t)) is the vector of length m+ 1 with components vi1(t) (resp. vi2(t)).
We obtain the following numerical scheme which generalizes the one of the previous section:

dV1

dt
(t) = −αV1(t) + h

m∑
k=0

[
w1,1(kh)EkS̃

(
V1(t− kh

c

)
+ w1,2(kh)EkS̃

(
V2(t− kh

c

)]
15



(a) Solution of (15) for µ = 1, c = 0.2. (b) Solution of (15) for µ = 3, c = 0.2.

(c) Solution of (15) for µ = 10, c = 0.2. (d) Dynamic of the ring model without delay,
equation (14).

Figure 1: Effect of the slope of the sigmoid on the solutions of (15).
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dV2

dt
(t) = −αV2(t) + h

m∑
k=0

[
w2,1(kh)EkS̃

(
V1(t− kh

c

)
+ w2,2(kh)EkS̃

(
V2(t− kh

c

)]
,

where S̃ : Rn → Rn is defined by S̃(x) = [S(x1), . . . , S(xn)]T . We now present different numerical
examples. For each example we fix the nonlinearity S to be:

S(x) =
1

1 + e−µx
− 1

2
(18)

5.2.2 Absolute stability

We begin our numerical experiments with an example of the stability result established by the method
of Lyapunov functionals in section 4.2. The values of the parameters

A = (ai,j) =
(

2 −
√

2√
2 −2

)
, Σ = (σi,j) =

(
1 0.1

0.1 1

)
(19)

yield ‖W̃‖F = 0.757. If we choose α = 1 and µ = 1 then the condition of theorem 4.2.3 is satisfied; hence
the homogeneous solution V = 0 is uniformly asymptotically stable (absolutely stable) as we can see in
figure (2) . The initial conditions are drawn randomly.
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Figure 2: An illustration of the absolute stability of the fixed point at the origin: the trajectories of the
state vector converge to a single trajectory, independently of the choice of the initial function. Results
are shown for the neural mass of spatial coordinate: 0. Left: population 1. Right: population 2. The
three curves correspond to three different initial conditions. The velocity is c = 0.2.

5.2.3 Loss of absolute stability

If we increase the value of ‖W̃‖F the sufficient condition of theorem 4.2.3 will eventually not be satisfied
and we may lose the absolute stability of the homogenous solution. We illustrate this remark with a
numerical experiment. We choose

A = (ai,j) =
(

50.2 −50.2
20.09 −20.09

)
, Σ = (σi,j) =

(
0.1 0.1
1 1

)
, (20)

as well as µ = 1, α = 1
5 and c = 0.2.

We use three different initial conditions which are all close to zero. The plots of the solutions are shown
in figures (3 and 4). It is clear that we have lost the absolute stability.
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Figure 3: An illustration of the loss of absolute stability of the fixed point at the origin. Different initial
conditions result in different trajectories of the state vectors. Results are shown for the neural mass
of spatial coordinate: 0. Left: V1. Right: V2. The three curves correspond to three different initial
conditions. The velocity is c = 0.2.
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Figure 4: Another illustration of the loss of absolute stability. Space-time plot of V1 (left) and V2 (right)
for three random initial conditions, labelled (a), (b) and (c), close to zero.
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5.2.4 Effect of the slope µ on the solutions

We next study the effect of increasing the slope of the sigmoid. In each experiment the initial conditions
are the same. We present two cases corresponding to the values of the parameters shown in (19) and
(20).

In the first case, we observe that increasing the slope from µ = 1 to µ = 3 drastically changes the
behavior of the solution. For µ = 1 the system is absolutely stable and, unsurprisingly, the solution
simply converges to its homogenuous state V = 0, as shown in figure 5(a). For µ = 3 the solution
oscillates in time, as shown in figure 5(b). This could be caused by a Hopf bifurcation. In order to prove
this assertion we would have to perform the bifurcation analysis with respect to the parameter µ which
is outside the scope of this paper. Moreover, the condition of theorem 4.2.3 is not satisfied, so we have
lost the absolute stability. Indeed with µ = 3, we have ‖W̃‖F = 2.271 ≥ 1

5 = α.
In the second case, we increase the slope from µ = 2 to µ = 5, we show the corresponding solutions

in figure 6. We observe that the behaviors of the two populations have been exchanged: it appears that
the plots for µ = 2 and for µ = 5 are related by a symmetry with respect to the plane z = 0, if z denotes
the amplitude axis. For example, when population 1 reaches its maximum in figure 6(a), it reaches its
minimum in figure 6(c). As shown in figure 6(b) there exists a value µc, which we numerically found to
be close to 2.70, which separates the two kinds of activities. We are presently not able to explain this
behavior.

(a) Parameters are: µ = 1, c = 0.2, and α = 1
5
.
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(b) Parameters are: µ = 3, c = 0.2, and α = 1
5
.

Figure 5: Effect of the slope on the solutions of equation (16) in the case of the parameters given by
(19). Plots of population 1 (left) and population 2 (right) for different values of the other parameters,
see text.

5.2.5 Effect of the delays on the solutions

In this subsection, we study the effect of the delays on the solution with the values of the parameters
shown in (20). In each experiment the initial conditions are the same and we set µ = 2 for the slope of
the sigmoid and α = 1

5 .
The results are presented in figure (7). For c = 100, the effect of the delay on the solution is reduced,
relative to what is seen for smaller values of c. As we can expect, c is a parameter of bifurcation. In
figure 7(b) (c = 10) and 7(c) (c = 1) the solutions have the same behavior. Between the range of values
c = 1 and c = 0.1 we observe a bifurcation. Indeed, the space-time plots of the solutions in figure 7(c),
7(d) and 7(e) show quite different behaviors.

5.3 One population of neurons in 2D

This section is devoted to the case of Ω =]− l, l[×]− l, l[ with l > 0.
We suppose that the connectivity function W is isotropic in the following sense

∀r, r′ ∈ R2 W (r, r′) = w(‖r − r′‖) and d(x, y) =
‖x− y‖

c
,

19



(a) Parameters are: µ = 2, c = 0.2, α = 1
5
. (b) Parameters are: µ = 2, 70, c = 0.2 ,α = 1

5
.

(c) Parameters are: µ = 5, c = 0.2, α = 1
5
.

Figure 6: Effect of the slope on the solutions of equation (16) in the case of the parameters given by
(20). Plots of population 1 (left) and of population 2 (right) for different values of the other parameters,
see text.
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(d) c = 0.2
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(e) c = 0.1

Figure 7: Effect of the delays on the solutions of equation (16). The figure shows the space-time plots
of V1 (left) and V2 (right) for different values of the parameter c.
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where w : R+ → R. We choose a connectivity function suggested by Amari in [1], commonly referred
to as the “Mexican hat” connectivity. It features center excitation and surround inhibition which is
an effective model for a mixed population of interacting inhibitory and excitatory neurons with typical
cortical connections.

w(x) =
1√
2πξ2

1

e
− ‖x‖

2

2ξ21 − A√
2πξ2

2

e
− ‖x‖

2

2ξ22 , (21)

with 0 < ξ1 ≤ ξ2 and 0 ≤ A ≤ 1.
We choose for simplicity the following norm:

∀r = (x, y) ∈ R2 ‖r‖1 =| x | + | y |

The choice of this particular norm instead of the usual Euclidean norm is essentially guided by their
relative computational requirements: it is easier to compute ‖ · ‖1 than ‖ · ‖2 on a square lattice, and
the number of delays that appear in the discretization scheme is very sensitive to the choice of the norm
since d(x, y) = ‖x−y‖

c . An easy computation shows that, if our spatial grid is m × m, we obtain 2m
different constant delays in our scheme of discretization for ‖ · ‖1 as opposed to m2

2 for ‖ · ‖2. Moreover,
all the norms in R2 are equivalent and we have the relation

√
2

2 ‖ · ‖1 ≤ ‖ · ‖2 ≤ ‖ · ‖1. This implies that
for small variations of the delay, the behaviour of the solutions will not drastically change if we are not
at a point of bifurcation with respect to this parameter, which is actually our case.
We plot in figure (8) the surface generated by the two different norms and compare in figure (9) a
“Mexican hat” equiped with the norm 1 and the Euclidean norm.

Figure 8: Left: plot of ‖ · ‖1. Right: plot of ‖ · ‖2.

5.3.1 Discretization scheme

Let m ∈ N? and h = 2l
m . We discretize Ω with a square lattice:

∀i, j = 1 . . .m+ 1 (xi, yj) =
(
− l + (i− 1)h,−l + (j − 1)h

)
,

and use the rectangular method for the quadrature so that for all r = (x, y) ∈ R2 we have:∫
Ω

w(‖r − r′‖1)S
(
v(r′, t− ‖r − r

′‖1
c

)
)
dr′ ∼=

h2
m+1∑
k=1

m+1∑
l=1

w(‖(x, y)− (xk, yl)‖1)S
(
v((xk, yl), t−

‖(x, y)− (xk, yl)‖1
c

)
)
.

If we denote by vi,j(t) the approximation of v((xi, yj), t), we obtain the following numerical scheme
∀i, j = 1 . . .m+ 1:

dvi,j
dt

(t) = −αvi,j(t) + h2
m+1∑
k=1

m+1∑
l=1

w(‖(xi, yj)− (xk, yl)‖1)S
(
vk,l(t−

‖(xi, yj)− (xk, yl)‖1
c

)
)
.
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Figure 9: Plot of the ”Mexican Hat” equiped with the norm 1 (left) and norm 2 (right), see text. The
values are ξ1 = 0.1, ξ2 = 0.3 and A = 1.

But we have

‖(xi, yj)− (xk, yl)‖1 = ‖(xi − xk, yj − yl)‖1 = ‖
(
(i− k)h, (j − l)h)

)
‖1 =

(
| i− k | + | j − l |

)
h,

and then

dvi,j
dt

(t) = −αvi,j(t) + h2
m+1∑
k=1

m+1∑
l=1

w
[(
| i− k | + | j − l |

)
h
]
S

(
vk,l
[
t−
(
| i− k | + | j − l |

)h
c

])
.

We rewrite this system in matrix form in order to implement it in Matlab with the function dde23.
We denote by V (t) the matrix of the vi,j(t) for i, j = 1, . . . ,m+ 1, so that we have V (t) ∈Mm+1(R).
One difference with the 1D case is that the lags vector is of length 2m: lags = [hc ,

2h
c , . . . ,

2mh
c ].

We rewrite the system as follows:

dV

dt
(t) = −αV (t) + h2w(0)S̄

(
V (t)

)
+ h2

2m∑
k=1

w(kh)Mk

(
S̄
(
V (t− kh

c
)
))
,

where S̄ :Mm+1(R)→Mm+1(R) is the function defined by:

∀A ∈Mm+1(R) ∀i, j S̄(A)i,j = S(Ai,j).

We establish a formula for the Mk which are functions from Mm+1(R) in Mm+1(R). In order to do
that, we have to define some matrices.

Definition 5.3.1. Let Eu and Ed be the same two matrices of Mm+1(R) of definition 5.1.1. We define:

∀k = 1, . . . ,m Ek = Eku + Ekd

We now present the main result of this section.

Theorem 5.3.1. We set E0 = Im+1.
The numerical scheme can be written as follows:

dV

dt
(t) = −αV (t) + h2

2m∑
k=0

w(kh)
∑

(p,q)∈J0,mK2
p+q=k

Ep

(
S
(
V (t− kh

c
)
))
Eq,

that is:

Mk

(
S
(
V (t− kh

c
)
))

=
∑

(p,q)∈J0,mK2
p+q=k

Ep

(
S
(
V (t− kh

c
)
))
Eq
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Proof. • For all A = (ai,j)i,j∈J1,m+1K ∈Mm+1(R) and ∀p, q ∈ J1,mK we have:

EpAEq = EpuAE
q
u + EpdAE

q
u + EpuAE

q
d + EpdAE

q
d

∀(i, j) ∈ J1,m+ 1K2 the following equations hold:

(EpuAE
q
u)i,j =

{
ai+p,j−q if i+ p ≤ m+ 1 and 1 ≤ j − q
0 otherwise

(EpdAE
q
u)i,j =

{
ai−p,j−q if 1 ≤ i− p and 1 ≤ j − q
0 otherwise

(EpuAE
q
d)i,j =

{
ai+p,j+q if i+ p ≤ m+ 1 and j + q ≤ m+ 1
0 otherwise

(EpdAE
q
d)i,j =

{
ai−p,j+q if 1 ≤ i− p and j + q ≤ m+ 1
0 otherwise

It follows that ∀(i, j) ∈ J1,m+ 1K2 and ∀p, q ∈ J1,mK:

(EpAEq)i,j = ai+p,j−q1 1≤j−q
i+p≤m+1

+ ai−p,j−q11≤j−q
1≤i−p

+ ai+p,j+q11≤j−q
1≤i−p

+ ai−p,j+q1j+q≤m+1
1≤i−p

• It is easy to see that we have ∀(i, j) ∈ J1,m+ 1K2 and ∀p, q ∈ J1,mK

(E0AEq)i,j = (AEq)i,j = ai,j−q11≤j−q + ai,j+q1j+q≤m+1 ∀q ∈ J1,mK

(EpAE0)i,j = (EpA)i,j = ai+p,j1i+p≤m+1 + ai−p,j11≤i−p ∀p ∈ J1,mK

• ∀(i, j) ∈ J1,m+ 1K2 we obtain, through a simple change of variables, the following equality

m+1∑
k=1

m+1∑
l=1

w
[(
| i− k | + | j − l |

)
h
]
S

(
vk,l
[
t−
(
| i− k | + | j − l |

)h
c

])
=

2m∑
k=0

w(kh)
∑

(p′,q′)∈J1,m+1K2

|i−p′|+|j−q′|=k

S
(
vp′,q′(t−

kh

c
)
)

Next, ∀k ∈ J0, 2mK, we define the following matrices

Ak = S̄
(
V (t− kh

c
)
)

and (Ak)p′,q′ = akp′,q′ = S
(
vp′,q′(t−

kh

c
)
)
,

so that we have:

2m∑
k=0

w(kh)
∑

(p′,q′)∈J1,m+1K2

|i−p′|+|j−q′|=k

S
(
vp′,q′(t−

kh

c
)
)

=
2m∑
k=0

w(kh)
∑

(p′,q′)∈J1,m+1K2

|i−p′|+|j−q′|=k

akp′,q′ .

• We next set p =| i− p′ | and q =| j − q′ |, i.e.,{
p′ = i± p
q′ = j ± q

This implies that p ∈ J0,mK and q ∈ J0,mK.
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We now fix k ∈ J0, 2mK to obtain∑
(p′,q′)∈J1,m+1K2

|i−p′|+|j−q′|=k

akp′,q′ =

∑
(p,q)∈J1,mK2

p+q=k

(
aki+p,j−q1 1≤j−q

i+p≤m+1

+ aki−p,j−q11≤j−q
1≤i−p

+ aki+p,j+q11≤j−q
1≤i−p

+ aki−p,j+q1j+q≤m+1
1≤i−p

)
+

aki,j−k11≤j−k + aki,j+k1j+q≤m+1 + aki+k,j1i+k≤m+1 + aki−k,j11≤i−k =∑
(p,q)∈J1,mK2

p+q=k

(EpAkEq)i,j + (AkEk)i,j + (EkAk)i,j =

∑
(p,q)∈J0,mK2

p+q=k

(EpAkEq)i,j
∑

(p,q)∈J0,mK2
p+q=k

(
EpS.

(
V (t− kh

c
)
)
Eq

)
i,j

• Finally ∀(i, j) ∈ J1,m+ 1K2:

m+1∑
k=1

m+1∑
l=1

w
[(
| i− k | + | j − l |

)
h
]
S

(
vk,l
[
t−
(
| i− k | + | j − l |

)h
c

])
=

2m∑
k=0

w(kh)
∑

(p,q)∈J0,mK2
p+q=k

(
EpS̄

(
V (t− kh

c
)
)
Eq

)
i,j

,

and:

(
dV

dt
(t))i,j = −α(V (t))i,j +

2m∑
k=0

w(kh)
∑

(p,q)∈J0,mK2
p+q=k

(
EpS̄

(
V (t− kh

c
)
)
Eq

)
i,j

.

This concludes the proof of the theorem.

5.3.2 Remark

We have already discussed the link between the quadrature rule used in the discretization scheme and
the final error of convergence in 5.1.2. The remark remains relevant in the 2D case where our scheme is
based on the rectangular rule. The error of the rule is well-known in the 1D case: if f is C1 on an interval
[a, b] the error is (b−a)2

2m2 f
′
(ξ) for some ξ ∈ [a, b] where m is the number of subintervals used. This error

still holds in the case of a function f which is C2 on a rectangular domain [a, b]× [c, d]. If we denote by
Ef this error, then |Ef | ≤ (b−a)2(d−c)2

4mn ‖f‖C2 where m and n are the number of subintervals used and
‖f‖C2 =

∑
|α|≤2 sup[a,b]×[c,d] |∂αf | where, as usual, α is a multi-index. Then if we want to control the

error, we have to impose that the solution is, at least, C2 in space.
We can also establish a proof of the convergence of the numerical scheme which is exactly the same as
in 5.1.3.

5.3.3 Numerical experiments

We use the “Mexican hat” connectivity (21) and the usual sigmoidal nonlinearity.

Purely excitatory connectivity In these experiments we choose ξ1 = 0.3 and A = 0 in (21). We fix
l = 1 for Ω and use m = 30 for the discretization in space.

For µ = 1 the system is absolutely stable and, unsurprisingly, the solution simply converges to its
homogeneous state V = 0, as shown in figure 10(a). Increasing the slope from µ = 1 to µ = 10 changes
the behavior of the solution. Indeed, in figure 10(b), almost all the network is excited, in agreement with
the choice of a purely excitatory connectivity.
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(a) µ = 1 (b) µ = 10

Figure 10: Plots of the solution of equation (2) at T = 700 for n = 1 and q = 2, for the values ξ1 = 0.3
and A = 0 in (21) and for different parameters of the slope of the sigmoid, see text. Note the difference
in vertical scales of a factor 10−7.

Mexican hat connectivity In this subsection, we present several experiments for two different Mex-
ican hat connectivities. In both cases we increase the slope of the sigmoid from µ = 25 to µ = 45.

First we choose ξ1 = 0.1, ξ2 = 0.2 and A = 1 in (21). The results are shown in figure 11 at the same
time T = 700 for the three values 25, 35, and 45 of the slope µ of the sigmoid. For each slope value the
solutions are displayed as a perspective view (left in the figure) and as an image (right in the figure). We
observe the emergence of periodic square patterns that seem to indicate that the solution is converging
toward a simple biperiodic function. This impression is confirmed by figure 12 where we plot the guessed
function x 7→ cos(13‖x‖1) over [−l, l] × [−l, l] which is essentially the same as the solution obtained for
µ = 45 in 11(f). We note that the norm ‖ · ‖1 strongly influences the solutions.

Second we choose the connectivity ξ1 = 0.2, ξ2 = 0.3 and A = 1 in (21) in order to discover new
patterns of activity. The corresponding solutions at T = 700 are shown in figure 13 for the values 25 and
45 of the slope µ. Just as in the previous case we observe the emergence of periodic square patterns that
seem to indicate that the solution is converging toward a simple biperiodic pattern. This impression is
confirmed by figure 14 where we plot the guessed function (x, y) 7→ cos(7x) cos(7y) over [−l, l] × [−l, l]
which is essentially the same as the solution obtained for µ = 45 in 13(d).

6 Conclusion

We have studied the existence, uniqueness, and asymptotic stability of a solution of nonlinear delay
integro-differential equations that describe the spatio-temporal activity of sets of neural masses. We
have also developed approximation and numerical schemes.

Using methods of functional analysis, we have found sufficient conditions for the existence and unique-
ness of these solutions for general inputs. We have developed a Lyapunov functional which provides suf-
ficient conditions for the solutions to be asymptotically stable. These conditions involve the connectivity
functions and the slopes of the sigmoids as well as the time constant used to describe the time variation
of the postsynaptic potentials.

We have developed numerical schemes for one- and two-dimensional models. These numerical schemes
consist of approximating the integral part of the righthand side of our equation with the trapezoidal rule
in 1D and the rectangular rule in 2D to reduce the integro-differential equations to a finite set of delayed
differential equations and in relying on the dde23 Matlab routine to solve these equations. The error
between the continuous and the discrete equations has been bounded, see section 5.1.2 in 1D, and section
5.3.2 in 2D. We have sketched proofs of the convergence of our approximation and numerical schemes.
They have allowed us to explore a large number of numerical examples.

To our knowledge, this is the first time that such a complete analysis of the problem of the existence
and uniqueness of a solution of these equations has been obtained. It is also the first time that a Lyapunov
functional has been introduced to contribute to the analysis of the asymptotic stability of these solutions.
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(a) µ = 25 (b) µ = 25

(c) µ = 35 (d) µ = 35

(e) µ = 45 (f) µ = 45

Figure 11: Plots of the solution of equation (2) at T = 700 for n = 1, q = 2, for the values ξ1 = 0.1,
ξ2 = 0.2 and A = 1 in (21) and for increasing values of the slope µ of the sigmoid, see text.
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Figure 12: Plot of the function (x, y) 7→ cos(13‖(x, y)‖1). Note the similarity with figure 11(f)

(a) µ = 25 (b) µ = 25

(c) µ = 45 (d) µ = 45

Figure 13: Plots of the solution of equation (2) at T = 700 for n = 1, q = 2, for the values ξ1 = 0.2,
ξ2 = 0.3 and A = 1 in (21) and for increasing values of the slope µ of the sigmoid, see text.
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Figure 14: Plot of the function (x, y) 7→ cos(7x) cos(7y).

We hope that our numerical schemes and experiments will lead to new and exciting investigations
such as a thorough study of the bifurcations of the solutions of our equations with respect to such
parameters as the slope of the sigmoid and the delays.
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