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Chapter 1

Introduction

This memoir collects the results I obtained since the end of my PhD on propagation phenom-

ena in local and nonlocal reaction-diffusion equations. These results can be classified in three

main categories: (i) existence and stability of traveling waves of various forms (fronts, pulses,

modulated fronts), (ii) establishment of spreading speeds (i.e. asymptotic speed of propagation

of compactly supported perturbations of an unstable state for a reaction-diffusion equation) and

(iii) abstract results for nonlocal equations motived by questions raised in the study of propa-

gation phenomena in nonlocal problems. My motivations for studying propagation phenomena

are driven by some applications in neuroscience and ecology which I will explain later on in this

memoir. However the aim of this memoir is to focus on the mathematical results I obtained,

and I will be mainly giving references to the corresponding biological literature.

One of the specificity of my work is perhaps the diversity of models that I have investigated

and, at this stage of the introduction, I will very briefly present the main equations that will be

encountered in the forthcoming chapters to set a better stage and help the reader that might

not be familiar with such models. The modeling assumptions of each equation together with

their biological interpretations will be explained at the beginning of each chapter (or section if

needed).

A large portion of my work focuses on the study of neural field equations which were heuris-

tically derived in the early 70’s by Wilson and Cowan [197, 198] and typically read as

∂tu(t, x) = −u(t, x) +

∫
R
K(x− y)S(u(t, y))dy, t > 0, x ∈ R. (1.0.1)

Here the scalar unknown u(t, x) represents an average neural activity. In such equations, the

connectivity kernel K, which models nonlocal interactions, i.e. how populations of neurons

are spatially inter-connected, and the firing rate function S(u), which represents the intrinsic

nonlinear behavior of neurons, entirely shape the dynamics. Neural field equations have been

successfully used to explain many experimental observations including in particular visual hal-

lucinations, binocular rivalry or working memory. I refer to the recent reviews [31, 33] for more

details.
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2 CHAPTER 1. INTRODUCTION

Another important class of equations encountered in this memoir are classical reaction-

diffusion equations (or systems) which appeared in the celebrated works of Fisher [92] and

Kolmogorov, Petrovsky and Piskunov [143] in the 30’s, and that can be written in simplest form

as

∂tu(t, x) = ∂2
xu(t, x)︸ ︷︷ ︸

local diffusion

+ f(u(t, x))︸ ︷︷ ︸
local reaction

, t > 0, x ∈ R, (1.0.2)

where the scalar unknown u(t, x) represents for example a population density. Both the diffusion

process and reaction terms in (1.0.2) are assumed to be local. I will also consider two types of

nonlocal version of the reaction-diffusion equation (1.0.2) by either assuming that the diffusion

process is nonlocal or that the reaction terms incorporate nonlocal interactions. In the former

case, typical equations read as

∂tu(t, x) = −u(t, x) +

∫
R
K(x− y)u(t, y)dy︸ ︷︷ ︸

nonlocal diffusion

+f(u(t, x)), t > 0, x ∈ R. (1.0.3)

It is crucial to note that neural field equations (1.0.1) belong to the class of reaction-diffusion

equations with the specificity that both reaction and diffusion processes are nonlocal. Indeed, if

one denotes f(u) := −u+S(u), the right-hand side of the above equation (1.0.1) can be written1

∂tu(t, x) = −u(t, x) +

∫
R
K(x− y)u(t, y)dy +

∫
R
K(x− y)f(u(t, y))dy︸ ︷︷ ︸

nonlocal reaction

,

which should be compared to (1.0.3).

The typical questions that I have been mathematically investigating and of crucial impor-

tance for theoretical biologists can be formulated as follows. Suppose that at time t = 0 one

is given an initial data u0(x), what can be said about the asymptotic behavior of the corre-

sponding solution u(t, x) of (1.0.1)-(1.0.2)-(1.0.3) as t → +∞? Does each solution persist and

invade the whole environment, and if yes, can one quantify this spreading? With these three

model equations in mind and the typical questions that I would like to address, it is now time

to explain what is presented in this memoir. I refer to Chapter 5 for a quick presentation of

what is not presented in this memoir.

1.1 What is presented in this memoir

I have decided to divide my work on propagation phenomena in local and nonlocal reaction-

diffusion equations into three different chapters. Nevertheless, it is important to emphasize that

each chapter are interconnected and that some editorial choices had to be made.

1If one further assumes that
∫
RK(x)dx = 1, then (1.0.1) can also be written in the form

∂tu(t, x) = −S(u(t, x)) +

∫
R
K(x− y)S(u(t, y))dy︸ ︷︷ ︸

nonlinear nonlocal diffusion

+f(u(t, x)), t > 0, x ∈ R,

which can be seen as the combined effects of nonlinear nonlocal diffusion and local reaction.
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Chapter 2 collects the results I obtained in [67, 73, 82] regarding propagation phenomena in

scalar neural field equations:

• The first work in collaboration with J. Fang [67] deals with the existence of traveling wave

solutions and spreading properties for scalar delayed neural field equations where the ki-

netic dynamics are of monostable type. We have characterized the invasion speed as a

function of the asymptotic decay of the connectivity kernel. More precisely, we showed

that for exponentially bounded kernels the minimal speed of traveling waves exists and

coincides with the spreading speed, which further can be explicitly characterized under a

KPP type condition. The proofs of these results rely on the application of the abstract

monotone dynamical system theory recently developed in [69]. We also investigated the

case of algebraically decaying kernels where we proved the non-existence of traveling wave

solutions and show the level sets of the solutions eventually locate in between two expo-

nential functions of time. The uniqueness of traveling waves modulo translation is also

obtained.

• In [73], I have started a new study of traveling waves for scalar neural field equations set

on a lattice, with infinite range interactions and in the regime where the kinetics of each

individual neuron is of bistable type. I have shown existence of traveling fronts using a

regularizing technique and proved that traveling front solutions which have nonzero wave

speed are unique (up to translation) by constructing appropriate sub and super solutions.

Finally, I have investigated spectral properties of the linearization around such traveling

fronts in co-moving frame.

• The third work [82] has been obtained in collaboration with Z. Kilpatrick and pertains

at deriving conditions for threshold of front propagations in neural field equations. The

crucial modeling assumption is to work in the high gain limit for the firing rate function

which allows to describe the dynamics of the interfaces, i.e. where the neural activity is

at the firing threshold. We notably prove that there exists a critical ”size” of the initial

condition below which there is extinction of the activity (uniform convergence to the down

state) and above which propagation does occur (local convergence to the up state).

Chapter 3 is about general nonlocal propagation problems and gathers the following works

[5, 71, 78, 86–88]. I have decided to include [5, 71, 78] in this chapter as motivating examples for

the analysis that I developed in [86] in collaboration with A. Scheel on Fredholm properties of

nonlocal differential operators. This has then set the basis for our two following works [87, 88].

Let me first introduce the results obtained in [5, 71, 78]:

• In [71], I have proved the existence and stability of traveling pulses of neural field equations

with synaptic depression (see (3.1.1)) with a specific connectivity kernel allowing to write

the corresponding neural field equations as a higher-order PDE system. Here synaptic

depression is a physiological form of negative feedback which evolves on a smaller time

scale leading to a slow-fast dynamical system for the equations satisfied by the profile of the

traveling pulse. The existence proof relies on geometric singular perturbation theory and

blow-up techniques as one needs to track the solution near a point on the slow manifold that
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is not normally hyperbolic. The stability of the pulse is then investigated by computing the

zeros of the corresponding Evans function. This study predicts that synaptic depression

leads to the formation of stable traveling pulses with algebraic decay along the back of the

profile.

• With M. Holzer, we have considered a nonlocal generalization of the Fisher-KPP equation

(namely f(u) in (1.0.2) is replaced by µu(1 − K ∗ u) for some parameter µ > 0 and ∗
stands for the convolution on the real line). As the parameter µ is varied and under some

assumptions on the Fourier transform of the kernel K, the system undergoes a Turing

bifurcation. Near this bifurcation we have established two main results. First, we proved

the existence of a two-parameter family of bifurcating stationary periodic solutions and

derived a rigorous asymptotic approximation of these solutions. We also studied the

spectral stability of the bifurcating stationary periodic solutions with respect to almost

co-periodic perturbations. Secondly, restricting to a specific class of exponential kernels for

which the nonlocal problem is transformed into a higher order partial differential equation,

we proved the existence of modulated traveling fronts near the Turing bifurcation that

describes the invasion of the Turing unstable homogeneous state by the periodic pattern

established in the first part. Both results rely on a center manifold reduction to a finite

dimensional ordinary differential equation.

• We investigated in [5] with A. Scheel and two undergraduate students T. Anderson and D.

Stauffer pinning regions and unpinning asymptotics in nonlocal reaction-diffusion equa-

tions of the form (1.0.3). This work was also part of the REU program mentioned pre-

viously. Here pinning refers to propagation failure as it has been reported in discrete

and inhomogeneous media. In our nonlocal setting, we find new unpinning asymptotics

suggesting that the phenomena are different from the discrete and inhomogeneous cases.

Using special kernels, we interpreted the unpinning transition as a slow passage through

a fold in a singularly perturbed system. Indeed, for small speeds, the corresponding ODE

system possesses a fast-slow structure, which we elucidated using geometric blowup meth-

ods.

A common idea used in [5, 71, 78] is to work with specific kernels which allows to transform the

nonlocal problem into a higher order partial differential equation. Then, one can rely on spatial

dynamics and classical dynamical systems tools (e.g. geometric singular perturbation theory for

slow-fast system, center manifold theory near bifurcation) to study coherent structures, in the

form of traveling pulses or fronts. This method is by nature restrictive as it only applies to the

class of kernels whose Fourier transform is a rational fraction, that is K̂(`) =
∫
RK(x)e−i`xdx =

Q(i`)/P(i`) with some polynomials Q and P with deg Q < deg P such that K ∗ u = v formally

transforms into Q(∂x)u = P(∂x)v. This motivated the series of works [86–88] where the aim was

to treat nonlocal problems in full generality without assuming any specific form on the kernels.

• In [86], we established Fredholm properties for a class of nonlocal differential operators

that naturally arise when linearizing at coherent structures such as traveling fronts or

pulses in nonlinear nonlocal differential equations of the form (1.0.1) or (1.0.3). Using
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mild convergence and exponential localization conditions on the nonlocal terms, we also

showed how to compute Fredholm indices via a generalized spectral flow, using crossing

numbers of generalized spatial eigenvalues.

• In [87], we proved the existence of fast traveling pulse solutions in excitable media with

nonlocal coupling (e.g. equations (1.0.1) or (1.0.3) supplemented by a linear adaptation

mechanism acting on a slower time scale). Our approach replaces methods from geometric

singular perturbation theory, that had been crucial in previous existence proofs (such as

in [71]), by a PDE oriented approach, relying on exponential weights, Fredholm theory

(derived for that purpose in [86]), and commutator estimates. Our proof can be roughly

sketched as follows. We construct a good enough singular solution by gluing front and back

solutions to pieces of the slow manifolds (which we construct by hand). We then linearize

around this approximate solution and count the number of parameters needed to com-

pensate negative index Fredholm operators so that parameter derivatives span cokernels.

Then the last step is to use a fixed-point argument to find a traveling pulse solution near

the singular one. For this, one needs to control error terms and commutators estimates.

This is achieved thanks to our careful choice for the singular approximate solution.

• Our last work [88] pertains at proving center manifold results for a large class of nonlocal

differential equations which was in particular motivated by our proof of the existence of

slow manifolds in [87]. The key remark (and difficulty) is that these nonlocal systems

possess a natural spatial translation symmetry but local existence or uniqueness theorems

for a spatial evolution associated with this spatial shift or even a well motivated choice

of phase space for the induced dynamics do not seem to be available, due to the infinite

range forward- and backward-coupling through nonlocal convolution operators. As a con-

sequence, we performed a reduction relying entirely on functional analytic methods and

leading to center manifold theorems. Despite the nonlocal nature of the problem, we did

recover a local differential equation describing the dynamics on the set of small bounded

solutions, exploiting that the translation invariance of the original problem induces a flow

action on the center manifold. We showed how to apply our reduction to various prob-

lems (in particular to stationary and traveling wave solutions of neural field equations) to

illustrate the new type of algebra necessary for the computation of Taylor jets of reduced

vector fields.

In Chapter 4, I have gathered results on propagation phenomena for general reaction-diffusion

equations:

• In [81, 83], I have investigated spreading speeds in systems due to nonlinear interactions.

More precisely, in collaboration with M. Holzer and A. Scheel we have identified a new

mechanism for propagation into unstable states in spatially extended systems, that is

based on resonant interaction in the leading edge of invasion fronts [81]. Such resonant

invasion speeds can be determined solely based on the complex linear dispersion relation at

the unstable equilibrium, but rely on the presence of a nonlinear term that facilitates the

resonant coupling. We proved that these resonant speeds give the correct invasion speed
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in a simple example, we showed that fronts with speeds slower than the resonant speed are

unstable, and corroborated our speed criterion numerically in a variety of model equations

(including a nonlocal scalar neural field equation). This study served as the foundations to

the follow up paper [83], where with G. Peltier (a master student), we provided a complete

description of the selected spreading speed of systems of reaction-diffusion equations with

unilateral coupling and proved the existence of anomalous spreading speeds for systems

with monostable nonlinearities. By anomalous spreading speed, we typically refer to the

case of systems where the coupling between several populations enhances the propagation

of one population in the sense that its spreading speed (in the coupled system) is strictly

larger than the spreading speed of the population alone (uncoupled system).

• With M. Holzer, we studied in [79] transition from stage-invasion fronts to coherent trav-

eling fronts (also referred to as locked fronts) in general two component reaction-diffusion

systems which do not satisfy any comparison principle. Using a variation of Lin’s method,

we constructed traveling front solutions and showed the existence of a bifurcation to locked

fronts where both components invade at the same speed. We also obtained expansions of

the wave speed as a function of the diffusion constant of one species. The bifurcation

can be sub or super-critical depending on whether the locked fronts exist for parameter

values above or below the bifurcation value. A very interesting feature of this study is

that in the sub-critical case numerical simulations reveal that the spreading speed of the

PDE system does not depend continuously on the coefficient of diffusion. The mechanism

at place in our setting appears to be different from the discontinuity of spreading speeds

usually observed in systems as a parameter is altered from zero to some non-zero value

(representing the onset of coupling of some previously uncoupled modes).

• The two works [72, 80] concentrate on the asymptotic stability of traveling fronts in local

and nonlocal reaction-diffusion equations. I have proved in [72] the multidimensional

stability of planar traveling fronts for the nonlocal reaction-diffusion equation (1.0.3) with

bistable dynamics using semigroup estimates. More precisely, I showed that if the traveling

front is spectrally stable in one space dimension, then it is stable in n-space dimension, n ≥
2, with perturbations of the traveling front decaying like t−(n−1)/4 as t→ +∞ in Hk(Rn)

for k ≥
[
n+1

2

]
. In a second recent work in collaboration with M. Holzer, we proposed a

simple alternative proof of a famous result of Gallay [97] regarding the nonlinear asymptotic

stability of the critical front of the Fisher-KPP equation (e.g. equation (1.0.2) with f(u) =

u(1−u)) which shows that perturbations of the critical front decay algebraically with rate

t−3/2 in a weighted L∞ space. Our proof is based on pointwise semigroup methods and

the key remark that the faster algebraic decay rate t−3/2 is a consequence of the lack of

an embedded zero of the Evans function at the origin for the linearized problem around

the critical front.
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1.2 Some terminology and known results

I will complete this introduction by presenting some terminology that I will be using throughout

this memoir together with some known results.

1.2.1 Spreading speeds and pushed/pulled fronts

Let us consider the scalar local reaction-diffusion equation

∂tu = ∂2
xu+ f(u), t > 0, x ∈ R, (1.2.1)

with monostable growth rate f(u), i.e. f satisfies2

f ∈ C 1([0, 1]), f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0, f > 0 in (0, 1), (1.2.2)

and associated traveling wave problem{
U ′′ + cU ′ + f(U) = 0, on R,
U(−∞) = 1, U(+∞) = 0, and 0 < U < 1 on R,

(1.2.3)

where u(t, x) = U(x−ct) is a solution of (1.2.1). Traveling wave solutions of (1.2.1) are found as

heteroclinic orbit of (1.2.3) connecting U = 1 to U = 0. In the following, I shall always refer to as

traveling front any traveling wave solution obtained as a heteroclinic orbit of reaction-diffusion

equation or system.

Theorem 1.2.1 ([9]). Assume that f is monostable. Let u0 = u(0, ·) 6= 0 be an initial condition

compactly supported in R and satisfying 0 ≤ u0 ≤ 1. Let u be the solution of the Cauchy problem

associated with (1.2.1) and u0. Then, there exists c∗ ∈ (0,+∞) such that

(i) if c > c∗, then u(t, x)→ 0 uniformly in {[x| ≥ ct} as t→ +∞;

(ii) if 0 ≤ c < c∗, then u(t, x)→ 1 uniformly in {[x| ≤ ct} as t→ +∞.

Such a wave speed c∗ is called a spreading speed as it characterizes the asymptotic speed of

propagation of compactly supported perturbations of the unstable u = 0. It turns out that the

spreading speed c∗ also characterizes the minimal speed of traveling wave solutions of (1.2.3).

Theorem 1.2.2 ([9]). Assume that f is monostable, then there is a traveling front of speed c

solution of (1.2.3) if and only if c ≥ c∗.

I will be referring to the traveling front with minimal wave speed c∗ as the critical front,

while those with c > c∗ will be called super-critical fronts. A phase portrait analysis of

(1.2.3) shows that necessarily c∗ ≥ 2
√
f ′(0) where 2

√
f ′(0) is the linear spreading speed of

perturbations of the linearized equation around the unstable state u = 0. Finally, a pulled

front will be a critical front with c∗ = 2
√
f ′(0) and a pushed front will be a critical front such

that c∗ > 2
√
f ′(0).

2I have arbitrarily set the unstable state to be u = 0 and the stable one to be u = 1.
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Theorem 1.2.1 says that the transition between the unstable state u = 0 and the stable state

u = 1 asymptotically occurs near |x| ∼ c∗t, while Theorem 1.2.2 asserts that the spreading

speed is exactly the minimal possible wave speed of traveling wave solution. It is then natural

to precise what is the asymptotic behavior of the solutions around this transition and ask if

there is a link between spreading speed and traveling wave solutions. Under an extra condition

on the nonlinearity f , namely f(u) ≤ f ′(0)u for all u ∈ [0, 1], it is well known that the solution

of the Cauchy problem associated with a Heaviside or a compactly supported initial condition

converges to the critical pulled front along the level lines. More precisely, there exists some s(t)

such that u(t, x+ s(t))→ U∗(x), uniformly in x as t→ +∞, where U∗ denotes the critical front

of (1.2.3) with c = c∗ [143]. The translation s(t) behaves as c∗t at first order and is followed by

logarithmic corrections [29, 108]

s(t) = c∗t−
3

2λ∗
ln(t) +O(1), as t→ +∞,

where λ∗ := c∗/2 =
√
f ′(0).

1.2.2 Bistable dynamics

There will be another important class of growth rates that will be considered: those that are

called bistable. That is f in (1.2.1) satisfies
f ∈ C 1([0, 1]), f(0) = f(1) = f(θ) = 0 for some θ ∈ (0, 1),

f ′(0) < 0, f ′(1) < 0, and f ′(θ) > 0,

f < 0 in (0, θ), f > 0 in (θ, 1).

(1.2.4)

In that case, Theorems 1.2.1 and 1.2.2 typically read as follows.

Theorem 1.2.3 ([91]). Assume that f is bistable.

(i) There exists a unique (up to translation) traveling front solution (U, c) of (1.2.3) which is

monotone. The sign of the corresponding wave speed c is given by the sign of
∫ 1

0 f(u)du.

(ii) If u0 = u(0, ·) 6= 0 is an initial condition satisfying 0 ≤ u0 ≤ 1 and

lim sup
x→−∞

u0(x) > θ, lim inf
x→+∞

u0(x) < θ,

then there exists x0 ∈ R so that the corresponding solution of the Cauchy problem associated

with (1.2.1) and u0 satisfies u(t, x)→ U(x− ct+ x0) uniformly in x as t→ +∞, with an

exponential convergence rate.

Theorem 1.2.3 was later on extended to the case of neural field equations (1.0.1) in [66] for

the first statement and [44] for the second one under the following conditions for the connectivity

kernel K:

K ∈ C 1(R),K(x) = K(−x) ≥ 0 ∀x ∈ R,
∫
R
K(x)dx = 1,

∫
R

(
|x|K(x) + |K′(x)|

)
dx <∞.

(1.2.5)
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Regarding the nonlinearity S, we assume that S ∈ C 1([0, 1]), S′ > 0 and f(u) = −u + S(u) is

bistable. The associated traveling wave problem reads{
−cU ′ = −U +K ∗ S(U), on R,
U(−∞) = 1, U(+∞) = 0, and 0 < U < 1 on R.

(1.2.6)

Theorem 1.2.4 ([44, 66]). Assume that the connectivity kernel K satisfies (1.2.5) and S ∈
C 1([0, 1]), S′ > 0 with f(u) = −u+ S(u) bistable in the sens of (1.2.4).

(i) There exists a unique (up to translation) traveling front solution (U, c) of (1.2.6) which is

monotone. The sign of the corresponding wave speed c is given by the sign of
∫ 1

0 (−u+ S(u)) du.

(ii) If u0 = u(0, ·) 6= 0 is an initial condition satisfying 0 ≤ u0 ≤ 1 and

lim sup
x→−∞

u0(x) > θ, lim inf
x→+∞

u0(x) < θ,

then there exists x0 ∈ R so that the corresponding solution of the Cauchy problem associated

with (1.0.1) and u0 satisfies u(t, x)→ U(x− ct+ x0) uniformly in x as t→ +∞, with an

exponential convergence rate.

I will conclude this section by presenting some known results about the nonlocal reaction-

diffusion equation (1.0.3) with bistable dynamics. In that case, the traveling wave problem

is {
−cU ′ = −U +K ∗ U + f(U), on R,
U(−∞) = 1, U(+∞) = 0, and 0 < U < 1 on R.

(1.2.7)

One of the main difficulty in that case is that the profile U of the corresponding traveling front

solution of (1.2.7) may not be smooth when the wave speed is zero. Indeed, rearranging the

terms, we see that U satisfies when c = 0

K ∗ U = U − f(U) := g(U),

and depending on the properties of the function g, the profile U may have jump discontinuities

[16, 44]. Nevertheless, the condition g′ > 0 prevents this scenario to happen.

Theorem 1.2.5 ([16, 44]). Assume that f is bistable and that g′ > 0 on [0, 1] with g(u) =

u− f(u).

(i) There exists a unique (up to translation) traveling front solution (U, c) of (1.2.7) which is

monotone. The sign of the corresponding wave speed c is given by the sign of
∫ 1

0 f(u)du.

(ii) If u0 = u(0, ·) 6= 0 is an initial condition satisfying 0 ≤ u0 ≤ 1 and

lim sup
x→−∞

u0(x) > θ, lim inf
x→+∞

u0(x) < θ,

then there exists x0 ∈ R so that the corresponding solution of the Cauchy problem associated

with (1.0.3) and u0 satisfies u(t, x)→ U(x− ct+ x0) uniformly in x as t→ +∞, with an

exponential convergence rate.





Chapter 2

Traveling fronts in neural field

equations

Biological motivation: traveling waves of neural activity. In the past few years, electrode

recordings and imaging studies have revealed in multiple sensory, motor and cognitive systems a

large variety of traveling waves of neural activity [123, 158, 180, 199] which are not only elicited

by localized external stimuli but they can be spontaneously generated by recurrent circuits

[99, 180, 199]. It has also been shown that they travel along brain networks at multiple scales,

transiently modulating spiking activity (e.g. emission of action potentials) and excitability of

the neural tissue as they pass [158]. However, despite the increasing number of experimental

recordings, our theoretical understanding of wave generation and propagation, which is of crucial

importance since they are at the basis of sensory stimuli processing and are often associated

to pathological forms of cortical behaviors such as epileptic seizures and migraines, is far from

being complete and serves as a motivation for the following studies.

Neural field equations: macroscopic models for traveling waves of neural activity. So far,

most mathematical efforts have focused on a macroscopic description of cortical waves through

traveling waves in continuous neural field models of the form (1.0.1) assuming homogeneity and

isotropy of cortical tissue. As already explained in the introduction, an important property

of homogenous neural fields is that they support traveling waves in the form of propagating

fronts separating regions of high and low activity (see Theorem 1.2.4) which relate well to some

of the experimental data. From a modeling point of view, the assumption that cortical tissue

can be approximated by R is totally unrealistic. At least, one should look at two-dimensional

neural field equations, that is (1.0.1) set on Ω ⊂ R2, and even consider some curvature effects.

Surprisingly enough, since the pioneer work of Ermentrout and McLeod [66], the mathematical

study of traveling waves and more generally propagation phenomena in neural field equations has

mainly relied on either formal computations and asymptotic expansions [30, 32, 52, 139, 166] or

restricted to the special case where the nonlinearity S is assumed to be a Heaviside step function

11
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[4, 53, 202] where explicit formula for traveling wave profile and wave speed can be derived, thus

simplifying the analysis. As a consequence, even for the one-dimensional case, that is equation

(1.0.1) set on R, there remain a lot of open or partially answered questions.

Outline. In Section 2.1, I will present a fairly exhaustive study of propagation phenomena in

neural field equations with monostable dynamics for general smooth nonlinearity S. The key

result of the analysis is about spreading speeds where it is shown that for sufficiently localized

connectivity kernels minimal spreading speeds exist (and thus finite) while for exponentially

unbounded kernels the level sets of the solutions propagate with an infinite asymptotic speed.

Then, in Section 2.2, I present some results regarding the existence, uniqueness and stability

of monotone traveling fronts for a discrete version of the neural field equation (1.0.1). The

motivation for such a study relies on my aim to develop a general program that would systemat-

ically analyze propagation phenomena in various types of neural networks. Here, I have started

with the case of an infinite network with all to all connections. Finally, in the last section,

I will present some partial results on threshold of front propagations in neural field equations

when the nonlinearity S is assumed to be a Heaviside step function. It will illustrate the great

efficiency of working in this regime.

2.1 Monotone traveling waves for delayed neural field equations

We consider the following single-layer delayed neural field equation

∂tu(t, x) = −u(t, x) +

∫
R
K(x− y)S(u(t− τ, y))dy, (t, x) ∈ (0,∞)× R, (2.1.1)

where the positive constant 0 ≤ τ < ∞ models a synaptic delay. Here, we will consider the

case where the dynamics of the system is of monostable type, that is f(u) = −u+S(u) satisfies

hypotheses similar to (1.2.2). The aim is to find conditions, especially on the connectivity kernel

K, such that similar results to Theorems 1.2.1 and 1.2.2 hold or do not hold for the delayed

neural field equation (2.1.1) with monostable dynamics. Throughout this section, we will assume

that the kernel K and the nonlinearity S satisfy the following hypotheses.

Hypothesis 2.1.1. The function K defined on R is such that:

(i) K is uniformly bounded on R;

(ii) K ≥ 0;

(iii)
∫
RK(x)dx = 1.

Let us note that we assume weaker conditions on K than the ones given in (1.2.5). We will

come back to these differences later on.

Hypothesis 2.1.2. The nonlinearity S is such that:

(i) S is continuously differentiable with 0 < S′ ≤ sm;
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(ii) f(u) := −u + S(u) has precisely two zeros at u = 0 and u = 1, with f(u) > 0 for all

u ∈ (0, 1);

(iii) S′(0) > 1.

The first result is about the large time behavior of solutions to the Cauchy problem ∂tu(t, x) = −u(t, x) +

∫
R
K(x− y)S(u(t− τ, y))dy if (t, x) ∈ (0,∞)× R,

u(t, x) = φ(t, x) if (t, x) ∈ [−τ, 0]× R.
(2.1.2)

Theorem 2.1.1 (Spreading speeds). The Cauchy problem (2.1.2) admits leftward and rightward

spreading speeds, denoted by c∗− and c∗+ respectively, satisfying c∗−+c∗+ > 0 and c∗± ∈ (−∞,+∞],

in the following sense:

(i) if c > c∗+ and c′ > c∗− and the initial condition φ has compact support with 0 ≤ φ ≤ 1 and

φ 6≡ 1, then the solution u of (2.1.2) has the property

lim
t→∞, x≥ct or x≤−c′t

u(t, x) = 0;

(ii) if c < c∗+ and c′ < c∗− with c+ c′ > 0 and the initial condition φ has compact support with

0 ≤ φ ≤ 1 and φ 6≡ 0, then the solution u of (2.1.2) has the property

lim
t→∞, c′t≤x≤ct

u(t, x) = 1.

We readily remark that c∗− = c∗+ := c∗ when the connectivity kernel K is symmetric and

both of them could be infinite in specific evolutionary models, which will be discussed later.

The second result is about the existence and uniqueness of monotone traveling wave solutions

of (2.1.1). Hence, we are interested in solutions u(t, x) = U(x− ct) = U(ξ), for c ∈ R, where U

is monotone and 0 ≤ U ≤ 1, which satisfy

− cU ′(ξ) = −U(ξ) +

∫
R
K(ξ − ξ′)S(U(ξ′ + cτ))dξ′, (2.1.3)

together with the limits

lim
ξ→−∞

U(ξ) = 1 and lim
ξ→+∞

U(ξ) = 0. (2.1.4)

We call a leftward traveling wave with speed c of (2.1.1) a special solution having the form

u(t, x) = U(x + ct) and a rightward traveling wave with speed c is defined using u(t, x) =

U(x− ct).

Theorem 2.1.2 (Traveling waves). Let c∗± be the spreading speeds of (2.1.2) defined in Theorem

2.1.1. Then c∗− is the minimal wave speed of the leftward nondecreasing traveling wave connecting

u = 0 to u = 1, and c∗+ is the minimal wave speed of the rightward nonincreasing traveling wave

connecting u = 1 to u = 0.
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The proofs of Theorems 2.1.1 and 2.1.2 rely on the application of the abstract monotone

dynamical systems theory developed recently in [69, 150, 151]. It is important to note that such

results on spreading properties and traveling waves solutions are the first rigorous results pre-

sented for neural field equations with synaptic delays and monostable kinetics. The only known

results were the formal computations presented in [32]. The leftward or rightward spreading

speeds obtained in Theorem 2.1.1 might be infinite. This actually depends on the asymptotic

decaying properties of the connectivity kernel K (see Theorem 2.1.5). We summarize in the fol-

lowing theorem the results on the characterization of the minimal wave speed for exponentially

bounded kernels. But first, we introduce the notion of exponentially bounded kernels.

We say that a kernel K is exponentially bounded if there exists µ0 ∈ (0,∞] such that∫
R
K(x)eµ|x|dx <∞, ∀ 0 ≤ |µ| < µ0 with lim

µ↑µ0

∫
R
K(x)eµ|x|dx = +∞. (2.1.5)

Theorem 2.1.3 (Characterization of the minimal wave speed). Let suppose that the initial

condition φ has compact support with 0 ≤ φ ≤ 1 and φ 6≡ 0 and that K is symmetric. If

the kernel K is exponentially bounded and the nonlinearity S satisfies a KPP condition, then

the minimal wave speed is bounded and can be explicitly characterized through the principal

eigenvalue of the linearized equation around the unstable steady state u = 0. Furthermore, as a

function of the delay, the minimal wave speed τ → c∗(τ) is a monotone continuously decreasing

function which converges to zero as τ → +∞.

In the above Theorem 2.1.3, what is referred to as a KPP condition is the following set of

assumptions. We say that S satisfies a KPP condition if

S ∈ C 2([0, 1]) is concave , S(0) = 0, S(1) = 1, and 1 < S′(0). (2.1.6)

As stated in Theorem 2.1.3, the minimal wave speed c∗(τ) can be explicitly characterized.

Indeed, c∗(τ) satisfies

0 < c∗(τ) := min
0<µ<µ0

λτ (µ)

µ
<∞ (2.1.7)

where λτ (µ) > 0 is the principal eigenvalue of

λ = −1 + S′(0)e−λτ K̃(µ),

with K̃(µ) :=
∫
RK(x)eµxdx. In fact, we verify that

λτ (µ) =
1

τ
W0

(
τeτS′(0)K̃(µ)

)
− 1, (2.1.8)

where W0 is the principal branch of the Lambert function which satisfies W0(x)eW0(x) = x for

any x ≥ 0. As a consequence, we have

c∗(τ) = min
0<µ<µ0

{
1

τµ

(
W0

(
τeτS′(0)K̃(µ)

)
− τ
)}

.

We now provide another result regarding the uniqueness of monotone traveling wave solutions

given in Theorem 2.1.2 in the special case of symmetric exponentially bounded kernels K and

nonlinearity S which satisfies the KPP condition (2.1.6).
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Theorem 2.1.4 (Uniqueness of traveling waves). Let suppose that K is a symmetric exponen-

tially bounded kernel and that S ∈ C 2 in a neighborhood of u = 0. Then the monotone traveling

wave solutions of (2.1.3) and (2.1.4) are unique up to translation. Furthermore if S satisfies the

KPP condition (2.1.6), each monotone traveling wave solution u of (2.1.3) and (2.1.4) satisfies

u(ξ) =
ξ→+∞

O
(
ξe−µ

∗ξ
)

for c = c∗, and u(ξ) =
ξ→+∞

O
(
e−µ1(c)ξ

)
for c > c∗,

for some 0 < µ1(c) and 0 < µ∗.

Finally, our last results deal with kernels that are symmetric but not exponentially bounded.

We say that a kernel K is exponentially unbounded if K is a C 1 function for large x, and

K′(x) = o (K(x)) as |x| → +∞. (2.1.9)

This condition implies that K decays more slowly than any exponentially decaying functions, in

the sense that

K(x)eµ|x| → +∞ as |x| → +∞,

for all µ > 0. Our main theorem is the following one.

Theorem 2.1.5 (Exponentially unbounded kernels). Let suppose that the initial condition φ

has compact support with 0 ≤ φ ≤ 1 and φ 6≡ 0 and that K is symmetric.

• If the kernel K is exponentially unbounded, then the level sets of the solution u to (2.1.2)

propagate with an infinite asymptotic speed.

• In the specific case of algebraically decaying kernels, the position of any level sets moves

exponentially fast as time goes to infinity.

Roughly speaking, the second point of Theorem 2.1.5 can be stated as follows. Suppose that

K(x) is defined as

K(x) =
Cα

1 + |x|2α , α > 1/2,

and Cα > 0 is a normalizing constant. Then, for any τ ≥ 0 and any κ ∈ (0, 1) there exists

positive constants 0 < ρ∗(τ) ≤ ρ̄(τ) such that

ρ∗(τ)

2α
≤ lim inf

t→∞

log (min {x : u(t, x) = κ})
t

≤ lim sup
t→∞

log (max {x : u(t, x) = κ})
t

≤ ρ̄(τ)

2α
.

(2.1.10)

While our approach is built on the one developed in the work of Garnier [101] for nonlocal

reaction-diffusion equations of the form (1.0.3) with KPP nonlinearity, it differs greatly on a

technical level. Indeed, our equation presents two main difficulties: the nonlinear part of the

equation is nonlocal and we have to deal with time delays. Nonetheless, we are able to take the

advantage of the strategy developed by Cabré and Roquejoffre [40] in the context of Fisher-KPP

equations with fractional diffusion to establish the lower bound in (2.1.10). A key ingredient

is a subtle estimate for the solutions of some linear nonlocal Cauchy problems with delays.

Let us also comment on the sharpness of the bounds found in (2.1.10). The upper bound is
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definitely not sharp as it is obtained by constructing a super solution with the same asymptotic

behavior as the kernel K where some rough estimates on convolutions of the kernel are used.

The lower bound is expected to be sharp as ρ∗(τ) > 0, which is the unique positive solution of

ρ+1−S′(0)e−ρτ = 0, is derived from the linearization of the equation around the unstable state

u = 0. Actually, the recent study [28] has demonstrated the sharpness of the lower bound found

by Garnier in [101] in the context of nonlocal reaction-diffusion equations. The idea of [28] is

to rescale the equation appropriately and analyze the thin-front limit in the spirit of geometric

optics approach to reaction-diffusion equations [10, 95] via Hamilton-Jacobi dynamics of sharp

interfaces. Similar techniques could be applied to our neural field setting to obtain sharp upper

bound in (2.1.10).

Theorems 2.1.3 and 2.1.5 have several important implications from a modeling point of view.

First of all, we clearly see that the asymptotic decaying properties of the connectivity kernel K
are crucial and that one needs strong enough decay (exponential) in order to have finite spreading

speeds. Of course, from a neurobiological point of view [123, 180], infinite asymptotic speed does

not seem plausible and have, so far, never been recorded in the literature. This result should

then be interpreted as follows. In order to have a representative model of neuronal excitatory

connections within cortical areas, one should use exponentially bounded kernels. Finally, we

recover the fact that constant synaptic delays slow down the spreading speed of the system for

exponentially bounded kernels in the case of monostable type of nonlinearity. This was already

established in previous studies when the nonlinearity S was idealized with a Heaviside step

function, see [32, 33] and references therein.

2.2 Traveling fronts for lattice neural field equations

For n ∈ Z, we consider the following lattice differential equation

u̇n(t) = −un(t) +
∑
j∈Z

KjS(un−j(t)), t > 0, (2.2.1)

where u̇n stands for
dun
dt

and un(t) represents the membrane potential of neuron labelled n

at time t. Here Kj represents the strength of interactions associated to the neural network at

position j on the lattice and the firing rate of neurons S(u) is a nonlinear function. Such an

equation can be seen as a Hopfield neural network model with infinite range interactions [121]

or more simply as a discrete neural field equation [65] where each neuron is set on the lattice

Z with all to all couplings. In that later respect, we will call equations such as (2.2.1) Lattice

Neural Field Equations (LNFEs).

Our aim is to initiate a series of work on neural field dynamics set on various types of

networks and equation (2.2.1) is one of the very first model to study as it consists of a network

composed of infinite neurons indexed on Z with all to all couplings represented by the interaction

communication rates Kj for j ∈ Z, see Figure 2.1 for an illustration. There is a second natural

motivation for studying LNFEs which stems from the numerical study of the continuous neural

field equation (1.0.1). Indeed, if one is looking for a numerical approximation of the solutions
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Figure 2.1: Topology of the network associated with (2.2.1).

of (1.0.1), one may discretize space and recover an equation similar to (2.2.1) depending on the

quadrature rule used to approximate the integral in (1.0.1).

We would like to study special entire solutions of (2.2.1). Let first suppose that there exists

two homogeneous stationary states (un(t))n∈Z = (u)n∈Z with u = 0 and u = 1 for the dynamics

of (2.2.1). Hence, we are interested in particular solutions of (2.2.1) of the form un(t) = u(n−ct)
for some c ∈ R where the profile u : R→ R satisfies

−cu′(x) = −u(x) +
∑
j∈Z

KjS(u(x− j)), x ∈ R,

lim
x→−∞

u(x) = 1 and lim
x→+∞

u(x) = 0,
(2.2.2)

where we set x := n− ct and u′ stands for
du

dx
. It is understood that when c = 0, a stationary

wave solution of (2.2.1) is a sequence (un(t))n∈Z = (ũn)n∈Z, independent of time, which verifies
ũn =

∑
j∈Z

KjS(ũn−j), n ∈ Z,

lim
n→−∞

ũn = 1 and lim
n→+∞

ũn = 0.
(2.2.3)

Throughout this section, we will suppose that the following condition on the weights Kn is

satisfied ∑
n∈Z

Kn = 1. (2.2.4)

Then, steady homogeneous states of the form (un(t))n∈Z = (u)n∈Z for some u ∈ R satisfy the

equation 0 = −u + S(u) = f(u). We will assume the following hypotheses for the nonlinear

function S.

Hypothesis 2.2.1. We suppose that:

(i) S ∈ C r
b (R) for r ≥ 2 with S(0) = 0 and S(1) = 1 together with S′(0) < 1 and S′(1) < 1;

(ii) there exists a unique θ ∈ (0, 1) such that S(θ) = θ with S′(θ) > 1;

(iii) u 7→ S(u) is strictly nondecreasing on [0, 1] and there exists sm > 1 > s0 > 0 such that

s0 < S′(u) ≤ sm for all u ∈ [0, 1].

The assumption (i)-(ii) ensures that (un(t))n∈Z = (u)n∈Z with u ∈ {0, θ, 1} are stationary

homogeneous solutions of the LNFE (2.2.1) and that the function f is of bistable type. The third
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condition ensures that S is an increasing function, which is natural for a firing rate function. We

also ask for some regularity for S, at least C 2
b (R). This will be necessary in order to prove our

uniqueness result. Regarding the interaction weights (Kn)n∈Z, we will work with the following

conditions.

Hypothesis 2.2.2. We suppose that:

(i) the normalization condition (2.2.4) is satisfied;

(ii) for all n ∈ Z, we have Kn = K−n ≥ 0 and K±1 > 0;

(iii)
∑

n∈Z |n|Kn <∞.

The second condition is a natural biological assumption and expresses the symmetric and

excitatory nature of the considered neural network. The third condition is a technical assump-

tion that is necessary in the process of proving the existence and uniqueness of traveling front

solutions. Let us remark that our results cover both the case of finite and infinite range inter-

actions, although we are primarily interested in the later one where one may further assume

that Kn > 0 for all n ∈ Z. Let us also precise that if the support of the interactions were to

be finite, then one could rely of the theory developed by Mallet-Paret [155] for the study of

traveling front solutions in general lattice differential equations. Let us also mention the work

of Bates and coauthors [13, 14] who studied traveling waves in infinite range lattice differential

equations with bistable dynamics.

Our first result is about the existence of monotone traveling front solutions of (2.2.1).

Theorem 2.2.1 (Existence of monotone traveling waves). Suppose that the Hypotheses 2.2.1

and 2.2.2 are satisfied then there exists a traveling wave solution un(t) = u∗(n− c∗t) of (2.2.1)

such that the profile u∗ satisfies (2.2.2) when c∗ 6= 0 or (2.2.3) if c∗ = 0. In the later case, we

denote (ũ∗n)n∈Z the stationary wave solution. Moreover,

(i) sgn(c∗) = sgn
∫ 1

0 f(u)du if c∗ 6= 0;

(ii) if
∫ 1

0 f(u)du = 0 then c∗ = 0;

(iii) if c∗ 6= 0 then u∗ ∈ C r+1(R) and u′∗ < 0 on R;

(iv) if c∗ = 0 then (ũ∗n)n∈Z is a strictly decreasing sequence.

The proof of Theorem 2.2.1 relies on a strategy developed by Bates and Chmaj [14] for a

discrete convolution model for phase transitions where the idea is to regularize the traveling

wave problem (2.2.2). This amounts to considering a sequence of traveling waves problems

for continuous neural field equations of the form of (1.0.1) and applying Theorem 1.2.4(i) of

Ermentrout & McLeod [66]. The final step is to pass to the limit and verify that the limiting

front profiles satisfy all the properties stated in Theorem 2.2.1. One of the main differences

between Theorem 2.2.1 and its continuous counterpart (Theorem 1.2.4(i)) comes from the fact

that c∗ = 0 does not necessarily imply that
∫ 1

0 f(u)du = 0. Actually, depending on the specific
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form of the firing rate function S, it is possible that c∗ = 0 and at the same time
∫ 1

0 f(u)du 6= 0,

which is often referred to as propagation failure or pinning [125, 135, 155]. Roughly speaking,

propagation failure means that there exists fronts with nonzero wave speed for the continuous

system while for the discrete one fronts have zero wave speed (c∗ = 0), see also Section 3.3. We

do not pursue in that direction, and we will consider in the next two results only fronts having

nonzero wave speed. But before presenting these results, we briefly sketch the first steps of the

proof of Theorem 2.2.1.

Proof. Following the original idea of Bates & Chmaj in [14], we define

Kδ(x) :=
∑
j∈Z

Kjδ(x− j) (2.2.5)

where δ(x− j) stands for the delta Dirac mass at x = j. Using this notation, we can write∑
j∈Z

KjS(u(x− j)) = Kδ ∗ S(u)[x],

where ∗ denotes the convolution on the real line. As a consequence, the traveling wave problem

(2.2.2) can be written as {
−cu′ = −u +Kδ ∗ S(u), on R,

lim
x→−∞

u(x) = 1 and lim
x→+∞

u(x) = 0.
(2.2.6)

Now, in order to use Theorem 1.2.4, we need to regularize the kernel Kδ in the following way.

Let Ψ ∈ C∞(R), Ψ ≥ 0,
∫
R Ψ(x)dx = 1, even and with compact support. Finally, define

ρm(x) := mΨ(mx) for all x ∈ R and

Km(x) :=
m∑

j=−m

1

ωm
Kjρm(x− j), (2.2.7)

where ωm :=
∑m

j=−mKj . It then is easy to check (see [14]) that for all φ ∈ C∞c (R) we have

Km ∗ φ −→
m→∞

Kδ ∗ φ

uniformly on compact sets. As a consequence, we can consider the sequence of traveling waves

problems {
−cmu′m = −um +Km ∗ S(um), on R,

lim
x→−∞

um(x) = 1 and lim
x→+∞

um(x) = 0.
(2.2.8)

With the definition of Km in (2.2.7) we can also easily check that all the conditions listed in

(1.2.5) are satisfied. Then, there exists a unique solution (modulo translation) (um, cm) of (2.2.8)

which further satisfies u′m < 0 on R. Moreover, we have that cm = 0 if and only if
∫ 1

0 f(u)du = 0

and otherwise sgn(cm) = sgn
∫ 1

0 f(u)du. The solutions (um, cm) are of course weak solutions of

(2.2.8), i.e. for any φ ∈ C∞c (R) they satisfy

− cm
∫
R

umφ
′dx+

∫
R

(−um +Km ∗ S(um))φdx = 0. (2.2.9)
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Let suppose that cm ≥ 0 and take α ∈ (0, θ) and translate each um so that um(0) = α. As

(um)m≥0 is a sequence of strictly monotone functions, by Helly’s theorem, we can extract a

subsequence of um, which we still denote by um, converging pointwise to a monotone function

u∗ as m → ∞. Note that by construction, we have 0 ≤ um ≤ 1 and thus 0 ≤ u∗ ≤ 1. Let us

show that the sequence (cm)m≥0 is also uniformly bounded. Assume the contrary, that there is

a sequence cm → +∞ as m→∞. From (2.2.8) we have

| − cmu′m(x)| = | − um(x) +Km ∗ S(um)(x)| ≤ 2, for all x ∈ R and m ≥ 0,

and thus ‖u′m‖∞ → 0 as m → ∞. This implies that u∗ is constant and thus u∗ = α. This is a

contradiction. Indeed, as α ∈ (0, θ), we have f(α) = −α+ S(α) < 0 but

−cmu′m = −um +Km ∗ S(um) = −um +Km ∗ um +Km ∗ f(um) ≥ 0 on R,

and we deduce

−Km ∗ f(um) ≤ −um +Km ∗ um,

that is

0 < −f(α) = lim
m→∞

(−Km ∗ f(um)) ≤ lim
m→∞

(−um +Km ∗ um) = 0.

Finally, by passing to another subsequence, we also have that cm → c∗, for some c∗ ≥ 0, as

m → ∞. We can now pass to the limit in (2.2.9), and we obtain that u∗ is a weak solution of

(2.2.6) as it satisfies

− c∗
∫
R

u∗φ
′dx+

∫
R

(−u∗ +Kδ ∗ S(u∗))φdx = 0, (2.2.10)

for all φ ∈ C∞c (R). This follows from Lebesgue’s dominated convergence theorem, the continuity

of S and the limit∫
R

(Km ∗ S(um))φdx =

∫
R

(Km ∗ φ)S(um)dx −→
m→∞

∫
R

(Kδ ∗ φ)S(u∗)dx =

∫
R

(Kδ ∗ S(u∗))φdx.

As a consequence, when c∗ 6= 0, the equality (2.2.10) implies that u∗ ∈ W 1,∞(R). A bootstrap

argument then show that u∗ ∈ C r+1(R) and thus a traveling wave solution of (2.2.1). If c∗ = 0,

then ∫
R

(−u∗ +Kδ ∗ S(u∗))φdx = 0, for all φ ∈ C∞c (R),

so that

u∗ = Kδ ∗ S(u∗) a.e. on R.

Note that Kδ is not a regularization kernel and thus u∗ need not be continuous. However, u∗
is monotone with 0 ≤ u∗ ≤ 1, therefore it has only jump discontinuities and the set of these

jump discontinuities is at most countable. Thus we can find a sequence (ιk)k≥0 with ιk → 0 as

k →∞ such that u∗(n+ ιk) is continuous at n+ ιk for all n ∈ Z and k > 0. We get that

u∗(n+ ιk) = Kδ ∗ S(u∗)(n+ ιk) =
∑
j∈Z

KjS(u∗(n+ ιk − j))
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for all n ∈ Z and k > 0. It follows that the sequence

ũ∗n := lim
k→∞

u∗(n+ ιk), n ∈ Z,

satisfies

ũ∗n =
∑
j∈Z

KjS
(
ũ∗n−j

)
,

so is a stationary solution of (2.2.1). We refer to [73] for the end of the proof which consists in

checking the monotony property of the traveling front profiles together with their asymptotic

limits.

The second result is about the uniqueness of traveling front solutions having nonzero wave

speed.

Theorem 2.2.2 (Uniqueness of traveling waves with nonzero speed). Let (u∗, c∗) be a solution

to (2.2.2) as given in Theorem 2.2.1, such that c∗ 6= 0. Let (û, ĉ) be another solution to (2.2.2).

Then c = ĉ and, up to a translation, u∗ = û.

The strategy of proof of Theorem 2.2.2 is to use a “squeezing” technique developed by Chen

in [44] by constructing appropriate sub and super solutions for (2.2.1). The principal difficulty

is that the nonlinearity enters in a non trivial way in the infinite sum, and thus we need to adapt

all the arguments in our specific context. We say that a sequence (un(t))n∈Z is a sub-solution

of (2.2.1) if it satisfies for all n ∈ Z and all t > 0

u̇n(t) ≤ −un(t) +
∑
j∈Z

KjS(un−j(t)). (2.2.11)

A super-solution is defined by reversing the inequality in (2.2.11). The sub and super-solutions

are built on the following sequences

w±n (t) := u∗

(
n− c∗t+ ξ0 ∓ σγ(1− e−βt)

)
± γe−βt, ∀n ∈ Z (2.2.12)

for some well chosen parameters ξ0, σ, γ and β. More precisely, the key result in the proof of

Theorem 2.2.2 is the following lemma.

Lemma 2.2.1. Assume that Hypotheses 2.2.1 and 2.2.2 hold and let (u∗, c∗) with c∗ 6= 0 be as

in Theorem (2.2.1). Then, there exists a small positive constant γ0 and a large positive constant

σ such that for any γ ∈ (0, γ0] and every ξ0 ∈ R, the sequences w±n (t) defined by (2.2.12) are a

respectively sub (w−n (t)) and super (w+
n (t)) solutions with β := 1

2 min {1− S′(0); 1− S′(1)} > 0.

We now turn our attention to the linear stability of the traveling fronts with nonzero wave

speed. First, we require an extra assumption on the sequence of weights (Kj)j∈Z.

Hypothesis 2.2.3. We suppose that:

(i) (Kj)j∈Z satisfies (H2);

(ii) there exists η > 0, such that
∑

j∈ZKje
η|j| <∞.
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Our stability result will be obtained for the continuous version of (2.2.1). That is we interpret

solutions of (2.2.1) as un(t) = u(t, n− c∗t) for some function u ∈ C 1([0,∞)× R,R), intuitively

filling the gap between each lattice site, which satisfies a nonlocal partial differential equation

of the form

∂tu(t, x) = c∗∂xu(t, x)− u(t, x) +
∑
j∈Z

KjS(u(t, x− j)), (t, x) ∈ (0,∞)× R.

By definition, u∗ from Theorems 2.2.1 & 2.2.2 is a stationary solution of the above equation and

we will be interested in the spectral properties of its associated linear operator

Lv := c∗v
′ − v +Kδ ∗ [S′(u∗)v], (2.2.13)

where Kδ ∗ v :=
∑

j∈ZKjv(· − j). From its definition, the operator L is a closed unbounded

operator on L2(R) with dense domain H1(R) in L2(R). Furthermore, it is not difficult to check

that L is the infinitesimal generator of a strongly continuous semigroup on L2(R). Our main

result regarding L reads as follows.

Theorem 2.2.3 (Spectral properties of L). Suppose that the Hypotheses 2.2.1 and 2.2.3 are

satisfied and let (u∗, c∗), with c∗ 6= 0, be the unique (up to translation) strictly monotone traveling

wave solution to (2.2.1) as given in Theorem 2.2.1. Let L : H1(R) → L2(R) be the operator

defined in (4.3.5). We have:

(i) 0 is an algebraically simple eigenvalue of L with a negative eigenfunction u′∗;

(ii) the adjoint operator L∗ has a negative eigenfunction, q ∈ C 1(R), corresponding to the

simple eigenvalue 0;

(iii) for all 0 < κ < min {1− S′(0), 1− S′(1)} the operator L − λ is invertible as an operator

from H1(R) to L2(R) for all λ ∈ C\2πic∗Z such that <(λ) ≥ −κ;

(iv) there exist η∗, η∗∗ ∈ (0, η) and some constants C∗ > 0, C∗∗ > 0 such that

|u′∗(x)| ≤ C∗e−η∗|x|‖u‖L∞(R), and |q(x)| ≤ C∗∗e−η∗∗|x|‖q‖L∞(R),

for all x ∈ R.

The main ingredient of the proof is to show that the operator L−λ is Fredholm on the some

region in the complex plane. This analysis relies on some recent work [86] on Fredholm properties

of nonlocal differential operators with infinite range interactions which will be presented later on

in Section 3.4. Theorem 2.2.3 can be seen as preliminary result towards the nonlinear stability

of traveling fronts of equation (2.2.1). Let us explain how such a spectral analysis could be

used to get insight on the asymptotic behavior of solutions of (2.2.1) starting from an initial

condition close to a traveling front solution. Let us introduce the nonlinear operator

F : `∞(R) −→ `∞(R)

u 7−→ F(u) = −u +K ∗d S(u),
(2.2.14)
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where for all n ∈ Z we have set

(K ∗d S(u))n :=
∑
j∈Z

KjS(un−j),

and

`∞(R) :=

{
u = (un)n∈Z ∈ RZ | ‖u‖`∞(R) := sup

n∈Z
|un| <∞

}
.

Using this notation, we can then write (2.2.1) as

u̇(t) = F(u(t)), t > 0. (2.2.15)

for which u∗(t) = (u∗(n − c∗t))n∈Z with c∗ 6= 0 is a solution, where the existence of the profile

u∗ is given by Theorems 2.2.1 and 2.2.2. To study the stability of u∗(t), we look for solutions of

(2.2.15) that can be written as u(t) = u∗(t) + v(t) where v(t) is a perturbation of the traveling

wave solution u∗(t). We then find that v(t) must satisfy the time-dependent lattice neural field

equation

v̇(t) = DF(u∗(t))v(t) +N (t, v(t)), (2.2.16)

in which

N (t, v(t)) = F(u∗(t) + v(t))−F(u∗(t))−DF(u∗(t))v(t). (2.2.17)

Then the strategy would be to obtain spectral properties for v̇(t) = DF(u∗(t))v(t) from those

of the operator L in order to be able to close a nonlinear stability argument. This method was

introduced and successfully implemented by Benzoni-Gavage and coauthors in [20] by analyzing

associated Green’s functions for the nonlinear stability analysis of semidiscrete shock waves and

more recently reused in the context of nonlinear stability analysis of traveling pulses in the

discrete FitzHugh-Nagumo equations with finite and infinite range interactions [126, 183]. We

conjecture the following result with perturbations measured in the Banach spaces `p(R), which

are defined by

`p(R) :=

u = (un)n∈Z ∈ RZ | ‖u‖`p(R) :=

(∑
n∈Z
|un|p

) 1
p

<∞


for 1 ≤ p <∞.

Conjecture 2.2.1 (Nonlinear stability). Suppose that the Hypotheses 2.2.1 and 2.2.3 are sat-

isfied and let (u∗, c∗), with c∗ 6= 0, be the unique (up to translation) strictly monotone traveling

wave solution to (2.2.1) as given in Theorem 2.2.1. We denote by u∗(t) := (u∗(n− c∗t))n∈Z.

Then for all 1 ≤ p ≤ ∞, there exist constants δ > 0, C > 0, ω > 0 such that for all sequences

u0 = (u0
n)n∈Z which satisfy ‖u0 − u∗(0)‖`p(R) ≤ δ, there exists an asymptotic phase shift ξ0 ∈ R

such that the unique solution t→ u(t) = (un(t))n∈Z of (2.2.1), with initial condition u(0) = u0,

verifies

‖u(t)− u∗(t+ ξ0)‖`p(R) ≤ Ce−ωt‖u0 − ū(0)‖`p(R),

for all t ≥ 0.
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2.3 Threshold of front propagations in neural field equations

In this section, we aim at characterizing the asymptotic behavior of the solutions of the

Cauchy problem∂tu(t, x) = −u(t, x) +

∫
R
K(x− y)S(u(t, y))dy, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(2.3.1)

for various non wave-like initial conditions u0 for which the stability result of Theorem 1.2.4 does

not apply. More specifically, for a given initial condition, we would like to characterize when

the corresponding solution u of the Cauchy problem (2.3.1) will be attracted by the steady

state u = 0 and goes extinct or by the steady state u = 1 and propagates. This question of

characterizing the transition from extinction to propagation has been addressed for the local

reaction-diffusion equation (1.0.2) where the first optimal result was obtained by Zlatoš [203]

and later on refined in [59, 159] for larger class of initial conditions.

Theorem 2.3.1 ([203]). Let f be a bistable nonlinearity satisfying (1.2.4) and
∫ 1

0 f(u)du > 0.

Let u be the solution of the Cauchy problem associated to (1.0.2) with initial condition u0 =

χ[−`,`], the indicator of the interval [−`, `] ⊂ R, for ` > 0. Then, there is `c > 0 such that

(i) if ` < `c, then u(t, x)→ 0 uniformly on R as t→ +∞;

(ii) if ` = `c, then u(t, x)→ Ub uniformly on R as t→ +∞;

(iii) if ` > `c, then u(t, x)→ 1 uniformly on compacts as t→ +∞;

where Ub is the unique even positive solution of 0 = U ′′ + f(U) satisfying U(±∞) = 01.

There is thus a sharp threshold between extinction and propagation for the local reaction-

diffusion equation (1.0.2) starting from initial conditions u0 = χ[−`,`]. By propagation, we refer

to the fact that when ` > `c the solution u will asymptotically converge as t→ +∞ toward two

counter-propagating fronts

U(x− ct+ x0) + U(−x− ct− x0)− 1.

Our aim is to prove that a similar result holds for the neural field equation (2.3.1), and more

generally to the nonlocal reaction-diffusion equation (1.0.3). As equation (2.3.1) has no regular-

izing effect, we will need to consider smoother initial conditions. We define the one-parameter

family (ϕ`)`>0 of functions that satisfy for each ` > 0:

• ϕ` : R 7→ [0, 1] in Hk(R) for k ≥ 2;

• ϕ`(x) = ϕ`(−x) ≥ 0 and ϕ′`(x) < 0 for all x > 0;

• ϕ`(±`) = θ.

1Note that the existence of the ground state Ub can be found in [21].
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We can then state the following conjecture.

Conjecture 2.3.1. Let K be a connectivity kernel that satisfies (1.2.5) and S ∈ C 1([0, 1]),

S′ > 0 with f(u) = −u + S(u) bistable in the sens of (1.2.4) with
∫ 1

0 [−u + S(u)]du > 0. Let

u(t, x) be the solution of the Cauchy problem associated to (2.3.1) with initial condition u0 = ϕ`
for ` > 0. Then, there is `c > 0 such that

(i) if ` < `c, then u(t, x)→ 0 uniformly on R as t→ +∞;

(ii) if ` = `c, then u(t, x)→ Ub uniformly on R as t→ +∞;

(iii) if ` > `c, then u(t, x)→ 1 uniformly on compacts as t→ +∞;

where Ub is the unique even positive solution of 0 = −U +K ∗ S(U) satisfying U(±∞) = 0.

The existence of a ground state Ub follows from [45] whereas the uniqueness is still an

open problem. In the specific case where K(x) = e−|x|/2, the equation of the ground state is

equivalent to 0 = U ′′−U+S(U) for which the uniqueness result of [21] applies. It is reasonable to

expect that uniqueness should hold within the class of kernels which are exponentially bounded.

Regarding the sharp threshold result, all the proofs available in the literature [59, 159, 203] rely

heavily on the local nature of the reaction-diffusion equation (1.0.2), and at the moment only

perturbative arguments could yield to weaker statements of Theorem 2.3.1 in the limits ` � 1

and `� 1.

In order to make some progress, we use a special form for the nonlinearity: S(u) = H(u−κ)

for κ ∈ (0, 1) where H(u) stands for the Heaviside function defined as

H(u) :=

{
0 if u < 0,

1 if u ≥ 0.
(2.3.2)

Although such a nonlinearity simplifies some of the computations and allows one to derive closed

form formula, it introduces a discontinuity in the equation and thus one needs to be careful when

talking about solutions of (2.3.1) in that case. We refer to the recent work of Krüger and Stannat

[145] which provides a rigorous setting regarding the existence and uniqueness of mild solutions

of (2.3.1) in the form of

u(t, x) = e−tu0(x) +

∫ t

0
e−(t−s)

∫
R
K(x− y)H(u(s, y)− κ)dyds, t > 0, x ∈ R. (2.3.3)

Let us note that it is the uniqueness part that is difficult to establish. Our hypotheses on K
(see (1.2.5)) and the class of initial conditions that we will consider all fit within the framework

developed in [145] such that the Cauchy problem (2.3.1) will always have well defined solutions

that are global and C 1(R) in space. Our first result reads as follows.

Theorem 2.3.2. Let K be a connectivity kernel that satisfies (1.2.5) and S = H(· − κ) with

κ ∈ (0, 1/2). Let u(t, x) be the mild solution of the Cauchy problem associated to (2.3.3) with

initial condition u0 = ϕ` for ` > 0. Then, there is `c > 0 such that

(i) if ` < `c, then u(t, x)→ 0 uniformly on R as t→ +∞;
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Figure 2.2: Phase portrait of 0 = U ′′ − U + H(U − κ), describing stationary solutions of Eq. (2.3.1)
with an exponential kernel K(x) = e−|x|/2, with κ ∈ (0, 1/2). Solid black horizontal and blue diagonal
lines are nullclines of U and U ′, respectively. Homogeneous states Ū = 0, 1 occur at their intersection.
Homoclinic orbits arise about the point (U,U ′) = (κ, 0), crossing the threshold κ twice. The single bump
Ub (red outer trajectory) forms a separatrix, bounding all other nontrivial stationary solutions. There
exists an infinite number of periodic solutions UL inside (green inner trajectories), whose orbits shrink
as L is decreased from infinity.

(ii) if ` = `c, then u(t, x)→ Ub uniformly on R as t→ +∞;

(iii) if ` > `c, then u(t, x)→ 1 uniformly on compacts as t→ +∞;

where Ub is the unique unimodal even positive solution of 0 = −U + K ∗ H(U − κ) satisfying

U(±∞) = 0. The critical value `c > 0 is uniquely defined via

κ =

∫ 2`c

0
K(y)dy. (2.3.4)

Few remarks are in order. First, the uniqueness of the ground state is only among unimodal

even positive solutions. Second, it is straightforward to check that if such a solution exists then

it should satisfy

Ua(x) =

∫ a

−a
K(x− y)dy, with U0(±a) = κ,

for a unique value of a that solves κ =
∫ 2a

0 K(y)dy. Thus, the half-width of the ground state

precisely corresponds to the critical value `c of equation (2.3.4) of Theorem 2.3.2. Finally, for

the sake of illustration, in Figure 2.2, it is shown the phase portrait of the stationary solutions

of 0 = −U +K∗H(U −κ) in the very specific case where K(x) = e−|x|/2 for which the equation

can be recast as 0 = U ′′ − U +H(U − κ).

We now present the proof of Theorem 2.3.2 which relies on describing the time evolution of

the active region {x ∈ R | u(t, x) ≥ κ}. Roughly speaking, we show that for the one-parameter

family of initial conditions (ϕ`)`>0 the active region A(t) can either (i) shrink to reduce to a

single point leading to extinction, (ii) stagnate for all time or (iii) expand leading to propagation.

Proof. Symmetry of equation (2.3.1) ensures solutions with even initial conditions are always

even, so the active region A(t) = {x ∈ R | u(t, x) ≥ κ} is symmetric for all t > 0. The dynamics
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of the symmetric active region A(t) = [−a(t), a(t)] can be described with interface equations for

the two points x = ±a(t) (see [4, 54]). We start by rewriting equation (2.3.1) as

∂tu(t, x) = −u(t, x) +

∫
A(t)
K(x− y)dy, (2.3.5)

which can be further simplified:

∂tu(t, x) = −u(t, x) + K(x+ a(t))−K(x− a(t)), with K(x) :=

∫ x

0
K(y)dy.

Let us note that equation (2.3.5) remains well defined even in the case where a(t) vanishes. We

can describe the dynamics of the two interfaces by the implicit equations

u(t,±a(t)) = κ. (2.3.6)

Differentiating equation (2.3.6) with respect to t, we find the total derivative is:

±α(t)a′(t) + ∂tu(t,±a(t)) = 0, (2.3.7)

where we define a′(t) = da(t)
dt and ±α(t) = ∂xu(t,±a(t)). The symmetry of equation (2.3.7)

allows us to reduce to a single differential equation for the dynamics of a(t):

a′(t) = − 1

α(t)
[K(2a(t))− κ] , (2.3.8)

where we have substituted equation (2.3.5) at a(t) for ∂tu(t, a(t)). Equation (2.3.8) is not well-

defined for α(t) = 0, but we will show how to circumvent this difficulty. Furthermore, we can

obtain a formula for α(t) by defining z(t, x) := ∂xu(t, x) and differentiating equation (2.3.5) with

respect to x to find [54]

∂tz(t, x) = −z(t, x) + w(x+ a(t))− w(x− a(t)),

which we can integrate and evaluate at a(t) to find

α(t) = u′0(a(t))e−t +

∫ t

0
e−(t−s) [K(a(t) + a(s))−K(a(t)− a(s))] ds. (2.3.9)

Thus, we have a closed system describing the evolution of the right interface a(t) of the active

region A(t), given by equations (2.3.8) and (2.3.9), along with the initial conditions a(0) = `

and α(0) = u′0(`) < 0, as long as α(t) < 0. Criticality occurs for initial conditions such that

a′(t) = 0, which means K(2`) = κ, i.e. for ` = b = K−1(κ)/2, so the critical ` is precisely the

half-width of the stationary bump solution Ub.

Propagation. If ` > K−1(κ)/2 then a′(t) > 0 and, due to the monotonicity of K and equa-

tion (2.3.9), α(t) < 0 for all t > 0 so limt→∞ a(t) = ∞, and the active region A(t) expands

indefinitely. As a consequence, for any compact set K = [−k, k] with k > 0 given and any ε > 0,

we can find t∗ > 0 large enough such that K ⊂ A(t∗) and

|K(x+ a(t∗))−K(x− a(t∗))− 1| ≤ ε, ∀x ∈ K,
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Figure 2.3: Long term behavior of u(t, x) depends only on how the initial interface location a(0) = `
compares to the bump half-width, b = K−1(κ)/2. (A) If ` > b, propagation occurs and limt→∞ u(t, x) ≡ 1,
∀x ∈ K = [−k, k] for k <∞. This follows from the fact that for any K, we can find a time t∗ for which
u(t∗, x) > κ, ∀x ∈ K. (B) If ` < b, eventually u(t, x) < κ, right after the time t0 when u(t0, 0) = κ, and
so limt→∞ u(t, x) ≡ 0. (C) If ` = b, stagnation occurs and limt→∞ u(t, x) = Ub(x).

so that for any equal or later time s ≥ t∗ we have

|K(x+ a(s))−K(x− a(s))− 1| ≤ ε, ∀x ∈ K.

We can solve for u(t, x) starting for time t∗ to obtain

u(t, x) = u(t∗, x)et∗−t + e−t
∫ t

t∗

es (K(x+ a(s))−K(x− a(s))) ds.

Using the fact that any solution is continuous, we have that |u(t∗, x)| ≤M for all x ∈ K. As a

consequence, we get that ∀x ∈ K,

|u(t, x)− 1| =
∣∣∣∣(u(t∗, x)− 1)et∗−t + e−t

∫ t

t∗

es (W (x+ a(s))−W (x− a(s))− 1) ds

∣∣∣∣
≤ (1 +M)et∗−t + ε.

This implies that limt→∞ |u(t, x) − 1| = 0, ∀x ∈ K. As a consequence, the solutions of equa-

tion (2.3.1) locally uniformly converge to the homogeneous state u ≡ 1 as t→∞ (Figure 2.3A).

Thus, we have propagation of u ≡ 1 into u ≡ 0 as time evolves.

Extinction. If ` < K−1(κ)/2, then a′(t) < 0 and 0 < a(t) < ` on t ∈ (0, t0). By continuity, there

exists a finite t0 > 0 such that a(t0) = 0, at which point the interface dynamics, equations (2.3.8)

and (2.3.9), breaks down. We know this because K(2a(t))−κ < 0 and decreases as a(t) decreases.

Note also that for t ∈ (0, t0) we consistently have α(t) < 0. Inspecting equation (2.3.9) shows

that limt→t−0
α(t) = 0 since u′0(0) = 0. Thus, at time t = t0, we have 0 ≤ u(t0, x) ≤ κ, and

for t ≥ t0, ∂tu(t, x) = −u(t, x), so u(t, x) = et0−tu(t0, x) for t ≥ t0, and limt→∞ u(t, x) ≡ 0,

uniformly on x ∈ R (Figure 2.3B).

Stagnation. If ` = K−1(κ)/2, then a′(t) = 0 for all times assuming α(t) < 0, implying a(t) ≡ `.
Plugging into equation (2.3.9) yields α(t) = (K(2b) − K(0))(1 − e−t) + u′0(`)e−t < 0 for t > 0.

As a consequence, a(t) = ` for all times and limt→∞ α(t) = K(2b)−K(0). Furthermore, we can

explicitly solve for

u(t, x) = K(x+ b)−K(x− b) + e−t [u0(x)−K(x+ b) + K(x− b)] ,

so limt→∞ u(t, x) ≡ Ub(x), uniformly on R. We call this case stagnation as the active region

remains fixed for t > 0 (Figure 2.3C).
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It is possible to push further the interface dynamics approach to tackle a variety of other

scenarios and treat the case of multiple active regions. In [82], we investigated the cases of

periodic initial conditions and initial conditions with two symmetric active regions, but also the

case where equation (2.3.1) is forced by an external input I(t, x). In all cases, we managed to

derive conditions relating the initial conditions (or external input), the connectivity kernel K
and the threshold κ leading to either extinction, propagation or stagnation.

2.4 Perspectives

Propagation phenomena in heterogeneous neural fields. Although the assumption of cortical

homogeneity is reasonable at a first place, there are lots of evidence that cortical areas should

be thought as a heterogeneous medium. It is for example well known that the visual cortex have

functional maps such as preferred orientation or ocular dominance maps which are superimposed

on the underlying retinotopic representation of the visual field. This functional architecture is

spatially organized (often assumed to be periodic) and lead to heterogeneities in connectivity

kernels. In the framework of neural fields, such heterogeneities have been incorporated by taking

connectivity kernels of the form K(x, y) = K̂(x − y, y/ε) for some parameter ε > 0 that can be

taken very small [30, 52] or very large [32]. In the one-dimensional case (d = 1), it has been

reported that propagation failure can occur when the medium is sufficiently heterogeneous [30]

and traveling pulsating waves have been shown to exist numerically [32, 52]. A first perspective

could be to set a rigorous theoretical framework for the existence of traveling pulsating waves

of (1.0.1) with connectivity kernels of the form K̂(x− y, y/ε) in both limit ε→ 0 and ε→ +∞
in the case where K̂ is assumed to be periodic in its second argument. The question of the

stability of such pulsating waves is also of interest and should be investigated. An important

extension will be to that of temporal heterogeneities where the connectivity kernel is allowed

to vary with time and a first natural step will be to consider periodic modulations. Finally, in

a more exploratory direction, one could study the propagation of waves in disordered medium

in which random spatial fluctuations are taken into account by for example assuming that the

connectivity function is some stationary random field over a probability space indexed by a

random variable.

Spreading properties in discrete neural networks. A first natural perspective is to complete

the stability analysis of the traveling fronts constructed in Theorem 2.2.1 and obtain a nonlinear

stability result along the lines of Conjecture 2.2.1. In parallel, I would like to investigate other

network topologies by studying neural networks on various types of graphs (trees, Erdös-Rényi

graphs, power law graphs, W -random graphs, etc...) which could be dense or sparse.

Threshold of propagation in neural fields and waves interactions. One perspective is to

present a proof of Conjecture 2.3.1. The very first step will to be characterize the set of even

stationary solutions of (1.0.1) which are monotone on the half line, and prove a uniqueness result.

Indeed, in the local case [59, 203], this stationary solution (which is unique up to translation)

serves as a separatrix for the dynamics starting from smooth unimodal even initial conditions
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and is of crucial importance. Similar techniques as the ones in [203] based on comparison

principles could be extended to (1.0.1) and the key challenge will be to handle the nonlinear

nonlocal term. It is interesting to investigate similar questions for the classical nonlocal reaction-

diffusion equation (1.0.3). Although in this context the reaction term is local, it is expected the

analysis in this setting to be more intricate (see Section 3.3). Indeed, for such equations, Chamj

and Ren [45] have shown the existence of families of discontinuous even solutions and monotone

on the half line which can be stable in L∞(R) for the dynamics. It is of sharp contrast with the

local case where these stationary solutions are always smooth and unstable for the dynamics.

New threshold phenomena are expected to take place in that nonlocal case.

Recent experiments in rat visual cortex [99] have shown that when two visual stimuli are

successively presented in the visual field of a rat three patterns of neural activity can emerge:

fusion, suppression or independence. More precisely, these cortical states depend on the time

delay of presentation in between two stimuli. If the two stimuli are well separated in time, then

the cortical responses induced by each stimulus are independent and do not see each other. If

this delay is reduced, the cortical response of the second stimulus can be totally suppressed.

When this delay is even further reduced, the two cortical responses fuse. I would like to model

and analyze this paradigm using neural field formalism. The suppression regime suggests an

adaptation mechanism that needs to be incorporated into the neural field equation (1.0.1) in

the form of linear adaptation [87] or synaptic depression [71]. In fact, it is my aim to show that

this paradigm of fusion, suppression or independence is the counterpart for excitable systems of

threshold of propagation found in scalar reaction-diffusion equations in the context of traveling

pulse initiation.



Chapter 3

Nonlocal propagation problems: a

dynamical systems approach

We start this chapter by presenting three examples (see Sections 3.1, 3.2 and 3.3) where

the use of kernels with explicit form allows a fairly detailed analysis of the problems under

consideration. Note that each example (and thus corresponding section) is independent from

one another. The first example shows the existence and stability of fast traveling pulses for neural

field equations supplemented with synaptic depression. The second one deals with modulated

fronts for the Fisher-KPP equation with nonlocal interactions. Finally, the last example explores

pinning regions and unpinning asymptotics for the transition from stationary to traveling fronts

in scalar reaction-diffusion equations with nonlocal diffusion and bistable dynamics. Then, in

Section 3.4 we present a key result about Fredholm properties of nonlocal differential operators

which is used in the subsequent two sections to prove the existence of traveling pulses for

the nonlocal FitzHugh-Nagumo equations and establish center manifold theorems for nonlocal

equations.

3.1 Existence and stability of traveling pulses in neural field equa-

tions with synaptic depression

We consider a neural network which includes synaptic depression [137, 201] such that the

neural field equation (1.0.1) is modified according to the following system of equations: ∂tu(t, x) = −u(t, x) +

∫
R
K(x− y)q(t, y)S(u(t, y))dy,

∂tq(t, x) = ε (1− q(t, x)− βq(t, x)S(u(t, x))) ,
(3.1.1)

for t > 0 and x ∈ R. The first equation describes the evolution of the synaptic current u(t, x)

in the presence of synaptic depression which takes the form of a synaptic scaling factor q(t, x)

evolving according to the second equation. This factor can be interpreted as a measure of

31
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available presynaptic resources, which are depleted at a rate εβS, and recovered on a time

scale specified by the constant ε. We assume units of time t to be 10ms each. Experimental

recordings [188] suggest that synaptic depression recovers on a timescale of 200−800ms, so that

1/ε typically ranges from 20 to 80 and thus ε ∼ 0.01−0.05 can be consider as a small parameter

in equations (3.1.1). The range of allowable values for β, as used in [137] with ε ∼ 0.01− 0.05,

is β ∼ 1− 20. The nonlinear firing-rate function is taken to be the following smooth function

S(u) =
1

1 + e−λ(u−κ)
(3.1.2)

with threshold κ and gain λ. We take the excitatory weight function K to be a normalized

exponential [137],

K(x) =
b

2
e−b|x| (3.1.3)

where b > 0 is the effective range of excitatory distribution.

We are interested to prove the existence and stability of traveling wave solutions for equation

(3.1.1) in the regime 0 < ε � 1. To do so, we introduce a new coordinate ξ = x + ct for some

unknown c ∈ R and then express the neural field system (3.1.1) in these new coordinates as ∂tu(t, ξ) = −c∂ξu(t, ξ)− u(t, ξ) +

∫
R
K(ξ − y)q(t, y)S(u(t, y))dy,

∂tq(t, ξ) = −c∂ξq(t, ξ) + ε (1− q(t, ξ)− βq(t, ξ)S(u(t, ξ))) .
(3.1.4)

Traveling wave solutions are thus time independent solutions of these equations that satisfy the

functional differential equations of mixed type cu′(ξ) = −u(ξ) +

∫
R
K(ξ − ξ′)q(ξ′)S(u(ξ′))dξ′,

cq′(ξ) = ε (1− q(ξ)− βq(ξ)S(u(ξ))) ,
(3.1.5)

where u′ stands for
du

dξ
. We now use the specific form of the kernel K to write (3.1.5) as the

system of ordinary differential equations
b2v(ξ)− v′′(ξ) = b2q(ξ)S(u(ξ)),

cu′(ξ) = −u(ξ) + v(ξ),

cq′(ξ) = ε (1− q(ξ)− βq(ξ)S(u(ξ))) ,

which can be converted into a system of first-order equations
u′ = 1

c (−u+ v) ,

v′ = w,

w′ = b2 (v − qS(u)) ,

q′ =
ε

c
(1− q − βqS(u)) .

(3.1.6)

In order to prove the existence of a traveling pulse solution of equation (3.1.1), we will need

to have some hypotheses on the different parameters of our system (λ, κ, β, b). The following

hypothesis ensures that there exists a unique stationary homogeneous solution of system (3.1.1).
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(a) (b)

Figure 3.1: (a) A typical graph of the nullclines of system (3.1.6) in the (u, q)-plane when the conditions
of Hypothesis 3.1.1 are satisfied.(b) Illustration of the assumptions on the function g of Hypothesis 3.1.2.
The large diamond is the fixed point of the system (u0, q0).

Hypothesis 3.1.1. Suppose that (λ, κ) ∈ (0,∞)× (0, 1) satisfy the relation

2− 2 ln(2) ≤ λκ− ln(λ)

and β > βc(λ, κ) for some explicit βc(λ, κ) > 01, then there exists a unique stationary homoge-

nous solution of system (3.1.1) that we denote (u0, q0).

The second hypothesis that we formulate is on the shape of our nonlinear function S.

Hypothesis 3.1.2. Let g be the C∞-smooth function defined through

g(u) =
u

S(u)
. (3.1.7)

We suppose that (λ, κ) are such that there exist u+ > um > 0 with g(u0) = g(um) = g(u+) = q0

together with g′(u0) > 0, g′(um) < 0 and g′(u+) > 0. We further suppose that (λ, κ) are such

that ∫ u+

u0

−u+ q0S(u)du > 0. (3.1.8)

On account of Hypothesis 3.1.2, we may choose closed intervals IL and IR with u0 ∈ IL and

u+ ∈ IR, that have nonempty interiors and in addition have g′(u) > 0 for all u ∈ IL ∪ IR. There

exist constants qknee < q0 < qmax in such way that we can define two C∞-smooth function

sL : (qknee, qmax)→ IL and sR : (qknee, qmax)→ IR with

g(sL(q)) = g(sR(q)) = q

for all q ∈ (qknee, qmax). Notice that sL(q0) = u0 and sR(q0) = u+. We define by continuity

uknee = sR(qknee) and u− = sL(qknee). We thus have the ordering:

u− < u0 < um < uknee < u+.

1See [71, Lemma 2.1]
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We refere to Figure 3.1(b) for an illustration. Let us finally remark that under the assumptions

of Hypothesis 3.1.1 the couple (uknee, qknee) is the unique solution of{
0 = −u+ qS(u),

0 = −1 + qS′(u).
(3.1.9)

The key point for proving the existence of traveling pulse solutions of (3.1.6), homoclinic to

(u0, q0), is to first construct a singular traveling wave solution for ε = 0, and then show that

this singular solution persists for small positive values of 0 < ε � 1. The singular solution is

constructed by looking at the slow and fast subsystems associated to (3.1.6). The slow subsystem

can be found by rescaling the independent variable z = εξ, and then formally setting ε = 0 in

the resulting equation to obtain 
0 = 1

c (−u+ v) ,

0 = w,

0 = b2 (v − qS(u)) ,

qz =
1

c
(1− q − βqS(u)) .

(3.1.10)

For the above reduced slow system (3.5.8), there exists associated leading order slow manifolds

given by two pieces:

ML := {(sL(q), q)} and MR := {(sR(q), q)} .

The slow dynamics on these manifolds is given by

qz =
1

c
(1− q − βqS(u)) for (u, q) ∈Mj , j = L,R.

The fast system is obtained by simply setting ε = 0 in (3.1.6)
u′ = 1

c (−u+ v) ,

v′ = w,

w′ = b2 (v − qS(u)) ,

q′ = 0.

(3.1.11)

For the fast system, we seek a leading order solution connecting the reduced fixed point onML

at (u, v, w, q) = (u0, u0, 0, q0) to the fixed point on MR at (u, v, w, q) = (u+, u+, 0, q0) for some

value of the wave speed c. In the neural field formalism, this is equivalent to find a traveling

wave solution u(t, x) = uf (x+ c∗t) of

∂tu(t, x) = −u(t, x) + q0

∫
R
K(x− y)S(u(t, y))dy (3.1.12)

for some wave speed c∗ ∈ R and profile uf ∈ C 1(R,R) that satisfies the limits

lim
ξ→−∞

uf (ξ) = u0 and lim
ξ→+∞

uf (ξ) = u+. (3.1.13)
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Figure 3.2: A typical graph of the wave speed for the front and back of the wave, with λ = 20, κ = 0.22,
b = 4.5 and β = 5. Note that qknee = 0.3605, qzero = 0.4405 and qcrit = 0.7352 with ccrit = 0.2197.
The reduced model admits traveling front solutions for q ∈ [qzero, qmax] and traveling back solutions for
q ∈ [qknee,qzero ]. Note that this picture is typical of the homoclinic orbits that we study: no value of
q ∈ [qcrit, qmax] leads to a singular connection between ML and MR. Therefore, the jump back must
occur at the knee.

If Hypothesis 3.1.2 holds, then we know that such a front exists from Theorem 1.2.4. Adapting

the proof of [66], we obtain the following formula for the wave speed c∗ as a function of q0:

c∗ = c(q0) =
1

q0

∫ u+

u0

[−u+ q0S(u)] du∫ +∞

−∞

(
u′f (ξ)

)2
S′(uf (ξ))dξ

> 0. (3.1.14)

A quick look at formula (3.1.14) shows that there should be a switch from positive to negative

c(q) at some value qzero where c(qzero) = 0. Then for all q > qzero, c(q) > 0. The front selects

the wave speed of the pulse. In turn, the wave speed of the pulse selects the particular value of

q for which a jump back exists connecting the right slow manifold to the left slow manifold. It

turns out that for typical values of the parameters, as illustrated in Figure 3.2, we observe that

above a particular value of q, there exists no choice of q for which such a connection between

the right slow manifold and left slow manifold can be found. We will label this value of q as

qcrit ∈ [qzero, qmax]. It is defined by the condition that

c(qcrit) = c(qknee) := ccrit.

Therefore, in that case, the only possibility is that the jump back from the right slow manifold to

the left slow manifold occurs at the knee of the right slow manifold. Here, the knee is precisely

the point (uknee, qknee). Note that the knee is not a hyperbolic fixed point, as a consequence the

results of Theorem 1.2.4 are no longer valid. However, the existence of such a connection is well

understood in the case of the generalized Fisher-KPP equation of order 2 [25, 26] and can be

extended to the neural field formalism. We have the following result which relies on the specific

form of the kernel K.
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Proposition 3.1.1. For each c ≥ ccrit there exists a traveling back solution ub(x+ ct) to

∂tu(t, x) = −u(t, x) + qknee

∫
R
K(x− y)S(u(t, y))dy (3.1.15)

with profile ub ∈ C 1(R,R) and that satisfies the limits

lim
ξ→−∞

ub(ξ) = uknee and lim
ξ→+∞

ub(ξ) = u−. (3.1.16)

Moreover, ub satisfies the asymptotic expansions at ξ = −∞

ub(ξ) ∼


uknee − α exp

(
−1+

√
1+4b2c2

2c ξ
)

c = ccrit

uknee −
(
qkneeS

′′(uknee)

2c

)−1 1

ξ
c > ccrit

as ξ → −∞ (3.1.17)

with α some positive constant.

Thus, this result ensures that for any c ≥ ccrit there exists a connection between the knee at

(uknee, uknee, 0, qknee) and the left branch of the slow manifold at (u−, u−, 0, qknee). Putting the

information from the reduced slow and fast dynamics together, the singular solution consists of

four pieces as follows:

(1) a fast jump from (u0, u0, 0, q0) to (u+, u+, 0, q0), which is given by the profile uf solution

of (3.1.12) with speed c∗ > 0;

(2) slow decay along MR from (u+, u+, 0, q0) to (sR(qknee), sR(qknee), 0, qknee);

(3) a fast jump from (sR(qknee), sR(qknee), 0, qknee) to (sL(qknee), sL(qknee), 0, qknee) that de-

parts along the center-unstable manifold;

(4) slow growth along ML back to (u0, u0, 0, q0).

Definition 3.1.1. The set, labelled Π, of allowable parameters (λ, κ, b, β) for the model in

(3.1.1) consists of those parameters such that Hypotheses 3.1.1 and 3.1.2 are satisfied together

with b > 0, and such that the wave speed selected by the front is strictly greater than the wave

speed selected by the back.

We can now state the first main result.

Theorem 3.1.1. Suppose that (λ, κ, b, β) ∈ Π. Then there exists ε1 > 0 such that for all

0 < ε < ε1, there exists c(ε) = c∗+O(ε) for which problem (3.1.1) has a traveling pulse solution

of the form (u(x+ ct), q(x+ ct)) with limξ±∞(u, q) = (u0, q0).

The idea of the proof is to demonstrate that the singular pulse described above persists for

small positive 0 < ε� 1. The main difficulty relies on the fact that the solution passes close to

the knee of the slow manifold that is no longer normally hyperbolic. One needs to rely on blow-

up techniques to overcome this issue [147]. Let us note that this type of problem has already

been encountered in biological model of electrical cardiac wave [18] and in the propagation of

wave in deformable media [118].

We can then turn to the stability of traveling pulse given by Theorem 3.1.1.
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Theorem 3.1.2. Suppose that (λ, κ, b, β) ∈ Π. Then there exists ε2 > 0 such that for all

0 < ε < ε2, the traveling pulse solution from Theorem 3.1.1 is spectrally stable with a simple

zero eigenvalue at λ = 0 due to translational invariance of the pulse.

The proof of the above theorem follows several steps. First, we linearize the system (3.1.4)

at the traveling pulse and show that the resulting essential spectrum is bounded to the left

of the imaginary axis, where the bound depends upon ε. Then, we construct Evans functions

associated (i) with the full problem and (ii) with the reduced fast pieces along the front and the

back of the pulse. In a third step, we show that the eigenvalues of the full Evans function are

solely determined by those of the reduced problems which allows us to determine the spectral

stability of the pulse. More precisely, we show that the only zero of the Evans function in

the right-half plane is zero, and its geometric and algebraic multiplicity is one. The crucial

step in this analysis is to show that the knee does not produce any additional eigenvalue which

can be shown through winding number computations. Our definition of the Evans function is

somewhat different from the one previously used for neural field models with Heaviside firing

rate function [53, 176]. In our case, the Evans function is not known through an explicit formula

due to our choice of the nonlinearity. However, we can collect enough information to determine

the location of its zeros. Finally, we further note that the linear stability of the traveling pulse

solution from Theorem 3.1.1 follows from a spectral mapping theorem [164] for the strongly

continuous semigroup generated by the associated linear operator around the traveling pulse.

In addition, we can use standard invariant manifold theory and [17, Theorem 4.3] to show that

the traveling pulse is nonlinearly stable as well. Indeed, the zero eigenvalue of Theorem 3.1.2 is

isolated.

Recall that in [137], Kilpatrick & Bressloff have used a Heaviside firing rate function instead

of the smooth firing rate function (3.1.2). It is important to note that the singular perturbation

analysis presented here breaks down if one uses a Heaviside function as Hypothesis 3.1.2 is no

longer satisfied. However, Kilpatrick & Bressloff [137] have explicitly derived closed formulas

for the traveling pulse solution. Their constructive approach predicts the existence of two types

of traveling pulse solutions: a fast pulse (with a wide profile) and a slow pulse (with a narrow

profile). The fast traveling pulse solution, obtained with a Heaviside function, is qualitatively

similar to the pulse found in our study. Indeed, in both models, the fast pulse is found to be

spectrally stable. Both fast pulses have a wide profile. Note however that the Heaviside model

predicts an exponential decay along the back of the pulse while our model predicts an algebraic

decay, so that there still exists a slight difference in the profile of the solution. As we have used

singular perturbation theory, it is not possible to directly predict the existence of the slow pulse

without doing some modifications that we now outline. In order to prove the existence of a slow

pulse, one needs to rescale the wave speed c appropriately. We anticipate that the wave speed

will scale as c = c̃
√
ε with c̃ = O(1). With this new scaling, one can use singular perturbation

theory to prove the existence of a traveling pulse solution along similar lines of the proof of

Theorem 3.1.1. The existence of slow traveling pulse was recently achieved in [113] using ODE

techniques only. As for the Heaviside model, we expect this slow pulse solution to be unstable.
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3.2 Modulated traveling fronts for a nonlocal Fisher-KPP equation

We consider the following nonlocal version of the Fisher-KPP equation

∂tu(t, x) = ∂2
xu(t, x) + µu(t, x)

(
1−

∫
R
K(x− y)u(t, y)dy

)
, t > 0 x ∈ R, (3.2.1)

where µ > 0 represents the strength of the nonlocal competition. Throughout this section, we

will assume that the kernel K satisfies the following hypotheses.

Hypothesis 3.2.1. The kernel K satisfies:

K ≥ 0, K(0) > 0, K(−x) = K(x),

∫
R
K(x)dx = 1, and

∫
R
x2K(x)dx <∞.

In the limiting case where K is replaced by the Dirac δ-function, the nonlocal partial differ-

ential equation (3.2.1) reduces to the classical Fisher-KPP equation [92, 143]

∂tu = ∂2
xu+ µu(1− u), t > 0, x ∈ R. (3.2.2)

Such an equation (3.2.2) arises naturally in many mathematical models in biology, ecology or

genetics, and u typically stands the density of some population. The nonlocal equation (3.2.1)

can then be interpreted as a generalization of the local Fisher-KPP equation (3.2.2) in which

interactions among individuals are nonlocal. For more details on such nonlocal models, we refer

to [96, 102, 106] among others.

As emphasized in the introduction, the behavior of the solutions of the local equation (3.2.2)

has been studied for decades and is now well understood while much less is known about solutions

to the nonlocal equation (3.2.1). Indeed, from a mathematical point of view, the analysis of

(3.2.1) is quite involved since this class of equations with a nonlocal competition term generally

does not satisfy the comparison principle. Recently, theoretical and numerical studies [22, 68,

161] have shown that for sufficiently small µ, the solutions share many of the same properties

of the local Fisher-KPP equation in that there exists a family of traveling wave solutions of the

form

u(t, x) = U(x− ct), lim
ξ→−∞

U(ξ) = 1, lim
ξ→+∞

U(ξ) = 0, U decreasing. (3.2.3)

It is known that, again for µ sufficiently small, these traveling waves and the homogeneous

stationary solutions u(t, x) = 1 and u(t, x) = 0 are the only entire bounded solutions to (3.2.1),

see [1, 3, 22, 68]. On the other hand, when µ is large, some other bounded solutions may exist

as suggested by the numerical exploration of [161]. More precisely, if the Fourier transform of

the kernel K takes some negative values, then for sufficiently large µ, the trivial state u(t, x) = 1

is Turing unstable for (3.2.1). This suggests the emergence of non-monotonic bounded solutions

[7, 102]. Indeed, recent work by Hamel and Ryzhik [109] has shown the existence of stationary

periodic solutions u satisfying,

0 = ∂2
xu+ µu(1−K ∗ u), x ∈ R, (3.2.4)
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Figure 3.3: A modulated traveling front obtained from direct numerical simulation of (3.2.1) with kernel
(3.2.8) for a = 0.7 and µ = 32. The front invades the Turing unstable state u = 1 and leaves a stationary
periodic pattern in its wake.

for large µ when the Fourier transform of the kernel attains negative values.

Recent numerical studies of (3.2.1) also suggest the existence of modulated traveling fronts

where these stationary periodic solutions invade the Turing unstable state u = 1, see [161] and

Figure 3.3. These modulated traveling fronts are the focus of our study. For a certain class of

kernels, we will prove the existence of modulated traveling fronts of the form

u(t, x) = U(x− ct, x), lim
ξ→−∞

U(ξ, x) = 1 + P (x), lim
ξ→+∞

U(ξ, x) = 1, (3.2.5)

where P (x) is a stationary periodic solution of the shifted problem

0 = ∂2
xv − µv − µvK ∗ v, x ∈ R. (3.2.6)

The first step of our analysis will be to refine the existence result of [109] for parameter val-

ues near the onset of Turing instability and then use center manifold techniques to construct

modulated traveling fronts of the form (3.2.5). In that direction, we also point out that ex-

plicit examples of wave-train solutions have been recently constructed in [61, 162] for a different

nonlocal problem.

Before stating our main results, we first make some further assumptions on the kernel K. Lin-

earizing equation (3.2.1) around the stationary homogeneous state u = 1, we find the following

dispersion relation,

d(λ, k, µ) := −k2 − µK̂(k)− λ. (3.2.7)

Hypothesis 3.2.2. For K satisfying Hypothesis 3.2.1, we further assume that there exists unique

kc > 0 and µc > 0, such that the following conditions are satisfied,

(i) d(0, kc, µc) = 0.

(ii) ∂kd(0, kc, µc) = 0.

(iii) ∂kkd(0, kc, µc) < 0.

The first condition imposes that K̂(kc) < 0 as from the dispersion relation d(0, kc, µc) = 0,

we have that K̂(kc) = −k2c
µc

< 0. The second condition ensures that kc is a double root of
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the dispersion relation and combined with the third condition, that µc represents the onset of

instability. For µ < µc all the spectrum is to the left of the imaginary axis while for µ > µc
there is a band of wave numbers surrounding k = ±kc that are unstable.

For some part of our analysis, we will work with a specific kernel that satisfies Hypothe-

sis 3.2.1, namely we will choose

K(x) := Ae−a|x| − e−|x|, (3.2.8)

for some values of A > 0 and a > 0. Recall that Hypothesis 3.2.1 requires that K(x) > 0 and∫
RK(x)dx = 1. The second condition implies that A = 3a/2, and the first condition in turn

implies that a ∈ (2/3, 1). The choice of such a specific kernel is motivated by the fact that

equation (3.2.1) can be reduced to a system of partial differential equations. Indeed, define

v(t, x) := Ae−a|x| ∗ u(t, x), w(t, x) := −e−|x| ∗ u(t, x),

we find that (3.2.1) reduces to the following system,
∂tu = ∂2

xu+ µu(1− v − w),

0 = ∂2
xv − a2v + 3a2u,

0 = ∂2
xw − w − 2u.

(3.2.9)

The first result concerns the existence of stationary periodic solutions of the nonlocal equation

(3.2.1) and can be stated as follows.

Theorem 3.2.1. Assume that Hypothesis 3.2.1 and 3.2.2 are satisfied. Let µ := µc + ε2 and

k := kc + δ. There exists ε0 > 0, such that for all ε ∈ (0, ε0] and all δ2 <
−K̂(kc)

1 + µc
2 K̂′′(kc)

ε2 there

is a stationary 2π
k -periodic solution of (3.2.1) with leading expansion of the form

uε,δ(x) = 1 +

√√√√K̂(kc)ε2 +
(

1 + µc
2 K̂′′(kc)

)
δ2

ω
cos ((kc + δ)x) +O

(∣∣ε2 − δ2
∣∣) , (3.2.10)

where ω < 02. Moreover, for any τ ∈ [0, 2π/k], (x) 7→ uε,δ(x+ τ) is also a solution of (3.2.1).

First, note that the results of Theorem 3.2.1 do not rely on a specific form of the kernel. This

theorem complements the study of Hamel & Ryzhik [109] where they also proved the existence

of stationary periodic solutions of (3.2.1). While the analysis in [109] is global and relies on

degree theory and in the regime µ large, our study is local and uses center manifold theory. To

some extent, our approach gives sharper results close to the bifurcation point µc as we obtain a

complete description of all bounded stationary solutions of (3.2.1) in some neighborhood of the

solution u = 1. Furthermore, we show the existence of a family of periodic solutions indexed by

their spatial frequency k ≈ kc.
The second main result is a spectral analysis of the stationary periodic solutions found in

Theorem 3.2.1 and our results are summarized as follows.

2The explicit expression of ω can be found in [78, Lemma 2.1].
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Theorem 3.2.2. Assume that Hypothesis 3.2.1 and 3.2.2 are satisfied. Then, the following

assertions are true.

(i) The periodic solutions uε,δ given in Theorem 3.2.1 are neutrally stable with respect to

perturbations of the same period 2π/k, where k = kc + δ and δ satisfies the relation

δ2 <
−K̂(kc)

1 + µc
2 K̂′′(kc)

ε2 for all ε ∈ (0, ε0].

(ii) The periodic solutions uε,δ given in Theorem 3.2.1 are spectrally unstable with respect to

perturbations of the form eiσxV (x), where V ∈ H2
per[0, 2π] is a solution the spectral problem

obtained by linearizing (3.2.1) around uε,δ, in the limit σ → 0 and whenever δ satisfies

−K̂(kc)

3
(

1 + µc
2 K̂′′(kc)

)ε2 < δ2 <
−K̂(kc)

1 + µc
2 K̂′′(kc)

ε2, (3.2.11)

for ε ∈ (0, ε0].

The first part of this theorem is a direct consequence of the center manifold reduction used in

the existence proof of Theorem 3.2.1. Indeed, the spectral analysis of the periodic solutions with

respect to perturbations of the same period can be directly done on the reduced two dimensional

equation on the center manifold where one finds two eigenvalues λc = 0 and λs < 0. The fact

that there exists a critical eigenvalue is due to the translation of invariance of the problem,

namely d
dxuε,δ is always in the kernel of the linearized operator. The second part of the theorem

is a perturbation analysis, using Lyapunov Schmidt reduction, where we show that the critical

eigenvalue λc = 0 is perturbed into λc = g(ε, δ)σ2 + O(σ4), as σ → 0 when we are looking

for perturbations of the form eiσxV (x), V ∈ H2
per[0, 2π]. The region in parameter space (ε, δ)

where g(ε, δ) > 0 will then give spectral instability with respect to such perturbations, see

Figure 3.4. Such a technique was introduced by Mielke for the study of sideband instabilities in

the Swift-Hohenberg equation [157].

The central result of this study is the proof of the existence of modulated traveling front

solutions that are asymptotic at infinity to the stationary periodic solutions found in Theorem

3.2.1 and the homogeneous state u = 1. We will realize these modulated traveling fronts as

heteroclinic orbits of a reduced system of ODEs in normal form. Roughly speaking, and fixing

the frequency to kc, we look for solutions of (3.2.1) that can be written as

u(t, x) = U(x− εst, x) =
∑
n∈Z

Un(x− εst)e−inkcx,

where ε =
√
µ− µc. Replacing this ansatz into the equivalent system (3.2.9) will lead to the

study of an infinite dimensional dynamical system of the form

∂ξUn = LεnUn +Rn(U, ε). (3.2.12)

The main difficulty in studying (3.2.12) comes from the presence at onset (ε = 0) of an infinite

dimensional central part. However, as 0 < ε� 1, these eigenvalues will leave the imaginary axis

with different velocities. A finite number will stay close (O(ε)) to the imaginary axis while all
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Figure 3.4: Sketch in the (ε, δ)-plane of the regions of existence and spectral stability given by Theo-

rem 3.2.1 and 3.2.2. Here, we have denoted θ :=

√
−K̂(kc)

1+µc
2 K̂′′(kc)

.

other eigenvalues leave fast enough (O(
√
ε)) so that a spectral gap exists. This gap will allow

for small ε > 0 the construction of a finite dimensional invariant manifold of size O(ε2/3+γ), for

γ > 0. This manifold will contain the modulated traveling fronts that we are looking for. The

result that we obtain can be formulated as follows.

Theorem 3.2.3. Assume that K is the kernel given in (3.2.8) and that Hypothesis 3.2.2 is

satisfied. Provided that s >

√
−4K̂(kc)ζ, where ζ := 1 + µcK̂′′(kc)/2, there is an ε0 > 0 such

that for all ε ∈ (0, ε0), and all δ2 < − K̂(kc)

1+µc
2
K̂′′(kc)

ε2, equation (3.2.1) has modulated traveling

front solutions of frequency kc + δ and of the form

u(t, x) = U(x− εst, x) =
∑
n∈Z

Un(x− εst)e−in(kc+δ)x,

with the boundary conditions at infinity

lim
ξ→−∞

U(ξ, x) = uε,δ(x) and lim
ξ→+∞

U(ξ, x) = 1.

The first known existence results of modulated traveling waves are due to Collet & Eck-

mann [50, 51] and Eckmann & Wayne [63], who proved the existence of such solutions in the

Swift-Hohenberg equation with cubic nonlinearities. The techniques developed in [63] have then

been generalized for the problem of bifurcating fronts for the Taylor-Couette problem in infi-

nite cylinders by Haragus & Schneider in [110] with quadratic nonlinearities, and our proof of

Theorem 3.2.3 will rely on a center manifold result presented in [110]. Finally, note that similar



3.3. PINNING AND UPINNING IN NONLOCAL SYSTEMS 43

results have been obtained in the two-dimensional Swift-Hohenberg equation for more general

modulated fronts, for example modulated fronts that connect stable hexagons with unstable roll

solutions [58].

Perspective. Let us conclude by noticing that from the perspective of the original problem

(3.2.1) and the related Fisher-KPP equation it is often the dynamics for initial data near the

state u = 0 that is of interest. Here, one observes traveling fronts where the zero state is

invaded by a periodic stationary state around u = 1. Sometimes an intermediate region where

the solution is approximately in the state u = 1 is observed. Invasion fronts of this form were

numerically computed in [161]. Since the stationary periodic solutions come in families, one

expects that the invasion process is dynamically selecting a particular pattern amongst this

family of solutions. When µ ≈ µc, the primary front where u = 1 replaces u = 0 travels

much faster than the secondary modulated front and the selected pattern is determined by the

modulated traveling front propagating with the minimal speed. However, when µ is large the

numerically observed speeds of the secondary modulated traveling front exceed or are of the

same order as that of the primary front and the pattern selection mechanism is more difficult

to characterize.

3.3 Pinning and upinning in nonlocal systems

Relaxation to the energy minimum in spatially extended systems is often mediated by the

propagation of fronts, separating globally and locally minimizing states. The speed of propa-

gation of such fronts gives crucial information on time scales for relaxation. In the simplest,

typical scenario, the front motion is driven by the energy difference between local and global

minimizers, yielding an effective force on the interface. The speed of the front is then propor-

tional to this effective force. Stationary fronts correspond to the situation where the states on

either side of the interface have equal energy. In formulas, the speed c depends in a smooth and

monotone fashion on the energy difference E , c = c(E), c′(E) > 0, so that for E small,

c ∼ E . (3.3.1)

A prototypical example for this scenario is the reaction-diffusion equation (1.0.2) with cubic

bistable nonlinearity

fa(u) := u(1− u)(u− a), a ∈ (0, 1), (3.3.2)

where in that case, it is well-known3 that E = a− 1
2 , and c =

√
2E is linear in E .

It has been well known that this simple picture fails in many important contexts. In par-

ticular, the speed of fronts may vanish for sufficiently small yet non-zero energy differentials.

Such propagation failure is usually referred to as pinning, alluding to a simple scenario where

energy depends on space x. In the following, we briefly describe this scenario from several view

points. Our contribution is to provide a new, different view point on pinning, with fundamentally

different characteristic expansions and analytic tools.

3The corresponding front is exactly U(ξ) = 1

1+e−ξ/
√

2
. Note that it connects 0 at −∞ to 1 at +∞.
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The possibly simplest case where pinning is observed are spatially periodic media, such as

∂tu = ∂2
xu+ u(1− u)(u− a+ ε sin(x)), t > 0, x ∈ R. (3.3.3)

The parameter a still detunes the relative energy of the equilibria u = 0 and u = 1. Since,

however, this relative energy difference varies in x, fronts may have to overcome a barrier,

pointwise in x, in order to reduce energy in the system. For ε > 0, one typically finds a pinning

region (a−, a+) where two stationary fronts exist, one stable and one unstable. At the boundary

of this interval, the two stationary fronts disappear in a saddle-node bifurcation. For values

a = a+ + E , E > 0, the speed of the interface scales as

c ∼ E1/2. (3.3.4)

This can be formally (and more rigorously) understood as induced by the time that a moving

interface spends near a saddle-node bifurcation, where time scales with E−1/2. Let us further

remark that stationary profiles in spatially periodic media solve a non-autonomous differential

equation,

ux = v, vx = −u(1− u)(u− a+ ε sin(x)),

whose time evolution Ψ2π,0 defines a diffeomorphism of the plane with hyperbolic fixed points

(1, 0) and (0, 0). Intersections of stable and unstable manifolds are typically transverse since

time-translation symmetry is broken, hence robust with respect to changes in the parameter a.

Similar phenomena are found in spatially discrete media

u′i =
d

2
(ui+1 − 2ui + ui−1) + fa(ui), i ∈ Z, (3.3.5)

where stationary fronts solve the two-term recursion

0 =
d

2
(ui+1 − 2ui + ui−1) + fa(ui).

Roughly speaking, the phenomena mirror the case of spatially periodic media: fronts are sta-

tionary in the pinning region a ∈ (a−, a+) and propagate with speed c ∼ E1/2 for a−a+ = µ > 0.

In that case, pinned fronts can be viewed as heteroclinic orbits of the two-term recursion, which

defines a (local) diffeomorphism of the plane,

ui+1 = ui + wi, wi+1 = wi −
1

d
fa(ui + wi).

Indeed, u = 0, 1 and w = 0 define hyperbolic fixed points of this diffeomorphism. The corre-

sponding stable and unstable manifolds intersect along orbits that yield stationary fronts. Such

an intersection of stable and unstable manifolds in diffeomorphisms is typically (beyond this

particular case) transverse.

In both cases, the boundary of the pinning region is given by a parameter value where

stable and unstable manifolds intersect non-transversely, typically with a quadratic tangency

that reflects the generic saddle-node bifurcation alluded to earlier. Summarizing, the traditional

view of pinning associates open pinning regions with the absence of a continuous translational

symmetry in the system.
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We are interested here in, apparently quite different, nonlocal systems,

∂tu = d(−u+K ∗ u) + fa(u), t > 0, x ∈ R, (3.3.6)

with d > 0 and a convolution kernel K that satisfies Hypothesis 1.2.5. Here, in order to simplify

the presentation, we assume that fa is given by (3.3.2). Existence and stability of fronts solutions

of (1.2.7) are typically given by Theorem 1.2.5. As mentioned in the introduction, it was noted

in [16, 44] that for weak coupling strength, d� 1, fronts are discontinuous and do not propagate,

for values of a in a pinning region (a−, a+). Actually, reinterpreting the analysis of [16], the

boundary of the pinning region in that case can be precisely characterized as explained in the

following lemma.

Lemma 3.3.1. The pinning region of the cubic function fa(u) = u(1− u)(u− a) in the (a, d)-

plane is bounded by

d(a) =

{
1
3(1− a+ a2 −

√
1− 2a) a ≤ 1

2 ,
1
3(1− a+ a2 −

√
−1 + 2a) a ≥ 1

2 .

In particular, robust pinning occurs for d < 1/4, in an interval (a−(d), a+(d)), with

a±(d) =
1

2
± 9

2

(
d− 1

4

)2

+O
((

d− 1

4

)4
)
. (3.3.7)

We denote (a∗, d∗) := (1/2, 1/4) the tip of the pinning region.

For (3.3.6), the presence of an open pinning region is associated with a lack of regularity in

the profile, rather than the absence of a translational symmetry. One can however emphasize

similarities with lattice systems by embedding the lattice system (3.3.5) into a system on the

real line,

∂tu(t, x) = d

(
−u(t, x) +

1

2
(u(t, x+ 1) + u(t, x− 1)

)
+ f(u(t, x)), t > 0, x ∈ R. (3.3.8)

Of course, this system decouples in an infinite family of lattice systems x ∈ x∗ + Z, x∗ ∈ [0, 1),

each of which is equivalent to (3.3.5). While quite artificial, (3.3.8) exhibits the similarities

between the different nonlocal and discrete pinning when written in the form (3.3.6) with K(x) =
1
2(δ(x−1)+δ(x+1)) (although such kernels are not covered by assumptions in the references cited

above). More explicitly, (3.3.8) possesses a continuous translational symmetry, but stationary

fronts are discontinuous, given for instance as u(x) = u[x], where [x] is the integer part of x and

uj is the stationary interface in (3.3.5)4.

The point of view taken here is that (3.3.8) is a special element of the class of equations

(3.3.6), in the sense that its kernel possesses very low regularity. One can then consider smoothed

out versions of 1
2(δ(x−1) + δ(x+ 1)) and ask about pinning regions and unpinning asymptotics.

Our results indicate that both depend in a crucial fashion on the regularity of the approxima-

tion. While pinning is generic for the discrete kernel, pinning occurs only for sufficiently strong

4In this sense, the profiles have countably many discontinuities at locations x ∈ Z.
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coupling in smooth kernels. Unpinning asymptotics are changed from speeds scaling with an

exponent 1/2 power law (see (3.3.4)) to

c ∼ E3/2,

in the pinning regime, or smooth speed asymptotics (3.3.1) in the unpinned regime. More

precisely we have the following theorem.

Theorem 3.3.1. Consider K(x) = e−|x|/2 and fa given by (3.3.2). For fixed d < d∗ = 1/4, as

the parameter a approaches the left boundary of the pinning region at a− the asymptotics of the

wave speed of the unique front given in Theorem 1.2.5 are:

c = k1(a− − a)
3
2 +O

(
(a− − a)2 ln(a− − a)

)
, as a↗ a−,

with some explicit formula for k1. Note that a− depends on d; see (3.3.7). The equivalent result

(with same constant) holds for the right boundary of the pinning region.

Using the specific form of K, the strategy of the proof is to realize the traveling front solutions

of (1.2.7) as solution of 
wx = v,

vx = w − u,
−cux = d(−u+ w) + fa(u).

(3.3.9)

Traveling fronts are now heteroclinic solutions of (3.3.9) that connect the saddle equilibria

u+ = (0, 0, 0) and u− = (1, 0, 1) in u = (w, v, u)-space. With the parameter c, the system has

a natural slow-fast structure close to the boundary of the pinning region. We find that, at the

pinning boundary, there exists a singular trajectory, patched together from solutions of (3.3.9)

at c = 0, and a singular fast jump through a fold point. This slow passage near a fold-point is

precisely responsible for the peculiar scaling of wave speeds. The construction of heteroclinic

solutions of (3.3.9) in the singular limit c� 1 is actually very close to the one of Theorem 3.1.1

from Section 3.1 and relies on blow-up techniques [147] near the passage through the fold.

Inspecting the shape of the pinning region from Lemma 3.3.1, we expect a transition at

d = 1/4. The previous result, Theorem 3.3.1, describes speeds for a close to the left boundary,

when d < 1/4. For d > 1/4, fronts are stationary at a = 1/2, only, and c ∼ E is smooth. It is

therefore interesting to examine speeds at criticality, fixing d = 1/4 and varying E = a−1/2 near

the origin. Following the proof of Theorem 3.3.1, it is possible to formally see that a very similar

strategy leads to expansions with a new exponent, 5/4. The heart of the analysis, however, relies

on a singular perturbation problem that involves the slow passage through an inflection point,

which has not been studied in a rigorous fashion, to our knowledge. For a rigorous geometric

approach of the related slow passage through a cusp, we refer to the recent study in [37]; the

results there cover a more general unfolding but do not give expansions for our case. Thus, we

state this result as a conjecture.

Conjecture 3.3.1. For fixed d = d∗ = 1/4, as a approaches the boundary of the pinning region,

a↗ a∗ = 1/2, the wave speed of the front from Theorem 1.2.5 is

c = kc(a∗ − a)
5
4 + O((a∗ − a)

5
4 ),
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with some explicit formula for kc.

Let us finally conclude that unpinning asymptotics have recently been investigated in con-

tinuous and discrete ergodic media [6, 182], where now asymptotics are observed with power

law exponent that depends on the dimension of the ergodic associated measure.

3.4 Fredholm properties of nonlocal differential operators

We have seen in the previous sections that the use of specific kernels could allow one to

replace the initial nonlocal problem into high order PDE or ODE system where classical tools

from dynamical systems theory (geometric singular perturbations, center manifolds, etc...) can

be applied. Although this approach has the merit to provide interesting theoretical results, it

only gives insight to nonlocal problems where the Fourier symbol of the kernel is a rational

fraction. On the other hand, it is expected that all results stated above should still be valid

for a large class of kernels, at least within the class of exponentially localized kernels. In that

effort to go beyond specific kernels, we have developed in [86–88] a series of work that precisely

provide analytic tools to study nonlocal problems with exponentially localized kernels. At the

heart of our work is the development of Fredholm properties of nonlocal differential operators

that we now present.

Setting. We consider linear nonlocal differential equations that can be written as:

d

dξ
U(ξ) =

∫
R
K(ξ − ξ′; ξ)U(ξ′)dξ′ +

∑
j∈J

Aj(ξ)U(ξ − ξj) + F (ξ). (3.4.1)

Here U(ξ), F (ξ) ∈ Cn, and K(ζ; ξ), Aj(ξ) ∈Mn(C), n ≥ 1, the space of n×n complex matrices.

The set J is countable and the shifts ξj satisfy (without loss of generality)

ξ1 = 0, ξj 6= ξk, j 6= k ∈ J . (3.4.2)

For each ξ ∈ R, we define A(ξ) by

A(ξ) :=
(
K( · ; ξ), (Aj(ξ))j∈J

)
, (3.4.3)

so we may write (3.6.1) as
d

dξ
U(ξ) = N [A(ξ)] · U(ξ) + F (ξ), (3.4.4)

where N [A(ξ)] denotes the linear nonlocal operator

N [A(ξ)] · U(ξ) :=

∫
R
K(ξ − ξ′; ξ)U(ξ′)dξ′ +

∑
j∈J

Aj(ξ)U(ξ − ξj). (3.4.5)

We denote Kξ := K( · ; ξ) and write (3.4.5) as a generalized convolution

N [A(ξ)] · U =

Kξ +
∑
j∈J

Aj(ξ)δξj

 ∗ U. (3.4.6)
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Here ∗ refers to convolution on R and δξj is the Dirac delta at ξj ∈ R. Setting F ≡ 0, we obtain

the homogeneous system
d

dξ
U(ξ) = N [A(ξ)] · U(ξ). (3.4.7)

A special case of (3.4.6) are constant coefficient operators A(ξ)

A(ξ) =
(
K0( · ),

(
A0
j

)
j∈J

)
:= A0, ∀ ξ ∈ R.

We have

N [A0] · U =

K0 +
∑
j∈J

A0
jδξj

 ∗ U (3.4.8)

and
d

dξ
U(ξ) = N [A0] · U(ξ). (3.4.9)

Finally, associated with (3.4.7), we have the linear operator

TA :=
d

dξ
−N [A(ξ)]. (3.4.10)

Example. Operators such as (3.4.10) appear naturally when linearizing at coherent structures

such as traveling fronts or pulses in nonlinear nonlocal differential equations. Typical examples

are linearization at a traveling pulse solution in neural field equations. Recall from Section 3.1

that, in traveling wave coordinates, neural field equations with synaptic depression read ∂tu(t, ξ) = −c∂ξu(t, ξ)− u(t, ξ) +

∫
R
K(ξ − y)q(t, y)S(u(t, y))dy,

∂tq(t, ξ) = −c∂ξq(t, ξ) + ε (1− q(t, ξ)− βq(t, ξ)S(u(t, ξ))) .
(3.4.11)

The linearization of the above equation at a particular stationary solution (u0(ξ), q0(ξ)) takes

the form ∂tu(t, ξ) = −c∂ξu(t, ξ)− u(t, ξ) +

∫
R
K(ξ − y)

[
q(t, y)S(u0(y)) + q0(y)S′(u0(y))u(t, y)

]
dy,

∂tq(t, ξ) = −c∂ξq(t, ξ)− ε [q(t, ξ) + βq(t, ξ)S(u0(ξ)) + βq0(ξ)S′(u0(ξ))u(t, ξ))] .

(3.4.12)

Denoting U := (u, q) and L0 the right-hand side of (3.4.12), the eigenvalue problem associated

with the linearization of (3.4.11) at (u0, q0) reads

λU = L0U. (3.4.13)

This eigenvalue problem can be cast as a first-order nonlocal differential equation

d

dξ
U(ξ) = K̃λξ ∗ U(ξ) (3.4.14)

where

K̃λξ (ζ) =
1

c

(
−(1 + λ)δ0 +K(ζ)q0(ξ − ζ)S′(u0(ξ − ζ)) K(ζ)S(u0(ξ − ζ))

−εβq0(ξ)S′(u0(ξ))δ0 −(ε+ λ+ βS(u0(ξ)))δ0

)
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and δ0 denotes the Dirac delta at 0.

The differential system (3.4.14) can be viewed as systems of functional differential equations

of mixed type since the convolutional term introduces both advanced and retarded terms. Such

equations are notoriously difficult to analyze. Our goal here is threefold. First, we establish

Fredholm properties of such operators. Second we give algorithms for computing Fredholm

indices. Last, we show how such Fredholm properties can be used to analyze perturbation and

stability problems.

Notations and hypotheses. We denote byH andW the Hilbert spaces L2(R,Cn) andH1(R,Cn)

equipped with their usual norm

‖U‖H := max
k=1,··· ,n

‖Uk‖L2(R),

and

‖U‖W :=

∥∥∥∥ d

dξ
U

∥∥∥∥
H

+ ‖U‖H.

For a function Kξ = K( · ; ξ) : R→ L1
η(R,Mn(C)), η > 0, we define its norm as

||Kξ||η := max
(k,l)∈J1,nK2

‖Kk,l( · ; ξ)eη| · |‖L1(R).

We also introduce the following norm for the kernel K ∈ C 1
(
R, L1

η(R,Mn(C))
)
,

|||K|||∞,η := sup
ξ∈R
‖Kξ‖η + sup

ξ∈R

∥∥∥∥ d

dξ
Kξ
∥∥∥∥
η

.

For a function A ∈ C 1(R,Mn(C)) we define its norm as

‖A‖n := sup
ξ∈R
‖A(ξ)‖Mn(C) + sup

ξ∈R

∥∥∥∥ d

dξ
A(ξ)

∥∥∥∥
Mn(C)

.

Finally we denote by τ the linear transformation that acts on Kξ as τ · Kξ := K( · ; ξ + τ) and

we naturally define τ · K : ξ 7−→ τ · Kξ. We can now give further assumptions on the maps K
and (Aj)j∈J .

Hypothesis 3.4.1. There exists η > 0 such that the matrix kernel K satisfies the following

properties:

1. K belongs to C 1
(
R, L1

η(R,Mn(C))
)
;

2. K is localized, that is, {
|||K|||∞,η <∞ ,

|||τ · K|||∞,η <∞ ;
(3.4.15)

3. there exist two functions K± ∈ L1(R,Mn(C)) such that

lim
ξ→±∞

K(ζ; ξ) = K±(ζ) (3.4.16)
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uniformly in ζ ∈ R and  lim
ξ→±∞

‖Kξ −K±‖η = 0

lim
ξ→±∞

‖τ · Kξ −K±‖η = 0.
(3.4.17)

Hypothesis 3.4.2. The matrices Aj satisfy the properties:

1. Aj ∈ C 1 (R,Mn(C)) for all j ∈ J ;

2. with η defined in Hypothesis 1.2.5, we have,∑
j∈J
‖Aj‖neη|ξj | <∞ ; (3.4.18)

3. there exist A±j ∈Mn(C) such that

lim
ξ→±∞

Aj(ξ) = A±j ,
∑
j∈J
‖A±j ‖Mn(C)e

η|ξj | <∞, j ∈ J , (3.4.19)

and

lim
ξ→±∞

∑
j∈J
‖Aj(ξ)−A±j ‖Mn(C)e

η|ξj | = 0. (3.4.20)

Note that if we define the map A as

A : R −→ L1
η(R,Mn(C))× `1η (Mn(C))

ξ 7−→ A(ξ) =
(
K( · ; ξ), (Aj(ξ))j∈J

) (3.4.21)

then, when Hypotheses 3.4.1 and 3.4.2 are satisfied, A ∈ C 1(R, L1
η(R,Mn(C)) × `1η (Mn(C)))

and is bounded. Here we have implicitly defined

`1η (Mn(C)) =

(Aj)j∈J ∈Mn(C)J |
∑
j∈J
‖Aj‖Mn(C)e

η|ξj | <∞

 .

Hypothesis 3.4.3. We assume that for all ` ∈ R

d±(i`) := det

i` In − K̂±(i`)−
∑
j∈J

A±j e
−i`ξj

 6= 0 (3.4.22)

where K̂± are the complex Fourier transforms of K± defined by

K̂±(i`) =

∫
R
K±(ξ)e−i`ξdξ.

Hypothesis 3.4.4. We assume that, with the same η > 0 as in Hypotheses 3.4.1 and 3.4.2, the

complex Fourier transforms

ν 7−→ K̂±(ν) +
∑
j∈J

A±j e
−νξj

extend to bounded analytic functions in the strip Sη := {ν ∈ C | |<(ν)| < η}.
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Main results. Consider Banach spaces X and Y. We let L (X ,Y) denote the Banach space

of bounded linear operators T : X → Y, and we denote the operator norm by ‖T ‖L (X ,Y). We

write rg T for the range of T and ker T for its kernel,

rg T := {T U ∈ Y ; U ∈ X} ⊂ Y, ker T := {U ∈ X ; T U = 0} ⊂ X .

Let us recall that a bounded operator T : X → Y is a Fredholm operator if

(i) its kernel ker T is finite-dimensional;

(ii) its range rg T is closed; and

(iii) rg T has finite codimension.

For such an operator, the integer

ind T := dim (ker T )− codim (rg T )

is called the Fredholm index of T .

We can now state our main results. The first theorem states the Fredholm property of the

nonlocal operator TA while the second gives a characterization of the Fredholm index via the

spectral flow.

Theorem 3.4.1 (The Fredholm Alternative). Suppose that Hypotheses 3.4.1, 3.4.2, and 3.4.3

are satisfied. Then the operator TA : W → H is Fredholm. Furthermore, the Fredholm index

of TA depends only on the limiting operators A±, the limits of A(ξ) as ξ → ±∞. We denote

ι(A−,A+) the Fredholm index ind TA.

Corollary 3.4.1 (Cocycle property). Suppose that A0,A1 and A2 are hyperbolic constant co-

efficient operators in L1
η(R,Mn(C))× `1η (Mn(C)), then we have

ι(A0,A1) + ι(A1,A2) = ι(A0,A2).

Theorem 3.4.2 (Spectral Flow Theorem). Assume that Hypotheses 3.4.1, 3.4.2, 3.4.3, and

3.4.4 are satisfied and suppose, further, that there are only finitely many values of ξ0 ∈ R for

which A(ξ0) is not hyperbolic. Then the Fredholm index of TA

ι(A−,A+) = −cross(A) (3.4.23)

is the net number of roots, counted with multiplicity, of the characteristic equation

dξ(ν) := det

νIn − K̂ξ(ν)−
∑
j∈J

Aj(ξ)e
−νξj

 = 0, (3.4.24)

which cross the imaginary axis from left to right as ξ is increased from −∞ to +∞.
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Note that similar results are available in the literature when the interaction kernel is a finite

sum of Dirac delta measures. In particular, the interaction kernel has finite range in that case.

Such interaction kernels arise in the study of lattice dynamical systems. Mallet-Paret established

Fredholm properties and showed how to compute the Fredholm index via a spectral flow [154].

His methods are reminiscent of Robbin & Salamon’s work [171], who established similar results

for operators d
dξ +A(ξ) where A(ξ) is self-adjoint but does not necessarily generate a semi-group.

For the operators studied in [154], Fredholm properties are in fact equivalent to the existence of

exponential dichotomies for an appropriate formulation of (3.4.10) as an infinite- dimensional

evolution problem [111, 156]. Our approach extends Mallet-Paret’s results [154] to infinite-range

kernels. We do not know if a dynamical systems formulation in the spirit of [111, 156] is possible.

Our methods blend some of the tools in [171] with techniques from [154].

The proof of Theorem 3.4.1 relies crucially on an abstract lemma that we now present and

whose proof can be found in [184].

Lemma 3.4.1 (Abstract Closed Range Lemma). Suppose that X , Y and Z are Banach spaces,

that T : X → Y is a bounded linear operator, and that R : X → Z is a compact linear operator.

Assume that there exists a constant c > 0 such that

‖U‖X ≤ c (‖T U‖Y + ‖RU‖Z) , ∀U ∈ X .

Then T has closed range and finite-dimensional kernel.

This lemma can be used as follows to prove that TA has closed range and finite-dimensional

kernel. For each T > 0, we define H(T ) = L2([−T, T ],Cn) and W(T ) = H1([−T, T ],Cn). It is

easy to see that the inclusionW(T ) ↪→ H(T ) defines a compact operator such that the restriction

operator

R :W → H(T )

U 7→ U[−T,T ]

is a compact linear operator and ‖RU‖H(T ) = ‖U‖H(T ). Following ideas from [171], one can

prove (see [86, Lemma 3.1]) that there exist constants c > 0 and T > 0 such that

‖U‖W ≤ c
(
‖U‖H(T ) + ‖TAU‖H

)
(3.4.25)

for every U ∈ W. As a consequence, applying the abstract closed range Lemma 3.4.1, we deduce

that TA has closed range and finite-dimensional kernel. Actually, we can repeat the argument

to the formal adjoint of TA to show that is also possesses closed range and finite-dimensional

kernel which in turn implies that TA is Fredholm.

To conclude the proof of Theorem 3.4.1, one needs to prove that the Fredholm index depends

only on the limiting operators A±. Thus, let us consider two families of operators A0(ξ) and

A1(ξ) that satisfy Hypotheses 3.4.1, 3.4.2 and 3.4.3 with coefficients

A0(ξ) =
(
K0( · ; ξ), (Aj,0(ξ))j∈J

)
, A1(ξ) =

(
K1( · ; ξ), (Aj,1(ξ))j∈J

)
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and the same shifts ξj . We assume that the limiting operators at ±∞ are equal, that is,

A±0 = A±1 ,

where

A±σ =

(
K±σ ,

(
A±j,σ

)
j∈J

)
= lim

ξ→±ξ
Aσ(ξ), σ = 0, 1.

For 0 ≤ σ ≤ 1, we define Aσ(ξ) = (1 − σ)A0(ξ) + σA1(ξ). Then for each such σ, Aσ satisfies

Hypotheses 3.4.1, 3.4.2 and 3.4.3 and TAσ is a Fredholm operator and TAσ varies continuously

in L (W,H) with σ. Thus the Fredholm index of TAσ is independent of σ and only depends on

the limiting operators A±.

Remarks 3.4.1. The proof immediately generalizes to a set-up where H and W are Lp-based,

with 1 < p < ∞, with the exception of invertibility of the asymptotic, constant-coefficient op-

erators, where we used Fourier transform as an isomorphism. On the other hand, analyticity

of the Fourier multiplier shows that the inverse is in fact represented by a convolution with an

exponentially localized kernel, which gives a bounded inverse in Lp, so that our theorem holds in

Lp-based spaces as well.

The proof of Theorem 3.4.2 is quite technical and relies on several ingredients. Here, we only

present a key proposition which allows to better understand the relationship between crossing

and Fredholm index in the case of constant coefficient operators. First, let us define the char-

acteristic equation associated to the constant coefficient system (3.4.9):

d0(ν) := det ∆A0(ν) = 0, (3.4.26)

where

∆A0(ν) = ν In − K̂0(ν)−
∑
j∈J

A0
je
−νξj , ν ∈ C. (3.4.27)

Then, let us introduce the map Σγ : L1
η(R,Mn(C))×`1η (Mn(C))→ L1

η(R,Mn(C))×`1η (Mn(C)),

defined for each γ ∈ R by

Σγ · A0 = Σγ ·
(
K0,

(
A0
j

)
j∈J

)
:=
(
K0
γ ,
(
A0
j,γ

)
j∈J

)
,

where

K0
γ(ζ) = K0(ζ)eγζ , ∀ ζ ∈ R, A0

1,γ = A0
1 + γ, A0

j,γ = A0
je
γξj , ∀ j 6= 1.

This transformation Σγ arises from a change of variables V (ξ) = eγξU(ξ) in (3.4.9) with constant

coefficient A0 =

(
K0,

(
A0
j

)
j∈J

)
. One can then easily check that

∆Σγ ·A0(ν) = ∆A0(ν − γ), ν ∈ C,

so that Σγ shifts all eigenvalues to the right by an amount of γ.

Proposition 3.4.1. Suppose that ν = i`0, with `0 ∈ R, is a simple root of the characteristic

equation (3.4.26) associated to A0, and suppose that there are no other roots with <λ = 0. Then

for γ ∈ R, 0 < |γ| < η sufficiently small, we have that

ι(Σ−γ · A0,Σγ · A0) = −sign(γ). (3.4.28)
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Proof. Without loss of generality, we suppose that γ > 0 is small enough so that ν = i`0
is the only root of det(∆A0(ν)) = 0 in the strip |<(ν)| ≤ γ < η. We need to show that TA0 is

Fredholm with index −1 in

L2
γ(R,Cn) =

{
U : R→ C |

∥∥∥U(·)eγ|·|
∥∥∥
L2(R,Cn)

<∞
}
.

To see this, we give a factorization of TA0 of the form

TA0 = B1 · B2

so that B1 is Fredholm with index −1 on L2
γ(R,Cn) and B2 is bounded invertible. We construct

B1 and B2 based on the Fourier symbol of TA0 as follows. As ν = i`0 is a simple root of

det(∆A0(ν)) = 0, there exist two nonzero complex vectors p ∈ Cn and q ∈ Cn such that

∆A0(i`0)p = 0, ∆A0(i`0)∗q = 0, and 〈p, q〉Cn = 1.

There exist two invertible matrices P ∈Mn(C) and A1 ∈Mn−1(C), independent of ν, such that

the following holds

P−1∆A0(ν)P =

(
0 01,n−1

0n−1,1 A1

)
+

(
a0(ν − i`0) O(ν − i`0)1,n−1

O(ν − i`0)n−1,1 O(ν − i`0)n−1,n−1

)
, as ν → i`0,

with a0 = 〈∂ν∆A0(i`0)p, q〉Cn 6= 0. We can then define the matrix A(ν) ∈Mn(C) via

A(ν) :=

(
ν+ω
ν−i`0 01,n−1

0n−1,1 In−1

)
P−1∆A0(ν)P,

with ω > η a fixed real number. A straightforward computation shows that A(ν) is invertible

for all |<(ν)| ≤ γ. Furthermore, the following equality holds true

∆A0(ν) = P

(
ν−i`0
ν+ω 01,n−1

0n−1,1 In−1

)
A(ν)P−1

for all ν in the strip |<(ν)| ≤ γ. We can now define B1 and B2 through their Fourier symbol as

B̂1(ν) = P

(
ν−i`0
ν+ω 01,n−1

0n−1,1 In−1

)
P−1,

B̂2(ν) = PA(ν)P−1,

such that ∆A0(ν) = B̂1(ν)B̂2(ν) for all |<(ν)| ≤ γ. Note that analyticity of B̂1(ν) and B̂2(ν) in

|<(ν)| ≤ γ implies that B1 : L2
γ(R,Cn)→ L2

γ(R,Cn) and B2 : H1
γ(R,Cn)→ L2

γ(R,Cn), together

with TA0 = B1 · B2. Since we factored the unique root of det ∆A0(ν) = 0 into B̂1(ν), B̂2(ν) is

invertible in the strip |<(ν)| ≤ γ. Therefore, B2 is actually an isomorphism from H1
γ(R,Cn) to

L2
γ(R,Cn). Inspecting the explicit form of B̂1(ν) shows that B1 is conjugate to( d

dξ − i`0

)(
ω + d

dξ

)−1
01,n−1

0n−1,1 In−1

 ,

which is Fredholm index −1 on L2
γ(R,Cn). This completes the proof of the proposition.
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The core of the proof of Theorem 3.4.2 is to show that for general continuously varying one-

parameter family of constant coefficient operators Aρ, ρ ∈ R, with hyperbolic limit operators

and only finitely many values of the parameters ρ for which Aρ is not hyperbolic it is actually

sufficient to consider the case of C 1 families with only simple crossings. Here, a crossing is a

real number ρj for which Aρj is not hyperbolic. A crossing ρj is simple if there is precisely one

simple root of dρj (ν∗) located on the imaginary axis, and if this root crosses the imaginary axis

with non-vanishing speed as ρ passes through ρj . One then uses the above Proposition 3.4.1

and the cocycle property from Corollary 3.4.1 to conclude.

Application: Edge bifurcations and the nonlocal Gap Lemma. We conclude this section by

showing how our methods can be used to study eigenvalue problems near the edge of the essential

spectrum. Motivated most recently by questions on stability of coherent structures, such as

solitons in dispersive equations and viscous shock profiles, there has been significant interest

in studying spectra of operators near the edge of the essential spectrum. In the original works

[100, 134], a Wronskian-type function that tracks eigenvalues and multiplicities via its roots

was extended into the essential spectrum, exploiting the fact that coefficients of the linearized

problem converge exponentially as |x| → ∞. While Wronskians are usually finite-dimensional,

extensions are sometimes possible to infinite-dimensional systems, using exponential dichotomies

and Lyapunov-Schmidt reduction to obtain reduced Wronskians [104, 163].

Gap Lemma type arguments had been used routinely in the theory of Schrödinger operators,

providing extensions of scattering coefficients into and across the continuous spectrum. One

is often interested in tracking how eigenvalues may emerge out of the essential spectrum when

parameters are varied. It was observed early that small localized traps inserted into a free

Schrödinger equation will create bound states in dimensions n ≤ 2; see [185]. The bound state

corresponds to an eigenvalue emerging from the edge of the continuous spectrum.

We show here how a result analogous to [185] can be proved for nonlocal eigenvalue problems.

We therefore consider the system

T (λ, ε) · U :=
d

dξ
U +

(
K + εK̃ξ

)
∗ U − λBU = 0, U ∈ Rn. (3.4.29)

Here, K, K̃ξ ∈ L1
η0(R,Mn(R)), B ∈ Mn(R), and K̃ξ −→

ξ→±∞
0 in L1

η0(R,Mn(R)) such that there

exist constants C > 0 and δ > 0 with∥∥∥K̃(ζ; ξ)
∥∥∥
n
≤ Ce−δ|ξ|, ∀ ζ ∈ R.

We think of (3.4.29) as coming from a higher-order differential operator such as ∂2
ξ , including

nonlocal terms, after rewriting the eigenvalue problem as a first-order system of (nonlocal)

differential equations in ξ.

Proposition 3.4.2. We assume that the dispersion relation

d(ν, λ) = det
(
νIn + K̂(ν)− λB

)
is diffusive near λ = 0:
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1. d(0, 0) = dν(0, 0) = 0;

2. dνν(0, 0) · dλ(0, 0) < 0; and

3. d(i`, 0) 6= 0 for all ` ∈ R, ` 6= 0.

We also assume that the localized perturbation is generic:

M :=

〈
K̃ξ ∗ e0, e

∗
0

〉
L2(R,Rn)〈

2(In + ∂νK̂(0))e1 + ∂ννK̂(0)e0, e∗0

〉
Rn

√
− dνν(0, 0)

2dλ(0, 0)
6= 0,

where the nonzero complex vectors e0, e∗0 and e1 are defined through

K̂(0)e0 = 0, K̂t(0)e∗0 = 0, and
(
In + ∂νK̂(0)

)
e0 + K̂(0)e1 = 0.

Then there exists ε0 > 0, such that for all 0 < Mε < ε0 there exist 0 6= Uε ∈ H1(R,Rn) and

λ∗(ε) > 0 so that

T (λ∗(ε), ε) · Uε = 0.

We also have the asymptotic expansion:

lim
ε→0+

λ∗(ε)

ε2
= M2. (3.4.30)

We prepare the proof of this proposition by reformulating the eigenvalue problem as a non-

linear equation that can be solved with the implicit function theorem near a trivial solution. We

first introduce λ = γ2, so that the dispersion relation has local analytic roots γ 7−→ ν±(γ) ∈ C.

Expanding d(ν, γ2) in γ2, we arrive at the expansion

d(ν, γ2) = ν2dνν(0, 0)

2
+ γ2dλ(0, 0) +O

(
|ν|3 + |γ|3

)
,

so that to leading order we have

ν±(γ) = ±
√
−2dλ(0, 0)

dνν(0, 0)
γ +O(γ2).

Associated with these roots can be analytic vectors in the kernel, γ 7−→ e±(γ) ∈ Cn, with(
ν±(γ)In + K̂(ν±(γ))− γ2B

)
e±(γ) = 0, (3.4.31)

and e0 = e±(0) 6= 0 solves K̂(0)e0 = 0.

Furthermore, there exists η∗ > 0 such that for each fixed η with 0 < η < η∗, the linear

operator L
L : U 7−→ d

dξ
U +K ∗ U,

defined on L2
η(R,Rn), is Fredholm with index −2 and has trivial null space. Indeed, from the

above properties, we see that

d(ν, 0) = det
(
νIn + K̂(ν)

)
= ν2d̃(ν), d̃(0) 6= 0,



3.4. FREDHOLM PROPERTIES OF NONLOCAL DIFFERENTIAL OPERATORS 57

with d(i`, 0) 6= 0 for all ` ∈ R, ` 6= 0. This implies that ν = 0 is a root with multiplicity 2 and all

other roots have nonzero real part. Thus the Fredholm index of L is −2 and it is straightforward

to check that the kernel of L in the exponentially weighted space L2
η(R,Rn) is trivial. Thus the

kernel of the L2-adjoint L∗ of L considered on L2
−η(R,Rn) is two-dimensional. Here, the adjoint

L∗ is given via

L∗ : U 7−→ − d

dξ
U +Kt− ∗ U,

where Kt−(ξ) = Kt(−ξ) for all ξ ∈ R. Note that

det
(
L̂∗(ν)

)
= det

(
−νIn + K̂t(−ν)

)
= d(−ν, 0) = ν2d̃(−ν),

so that there exists e∗0 ∈ Rn with K̂t(0)e∗0 = 0 and thus L∗(e∗0) = 0. As dν(0, 0) = 0, the following

scalar product vanishes: 〈
(In + ∂νK̂(0))e0, e

∗
0

〉
Rn

= 0, (3.4.32)

which ensures the existence of e∗1 ∈ Rn so that

−
(
In + ∂νK̂t(0)

)
e∗0 + K̂t(0)e∗1 = 0. (3.4.33)

Indeed, the above equation can be solved if
〈(

In + ∂νK̂t(0)
)
e∗0, e0

〉
Rn

= 0, which holds true

because of (3.4.32). We now claim that ξe∗0 + e∗1 belongs to the kernel of L∗:

L∗ (ξe∗0 + e∗1) =
[
−e∗0 +Kt− ∗ (ξe∗0)

]
+ K̂t(0)e∗1

=
[
−e∗0 − ∂νK̂t(0)e∗0

]
+ K̂t(0)e∗1

= 0.

Summarizing, the kernel of L∗, considered on L2
−η(R,Rn), is spanned by the functions e∗0 and

ξe∗0 + e∗1.

In the same way, we also define e1 ∈ Rn via(
In + ∂νK̂(0)

)
e0 + K̂(0)e1 = 0. (3.4.34)

Furthermore, differentiating (3.4.31) with respect to γ and evaluating at γ = 0 we obtain

±
√
−2dλ(0, 0)

dνν(0, 0)

(
In + ∂νK̂(0)

)
e0 + K̂(0)e′±(0) = 0.

We see from the above equation and (3.4.34) that e′±(0) = ±
√
−2dλ(0,0)
dνν(0,0)e1. Moreover, combining

equations (3.4.33) and (3.4.34) we have the equality〈
(In + ∂νK̂(0))e1, e

∗
0

〉
Rn

= −
〈

(In + ∂νK̂(0))e0, e
∗
1

〉
Rn
. (3.4.35)

The fact that dνν(0, 0) 6= 0 ensures that the following quantity is not vanishing:〈
(In + ∂νK̂(0))e1, e

∗
0

〉
Rn

+
1

2

〈
∂ννK̂(0)e0, e

∗
0

〉
Rn
6= 0. (3.4.36)
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To find solutions of the eigenvalue problem (3.4.29), for small ε, we make the following ansatz

U(ξ) = a+e+(γ)χ+(ξ)eν+(γ)ξ + a−e−(γ)χ−(ξ)eν−(γ)ξ + w(ξ), (3.4.37)

where a+, a− ∈ R and w ∈ L2
η(R,Rn). Here χ+(ξ) = 1+ρ(ξ)

2 , where ρ ∈ C∞(R) is a smooth even

function satisfying ρ(ξ) = −1 for all ξ ≤ −1, ρ(ξ) = 1 for all ξ ≥ 1 and χ−(ξ) = 1 − χ+(ξ).

Substituting the ansatz into (3.4.29), we obtain an equation of the form

F(a, γ, w; ε) = 0, F( · ; ε) : R2 × R× Rn ×D(L) −→ L2
η(R,Rn) (3.4.38)

for a = (a+, a−). We have that F((1, 1), 0, 0; 0) = 0. For small enough η, exploiting the

localization of K̃ξ, we have that F is a smooth map. Its linearization at (a, γ, w) = (1, 0, 0)

(here for convenience we have denoted 1 = (1, 1)) is given by

Fw(1, 0, 0; 0) = L,
Fa±(1, 0, 0; 0) = L (χ±e0) ,

Fγ(1, 0, 0; 0) =

√
−2dλ(0, 0)

dνν(0, 0)
[L (χ+e1) + L (ξχ+e0)]−

√
−2dλ(0, 0)

dνν(0, 0)
[L (χ−e1) + L (ξχ−e0)]

where Fa(1, 0, 0; 0) and Fγ(1, 0, 0; 0) lie in L2
η(R,Rn). Simple computations show that〈

Fa−(1, 0, 0; 0), e∗0
〉
L2(R,Rn)

= 0,〈
Fa−(1, 0, 0; 0), e∗1 + ξe∗0

〉
L2(R,Rn)

6= 0,

〈Fγ(1, 0, 0; 0), e∗0〉L2(R,Rn) 6= 0.

Thus Fa−,γ(0; 0) span the cokernel of L, which implies that the operator

Fa−,γ,w(1, 0, 0; 0) : R× R× L2
η(R,Rn) −→ L2

η(R,Rn)

(a−, γ, w) 7−→ Fa−(1, 0, 0; 0)a− + Fγ(1, 0, 0; 0)γ + Fw(1, 0, 0; 0)w

is invertible, as a Fredholm index 0 operator that is onto. As a consequence, we can solve

(3.4.38) using the implicit function theorem and obtain a unique solution (a−, γ, w) as a function

of (a+, ε). First, the asymptotic expansion (3.4.30) follows directly by noticing that, to leading

order in ε, we have

γ 〈Fγ(1, 0, 0; 0), e∗0〉L2(R,Rn) + ε
〈
K̃ξ ∗ e0, e

∗
0

〉
L2(R,Rn)

+O(ε2) = 0.

Here, we have used the fact that
〈
Fa−(1, 0, 0; 0), e∗0

〉
L2(R,Rn)

= 〈Le0, e
∗
0〉L2(R,Rn) = 0. Our above

computations lead to

〈Fγ(1, 0, 0; 0), e∗0〉L2(R,Rn) = 2

√
−2dλ(0, 0)

dνν(0, 0)

〈
(In + ∂νK̂(0))e1 +

1

2
∂ννK̂(0)e0, e

∗
0

〉
Rn
6= 0.

This gives the desired expansion (3.4.30) and implies that γ = −Mε + O(ε2) is of negative

sign for Mε > 0. In order to find have an eigenvalue λ∗(ε) > 0 for (3.4.29), we need to check
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that Uε(ξ) given in the ansatz (3.4.37) belongs to L2(R,Rn). For small Mε > 0, we have that

ν±(γ) = ∓
√
−2dλ(0,0)
dνν(0,0)Mε +O(ε2), such that ∓< (ν±(γ)) > 0 and Uε is exponentially localized.

Since for λ > 0, there are no roots ν ∈ iR, we know that T (λ, ε) is Fredholm with index zero.

Together, this implies that T (λ, ε) possesses a kernel for λ = λ∗(ε). This completes the proof of

Proposition 3.4.2.

Remarks 3.4.2. Following [168, Prop. 5.11], one can show uniqueness and simplicity of the

eigenvalue λ∗(ε) for Mε > 0. Also, the analysis here gives a natural extension of the eigenvalue

concept into the essential spectrum: for Mε < 0, we can track the eigenvalue λ∗(ε) in smooth

fashion as a resonance pole, that is, a function with particular prescribed exponential growth. In

this sense, our method here provides an alternative to the Gap Lemma [100, 134], where this

possibility of tracking eigenvalues into the essential spectrum was the main objective.

3.5 Existence of traveling pulse for the FitzHugh-Nagumo equations

We consider the nonlocal reaction-diffusion equation (1.0.3) supplemented by a linear adap-

tation mechanism ∂tu(t, x) = −u(t, x) +

∫
R
K(x− y)u(t, y)dy + f(u(t, x))− v(t, x),

∂tv(t, x) = ε(u(t, x)− γv(t, x)).
(3.5.1)

Such a system is often referred to as the spatially extended FitzHugh-Nagumo equations [129]

and it has been used to model the propagation of nerve impulse [41, 112]. We are interested

in traveling pulse solutions of (3.5.1). These are stationary profiles (u(ξ),v(ξ)) of (3.5.1) in a

comoving frame ξ = x − ct that are localized so that (u(ξ),v(ξ)) → 0 as ξ → ±∞ and that

satisfy 
−c d

dξ
u(ξ) = −u(ξ) +K ∗ u (ξ) + f(u(ξ))− v(ξ),

−c d

dξ
v(ξ) = ε(u(ξ)− γv(ξ)).

(3.5.2)

Here, c > 0 is the wave speed that needs to be determined as part of the problem and 0 < ε� 1

is a small but fixed parameter. Rigorous approaches to the existence of traveling pulses in

equations of the form (3.5.1) with local diffusion ∂2
xu instead of −u +K ∗u have been based on

singular perturbation methods along the lines of the proof of Theorem 3.1.1 from Section 3.1.

In that local setting, one realizes traveling pulses as homoclinic solutions to the origin in a

first-order ODE system. The small parameter ε introduces a singularly perturbed structure into

the problem which allows one to find such a homoclinic orbit by tracking stable and unstable

manifolds along fast intersections and slow, normally hyberbolic manifolds [41, 112, 131]. This

approach has been successfully applied in many other contexts with slow-fast like structures,

with higher- or even infinite-dimensional slow-fast ODEs; see for instance [126, 129, 183, 193].

Our first assumption concerns the nonlinearity, which we assume to be of bistable type.

Hypothesis 3.5.1. The nonlinearity f is a C∞-smooth function with f(0) = f(1) = 0, f ′(0) <

0 and f ′(1) < 0. Moreover, we assume that γ > 0 is small enough so that f(γv) 6= v. Lastly, we
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Figure 3.5: Illustration of the assumptions on the nonlinearity f , left. To the right, the singular pulse,
consisting of the quiescent part Uq on the left branch of the slow manifold, the back Ub connecting to the
excited branch, the excitatory part Ue, and the front solution Uf . The five parameters (vq, vb, vbe, vef , c)
encode take-off and touch-down points, and ensure invertibility of the linearization at the singular solu-
tion.

assume that f(u)− v is of bistable type for v ∈ (vmin, vmax), fixed, that is, it possesses precisely

three nondegenerate zeroes.

The assumptions on f are illustrated in Figure 3.5. We denote the left and right zeroes of

f(u)− v by uq = ϕq(v) and ue = ϕe(v) and denote by Iq and Ie the ranges of ϕq and ϕe.

Our second assumption concerns the convolution kernel K. For any η ∈ R, we define the

space of exponentially weighted functions on the real line equipped with its usual norm

L1
η :=

{
u : R→ R |

∫
R
eη|ξ||u(ξ)|dξ <∞

}
.

We also write δ(ξ) for the Dirac distribution with
∫
δ = 1.

Hypothesis 3.5.2. We suppose that the kernel K can be written as a sum Kcont + Kdisc with

the following properties:

• There exists η0 > 0 such that Kcont ∈ L1
η0;

• Kdisc =
∑

j∈Z ajδ(ξ − ξj), and
∑

j |aj |eη0|ξj | <∞;

• the Fourier transform K̂(i`) of K satisfies K̂(0) = 1 and K̂(i`)− 1 < 0 for ` 6= 0.

The first two assumptions, on regularity and on localization, mimic the assumptions the

previous section. The assumption K̂(0) =
∫
K = 1 is merely a normalization condition and can

be achieved by scaling and redefining f . The last assumption can be slightly relaxed to

K̂(i`)− 1− f ′(u) < 0, for all ` 6= 0, u ∈ [ϕq(v∗), 0] ∪ [ϕe(v∗), 1],

where v∗ is defined in Hypothesis 3.5.3, below. Our assumptions do cover typical exponential or

Gaussian kernels, as well as infinite-range pointwise interactions. A few comments on the last



3.5. EXISTENCE OF TRAVELING PULSE FOR THE FITZHUGH-NAGUMO EQUATIONS 61

assumption are in order. Exponential localization guarantees that

K̂(z) =

∫
R
K(x)e−zxdx

is analytic in a strip |<(z)| < η∗. Values of the characteristic function

∆u,c(z) = zc− 1 + K̂(z) + f ′ (u) ,

determine the spectrum of the linearization at a constant state u. Our assumption then guar-

antees that constant states with f ′(u) < 0 do not possess zero spectrum, also in spaces with

exponential weights |η| < η∗ sufficiently small.

The last assumption refers to the u-system with v ≡ const. Consider therefore

− c∗
d

dξ
u(ξ) = −u(ξ) +K ∗ u (ξ) + f(u(ξ))− v0, (3.5.3)

and the corresponding linearized operator

L(u∗)u(ξ) = c∗
d

dξ
u(ξ)− u(ξ) +K ∗ u (ξ) + f ′(u∗(ξ))u(ξ). (3.5.4)

Hypothesis 3.5.3. We assume that there exists non-degenerate front and back solutions with

equal speed. More precisely, there exists c∗, v∗ > 0 such that (3.5.3) possesses a front solution

uf and a back solution ub with equal speed c = c∗, and v-values v = 0 and 0 < v = v∗ < vmax,

respectively, that satisfy the limits

lim
ξ→−∞

uf (ξ) = 1, lim
ξ→+∞

uf (ξ) = 0,

lim
ξ→−∞

ub(ξ) = ϕq(v∗), lim
ξ→+∞

ub(ξ) = ϕe(v∗).

Moreover, the operators L(uf ) and L(ub) each possess an algebraically simple eigenvalue λ = 0.

We remark that both linearized operators are automatically Fredholm of index zero from

Theorem 3.4.1, so that the algebraic multiplicity of the eigenvalue λ = 0 is finite. Since the

derivatives of front and back profile contribute to the kernel, multiplicity is at least one.

While Hypothesis 3.5.1 and 3.5.2 are direct assumptions on nonlinearity and kernel, Hy-

pothesis 3.5.3 is an indirect assumption on both. For positive and even kernels, existence and

stability can be established using comparison principles and monotonicity arguments; see for

instance Theorem 1.2.5 and [12, 16, 44] for the specific case where f(u) = u(1− u)(u− a), with

0 < a < 1
2 . Note that in that case, fronts are in fact monotone, a property that is however not

needed in our construction. On the other hand, the set of hypotheses 3.5.1, 3.5.2 and 3.5.3 forms

open conditions on nonlinearity and kernel: non-degenerate fronts can readily be seen to persist

under small perturbations, using for instance a variation of the methods presented in our proof.

We can now state our main result.

Theorem 3.5.1. Consider the nonlocal FitzHugh-Nagumo equation (3.5.1) and suppose that

Hypotheses 3.5.1, 3.5.2 and 3.5.3 are satisfied; then for every sufficiently small ε > 0, there
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exist functions uε,vε ∈ C 1(R,R) and a wave speed c(ε) > 0 that depends smoothly on ε > 0 with

c(0) = c∗, such that

(u(x, t),v(x, t)) = (uε(x− c(ε)t),vε(x− c(ε)t)) (3.5.5)

is a traveling wave solution of (3.5.1) that satisfies the limits

lim
ξ→±∞

(uε(ξ),vε(ξ)) = (0, 0). (3.5.6)

Together with the discussion after Hypothesis 3.5.3, we can state the following somewhat

more explicit result.

Corollary 3.5.1. The nonlocal FitzHugh-Nagumo equation, f(u) = u(1−u)(u−a), 0 < a < 1
2 ,

γ sufficiently small, K,K′ ∈ L1
η0, K even, positive, with

∫
K = 1, possesses a traveling pulse

solution.

Our approach is self-contained, roughly replacing subtle results on exponential dichotomies

[111, 156, 165] with crude Fredholm theory. Given the basic simplicity, we believe that our

approach should cover a variety of different solution types and different media. For instance,

one can readily see how to prove the existence of periodic wave trains in excitable or oscillatory

regimes, or front solutions in bistable regimes. In analogy to the case of discrete media [128],

we expect different phenomena when c∗ = 0, that is, for a ∼ 1/2 in the cubic case, or for the

slow pulse [15, 146]. Since the convolution operator does not regularize, compactly supported

and discontinuous solutions can occur.

Our proof of Theorem 3.5.1 can be roughly divided into four main parts that can be outlined

as follows.

Step 1: Slow manifolds. In a first step, we shall construct invariant slow manifolds for nonlocal

differential equations of the form (3.5.2) for 0 < ε � 1 and c > 0. Proving the persistence of

invariant slow manifolds in the context of singularly perturbed ODEs was originally shown

using graph transform [90]. Later, an alternative proof based on variation of constant formulas

and exponential dichotomies for differential equations with slowly varying coefficients was given

[173]. This latter approach was extended to ill-posed, forward-backward equations in [128,

178]. Our approach completely renounces the concept of a phase space while picking up the

main ingredients from the dynamical systems proofs: we modify nonlinearities outside a fixed

neighborhood, construct an approximate trial solution, linearize at this “almost solution”, and

find a linear convolution type operator with slowly varying coefficients. We invert this operator

by constructing suitable local approximate inverses and conclude the proof by setting up a

Newton iteration scheme. We will see that the solution on the slow manifold satisfies a scalar

ordinary differential equation, with leading order given by an expression equivalent to the one

formally derived in [166].

Step 2: The singular solution. We construct a singular solution using front and back solutions

from Hypothesis 3.5.3, together with pieces of slow manifolds from Step 1. We glue those
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solutions using appropriately positioned partitions of unity. Using partitions of unity instead of

the matching procedure in cross-sections to the flow, common in dynamical systems approaches,

is a second key difference of our approach. It allows us to avoid the notion of a phase space.

Schematically, the solution is formed by gluing together a quiescent part Uq on the left branch

of the slow manifold to a back solution Ub, then to an excitatory part Ue on the right branch of

the slow manifold, then to a front solution Uf as shown in Figure 3.5. On each solution piece,

we allow for a correction W. See also Figure 3.6 for a detailed picture.

Step 3: Linearizing and counting parameters. In order to allow for weak interaction between

the different corrections to solutions, we use function spaces with appropriately centered ex-

ponential weights. The weights, at the same time, encode the facts that solution pieces lie in

either strong stable or unstable manifolds, or, in a more subtle way, the Exchange Lemma that

tracks inclination of manifolds transverse to stable foliation forward with a flow [39, 131, 132].

Our setup can be viewed as a version of [39], without phase space, in the simplest setting of a

one-dimensional slow manifold.

Linearizing at the different solution pieces, we find Fredholm operators with negative index.

Roughly speaking, uniform exponential localization of perturbations does not allow corrections

in the slow direction. In addition, the linearizations at back and front contribute one-dimensional

cokernels, each. In the dynamical systems proofs, matching in cross-sections is accomplished by

exploiting

• free variables in stable and unstable manifolds;

• auxiliary parameters, in our case c;

• variations of touchdown and takeoff points on the slow manifolds.

We mimic precisely this idea, pairing the negative index Fredholm operators with suitable ad-

ditional parameters, so that parameter derivatives span cokernels. A more detailed description

is encoded in Figure 3.5. We associate to the quiescent part Uq the takeoff parameter vq ≈ v∗,

which encodes the base point of the stable foliation that contains the back. We associate to the

excitatory part Ue touchdown and takeoff parameters vbe ≈ v∗ and vef ≈ 0 that will compensate

for the mismatched between the back and front parts. Finally we assign to the back Ub the

separate touchdown parameter vb ≈ v∗ and to the front Uf the wave speed c ≈ c∗. These two

parameters effectively compensate for cokernels of front and back linearizations.

Step 4: Errors and fixed point argument. Our last step will be to use a fixed point argument

to solve an equation of the form

Fε(W, (vq, vb, vbe, vef , c)) = 0,

that is obtained by substituting our Ansatz directly into the system (3.5.2). More precisely, we

will show that

(i) ‖Fε(0, (v∗, v∗, v∗, 0, c∗))‖ → 0 as ε→ 0 in a suitable norm;
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(a)

(b)

(c)

(d)

Figure 3.6: Schematic description of the Ansatz solution (3.5.22). Envelopes ωj for corrections Wj as
imposed by the weights ω−1j and uj-components of the different parts of the Ansatz (3.5.22). Profiles χj
of the partition of unity as defined in (3.5.21).
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(ii) D(W,λ)Fε(0, (v∗, v∗, v∗, 0, c∗)) is invertible with bounded inverse uniformly in 0 < ε� 1;

(iii) Fε possesses a unique zero on suitable Banach spaces using a Newton iteration argument.

Here, (ii) follows from Step 3 and (iii) is a simple fixed point iteration. Errors (i) are controlled

due to the careful choice of Ansatz and a sequence of commutator estimates between convolution

kernels and linear or nonlinear operators.

Now that the proof of Theorem 3.5.1 has been sketched, we present in the remaining of this

section the construction of the Ansatz from Step 2 and illustrated in Figure 3.6. To do so, we

need first to construct slow manifolds for (3.5.2).

3.5.1 Persistence of slow manifolds

In this section, we prove existence of solutions near the quiescent and the excited branch of

f(u) = v,

Mq := {(ϕq(v), v)} , Me := {(ϕe(v), v)} .
We follow the ideas used in the construction of slow manifolds in dynamical systems and use a

cut-off function to modify the slow flow outside a neighborhood that is relevant for our construc-

tion. We emphasize however that, due to the infinite-range coupling, the concept of solution

defined locally in time is not applicable. In other words, the fact that we are modifying the

equation outside of a neighborood will create error terms for all ξ.

We use a simple modification of (3.5.2), multiplying the right-hand side of the v-equation

by a cut-off function Θ(v) as shown in Figure 3.7. The modified equation now reads
−c d

dξ
u(ξ) = −u(ξ) +K ∗ u(ξ) + f(u(ξ))− v(ξ),

−c d

dξ
v(ξ) = ε(u(ξ)− γv(ξ))Θ(v(ξ)).

(3.5.7)

Formally, this introduces two equilibria on the slow manifold, with the effect that the solution

on the slow manifold is expected to be a simple heteroclinic orbit. In order to exhibit the slow

flow, we rescale space by introducing ζ = εξ so that (3.5.7) becomes
−εc d

dζ
u(ζ) = −u(ζ) +Kε ∗ u(ζ) + f(u(ζ))− v(ζ),

−c d

dζ
v(ζ) = (u(ζ)− γv(ζ))Θ(v(ζ)),

(3.5.8)

where we have defined the rescaled kernel as Kε(ζ) := ε−1K(ε−1ζ). At ε = 0, the slow system is

given by  0 = f(u(ζ))− v(ζ),

−c d

dζ
v(ζ) = (u(ζ)− γv(ζ))Θ(v(ζ)),

(3.5.9)

since formally, Kε → δ, the Dirac distribution. Now, for each c > 0, there exists a heteroclinic

solution (ϕq(vh,q),vh,q) to (3.5.9) on the quiescent slow manifoldMq, connecting the rest state

(0, 0) to (ϕq(v+), v+) for which the profile vh,q ∈ C∞(R,R) satisfies

− c d

dζ
v = (ϕq(v)− γv)Θ(v), (ϕq(v),v) ∈Mq (3.5.10)
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Figure 3.7: The definition of the cut-off function Θ(v).

with limits

lim
ζ→−∞

vh,q(ζ) = 0 and lim
ζ→+∞

vh,q(ζ) = v+. (3.5.11)

We normalize the solution so that vh,q(0) = v∗. Furthermore, for each c > 0, there also exists a

heteroclinic solution (ϕe(vh,e),vh,e) ∈Me connecting the rest state (ϕe(v+), v+) to (ϕe(v−), v−)

on the excitatory slow manifold Me for which the profile vh,e ∈ C∞(R,R) satisfies

− c d

dζ
v = (ϕe(v)− γv)Θ(v), (ϕe(v),v) ∈Me (3.5.12)

with limits

lim
ζ→−∞

vh,e(ζ) = v+ and lim
ζ→+∞

vh,e(ζ) = v−. (3.5.13)

We normalize this solution so that vh,e(0) = 0.

One then needs to show that these two heteroclinic solutions persist for 0 < ε � 1 using a

fixed point argument for nonlocal differential evolution equations with slowly varying coefficients.

We give formal statements of the main result; a schematic picture of these heteroclinics relative

to the singular pulse is shown in Figure 3.8.

Proposition 3.5.1 (Quiescent slow manifold). For every sufficiently small ε > 0 and any c > 0,

there exist functions uq,vq ∈ C∞(R,R) such that

(uq(εξ),vq(εξ)) (3.5.14)

is a heteroclinic solution of (3.5.7) that satisfies the limits

lim
ζ→−∞

(uq(ζ),vq(ζ)) = (0, 0) and lim
ζ→+∞

(uq(ζ),vq(ζ)) = (ϕq(v+), v+). (3.5.15)

Up to translation, this solution is locally unique and depends smoothly on ε and c.

Proposition 3.5.2 (Excitatory slow manifold). For every sufficiently small ε > 0 and any

c > 0, there exist functions ue,ve ∈ C∞(R,R) such that

(ue(εξ),ve(εξ)) (3.5.16)
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Figure 3.8: Heteroclinics from Proposition 3.5.1 (left,purple) and from Proposition 3.5.2 (right,orange).
The upper limit v+ is induced by the cut-off Θ which is superimposed on the v-axis.

is a heteroclinic solution of (3.5.7) that satisfies the limits

lim
ζ→−∞

(ue(ζ),ve(ζ)) = (ϕe(u+), u+) and lim
ζ→+∞

(ue(ζ),ve(ζ)) = (ϕe(v−), v−). (3.5.17)

Up to translation, this solution is locally unique and depends smoothly on ε and c.

We remark that this construction of slow manifolds in nonlocal equations is somewhat general

but comes with some caveats. First, the construction is simple here, since the slow manifold is

one-dimensional and hence consists of a single trajectory, only. As a consequence, smoothness

of slow manifolds is trivial, here. Second, the solutions are not solutions for the original system,

without the modifier Θ, since the equation has infinite-range interaction in time. In other words,

the modified piece of the trajectory influences the solution even where the solution takes values

in the unmodified range. However, in Step 4 of the proof Theorem 3.5.1, we exploit that the

error terms stemming from this modification are exponentially small due to the exponential

localization of the kernel.

We also note that monotonicity of vq (and similarly ve) implies that vq solves a simple first-

order differential equation, the “reduced equation” on the slow manifold. Again, this equation

depends, even locally, on the modifier Θ. From our construction, below, one can easily see that

the leading-order vector field in ε is just the one given in (3.5.12).

As already explained, the strategy for the proof of Propositions 3.5.1 and 3.5.2 is to construct

an approximate trial solution based on the limiting system, (3.5.9) linearize at this ”almost

solution”, and find a linear convolution type operator with slowly varying coefficients. Now that

we have proved the persistence of slow manifolds we can present the construction of the singular

pulse.

3.5.2 The Ansatz

In the following, we present a decomposition of the solution into the singular pulse and

corrections, separated using cut-off functions and exponentially localized weights. A schematic
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illustration of this procedure is shown in Figure 3.6.

We write Uf = (uf , 0) where uf ∈ C∞(R,R) is the front solution from Hypothesis 3.5.3,

solving

− c∗
d

dξ
u(ξ) = −u(ξ) +

∫
R
K(ξ − ξ′)u(ξ′)dξ′ + f(u(ξ)), (3.5.18)

with

lim
ξ→−∞

uf (ξ) = 1, lim
ξ→+∞

uf (ξ) = 0, and uf (0) =
1

2
.

Similarly, we set Ub = (ub, vb1) where vb ∈ (v∗ − δb, v∗ + δb) ⊂ (vmin, vmax) is a free parameter

and ub ∈ C∞(R,R) is the solution of

− cb
d

dξ
u(ξ) = −u(ξ) +

∫
R
K(ξ − ξ′)u(ξ′)dξ′ + f(u(ξ))− vb (3.5.19)

with limits

lim
ξ→−∞

ub(ξ) = ϕq(vb), lim
ξ→+∞

ub(ξ) = ϕe(vb) and ub(0) = (ϕe(vb)− ϕq(vb)) /2.

Again, this solution is obtained from Hypothesis 3.5.3 for vb = v∗. Using the implicit function

theorem and simplicity of the zero eigenvalue, we can find the profile ub ∈ C∞ and the wave

speed c as smooth functions of vb ∼ v∗.
Using Proposition 3.5.1 and 3.5.2, we define Uq = (uq,vq) and Ue = (ue,ve) where the

heteroclinic solutions (uq(εξ),vq(εξ)) and (ue(εξ),ve(εξ)) solve
−c d

dξ
u(ξ) = −u(ξ) +

∫
R
K(ξ − ξ′)u(ξ′)dξ′ + f(u(ξ))− v(ξ),

−c d

dξ
v(ξ) = ε(u(ξ)− γv(ξ))Θ(v(ξ)),

(3.5.20)

with limits

lim
ζ→−∞

(uq(ζ),vq(ζ)) = (0, 0) and lim
ζ→+∞

(uq(ζ),vq(ζ)) = (ϕq(v+), v+),

lim
ζ→−∞

(ue(ζ),ve(ζ)) = (ϕe(v+), v+) and lim
ζ→+∞

(ue(ζ),ve(ζ)) = (ϕe(v−), v−).

Let δq > 0, δbe > 0 and δef > 0 be fixed such that (v∗ − δq, v∗ + δq) ⊂ (vmin, vmax),

(v∗−δbe, v∗+δbe) ⊂ (vmin, vmax) and (−δef , δef ) ⊂ (vmin, vmax). We introduce three parameters

vq ∈ (v∗− δq, v∗+ δq), vbe ∈ (v∗− δbe, v∗+ δbe) and vef ∈ (−δef , δef ). We normalize the solutions

Uq and Ue by specifying their v-value at ξ = 0 as vq(0) = vq and ve(0) = vef . Since the

solutions in the slow manifold are monotone, by the implicit function theorem, we obtain two

maps ϕ̃j so that

uj(0) = ϕ̃j(vj(0), ε, c), j = q, e,

uniformly in the parameters. As a consequence, we have (uq(0),vq(0)) = (ϕ̃q(vq, ε, c), vq) and

(ue(0),ve(0)) = (ϕ̃e(vef , ε, c), vef ). We also define T (vbe, vef ) > 0 as the leading order time

spent by (ue,ve) on the excitatory slow manifold from (ϕ̃e(vbe, ε, c), vbe) to (ϕ̃e(vef , ε, c), vef ).

Note that (vbe, vef ) 7−→ T (vbe, vef ) is a continuously differentiable function on (v∗ − δbe, v∗ +

δbe)× (−δef , δef ).
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We introduce a partition of unity through four C∞-functions χj , j ∈ {q, b, e, f}, so that:

χq(ξ) + χb(ξ) + χe(ξ) + χf (ξ) = 1, ∀ξ ∈ R, (3.5.21)

and

χq(ξ) =

{
0 ξ ≥ ξq + 1

1 ξ ≤ ξq − 1
, χb(ξ) =

{
0 ξ ≤ ξq − 1 and ξ ≥ ξbe + 1

1 ξq + 1 ≤ ξ ≤ ξbe − 1
,

χf (ξ) =

{
0 ξ ≤ −1

1 ξ ≥ 1
, χe(ξ) =

{
0 ξ ≤ ξbe − 1 and ξ ≥ 1

1 ξbe + 1 ≤ ξ ≤ −1
.

The constants ξq and ξbe are defined as

ξbe = −T (vbe, vef )

ε
, ξq = ξbe + 2ηb ln(ε),

where ηb > 0 will be fixed later. We will rely on the exponentially weighted spaces H1
η , L2

η with

L2
η =

{
u : R→ R |

∥∥∥eη|ξ|u(ξ)
∥∥∥
L2
< +∞

}
, H1

η =
{
u ∈ L2

η | ∂ξu ∈ L2
η

}
,

where η > 0 is sufficiently small.

To find a pulse solution, we use the following Ansatz

Ua(ξ) = (ua(ξ),va(ξ)) = Uq (ε (ξ − ξq))χq(ξ) + Ub(ξ − ξb)χb(ξ) + Ue(εξ)χe(ξ)

+ Uf (ξ − ξf )χf (ξ) + Wq (ξ − ξq) + Wb(ξ − ξb) + We(ξ)

+ Wf (ξ − ξf ), (3.5.22)

where ξb = ξbe + ηb ln(ε), ξf := −ηf ln(ε) > 0, and Wj = (wu
j ,w

v
j ), j ∈ Jw := {q, b, e, f} .

The ua and va components of Ua are thus given by

ua(ξ) = uq (ε (ξ − ξq))χq(ξ) + ub(ξ − ξb)χb(ξ) + ue(εξ)χe(ξ) + uf (ξ − ξf )χf (ξ) (3.5.23a)

+ wu
q (ξ − ξq) + wu

b (ξ − ξb) + wu
e (ξ) + wu

f (ξ − ξf ),

va(ξ) = vq (ε (ξ − ξq))χq(ξ) + vbχb(ξ) + ve(εξ)χe(ξ) + wv
q (ξ − ξq) + wv

b (ξ − ξb) (3.5.23b)

+ wv
e(ξ) + wv

f (ξ − ξf ).

Remarks 3.5.1. We retain five free parameters (c, vq, vb, vbe, vef ); (δq, δb, δbe, δef , ηb, ηf ) are

fixed during the proof of Theorem 3.5.1.

The idea behind the Ansatz (3.5.22) is the following. We look for a solution that is approx-

imately given by 4 trajectories (quiescent, back, excitatory and front parts) glued together. At

each overlap between two pieces of trajectories, we use a cut-off function and introduce correc-

tions Wj to compensate for mismatches. We have carefully adjusted the precise location of the

gluing site which scales with the parameter ε (of order − ln(ε) for back and front, and order

1/ε along the slow excitatory manifold). The correction of the excitatory part We is commonly

constructed using the Exchange Lemma in a dynamical systems based approach [132]. Those
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corrections are exponentially localized close to touchdown and takeoff points. Rather than en-

coding this localization at two diverging points 0 and ξbe, with a varying family of weights, we

prefer to again split We into Wbe and Wef ,

We(ξ) = Wbe(ξ − ξbe) + Wef (ξ).

Here, all corrections Wj are exponentially localized given by some associated weighted ωj , see

Figure 3.6.

With such an Ansatz, we substitute the expressions of ua and va into (3.5.2) and obtain

equations for the corrections wu,v
j . The crucial idea is then to split the equations into a weakly

coupled system of 5 equations for the corrections wu,v
j (one for each correction) so that one

obtains a general system that can be written in compact form:

0 = Lε (W, λ− λ∗) +Rε +Nε(W, λ− λ∗) := Fε(W, λ), (3.5.24)

where we have set

W :=
((

wu
q ,w

v
q

)
, (wu

b ,w
v
b ) , (w

u
be,w

v
be) ,

(
wu
ef ,w

v
ef

)
,
(
wu
f ,w

v
f

))
∈ X :=

(
H1
η ×H1

η

)5
,

λ := (c, vq, vb, vbe, vef ) ∈ V,
λ∗ := (c∗, v∗, v∗, v∗, 0) .

Here, Lε represents all the linear terms, Rε collects all the error terms and Nε all the nonlinear

terms. We define the nonlinear map Fε as follows

Fε :
X × V −→ Y
(W, λ) 7−→ Fε(W, λ)

(3.5.25)

where X :=
(
H1
η ×H1

η

)5
, Y :=

(
L2
η × L2

η

)5
and V := (c∗ − δc, c∗ + δc)× (v∗ − δb, v∗ + δb)× (v∗ −

δb, v∗ + δb) × (v∗ − δbe, v∗ + δbe) × (−δef , δef ) is a neighborhood of λ∗ = (c∗, v∗, v∗, v∗, 0) in R5.

The remaining part of the proof is to show that

1. the map Fε is well-defined from X × V to Y and is C∞;

2. Rε = Fε(0, λ∗) −→ 0 as ε −→ 0;

3. Lε = DFε(0, λ∗) can be decomposed in two parts:

Lε = Liε + Lpε , (3.5.26)

where Liε is invertible with bounded inverse on suitable Banach spaces and Lpε is an ε-

perturbation: Lpε −→ 0 as ε −→ 0. This is in this third step that we use Fredholm

properties of nonlocal differential operators.

Then, to conclude the proof of Theorem 3.5.1, we use a fixed point iteration argument on the

map Fε which gives the existence of (W(ε), λ(ε)), solution of (3.5.24), in a neighborhood of

(0, λ∗) for small values of ε > 0.
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3.5.3 Generalizations and limitations

We comment on several aspects of our main result, pointing out generalizations, limitations,

and possible future work.

Uniqueness. The construction of the pulse ultimately relies on a contraction principle, which

guarantees uniqueness (up to translation) in a small neighborhood. A description of this neigh-

borhood is rather technical and uniqueness would presumably hold in a larger class, so that

we refrain from adding in Theorem 3.5.1 a precise statement. Generally, dynamical systems

approaches give stronger uniqueness results since the set of solutions is described pointwise in

space, rather than in a function space. The pulse is certainly not unique in the set of bounded

or even localized solutions. For instance, our methods should also give existence of periodic

pulse trains or a slow pulse with speed c = O(
√
ε), which are well understood in the local, PDE

setting [146, 187].

Stability. One suspects that the pulses constructed here are spectrally and nonlinearly stable,

similar to pulses in the PDE setting. Using similar methods as in the existence proof, one can

show that the linearized problem does not possess eigenvalues in <(λ) ≥ −δ for some δ > 0 in

a suitably weighted exponential space — except for possibly two eigenvalues in a neighborhood

of the origin stemming from separate translations of front and back of the pulse. Since one

of those two eigenvalues is pinned at λ = 0 by translation symmetry, the key step for proving

stability then involves the expansion of the second eigenvalue; see [126]. It is not clear if the

error estimates in our construction will suffice to obtain such an expansion.

Limitations — localization and regularity. Existence of front and back (see Theorem 1.2.5)

does not require exponential localization of the kernel K, while our construction does. Also, one

expects existence results for front and back with somewhat singular kernels K. In both cases,

adapting our results might be challenging. The construction of the pulse essentially relies on a

weak interaction between front and back. In the ODE construction, this is reflected in hyper-

bolicity of the slow manifold. Algebraic localized kernels introduce a second, competing mode of

interaction, possibly destroying or destabilizing the pulse. On the other hand, singularity in the

kernel may compete with the advection term c∂ξ in the v-component: results from the previous

Section 3.3 give some evidence how such singularities may alter asymptotics.

Generalizations. Our approach was used, in a simpler context, to establish existence of shocks

in non-local conservation laws (see [86]) and to track eigenvalues in the continuous spectrum

via a Gap lemma construction for an Evans function (see the application of Section 3.4). Both

applications basically rely on the construction of strong stable manifolds for nonlocal problems, a

problem much simpler than the construction of slow manifolds and exchange lemmas required for

the FitzHugh-Nagumo pulse; see the outline of our proof, below. On the other hand, we believe

that one can mimic most ODE constructions, including higher-dimensional center-manifolds and

normal forms using our approach. This is actually the subject of the forthcoming Section 3.6.
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In a different direction, it would nevertheless be interesting to construct a dynamical-systems

approach via exponential dichotomies to these infinite-delay forward-backward problems.

3.6 Center manifolds without a phase space

Center-manifold reductions have become a central tool to the analysis of dynamical systems.

The very first results on center manifolds go back to the pioneering works of Pliss [167] and

Kelley [136] in the finite-dimensional setting. In the simplest context, one studies differential

equations in the vicinity of a non-hyperbolic equilibrium,

du

dt
= f(u) ∈ Rn, f(0) = 0, spec(f ′(0)) ∩ iR 6= ∅.

The basic reduction establishes that the set of small bounded solutions u(t), t ∈ R, sup |u(t)| <
δ � 1, is pointwise contained in a manifold, that is, u(t) ∈ Wc for all t. This manifold is

a subset of phase space, Wc ⊂ Rn, contains the origin, 0 ∈ Wc, and is tangent to Ec, the

generalized eigenspace associated with purely imaginary eigenvalues of f ′(0). As a consequence,

the flow on Wc can be projected onto Ec, to yield a reduced vector field. The reduction to

this lower-dimensional ODE then allows one to describe solutions qualitatively, even explicitly

in some cases. Of course, the method applies to higher-order differential equation, which one

simply writes as first-order equation in a canonical fashion. Extensions to infinite-dimensional

dynamical systems were pursued soon after; see for instance [114].

Starting with the work of Kirchgässner [140], such reductions have been extended to systems

with u ∈ X , a Banach space, where the initial value problem is not well-posed: For most

initial conditions u0, there does not exist a local solution u(t), 0 ≤ t < t∗, say. Local solutions

do exist however for all initial conditions on a finite-dimensional center-manifold, and much

of the theory is quite analogous to the finite-dimensional case; see [191]. In these theories,

one can typically split the phase space in infinite-dimensional linear spaces where solutions to

the linearized equation either decay or grow, and a finite-dimensional center subspace. Such

splittings are known as Wiener-Hopf factorizations and can be difficult to achieve in the case of

forward-backward delay equations, where nevertheless center-manifold reductions are available

[127].

Our point of view here is slightly more abstract, shedding the concept of a phase space in favor

of a focus on small bounded trajectories. We perform a purely functional analytic reduction,

based on Fredholm theory developed in Section 3.4 in the space of bounded trajectories (rather

than the phase space). We parameterize the set of bounded solutions by the set of (weakly)

bounded solutions to the linear equation, which is a finite-dimensional vector space, amenable

to a variety of parameterizations. Only after this reduction, we derive a differential equation on

this finite-dimensional vector space, whose solutions, when lifted to the set of bounded solutions

to the nonlinear problem describe all small bounded solutions.

To be more precise, we focus on nonlocal equations of the form

T u+ F(u) = 0, T u = u+K ∗ u, (3.6.1)
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for u : R→ Rn, n ≥ 1. Here, K ∗ u stands for matrix convolution on R,

(K ∗ u(x))i =

n∑
j=1

∫
R
Ki,j(x− y)uj(y)dy, 1 ≤ i ≤ n,

and F(u) encodes nonlinear terms, possibly also involving nonlocal interactions. A prototypical

example arises when studying stationary or traveling-wave solutions to neural field equations

(1.0.1). The idea is to go beyond the method which consists in focusing on kernels K with

rational Fourier transform. In order to avoid unnecessary technicalities, we first present our

main results in an informal way. The precise statements and hypotheses will be detailed in a

second step. We thus assume that the matrix kernel K and nonlinear operator F satisfy the

following informal assumptions:

• Exponential Localization: the interaction kernel K and its derivative K′ are exponentially

localized (see Hypothesis 3.6.1);

• Smoothness and Invariance: the nonlinear operator F is assumed to be sufficiently smooth

and translation invariant F(u(·+ ξ))(·) = F(u(·))(·+ ξ), with F(0) = 0, DuF(0) = 0 (see

Hypothesis 3.6.2).

Using Fourier transform, one can readily find the finite-dimensional space ker T of solutions to

T u = 0 with at most algebraic growth and construct a bounded projection Q onto this set, in

a space of functions allowing for slow exponential growth.

Theorem 3.6.1. Assume that the interaction kernel K and the nonlinear operator F satisfy

Hypotheses 3.6.1 and 3.6.2. Then, there exists δ > 0 and a map Ψ ∈ C k(ker T , kerQ) with

Ψ(0) = 0, DuΨ(0) = 0, such that the manifold

M0 := {u0 + Ψ(u0) | u0 ∈ ker T }

contains the set of all bounded solutions of (3.6.1) with supx∈R |u(x)| ≤ δ.

We refer to M0 as a (global) center manifold for (3.6.1). Note however that points on

M0 consist of trajectories, that is, of solutions u(x), x ∈ R, rather than of initial values to

solutions, in the more common view of center manifolds. Also note that, according to the

theorem,M0 only contains the set of bounded solutions, not all elements ofM0 are necessarily

bounded solutions. As is well known from the classical center manifold theorem, the set of

bounded solutions may well be trivial, consisting of the point u ≡ 0, only, rather than being

diffeomorphic to a finite-dimensional ball. It is therefore necessary to study the elements ofM0

in more detail.

We will see in the proof that, as is common in the construction of center manifolds, we modify

the nonlinearity F to Fε outside of a small ε-neighborhood, supx |u(x)| ≤ ε, in the construction

of M0. Therefore, all elements of M0 are in fact solutions, with possibly mild exponential

growth, and to the modified equation T u + Fε(u) = 0. The set of solutions to this equation

is translation invariant and parameterized over ker T . The action of the shift on this set of

solutions can therefore be pulled back to ker T , where it induces a flow with associated vector
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field as stated in the following result; see Section 3.6.3 and the diagrams there for more details

on this idea, and our application in the following toy model and Section 3.6.4 for a constructive

approach, computing Taylor jets.

Corollary 3.6.1. Under the assumptions 3.6.1 and 3.6.2 of Theorem 3.6.1, any element u =

u0 + Ψ(u0) of M0, corresponds to a unique solution of a differential equation

du0

dx
= f(u0) :=

d

dx
Q (u0(·+ x) + Ψ(u0(·+ x))) |x=0, (3.6.2)

on the linear vector space u0 ∈ ker T . The Taylor jet of f can be computed from properties of

T and F , solving linear equations, only.

Note that the differentiation in (3.6.2) does not refer to differentiation of u0, which of course

is a function of x when viewed as an element of the kernel. We rather view ker T as an abstract

vector space on which we study the differential equation (3.6.2). Note also that we do not claim

that every solution to (3.6.2) is a solution to (3.6.1) — this is true only for small solutions.

We will explain below how to actually compute the Taylor jet of f . Having access to (3.6.2)

as a means of describing elements of M0, the abstract reduction Theorem 3.6.1 becomes very

valuable: one simply studies the differential equation (3.6.2), or, to start with, the equation

obtained from the leading order Taylor approximation, using traditional dynamical systems

methods. Small bounded solutions obtained in this fashion will then correspond to solutions of

the original nonlocal problem (3.6.1).

Application: a toy model. We will apply our main result later on but we already want to give

a fairly trivial example of how to compute Taylor jets in practice, here. In fact, the procedure

of deriving the reduced system (3.6.2) involves algebra that is somewhat different from the

more commonly known algebra associated with Taylor jets in phase space and ordinary center

manifolds. We consider a scalar nonlocal equation of the form,

u+K ∗ u− u2 = 0, (3.6.3)

where we suppose that K satisfies Hypothesis 3.6.1 for a given η0 > 0 together with the assump-

tions that∫
R
K(x)dx = −1,

∫
R
xK(x)dx = −α−1 6= 0, and d(i`) = 1+K̂(i`) 6= 0 for all ` ∈ R\{0}.

As a consequence, E0 = ker T = {1}, the constant functions. A natural candidate for the

projection onto the kernel is (Qu)(x) ≡ u(0) ∈ E0, clearly defining a bounded projection on H1
−η

onto E0 for any 0 < η < η0. Furthermore, the nonlinear operator F(u) = −u2 is a Nemytskii

operator and satisfies Hypothesis 3.6.2. Our main result, Theorem 3.6.1, then implies existence

of a center manifold M0, and any small bounded solutions of (3.6.3) can be written as

u = u0 + Ψ(u0),

where u0 := A · 1 ∈ E0. As the map Ψ is C k for any k ≥ 2, we can look for its Taylor expansion

near 0, and using the properties Ψ(0) = DuΨ(0) = 0, we obtain

Ψ(u0) = A2Ψ2 +A3Ψ3 +O(A4).
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Inserting this ansatz into the nonlocal equation (3.6.3) and identifying terms of order A2, we

obtain that Ψ2 should satisfy

T Ψ2 = 1, with Q(Ψ2) = 0.

Using that
∫
xK(x)dx 6= 0, we obtain that Ψ2(x) = αx, for all x ∈ R. At cubic order, we find

that

T Ψ3 = 2Ψ2, with Q(Ψ3) = 0.

We look for solution Ψ3 that can be written as Ψ3(x) = β2x
2 + β1x, which leads to the compat-

ibility conditions

β2

∫
R
K(y)y2dy +

β1

α
= 0,

2
β2

α
= 2α,

such that β2 = α2 and β1 := −κ2α
3, where κ2 :=

∫
RK(y)y2dy.

Finally, we construct the reduced vector field as stated in Corollary 3.6.1; see the proof in

Section 3.6.3 and diagrams there for details on the abstract concepts. Invariance of the set of

bounded solutions by translations constitutes an action of the group R. Using our parameteriza-

tion of the set of bounded solutions over the kernel, this action can be pulled back to an action

of the shift on the kernel. With the Taylor expansion of the representation of our bounded

solutions over the kernel,

u(x) = A+ αxA2 + (α2x2 − κ2α
3x)A3 +Ox(A4), (3.6.4)

we obtain the Taylor expansion of the action of the shift on the kernel, parameterized by A ∈ R.

We therefore shift u(x) from (3.6.4), and then invert id + Ψ explicitly as (id + Ψ)−1 = Q, to find

ϕx(A) = Q
[
A+ α(·+ x)A2 +

(
α2(·+ x)2 − κ2α

3(·+ x)
)
A3 +O(·+x)(A

4)
]

= A+ αxA2 +
(
α2x2 − κ2α

3x
)
A3 +Ox(A4).

Differentiating this action of the shift, that is, computing the derivative of a flow at time

x = 0, we obtain the vector field that generates the flow as stated in (3.6.2),

dϕx
dx
|x=0 = αA2 − κ2α

3A3 +O(A4),

thus giving the Taylor expansion of the reduced differential equation up to third order through

dA

dx
= αA2 − κ2α

3A3 +O(A4).

Note that, absent further parameters, the reduced differential equation, here, does not possess

any non-trivial bounded solutions. In other words, the center manifold here yields a uniqueness

result for small bounded solutions, in a class of sufficiently smooth functions. Adding parameters,

one would find the typical heteroclinic trajectories in a saddle-node bifurcation.
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3.6.1 Functional-analytic setup and main assumptions

In this subsection, we introduce function spaces and state our main hypotheses 3.6.1 and

3.6.2.

Function spaces. For η ∈ R, 1 ≤ p ≤ ∞, we define the weighted space Lpη(R,Rn), or simply

Lpη, when n = 1, through

Lpη(R,Rn) :=
{
u ∈ Lploc(R,R

n) : ωηu ∈ Lp (R,Rn)
}
,

where ωη is a C∞ function defined as

ωη(x) =

{
eηx for x ≥ 1,

e−ηx for x ≤ −1
, ωη > 0 on [−1, 1].

We also use the standard Sobolev spaces W k,p(R,Rn), or simply W k,p when n = 1, for k ≥ 0

and 1 ≤ p ≤ ∞:

W k,p(R,Rn) := {u ∈ Lp (R,Rn) : ∂αxu ∈ Lp (R,Rn) , 1 ≤ α ≤ k} ,

with norm

‖u‖Wk,p(R,Rn) =


(∑

α≤k ‖∂αxu‖
p
Lp(R,Rn)

) 1
p
, 1 ≤ p <∞

max
α≤k
‖∂αxu‖L∞(R,Rn), p =∞.

We denote byHk(R,Rn) the Sobolev spaceW k,2(R,Rn) and use the weighted spacesW k,p
η (R,Rn)

and Hk
η (R,Rn) the weighted Sobolev spaces defined through

W k,p
η (R,Rn) :=

{
u ∈ Lploc (R,Rn) : ωη∂

α
xu ∈ Lp (R,Rn) , 0 ≤ α ≤ k

}
,

with norm

‖u‖
Wk,p
η (R,Rn)

=


(∑

α≤k ‖ωη∂αxu‖
p
Lp(R,Rn)

) 1
p
, 1 ≤ p <∞

max
α≤k
‖ωη∂αxu‖L∞(R,Rn), p =∞,

and Hk
η (R,Rn) := W k,2

η (R,Rn).

Assumptions on the linear part. We require that the convolution kernel is exponentially lo-

calized and smooth in the following sense.

Hypothesis 3.6.1. We assume that there exists η0 > 0 such that Ki,j ∈ W 1,1
η0 (R) for all

1 ≤ i, j ≤ n.

We define the complex Fourier transform K̂(ν) of K as

K̂(ν) =

∫
R
K(x)e−νxdx, (3.6.5)



3.6. CENTER MANIFOLDS WITHOUT A PHASE SPACE 77

for all ν ∈ C where the above integral is well-defined. Note that because each component

of the matrix kernel K belongs to L1
η0 , the Fourier transform K̂(ν) is analytic in the strip

Sη0 := {ν ∈ C | |<(ν)| < η0}. Pure exponential solutions of the linearized equation can be

detected as roots of the characteristic equation

d(ν) := det
(
In + K̂(ν)

)
= 0, (3.6.6)

where the left-hand side d(ν) is an analytic function in the strip Sη0 and has isolated roots on

the imaginary axis, when counted with multiplicity. Moreover, since K′ ∈ L1
η0 (component-wise),

we have |K̂(` + η)| −→
`→±∞

0, for |η| < η0, such that the number of roots of d on the imaginary

axis, counted with multiplicity, is finite. Throughout, we will assume that the number of roots

is not zero, in which case our results would be trivial.

We consider T as a bounded operator on H1
−η(R,Rn), 0 < η < η0, slightly abusing notation

and not making the dependence of T on η explicit. With the natural bounded inclusion ιη,η
′
,

η < η′, one finds T ιη,η′ = ιη,η
′T . Now, by finiteness of the number of roots of d, we can choose

η1 > 0, small, such that d(ν) does not vanish in 0 < |=ν| ≤ η1. We will then find that the kernel

E0 of T is independent of η for 0 < η < η1 in the sense that ιη,η
′

provides isomorphisms between

kernels for η and η′, 0 < η < η′ < η1. The dimension of E0 is given by the sum of multiplicities

of roots ν ∈ R of d(ν), with a basis of the form p(x)eνx, p a vector-valued polynomial of degree

at most m− 1 when ν is a root of d of order m. We also need a bounded projection

Q : H1
−η(R,Rn)→ H1

−η(R,Rn), Q2 = Q, rg (Q) = E0 = ker T , (3.6.7)

with a continuous extension to L2
−η(R,Rn). Again, we require Qιη,η′ = ιη,η

′Q, a possible choice

being the L2
η1(R,Rn)-orthonormal projection.

Assumptions on the nonlinear part. A common approach to the construction of center mani-

folds is to modify the nonlinearity outside of a small neighborhood of the origin. We therefore

first define a pointwise, smooth cut-off function χ̄ : Rn → R, with

χ̄(u) =

{
1 for ‖u‖ ≤ 1

0 for ‖u‖ ≥ 2
, χ̄(u) ∈ [0, 1],

and then a cut-off operator χε, mapping measurable functions u : R→ Rn into L∞(R,Rn),

χε(u)(x) = χ̄(u(x)/ε) · u(x).

Lastly, formally define the family of translation operators τξ, ξ ∈ R,

(τξ · u)(x) := u(x− ξ),

the canonical representation of the group R on functions over R. Slightly abusing notation, we

will use the same symbol τξ for the action on various function spaces. Note that τξ will be

bounded for ξ fixed on all spaces introduced above. We define the modified nonlinearities

Fε := F ◦ χε. (3.6.8)
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Hypothesis 3.6.2. We assume that there exists k ≥ 2 and η0 > 0 such that for all ε > 0,

sufficiently small, the following properties hold.

1. F ∈ C k(V,W 1,∞(R,Rn), for some small neighborhood 0 ∈ V ⊂W 1,∞(R,Rn), and F(0) =

0, DuF(0) = 0;

2. F commutes with translations, F ◦ τξ = τξ ◦ F for all ξ ∈ R;

3. F ε : H1
−ζ(R,Rn) −→ H1

−η(R,Rn) is C k for all nonnegative pairs (ζ, η) such that 0 <

kζ < η < η0, DjF ε(u) : (H1
−ζ(R,Rn))j −→ H1

−η(R,Rn) is bounded for 0 < jζ ≤ η < η0,

0 ≤ j ≤ k and Lipschitz in u for 1 ≤ j ≤ k − 1.

Note that F ε commutes with τξ since F and χε do. The first condition is the common

condition, guaranteeing that T is actually the linearization at an equilibrium u ≡ 0, that is, at

a solution invariant under translations τξ. The second condition puts us in the scenario of an

autonomous dynamical system. The last condition on the modified nonlinearity is a technical

condition, known from the proofs of smoothness of center manifolds in ODEs [192], that will

imply smoothness of our center-manifold.

3.6.2 Main results — precise statements

We are now in a position to state a precise version of Theorem 3.6.1 and Corollary 3.6.1. We

are interested in system (3.6.1) and its modified variant,

T u+ F(u) = 0, (3.6.9)

T u+ F ε(u) = 0. (3.6.10)

Theorem 3.6.2 (Center manifolds and reduced vector fields). Consider equations (3.6.9) and

(3.6.10) with Hypothesis 3.6.1 on the linear convolution operator K and Hypothesis 3.6.2 on the

nonlinearity F . Recall the definitions of the kernel E0 and the projection Q on H1
−η(R,Rn),

(3.6.7). Then there exists a cut-off radius ε, a weight δ > 0, and a map

Ψ : ker T ⊂ H1
−δ(R,Rn)→ kerQ ⊂ H1

−δ(R,Rn),

with graph

M0 := {u0 + Ψ(u0) | u0 ∈ ker T } ⊂ H1
−δ(R,Rn),

such that the following properties hold:

1. (smoothness) Ψ ∈ C k, with k specified in Hypothesis 3.6.2;

2. (tangency) Ψ(0) = 0, DuΨ(0) = 0;

3. (global reduction) M0 consists precisely of the solutions u ∈ H1
−δ(R,Rn) of the modified

equation (3.6.10);

4. (local reduction) any solution u ∈ H1
−δ(R,Rn) of the original equation (3.6.9) with supx∈R |u(x)| ≤

ε is contained in M0;
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5. (translation invariance) the shift τξ, ξ ∈ R acts on M0 and induces a flow Φξ : E0 → E0

through Φξ = Q ◦ τξ ◦Ψ;

6. (reduced vector field) the reduced flow Φξ(u0) is of class C k in u0, ξ and generated by a

reduced vector field f of class C k−1 on the finite-dimensional vector space E0.

In particular, small solutions on t ∈ R to v′ = f(v) on E0 are in one-to-one correspondence with

small bounded solutions of (3.6.9).

Higher regularity. Completely analogous formulations of our main result are possible in spaces

with higher regularity, Hm
η (R,Rn), changing simply the assumptions on the nonlinearity, which

will typically require higher regularity of pointwise nonlinearities. Moreover, one then concludes

that small bounded solutions are in fact smooth in x, which one can, however, also conclude

after using bootstrap arguments in the equation.

Parameters. In the context of bifurcation theory, one usually deals with parameter dependent

problems. One then hopes to find center manifolds and reduced equations that depend smoothly

on parameters. We therefore consider

u+K ∗ u+ F(u, µ) = 0, (3.6.11)

for u : R→ Rn, n ≥ 1, µ ∈ Rd, d ≥ 1, and the nonlinear operator F is defined in a neighborhood

of (u, µ) = (0, 0). Again, we can define F ε = F ◦ (χε, id), cutting off in the u−variable, only,

leading to

u+K ∗ u+ F ε(u, µ) = 0, (3.6.12)

We then require a µ-dependent version of Hypothesis 3.6.2.

Hypothesis 3.6.3. We assume that there exists k ≥ 2 and η0 > 0 such that for all ε > 0,

sufficiently small, the following properties hold.

1. F ∈ C k(Vu × Vµ,W 1,∞(R,Rn), for some small neighborhoods 0 ∈ Vu ⊂ W 1,∞(R,Rn),

0 ∈ Vµ ⊂ Rd, and F(0, 0) = 0, DuF(0, 0) = 0;

2. F commutes with translations for all µ, F ◦ τξ = τξ ◦ F for all ξ ∈ R;

3. F ε : H1
−ζ(R,Rn)×Vµ −→ H1

−η(R,Rn) is C k for all nonnegative pairs (ζ, η) such that 0 <

kζ < η < η0, DjF ε(u, µ) : (H1
−ζ(R,Rn))j −→ H1

−η(R,Rn) is bounded for 0 < jζ ≤ η < η0,

0 ≤ j ≤ k and Lipschitz in u for 1 ≤ j ≤ k − 1, uniformly in µ ∈ Vµ.

The analogue of the center manifold Theorem 3.6.1 for the parameter-dependent nonlocal

equation (3.6.11) is the following result.

Theorem 3.6.3 (Parameter-Dependent Center Manifold). Consider equations (3.6.11) and

(3.6.12) with Hypothesis 3.6.1 on the linear convolution operator K and with Hypothesis 3.6.3 on

the nonlinearity F . Recall the definition of kernel E0 and projection Q on H1
−η(R,Rn), (3.6.7).
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Then, possibly shrinking the neighborhood Vµ, there exist a cut-off radius ε, a weight δ > 0, and

a map

Ψ : ker T × Vµ ⊂ H1
−δ(R,Rn)× Rd → kerQ ⊂ H1

−δ(R,Rn),

with graph

M0 := {(u0 + Ψ(u0, µ), µ) | u0 ∈ ker T , µ ∈ Vµ} ⊂ H1
−δ(R,Rn),

such that the following properties hold:

1. (smoothness) Ψ ∈ C k, with k specified in Hypothesis 3.6.3;

2. (tangency) Ψ(0, 0) = 0, DuΨ(0, 0) = 0;

3. (global reduction) M0 consists precisely of the pairs (u, µ), such that u ∈ H1
−δ(R,Rn) is a

solution of the modified equation (3.6.12) for this value of µ;

4. (local reduction) any pair (u, µ) such that u is a solution u ∈ H1
−δ(R,Rn) of the original

equation (3.6.11) with supx∈R |u(x)| ≤ ε for this value of µ is contained in M0;

5. (translation invariance) the shift τξ, ξ ∈ R acts on the u-component of M0 and induces a

µ-dependent flow Φξ : E0 → E0 through Φξ = Q ◦ τξ ◦Ψ;

6. (reduced vector field) the reduced flow Φξ(u0;µ) is of class C k in u0, ξ, µ and generated

by a reduced parameter-dependent vector field f of class C k−1 on the finite-dimensional

vector space E0.

In particular, small solutions on t ∈ R to v′ = f(v;µ) on E0 are in one-to-one correspondence

with small bounded solutions of (3.6.11).

Symmetries and reversibility We can also cover the cases of equations possessing symmetries

in addition to translation invariance. The aim is to show that such symmetries are inherited

by the reduced equation. Generally speaking, we have an action of the direct product G =

O(n)× (R× Z2) on spaces of functions over the real line with values in Rn, where O(n) is the

group of orthogonal n× n-matrices, and the action is defined through

((ρ, τξ, κ) · u)(x) = ρ · u(κ(x− ξ)).

Here, κx = −x when κ is the nontrivial element of Z2. Note that χε commutes with the action

of the full group O(n)× (R× Z2).

There is a subgroup Γ ⊂ G that contains the pure translations, id × R × id ⊂ Γ, such that

(3.6.1) is invariant under Γ, that is,

γ ◦ T = T γ, γ ◦ F = Fγ, for all γ ∈ Γ.

We say the equation is reversible if Γ 6⊂ O(n) × R × id, that is, if the group of symmetries

contains a reflection. We call Γe := Γ ∩ (O(n) × R × id) the equivariant part and Γr := Γ \ Γe

the reversible part of the symmetries Γ.
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We remark that the equivariance properties of Q are concerned with symmetries in O(n)×
({0} × Z2), since the action of the shift on the kernel is induced through the projection itself,

hence automatically respects the symmetry. We obtain the following result.

Theorem 3.6.4 (Equivariant Center Manifold). Assume that the above Hypotheses 3.6.1, 3.6.2

and 3.6.2 are satisfied. Then reduced center manifold M0 = graph (Ψ) and vector field f from

Theorem 3.6.2 respect the symmetry, that is,

1. E0 is invariant under Γ and Q can be chosen to commute with all γ ∈ Γ;

2. Ψ commutes with the action of Γ, M0 is invariant under the action of Γ;

3. f commutes with the equivariant part, f ◦ γ1 = γ1 ◦ f for γ = (γ1, τξ, id) ∈ Γe, and anti-

commutes with the reversible part of the symmetries, f◦γ1 = −γ1◦f for γ = (γ1, τξ, κ) ∈ Γr.

Analogous results hold for the parameter-dependent equation (3.6.11).

3.6.3 Sketch of the proof of the main results

In this subsection, we present the main ingredients regarding the proof of Theorem 3.6.1 and

Corollary 3.6.1.

Existence of a center manifold. The key ideas of the proof of Theorem 3.6.1 are as follows.

First, we consider the linearization

T : H1
−η(R,Rn) −→ H1

−η(R,Rn), T u = u+K ∗ u, 0 < η � 1, (3.6.13)

with associated characteristic equation d(ν) := det(T̂ (ν)). Using the Fredholm properties de-

veloped in Section 3.4, one can show that the operator T defined in (3.6.13) is Fredholm of

index M and onto, where M is the sum of the multiplicities of roots of d(ν) on ν ∈ iR. We

then augment equation (3.6.1) with the “initial condition”, Q(u) = u0, for a given parameter

u0 ∈ E0, which leads us to consider the “bordered” operator

T̃ : H1
−η(R,Rn) −→ H1

−η(R,Rn)× E0

u 7−→ (T (u),Q(u)) .
(3.6.14)

Since we are adding finitely many dimensions to the range, Fredholm bordering implies that T̃
is Fredholm, of index 0. As a consequence, for any 0 < η < η0, T̃ defined in (3.6.14) is invertible

with bounded inverse,

‖T̃ −1‖H1
−η(R,Rn)→H1

−η(R,Rn)×E0 ≤ C(η), (3.6.15)

with C(η) <∞ continuous for 0 < η < η0.

We now rewrite equations (3.6.1) together with (3.6.14), using the modified nonlinearity F ε
instead of F , into a more compact form

T̃ (u) + F̃ ε(u;u0) = 0, (3.6.16)
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where

F̃ ε(u;u0) = (F ε(u),−u0).

Applying T̃ −1 to equation (3.6.16), we obtain an equation of the form

u = −T̃ −1
(
F̃ ε(u;u0)

)
:= Sε(u;u0), (3.6.17)

for any u0 ∈ E0. We view (3.6.17) as a fixed point equation with parameter u0 and establish that

that Sε(·;u0) is a contraction map on H1
−η(R,Rn). From the definition of F ε and the fact that

F ε(0) = DF ε(0) = 0 with F ε of class C k for k ≥ 2 on W 1,∞(R,Rn), one obtains the following

estimates as ε→ 0,

δ0(ε) := sup
u∈H1

−η(R,Rn)

‖F ε(u)‖H1
−η(R,Rn) = O(ε2), (3.6.18a)

δ1(ε) := LipH1
−η(R,Rn)(F ε) = O(ε). (3.6.18b)

Indeed, by definition, we have F ε(u)(x) = F(u)(x) whenever ‖u(x)‖ ≤ ε and F ε(u)(x) = 0

whenever ‖u(x)‖ ≥ 2ε. Using the fact that H1 functions are also continuous functions, we

obtain the desired estimates by further noticing that F ε(u) is superlinear near u = 0. In turn,

these estimates imply

‖Sε(u;u0)‖H1
−η(R,Rn) ≤ C(η)

(
δ0(ε) + ‖u0‖H1

−η(R,Rn)

)
,

‖Sε(u;u0)− Sε(v;u0)‖H1
−η(R,Rn) ≤ C(η)δ1(ε)‖u− v‖H1

−η(R,Rn),

for all u, v ∈ H1
−η(R,Rn) and u0 ∈ E0. Let η̄ ∈ (0, η0) and η̃ ∈ (0, η̄/k), then, for sufficiently

small ε, we have

C(η)δ1(ε) < 1, ∀η ∈ [η̃, η̄].

As a consequence, there exists a unique fixed point u = Φ(u0) ∈ H1
−η(R,Rn). From Lipshitz

continuity of the fixed point iteration, we conclude that Φ is a Lipschitz map, and Φ(0) = 0

by uniqueness of the fixed point. For each η ∈ [η̃, η̄], this defines a continuous map Ψ : E0 →
kerQ ⊂ H1

−η(R,Rn) so that

u = Φ(u0) := u0 + Ψ(u0).

The most delicate part of the remaining of the proof is to show that for each p with 1 ≤ p ≤ k
and for each η ∈ (pη̃, η̄] that Ψ : E0 → H1

−η(R,Rn) is of class C p. This actually follows from our

careful assumptions on the kernel matrix K and the nonlinear operator F . The main ingredient

is an application of the contraction mapping theorem on scales of Banach spaces as presented

in [192] (see [88, Appendix A] for the details).

Smoothness of the reduced flow and reduced vector fields. In this paragraph, we establish

that the flow on the center manifold is smooth such that we can obtain the reduced ordinary

differential equation (3.6.2) simply through differentiating the flow at time zero. Consider the

action of the shift operator on functions, defined through

R×H1
−η(R,Rn) −→ H1

−η(R,Rn)

(x, u) 7−→ φ(x, u) := u(·+ x),
(3.6.19)
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for any 0 < η < η0. We briefly write φx := φ(x, ·) : H1
−η(R,Rn) −→ L2

−η(R,Rn). Clearly, φx
is bounded linear. Therefore, and by translation invariance of the original equation, φx maps

bounded solutions to bounded solutions. The following commutative diagram shows how this

action of the shift induces a flow on the kernel E0,

E0
id+Ψ //

�ϕx

��

H1
−η(R,Rn)

φx

��
E0

id+Ψ //
H1
−η(R,Rn)

Q
oo

E0
id+Ψ //

�ϕx

��

H1
−η(R,Rn)

ι ◦ φx

��
E0

ι◦(id+Ψ)//
L2
−η(R,Rn)

Q̃
oo

E0
ι◦(id+Ψ)//

�ϕx

��

L2
−η(R,Rn)

ι ◦ φx ◦ ι−1

��
E0

ι◦(id+Ψ)//
L2
−η(R,Rn)

Q̃
oo

The left diagram, id + Ψ denotes the parameterization of bounded solutions over the kernel.

On the right, φx denotes the shift which is pulled back to the kernel via the projection Q, the

inverse of id + Ψ. The right diagram views the bounded solutions as elements of L2
−η(R,Rn),

by composing the parameterization id + Ψ with the embedding ι : H1
−η(R,Rn) → L2

−η(R,Rn).

The inverse of the parameterization is the extension of the projection Q to L2
−η(R,Rn). The

induced flow on the kernel E0 is naturally the same as in the left diagram. In the center diagram,

we view the shift as a map from H1
−η(R,Rn) into L2

−η(R,Rn). Clearly, ι ◦ Φx is continuously

differentiable in x, with derivative given by the bounded linear map dy
dx . Since Q̃ is a bounded

projection on L2
−η(R,Rn), we find that

ϕx := Q̃φx ◦ (id + Ψ),

is continuously differentiable in x. From Theorem 3.6.1 we know that Ψ is a C k map from E0

to H1
−η(R,Rn). Therefore, the map x 7→ ϕx inherits the regularity properties of φ, from which

we deduce that dϕx
dx |x=0 is a C k vector field on E0,

dϕx
dx
|x=0 =: f(u0). (3.6.20)

Conversely, solutions to du
dx = f(u), u(0) = u0 yield trajectories ϕx(u0) and solutions to the

nonlocal equation (id + Ψ)(ϕx(u0)).

3.6.4 Slowly varying traveling waves in neural field equations

We now present a somehow nontrivial example that is concerned with slowly varying traveling

waves in a system of n coupled neural field equations,

∂tu(t, x) = −Du(t, x) +

∫
R

K (x− y)F (u(t, y), µ)dy, (t, x) ∈ (0,∞)× R, (3.6.21)

for u : R→ Rn, n ≥ 1, and µ ≥ 0, where D = diag(dj) is a diagonal matrix with positives entries

dj > 0 for all j = 1 · · ·n. Throughout the sequel, we will assume that K is a Gaussian matrix

kernel in the sense that for all 1 ≤ i, j ≤ n, there exists ai,j > 0, such that Ki,j(x) = exp(−ai,jx2)
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for all x ∈ R, and thus K satisfies Hypothesis 3.6.1 for all η0 > 0. We also suppose that the

nonlinear operator u 7→ K ∗ F (u, µ) verifies Hypothesis 3.6.3 and that u 7→ F (u, µ) is odd.

Although this last assumption on the oddness of the nonlinearity is not required for the analysis

and could be removed, it simplifies the subsequent computations of the reduced vector field on

the center manifold.

Spatially homogeneous states of (3.6.21) are solutions of the kinetic equation on Rn

du

dt
= −Du + K0F (u, µ), (3.6.22)

where the matrix K0 is defined through K0 :=
∫
R K (x)dx. In a neighborhood of (u, µ) = (0, 0),

we assume that the dynamics of (3.6.22) can be reduced to a one-dimensional center manifold

with a vector field
dz

dt
= g(z, µ), z ∈ R.

We suppose that the resulting bifurcation is a supercritical pitchfork bifurcation.

Hypothesis 3.6.4 (Supercritical pitchfork bifurcation). The reduced vector field on the one-

dimensional center manifold is odd in z for all µ close to zero and

g(z, µ) = z
(
αµ− βz2

)
+O

(
|z|
(
|µ|+ z2

)2)
, as (z, µ)→ (0, 0)

with α > 0 and β > 0.

Traveling wave solutions of (3.6.21) are stationary solutions of the following system of equa-

tions

∂tu = c∂ξu−Du + K ∗ F (u, µ), (3.6.23)

where ξ = x − ct for some constant c ∈ R. Steady states of (3.6.23) are thus solutions of the

following nonlocal system

0 = u + Gc ∗ F (u, µ), (3.6.24)

where we set Gc =
(
c d

dξ In −D
)−1

K . It is important to note that c 7→ Gc is a smooth operator

from W 1,∞(R,Rn) to itself because of the Gaussian nature of K . From now on, we will assume

that there is a dependence between c and µ by imposing that c = εc∗, µ = ε2 for ε ≥ 0 and

some c∗ ∈ R independent of ε. Such a scaling is motivated by an analogous study [142] for

systems of reaction-diffusion equations. It is also useful to note that in the limit c→ 0, we have

G0 = −D−1K .

The linearization of (3.6.24) about the trivial state u = 0 leads to the linear operator

Tεu := u + Gεc∗ ∗DuF
(
0, ε2

)
.

We define the linear characteristic equation d(ν, ε) as

d(ν, ε) := det
(
T̂ε(ν)

)
= det

(
In + Ĝεc∗(ν)DuF

(
0, ε2

))
, for (ν, ε) ∈ C× R+.

We make the following hypotheses on the characteristic equation.
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Hypothesis 3.6.5 (Homogeneous instability). We assume that the characteristic equation

d(ν, ε) satisfies:

• d(0, 0) = ∂νd(0, 0) = 0 with ∂ννd(0, 0) 6= 0;

• d(i`, 0) 6= 0 for all ` 6= 0.

Notation. As d(0, 0) = 0, there exists e0, e
∗
0 ∈ Rn such that

T̂0(0)e0 = e0 + Ĝ0(0)DuF (0, 0)e0 = 0,

T̂0(0)Te∗0 = e∗0 + DuF (0, 0)TĜ0(0)Te∗0 = 0,

〈e0, e
∗
0〉 = 1,

where 〈·, ·〉 denotes the standard inner product on Rn given by

〈u,v〉 =
n∑
k=1

ukvk, for any u = (uk)
n
k=1 ∈ Rn and v = (vk)

n
k=1 ∈ Rn.

Note that Ĝ0(0) = −D−1K0, together with

α = 〈K0Du,µF (0, 0)e0, e
∗
0〉 > 0,

β = −1

6
〈K0Du,u,uF (0, 0) [e0, e0, e0] , e∗0〉 > 0,

where α and β are the coefficients appearing in the Taylor expansion of g(z, µ).

Symmetries. As in the previous section, in addition to the translation equivariance, equation

(3.6.24) possesses two other symmetries, that we denote S1 and S2 respectively and act on

functions as

S1u(ξ) := u(−ξ), and S2u(ξ) := −u(ξ), ∀ξ ∈ R.

The first symmetry is a consequence of the fact that each element of the matrix kernel K

is a symmetric function, whereas the second symmetry results from the odd symmetry of the

nonlinear operator F with respect to its first argument. Finally, let us remark that the conditions

on the dispersion relation ensures that the kernel E0 of T0 is given by

E0 = Span {e0, ξe0} ⊂ H1
−η(R,Rn),

for all 0 < η < η0 and any fixed η0 > 0. As a consequence, any functions u0 ∈ E0, can be

decomposed as

u0 = Ae0 +Be1, (3.6.25)

for (A,B) ∈ R2 and e1(ξ) := ξe0. We remark that the actions of S1,2 on u0 are given by

S1u0 = Ae0 −Be1,

S2u0 = −Ae0 −Be1.

We identify the action of S1,2 on the couple (A,B) as

S1 · (A,B) = (A,−B),

S2 · (A,B) = (−A,−B).
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Projection Q. We now define the projection Q from H2
−η(R,Rn)→ E0. Note that by Sobolev

embedding we have H2(R,Rn) ⊂ C 1(R,Rn), and thus we can take linear combinations of u(0)

and u′(0). We define the projection Q : H2
−η(R,Rn)→ E0 through

Q(u) := (u(0), e∗0) e0 +
(
u′(0), e∗0

)
e1. (3.6.26)

Center manifold theorem. We apply the parameter-dependent center manifold theorem with

symmetries to system (3.6.24), to obtain the existence of neighborhoods Uu, U0 of (0, 0) in

E0 × (0,+∞) and a map Ψ ∈ C k(Uu × U0, kerQ) with Ψ(0, 0) = 0, DuΨ(0, 0) = 0, which

commutes with S1,2, and such that for all ε ∈ U0 the manifold

M0(ε) := {u0 + Ψ(u0, ε) | u0 ∈ Uu}

contains the set of all bounded solutions of (3.6.24). From now on, we write

Ψ(u0, ε) = Ψ(A,B, ε), for u0 = Ae0 +Be1.

The fact that Ψ should commute with S2 implies that

S2Ψ(A,B, ε) = Ψ(S2 · (A,B), ε),

which yields

−Ψ(A,B, ε) = Ψ(−A,−B, ε).
Thus, there will not be any quadratic term in the Taylor expansion of Ψ. From now on, we

write

Ψ(A,B, ε) =
∑

l1,l2,r≥0
l1+l2+r>1

Al1Bl1εrΨl1,l2,r,

the Taylor expansion of Ψ. Our next task is to compute the lower order terms of this expansion.

Terms of order O(εA) and O(εB). We first start by computing the linear leading order terms

in ε in the above Taylor expansion of Ψ. The function Ψ1,0,1 is the solution to the equation

T0Ψ1,0,1 − c∗D−2 d

dξ
[K ∗ (DuF (0, 0)e0)] = 0, with Ψ1,0,1 ∈ kerQ.

A trivial computation shows that d
dξ [K ∗ (DuF (0, 0)e0)] = 0, such that Ψ1,0,1 ∈ kerQ ∩ ker T0

and thus

Ψ1,0,1 = 0.

On the other hand, we have that Ψ0,1,1 is the solution to the equation

T0Ψ0,1,1 − c∗D−2 d

dξ
[K ∗ (DuF (0, 0)e1)] = 0, with Ψ0,1,1 ∈ kerQ.

First we note that, d
dξ [K ∗ (DuF (0, 0)e1)] = K0DuF (0, 0)e0 and we look for solutions of the

form

Ψ0,1,1(ξ) = γ0ξ
2e0 + ψ0,1,1, with ψ0,1,1 ∈ E0.
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We then find that

−γ0D
−1

∫
R
y2K (y)DuF (0, 0)e0dy − c∗D−2K0DuF (0, 0)e0 = 0,

such that

γ0 = − c∗
κ2
, κ2 :=

∫
R
y2〈K (y)DuF (0, 0)e0, e

∗
0〉dy;

here, we used the fact that e0 = D−1K0DuF (0, 0)e0 and 〈e0, e
∗
0〉 = 1. Note that κ2 6= 0 as

∂ννd(0, 0) 6= 0 from our hypothesis on the characteristic equation. Finally, as Q(Ψ0,1,1) = ψ0,1,1

and Ψ0,1,1 ∈ kerQ, we necessarily have ψ0,1,1 = 0.

Terms of order O(A3). The function Ψ3,0,0 solves

T0Ψ3,0,0 −D−1K ∗
(

1

6
Du,u,uF (0, 0)[e0, e0, e0]

)
= 0, with Ψ3,0,0 ∈ kerQ.

We find that

Ψ3,0,0(ξ) = β0ξ
2e0,

where β0 is given by

β0 = −1

6

〈K0Du,u,uF (0, 0)[e0, e0, e0], e∗0〉
κ2

=
β

κ2
.

Terms of order O(ε2A). The function Ψ1,0,2 is solution of the equation

T0Ψ1,0,2 −D−1K ∗ (Du,µF (0, 0)e0) = 0, with Ψ1,0,2 ∈ kerQ.

We find

Ψ1,0,2(ξ) = α0ξ
2e0,

where α0 is given by

α0 = −〈K0Du,µ(0, 0)e0, e
∗
0〉

κ2
= − α

κ2
.

The reduced vector field. The reduced vector field will be of the form

dA

dξ
= f(A,B, ε), (3.6.27a)

dB

dξ
= g(A,B, ε), (3.6.27b)

where f and g are obtained by computing

d

dξ
Q (Φ(u0(·+ ξ))) |ξ=0 = (f, g).

Note that we slightly abused notation as we identify elements in E0 with their components on

the basis {e0, e1}. We also remark that Φ(u0) = u0 + Ψ(u0, ε), such that Q (Φ(u0(·+ ξ))) =

Q (u0(·+ ξ)) +Q (Ψ(u0(·+ ξ), ε) where

d

dξ
Q (u0(·+ ξ)) |ξ=0 = (B, 0).
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Furthermore, we also have that

d

dξ
Q
(
(·+ ξ)2e0

)
|ξ=0 = (0, 2).

Collecting all terms, we obtain the system

dA

dξ
= B +O

(
ε(|A|+ |B|) + (|A|+ |B|)3

)
, (3.6.28a)

dB

dξ
= 2εγ0B + 2α0ε

2A+ 2β0A
3 +O

(
|B|(ε2 + |B|2 + |A|2)

)
. (3.6.28b)

We now rescale space with ζ = εξ, and the amplitudes A = εÂ, B = ε2B̂ to obtain a new system

dÂ

dζ
= B̂ +O (ε) , (3.6.29a)

dB̂

dζ
=

2

κ2

(
−c∗B̂ − Â

[
α− βÂ2

])
+O (ε) . (3.6.29b)

From now on we suppose that

κ :=
κ2

2
=

1

2

∫
R
y2〈K (y)DuF (0, 0)e0, e

∗
0〉dy > 0,

and formally set ε = 0 in (3.6.29) to obtain the second order ordinary differential equation

κ
d2Â

dζ2
+ c∗

dÂ

dζ
+ Â

[
α− βÂ2

]
= 0. (3.6.30)

We know that such an equation admits monotone front solutions for any |c∗| ≥ 2
√
κα connecting

the state Â = 0 to the state Â =
√
α/β (see [92, 143]). Note that for ε > 0, there exists a

unique saddle-point a(ε) := (
√
α/β + O(ε), 0). Then it follows from perturbative arguments

[63, 142] that system (3.6.29) has front solutions connecting (0, 0) with a(ε). Monotonicity in

the tails can be established for speeds |c∗| > 2
√
κα+O(ε). We denote by u∗ the front solution

of equation (3.6.30) connecting 0 to
√
α/β, In our initial problem, we thus have thus shown the

existence of slowly varying front solutions of (3.6.21) of the form

u(t, x) = εu∗(ε(x− εc∗t))e0 +O(ε2),

for all t, x ∈ R, with monotone tails for |c∗| ≥ 2
√
κα+O(ε) and u∗ solution of (3.6.30).



Chapter 4

Propagation phenomena in general

reaction-diffusion equations

In this chapter, we present elements of answer to the question raised in the introduction regarding

propagation phenomena in reaction-diffusion equations along three complementary directions.

First, we study spreading speeds in reaction-diffusion equations, that is we analyze how com-

pactly supported initial conditions spread into an unstable state and characterize the asymptotic

speed of propagation. Here, we are interested in the case where some nonlinear coupling terms

are present in the system which induce a resonant spreading speed, see Section 4.1. In some

cases, it is hopeless to precisely characterize spreading speeds, and thus one needs to rely on

another point of view. Fortunately, in many reaction-diffusion systems, it is often the case that

compactly supported initial conditions eventually converge to a traveling front. In these cases,

one approach is to consider the speed selection problem as a front selection problem and iden-

tify fronts which are consistent with selection from compactly supported initial data. This is

precisely the analysis conducted in Section 4.2 where we investigate the bifurcation to locked

fronts in two-component reaction-diffusion systems. Once traveling fronts have been shown to

exist, it is natural to ask if whether or not they are stable under some perturbations. In the last

Section 4.3, we present two results pertaining at the stability of traveling fronts for reaction-

diffusion equations. In both cases the boundary of the essential spectrum of the linearized

operator around the traveling front touches the imaginary axis resulting in an algebraic decay

of the perturbations in some well-chosen functional spaces.

4.1 Spreading speeds in reaction-diffusion equations

We are interested in spreading speeds in spatially extended systems when more than one

scalar mode participates in the instability. As a particular example, we are interested in sys-

tems possessing a homogeneous steady state that is unstable with respect to both homogeneous

perturbations and perturbations near a fixed nonzero wavelength (a homogeneous-Turing in-

89
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stability). Dynamics of such systems can be captured well by amplitude equations for weak

instabilities, a real scalar amplitude equation for the homogeneous mode, and a complex scalar

equation for the Turing mode. When the unstable steady state is perturbed, a competition be-

tween modes ensues and a fundamental question is to determine which of these modes prevails.

For localized perturbations this process is governed by the formation of a traveling invasion

front. A defining characteristic of this front is its speed. Predictions of this spreading speed

usually come with predictions for eigenmodes and eigenfrequencies in the leading edge, which

ultimately allow one to predict selected modes and patterns formed in the wake of the invasion

process.

Spreading speeds for scalar equations are reasonably well understood, in particular in the

case when speeds are linearly determined. Criteria for the speed can be readily calculated and

proofs for the invasion speed can be obtained using comparison principles. For systems, some

results are available for particular structures, such as competitive or cooperative systems, which

again allow for the use of comparison principles. Leaving this restrictive class, we are interested

in predictions for spreading speeds based on general properties of the linearization, in particular

the linear dispersion relation. In essence, these predictions characterize spreading speeds through

marginal stability criteria, based on pinched double roots, that is, on linear coupling of modes.

The principle objective of this study is to derive criteria for spreading speeds that incorporate

the possibility of nonlinear mode coupling. Before stating and corroborating such criteria for

general systems, far from onset of instabilities, we now motivate the effect in a simple pair of

amplitude equations that one would derive near a homogeneous–Turing instability [56],{
∂tU = dU∂

2
xU + (a1 + a2|A|2)U + a3U

3 + a4|A|2
∂tA = dA∂

2
xA+ (b1 + b2U + b3U

2)A+ b4A|A|2,
(4.1.1)

where U(t, x) ∈ R represents the amplitude of the homogeneous perturbation, A(t, x) ∈ C
represents the amplitude of the Turing mode and the real coefficients aj and bj are determined

from the particular system being studied. In the following, we restrict our considerations to

the simplest case where A ∈ R. In (4.1.1), the zero solution is unstable for a1, b1 > 0 and the

linearization is diagonal, reducing to two uncoupled scalar equations,{
∂tU = dU∂

2
xU + a1U

∂tA = dA∂
2
xA+ b1A,

(4.1.2)

Localized initial conditions in these scalar equations grow and spread spatially. The resulting

speeds of propagation are the usual linear spreading speeds, sU = 2
√
dAa1 for the homogeneous

mode and sA = 2
√
dAb1 for the Turing mode. The larger of these two spreading speeds is

a natural candidate for the spreading speed in the original system. We are interested in cases

where the nonlinear interaction of modes can create a faster spreading speed sAU > max{sA, sU}.
In (4.1.1) the most relevant interaction is generated by the coupling term a4|A|2. This term

can be interpreted as quadratic interactions of the Turing mode driving the U equation as a

spatio-temporal inhomogeneity. Our main findings point to precise parameter regions where this

acceleration through interaction is possible. Interestingly, the accelerated spreading speed sAU
is independent of the strength of the nonlinearity, but rather reliant only on the mere presence

of a quadratic coupling term, a4 6= 0.
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Of course, there are many examples of situations where the nonlinearity significantly amplifies

growth and leads to spreading faster than the linear spreading speed, a situation which is mostly

observed in subcritical instabilities and referred to as “pushed”, nonlinear invasion, rather than

“pulled”, linear invasion. This does not occur in the parameter regimes that we study here. We

emphasize that the invasion fronts of interest here are inherently linear – their speeds can be

determined entirely from linear information and the nonlinearity is required only to provide the

requisite coupling. In this way, the acceleration mechanism we observe here is fundamentally

different from those leading to pushed fronts.

4.1.1 Review of invasion speed theory

We briefly review invasion speed theory, in particular linear criteria for the speed. Our focus

here is rather narrow and we emphasize those features pertinent for the results obtained in the

remainder of this section. We point the interested reader to [190] for a more in depth review

and general treatment.

Localized perturbations of an unstable steady state grow in time and spread spatially. The

spreading process is mediated by invasion fronts that propagate into the unstable state and

select a secondary state in their wake. A defining feature of these fronts is the speed at which

they propagate. Invasion fronts can be loosely characterized as either pulled or pushed. Pulled

fronts are driven by the instability of the unstable state ahead of the front interface and their

speed can be calculated from the linearization of the system about this state. On the other

hand, the growth of perturbations can sometimes be enhanced by nonlinear effects such that

the speed is determined by the nonlinearity. Fronts of this variety are commonly referred to as

pushed.

Determining the speed of pulled fronts involves calculating the linear spreading speed. In

words, the linear spreading speed is the critical speed at which a moving observer witnesses a

transition from pointwise exponential stability to pointwise exponential instability. At any speed

faster than the linear spreading speed the observer outruns the instability while at slower speeds

the instability outruns the observer. In this way, linear spreading speeds are related to the

notion of absolute and convective instabilities, see for example [24, 34, 36, 46, 57, 120, 124, 177].

Mathematically, the linear spreading speed associated to an unstable state can be determined

by locating pinched double roots of the dispersion relation.

To be precise, consider a scalar partial differential equation

∂tu = Lu+N(u), N(u) = N2[u, u] +O(|u|3), L̂u(`) = A(i`)û(`),

with max`<A(i`) > 0, that is, u ≡ 0 is unstable. Associated to this unstable state is a dispersion

relation, D(λ, ν) = A(ν) − λ. Simple roots of the dispersion relation dictate the temporal evo-

lution eλt, λ ∈ C of modes eνx, with ν ∈ C. Double roots (λ, ν) correspond to a “double” mode

with spatio-temporal behavior eλt+νx. Such double roots, together with a pinching condition,

give rise to a singularity of the Green’s function and therefore induce spatio-temporal behavior

eλt+νx for localized initial conditions, locally in space. Therefore, pointwise linear stability is

equivalent to requiring that <λ < 0 for all pinched double roots. Transforming to a frame of

reference moving with speed s, the location of these pinched double roots varies with s and



92 CHAPTER 4. PROPAGATION PHENOMENA IN GENERAL REACTION-DIFFUSION EQUATIONS

marginal stability is achieved when the pinched double root satisfies λ∗ ∈ iR for some value of

s = slin; see for instance [120] for a recent and general account of the linear theory.

Definition 4.1.1 (Linear spreading speed). Consider the dispersion relation in a co-moving

frame with speed s, Dco
s (λ, ν) = D(λ, ν) + sν − λ. A double root (λ∗, ν∗) of the dispersion

relation,

Dco
s (λ∗, ν∗) = 0, ∂νD

co
s (λ∗, ν∗) = 0,

is pinched if solving Dco
s (λ, ν) for ν± = ν(λ) with limλ→λ∗ ν±(λ) = ν∗, we have that <(ν+(λ))→

+∞ as <(λ)→ +∞ and <(ν−(λ))→ −∞ as <(λ)→ +∞. The linear spreading speed is defined

as

slin = sup
s∈R
{Dco

s (λ, ν) has a pinched double root with <(λ) > 0} .

A more subtle analysis of the singularity of the Green’s function predicts a slow convergence

to the front, with relaxation of the speed s ∼ s∞ − 3
2<ν∗t ; see [29] for a first proof of expansions

for the speed in the case of the scalar KPP equation using probabilistic methods, [62] for an

analysis in a more general context based on the Green’s function, and the more recent [108] that

partially recovers Bramson’s result using PDE comparison techniques. Our emphasis here goes

in a different direction, aimed at “zeroth order” speed selection in more complicated equations

rather than higher order approximations in simple systems.

The possibly simplest example where complications arise is when the linearization has a

skew-product structure that is, a subset of variables decouples from the others. It is then

possible for multiple linear spreading speeds to exist within different components. To give an

example, consider the system of equations studied in [116, 117]{
∂tu = d∂2

xu+ αu− u2 + βv,

∂tv = ∂2
xv + v − v2.

Linearizing the system about the unstable state, the v component decouples and feeds into

the u component as a source term. The dispersion relation for the full system is the product

of the dispersion relations for the sub-systems, i.e. D(λ, ν) = Du(λ, ν)Dv(λ, ν). The linear

spreading speed for the v component is the Fisher-KPP speed of two and the solution converges

to a traveling front with decay rate xe−x. However, ahead of the front steeper decay rates are

observed. These steep modes feed into the u component as a source term and, depending on

the values of d and α, lead to faster spreading speeds. To determine the selected mode ν∗,

one imposes that Du(λ∗, ν∗) = Dv(λ
∗, ν∗). This resonance condition, together with a pinching

requirement, implies that (λ∗, ν∗) is a pinched double root of the full dispersion relation D(λ, ν)

and determines the associated linear spreading speed.

This study is based upon the observation that the pinched double root criterion may be

insufficient in cases where there exist multiple bands of unstable modes. The previous example

illustrates that spreading can be thought of as being enabled by “1 : 1–resonant coupling”

between modes. A crucial factor is the presence of the term βv which enables the resonant

coupling — spreading speeds are slower when β = 0; see also [94] for bidirectional coupling and

associated discontinuity of spreading speeds. This point of view suggests that higher resonances
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may induce associated spreading speeds provided that nonlinear coupling terms are present in

the system. The present work can be viewed as a case study for spreading speeds induced by

“2:1–resonant coupling”. In other words, we suggest that spreading of localized disturbances into

an unstable medium can be studied in a similar fashion to instabilities in bounded domains, that

is, deriving amplitude equations that take into account the crucial effect of nonlinear interaction.

A key difference is that such considerations here appear to be relevant even far from onset of

instability, since speeds are determined in the leading edge of the front, at small amplitude, even

when final states in the system have large finite amplitude.

4.1.2 Linear speeds from pointwise stability — min-max characterizations

The formulation of the linear spreading speed given in Definition 4.1.1 is difficult to generalize

to encompass resonant interaction of modes. Here, we discuss an equivalent min-max formulation

of the linear spreading speed.

To motivate the following definition of a resonant spreading speed, recall the criterion for

linear spreading speeds in scalar equations. With λ = λ(ν) from the dispersion relation in a

steady frame1, we can define an envelope velocity senv(ν) = −<(λ(ν))
<ν . In the simplest case of

order preserving systems, assuming that perturbations travel at most as fast as linear pertur-

bations, the linear (or 1 : 1-resonant) spreading speed can be obtained as a minimum of the

envelope velocity,

slin = min
ν∈R

(senv(ν)).

We find the extremality condition by differentiating,

0 = −<(λ′(ν∗)) +
<(λ(ν∗))

<(ν∗)
=: <(sg(ν∗))− senv(ν∗),

where we wrote sg(ν) := −λ′(ν) for the group velocity, generalized to complex ν. Passing to a

frame moving with speed senv, we find the dispersion relation

Dco
s (λ, ν) := D(λ− sν, ν), (4.1.3)

with s = senv. Roots (λ, ν) in the steady frame translate to roots (λ + sν, ν) in the comoving

frame. In particular, group velocity follows Galilean transformation laws and <sco
g = sg − senv

in the frame moving with the linear spreading speed.

Beyond order preserving systems, we may allow modulations of the envelope and would then

require that this minimum is taken over the maximal (with respect to modulations, that is,

variations in =(ν)) envelope speed

slin = min
<ν

max
=ν

(senv(ν)). (4.1.4)

As a consequence, sg ∈ R and λ′(ν) = 0 in a comoving frame, which is the classical double

root criterion. We note that the min-max criterion can be obtained more systematically from a

contour analysis of the Green’s function in the complex plane.

1For systems, we take λ(ν) to be the root with largest real part
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The real part of the group velocity is often interpreted as the speed at which a “localized

patch” of the mode eνx spreads. In dispersive media, the group velocity provides the speed at

which wave packets propagate, see for example [196]. It plays a similar role in the Fisher-KPP

equation where the group velocity gives the slope of the ray in space-time for which solutions

have a particular exponential decay rate, see [27, 117]. From this viewpoint, if the group velocity

of a mode exceeds the envelope velocity then perturbations overtake the solution and marginal

stability is not attained. On the other hand, if the group velocity is slower than the envelope

velocity then the solution spreads faster than the perturbation and marginal stability is again

not achieved. With this interpretation, the linear spreading speed is the speed at which the

group velocity equals the envelope velocity. These conditions: that the group velocity is real

and equal to the envelope velocity, in turn imply that the mode leading to these conditions is a

critical point of the envelope velocity; see [189]. The group velocity of the mode ν can also be

interpreted as giving the speed of the region in space-time for which the solution resembles the

mode ν2.

In order to justify this min-max characterization somewhat more explicitly, we start with

the Fourier representation of solutions to the linear constant-coefficient equation ∂tu = Lu,

u(t, x) =
1

2π

∫
R
e`x+λ(i`)tû(0, i`)d`,

where the Fourier transform of the initial condition û(0, i`) is analytic in `. Under suitable

assumptions on λ(ν), we can deform the contour in the complex plane,

u(t, x) =
1

2π

∫
R
e(i`+η)x+λ(i`+η)tû(0, i`+ η)d`,

which can in turn be estimated as

|u(t, x)| ≤ C sup
`
e<λ(i`+η)t,

again using mild assumptions on λ(ν). We can now optimize over η and obtain the optimal

exponential growth estimates

|u(t, x)| ≤ C inf
η

sup
`
e<λ(i`+η)t.

The spreading speed is obtained by replacing λ(ν) 7→ λ(ν) + sν and finding the largest speed

for which growth vanishes,

s∗ = sup

{
s| inf

η
sup
`

(<(λ(i`+ η)) + sη) = 0

}
.

Introducing λmax(η) := sup`<(λ(i`+ η)), this simplifies to

s∗ = sup

{
s| inf

η
(λmax(η) + sη) = 0

}
.

2This interpretation appears to be valid when the group velocity is real, but no longer so for complex group
velocities. The interpretation of complex group velocities is less well understood, although headway has been
made in several articles [103, 160, 186]. When the group velocity is complex, the ray in space time for which the
mode is conserved is no longer a straight line.
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Geometrically, −s is the slope of the least steep line through the origin that touches the graph of

λmax(η). On the other hand, this slope can also be obtained as the minimum of λmax(η)/(−η),

which is of course the min-max criterion that we introduced in (4.1.4).

We remark that such min-max characterizations of spreading speeds go back to at least [107],

for particular scalar examples, providing however also nonlinear characterizations of spreading

speeds in these cases.

4.1.3 Linear speeds based on quadratic mode interaction — definition of squad

Going back to the possibility of quadratic interaction of modes, consider two modes ν2,3 ∈
C. Quadratic terms in the partial differential equation will couple these two modes and this

interaction will potentially lead to amplification of the mode ν1 = ν2 + ν3 and faster spreading

speeds. The temporal behavior of ν1 will depend on the temporal behavior of the modes ν2,3

and the temporal behavior of ν1 by itself. We identify the following criterion to predict the

spreading speeds induced by this quadratic interaction.

Scalar case. For simplicity, we first state the criterion in the scalar case and then generalize

it to systems in the next paragraph.

Definition 4.1.2 (2 : 1-resonant spreading speeds). The spreading speed squad induced by

quadratic interaction of modes is a critical point of the envelope velocity senv associated with

pinched, space-time resonant modes ν2, ν3,

squad = min
<(ν2+ν3)

max
=(ν2+ν3)

{senv(ν2 + ν3) | ν2, ν3 space-time resonant and pinched} ,

where

senv(ν2 + ν3) = −<(λ(ν2 + ν3))

<(ν2 + ν3)
,

and space-time resonance and pinching constraints on ν2, ν3 are

1. (space-time- resonance) ν1 = ν2 + ν3 and λ(ν1) = λ(ν2) + λ(ν3);

2. (pinching) solving Dco
s (λ, ν) for νj = ν(λj), s = squad, we require <(ν1(λ)) → +∞ as

<(λ)→ +∞ and <(ν2,3(λ))→ −∞ as <(λ)→ +∞.

The corresponding quadratic coupling condition is

e−ν1xN2[eν2x, eν3x] 6≡ 0.

Remarks 4.1.1. For pointwise functions N(u)(x) = f(u(x)), quadratic coupling simply requires

that quadratic terms do not vanish, f ′′(0) 6= 0. On the other hand, the quadratic coupling

condition is presumably not strictly necessary, coupling of almost-resonant modes ν̃j = νj + εj,

with εj arbitrarily small, appears to be sufficient; see the discussion for more details.

In other words, we mimic the procedure for scalar equations, but rather than combining two

modes ν1 and ν2 “linearly” via a double root, we combine ν1 and ν2 + ν3, where the latter is

obtained from the quadratic interaction of modes ν2 and ν3.
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Remarks 4.1.2. Nonlinear resonant interaction is of course a well known phenomenon, in

nonlinear dynamics as well as in the context of nonlinear waves [196]. There, one usually

considers dispersive, Hamiltonian systems with dispersion relation ω(k) ∈ R, ω = =λ, k = =ν.

Resonant triads correspond precisely to our space-time resonance condition, ω1 = ω2 + ω3,

k1 = k2 + k3. In this sense, our criterion could be viewed as an extension of the theory to

complex wavenumbers.

Generalization to systems of equations. Consider a system of equations

∂tu = Lu+N(u),

with u ∈ Rn, N(u) = N2(u) + O(|u|3), and linear part L defined through its Fourier symbol

A(i`). Applying the Fourier-Laplace transform to the linear equation ∂tu = Lu, solutions are

obtained for any triple ν, λ, vν for which

(A(ν)− λI) vν = 0.

Note that such a solution exists precisely when (ν, λ) is a root of the dispersion relation,

D(λ, ν) = det (A(ν)− λI) . (4.1.5)

Assuming that a mode (λ, ν) is simple, that is, ∂λD 6= 0 at (λ, ν), we can solve(
A∗(ν)− λ̄I

)
wν = 0, (wν , vν) = 1,

where (·, ·) denotes the hermitian scalar product. Again using ∂λD 6= 0, we find a smooth family

λ(ν) and expressions for envelope and group velocities of the mode ν,

senv(ν) = −(A(ν)vν , wν)

ν
, sg(ν) = − d

dν
(A(ν)vν , wν).

Definition 4.1.3 (2 : 1-resonant spreading speeds — quadratic coupling in systems). The

quadratic speed in systems is defined as for scalar systems, via the dispersion relation (4.1.5).

The quadratic coupling condition for extremal, space-time resonant, pinched modes (λj , νj), j =

1, 2, 3, is3 (
N2[eν2xvν2 , e

ν3xvν3 ], e−ν̄1xwν1 ,
)
6≡ 0.

4.1.4 Application: unidirectionally coupled amplitude equations – Quadratic spread-

ing speeds

Our goal here is to validate the criterion from Definition 4.1.3 in a simple case of unidirec-

tionally coupled amplitude equations of the form{
∂tU = d∂2

xU + (α− 6A2)U − U3 + 2γA2,

∂tA = 4∂2
xA+A− 3A3.

(4.1.6)

3Again, for pointwise evaluation nonlinearities f(u), the exponentials eνjx can be omitted.
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Such equations are typical amplitude equations near simultaneous onset of a Turing and a

pitchfork bifurcation. Here, U stands for the amplitude of a homogeneous instability, and A

represents the amplitude of a Turing mode, which we restricted to real values. It turns out that

the spreading speeds observed in (4.1.6) are determined by the linearization about the unstable

zero state. Depending on the parameter values (d, α), the spreading speed observed in (4.1.6)

will be one of three speeds: the speed of the zero mode sU = 2
√
dα, the speed of the Turing

mode sA = 4, or the speed of the zero mode induced by the Turing mode through the quadratic

interaction γA2 as defined in Definition 4.1.3. We call this speed sAU .

Lemma 4.1.1. The speed squad induced by coupling modes ν2,3 from the equation for the Turing

mode to modes ν1 from the equation for the homogeneous mode U through the quadratic term

γA2, γ 6= 0, is faster than the single-mode speeds sA and sU in the region

P =

{
(d, α) | 4− d < α (0 < d ≤ 1), 4− d < α <

d

d− 1
(1 < d < 2)

}
.

Proof. First, in a moving coordinate frame, the roots of the dispersion relation Dco
s (λ, ν) can

be calculated explicitly, {
ν±U (λ, s) = − s

2d ± 1
2d

√
s2 − 4dα+ 4dλ,

ν±A (λ, s) = − s
8 ± 1

8

√
s2 − 16 + 16λ.

(4.1.7)

The envelope velocities associated to modes ν ∈ R− are,{
sU (ν) = −dν − α

ν ,

sA(ν) = −4ν − 1
ν .

Group velocities in the second equation are simply sg = −λ′(ν) = 8ν, so that “complex

interaction” implies ν2 = ν3. Space-time resonance then implies that

2(4ν2
2 + 1) = d(2ν2)2 + α,

and therefore that

ν2 = −1

2

√
α− 2

2− d .

This implies that ν1 = 2ν2 and we calculate the envelope velocity sU (ν1) which yields the speed

sAU = d

√
α− 2

2− d + α

√
2− d
α− 2

. (4.1.8)

In order to find the restrictions on parameters (α, d) ∈ P as stated in the theorem, we check

the pinching condition which imposes restrictions on the parameter values. We first note that

<ν = 0 would give infinite envelope speed, certainly not a minimum in the definition of squad.

Now <ν2 < 0 implies that, either (i), α > 2 and d < 2, or (ii), α < 2 and d > 2. Since ν1 = 2ν2,

we see that ν1 is a root of the dispersion relation in the comoving frame DsAU (λ, ν) with λ = 0.

In order to verify the pinching condition, we need to track this root as Re(λ)→ +∞ and verify

that this root tends to +∞ as well.
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Since we have explicit representations of roots, we only need to show that ν1 = ν+
U (0, sAU ).

This is true if ν1 + sAU
2d > 0, or, equivalently, if

ν1 +
sU (ν1)

2d
=
ν1

2
− α

2dν1
> 0.

Since ν1 < 0, this is equivalent to ν2
1 <

α
d . Expand this condition,

α− 2

2− d <
α

d
,

and solve for α to find,

α(d− 1) < d and d < 2, or, α(d− 1) > d and d > 2.

This condition holds automatically if d ≤ 1 and gives a condition on α if d > 1.

In a similar fashion, we require ν2 = ν−A (0, sA(ν2)). Once again referencing (4.1.7), this is

equivalent to the requirement that ν2 + sA
8 < 0. Expanding we find that

α > 4− d and d < 2, or, α < 4− d and d > 2.

Finally, note that requirements that d
d−1 < α and α < 4 − d are not compatible for d > 2. As

a consequence, we are left with the restrictions d < 2, α < d/(d− 1), α > 4− d, which delimits

precisely the region P.

One can check that the min-max criterion actually gives a finite value for s, ν2/3, which then

necessarily coincides with the value of the unique critical point that we computed here.

Now that we have identified sAU and the region P, we can state the following theorem.

Theorem 4.1.1. Choose (α, d) ∈ P, such that sAU > max{sA, sU}. Define the invasion point,

κ(t) = sup
x∈R
{x | u(t, x) >

√
α− 2},

and the selected speed

ssel = lim
t→∞

κ(t)

t
.

For (d, α) ∈ P, and γ 6= 0, the solution of (4.1.6) with initial data consisting of compactly

supported perturbations of Heaviside step functions will spread with speed

sAU = d

√
α− 2

2− d + α

√
2− d
α− 2

,

i.e. ssel = sAU . In the complement of the region P, one has

ssel = max{sA, sU}.

We refer to Figure 4.1 for an illustration.
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Figure 4.1: Comparison of numerically observed spreading speeds (crosses) with theoretical predictions
(colored lines). Theory predicts transitions from speeds sA (green) to sAU (blue) to sU (red) as d is
increased (left).

The proof of Theorem 4.1.1 relies on the the construction of sub and super solutions and

is based on ideas in [116, 117]. As usual, it is the construction of sub-solutions that consists

in the most delicate part of the analysis. We note that for the particular case of amplitude

equations in (4.1.6), the dynamics of the Turing mode is independent of the dynamics of the

zero mode. This fact, that is, the absence of a back-coupling as seen in (4.1.1), is essential to the

proof of Theorem 4.1.6, it is, however not generic for amplitude equations near Turing/pitchfork

instabilities. On the other hand, this skew-product nature of the equation does not appear to

be relevant to the underlying phenomenon and should be thought of as a technical assumption

that allows the use of comparison principles.

We briefly comment on the mechanism leading to faster speeds in (4.1.6), which is similar to

the one identified in [116, 117]. Starting from compactly supported initial data, the A component

forms a traveling front propagating with speed 4. Ahead of the front interface, the solution decays

to zero faster than any exponential. Through the quadratic coupling term, the A component

acts as a source in the U equation with decay rates twice those of the original solution. Under

the evolution of the equation governing U , these ”steep” decay rates may actually be ”weak”

and lead to faster invasion speeds and the front profile will converge to a super-critical traveling

front with weak exponential decay.

4.1.5 Extensions

The above theory can be naturally extended to treat more general form of resonances. To

illustrate the robustness of our method, let us consider the following system of coupled reaction

diffusion equations,


∂tu = d∂2

xu+ αu(1u) + βvp(1− u) , t > 0, x ∈ R,
∂tv = ∂2

xv + v(1− v) , t > 0, x ∈ R,
u(0, x) = u0(x), v(0, x) = v0(x) , x ∈ R,

(4.1.9)
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with d, α, β, p > 0 and given initial conditions 0 ≤ u0, v0 ≤ 1 being compactly supported

perturbations of the Heaviside step function 1x≤0. As usual, we define the invasion point as

κ(t) = sup
x∈R

{
x |u(t, x) ≥ 1

2

}
,

and we want to know the expression of the selected speed or spreading speed,

ssel = lim
t→∞

κ(t)

t
.

We have the following result.

Theorem 4.1.2. Consider (4.1.9) with with d, α, β, p > 0. Fix initial data 0 ≤ u(0, x) ≤ 1

and 0 ≤ v(0, x) ≤ 1, each consisting of a compactly supported perturbation of the Heaviside step

function 1x≤0. Then, there exist domains I, II, III, depending on p, so that the selected speed

ssel(p) is given by

ssel(p) =


2 , (d, α) ∈ I,

2
√
dα , (d, α) ∈ II,

sanom(d, α, p) , (d, α) ∈ III,

with

sanom(d, α, p) =

√
α− p
p− dp2

+

√
p− dp2

α− p , (4.1.10)

and

I =

{
α ≤ p(2− dp) | d ≤ 1

p

}
∪
{
α ≤ 1

d
| d > 1

p

}
,

II =

{
α ≥ dp2

2dp− 1
| 1

2p
< d ≤ 1

p

}
∪
{
α ≥ 1

d
| d > 1

p

}
,

III =

{
α > p(2− dp) | d < 1

2p

}
∪
{
p(2− dp) < α <

dp2

2dp− 1
| 1

2p
< d ≤ 1

p

}
.

Let first note that the system (4.1.9) has already been studied in the case p = 1 [116, 117].

It is important to note that when p = 2, we recover the ”2 : 1- resonant spreading speed”

from Definition 4.1.3. Actually, for any p ≥ 1 being an integer, the spreading speed can be

interpreted as a ”p : 1- resonant spreading speed”. However, for general p > 0, it is not possible

to use directly Definition 4.1.3, and this is why we propose the natural generalization (4.1.14); see

below. It is also important to remark that for (d, α) ∈ III we have sanom(d, α, p) > max(2, 2
√
dα)

and in that respect sanom is referred to as an anomalous spreading speed. We will see that it

is the coupling βvp into the u component of system (4.1.9) that induces a resonance in the

dynamics leading to this anomalous spreading speed. It is interesting to note that as p→ +∞,

the domain III of existence of the anomalous speed shrinks as it is shifted close to axis d = 0

where it imposes large values for α as we have α ≥ p(2− dp) in that region. On the other hand,

when p → 0+, the domain of existence of the anomalous speed becomes larger and eventually

covers the whole quadrant α > 0 and d > 0. In that respect, small values of p enhance anomalous
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spreading. The proof of Theorem 4.1.2 relies on the fact that each component of (4.1.9) satisfies

the comparison principle, allowing us to apply the theory of sub- and super-solutions. In fact,

for each domain, we explicitly construct sub- and super-solutions from which we will deduce

Theorem 4.1.2.

Derivation of the spreading speed. For p > 0 and not an integer, we would like to proceed

along similar lines as in the case p = 1, from [116, 117], where the strategy is to linearize the

system around the unstable state (0, 0). We consider the system{
∂tu = d∂2

xu+ αu+ βvp , t > 0, x ∈ R,
∂tv = ∂2

xv + v , t > 0, x ∈ R,
(4.1.11)

which will serve as a natural super-system for (4.1.9). In a moving frame y = x − st, (4.1.11)

writes {
∂tu = d∂2

yu+ s∂yu+ αu+ βvp , t > 0, y ∈ R,
∂tv = ∂2

yv + s∂yv + v , t > 0, y ∈ R.
(4.1.12)

The following heuristic approach on system (4.1.12) will give us an educated guess on the

expressions of domains I, II, III and the expression of sanom in the general case p > 0.

If one considers exponential solutions of the form

u(t, y) = eΛteνu(s,Λ)y, v(t, y) = eλteνv(s,λ)y,

then in order for those functions to satisfy (4.1.12) we necessarily need

Λ = pλ, and νu(s,Λ) = pνv(s, λ).

The heuristic is then the following : for fixed values of (d, α, p), we seek the couples (s, λ)

solutions of any of the four equations
ν+
u (s, λ) = ν−u (s, λ),

ν+
v (s, λ) = ν−v (s, λ),

ν±u (s, pλ) = pν∓v (s, λ),

(4.1.13)

and we want to find the value of the speed

slin(p) = sup {s > 0 | all couples (s, λ) solutions of (4.1.13) satisfy Re(λ) > 0} . (4.1.14)

We call that speed the linear speed despite (4.1.12) not being linear, as it serves as a predictor

for the selected speed of the nonlinear system, just like the case p = 1. Obviously, slin(1) = slin

from [116, 117] and slin(2) = squad from Theorem 4.1.1.

4.2 Locked fronts in reaction-diffusion equations

We study invasion fronts for general systems of reaction-diffusion equations,{
∂tu = ∂2

xu+ F (u, v),

∂tv = σ∂2
xv +G(u, v),

(4.2.1)
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Figure 4.2: Illustration of our assumptions leading to the existence of locked traveling front solutions (in
blue) of (4.2.1). In red, we have represented the pushed front (Up(x − s∗t), 0) connecting p1 = (u+, 0)
to p0 = (0, 0) that propagates to the right with speed s∗ given by assumption (H2) below. In green,
we have sketched one traveling front solution (Up2→p1(x− st), Vp2→p1(x− st)) connecting p2 = (u∗, v∗)
to p1 = (u+, 0) that propagates to the right with some speed s ≈ s∗ given by assumption (H5) below.
Our main result demonstrates the existence of locked fronts (U(x − s(σ)t), V (x − s(σ)t)) connecting
p2 = (u∗, v∗) to p0 = (0, 0) that propagates to the right with speed s(σ) for σ ≈ σ∗, see (H3) below for
the definition of σ∗.

where σ > 0 and x ∈ R. More specifically, we are interested in traveling wave solutions of the

form (u(x− st), v(x− st)) which satisfy{
−su′ = u′′ + F (u, v),

−sv′ = σv′′ +G(u, v),

where we have set ξ = x− st and used the notation u′ for
du

dξ
and u′′ for

d2u

dξ2
. It will be more

convenient to write this system as a first-order system
u′1 = u2,

u′2 = −su2 − F (u1, v1),

v′1 = v2,

σv′2 = −sv2 −G(u1, v1).

(4.2.2)

Throughout, the reaction terms are assumed to have the form,

F (u, v) = uf(u, v), G(u, v) = vg(u, v), with f(0, 0) > 0 and g(0, 0) > 0. (4.2.3)

Precise assumptions regarding the functions F (u, v) and G(u, v) are listed below. We sketch

those assumptions now to better set the stage and we refer to Figure 4.2 for an illustration.

(H1) System (4.2.1) has three nonnegative homogeneous steady states: p0 = (0, 0), p1 = (u+, 0)

and p2 = (u∗, v∗) and the associated traveling wave equation (4.2.2) has three correspond-

ing fixed points P0 = (0, 0, 0, 0), P1 = (u+, 0, 0, 0) and P2 = (u∗, 0, v∗, 0).

(H2) There exists a pushed front (Up(x − s∗t), 0) connecting p1 to p0 that propagates to the

right with speed s∗ and leaves the homogeneous state p1 in its wake.
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(a) Staged invasion fronts.
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(b) Locked fronts.

Figure 4.3: Profiles of the solutions of (4.2.1), evaluated at time t = 300, with nonlinear terms f(u, v) =
(1− u)(u+ 1/16)− v and g(u, v) = 2u(1− u) + 1/8− v for different values of σ. (a) We observe a staged
invasion process where the zero state is first invaded by the u component, then at some later time is
subsequently invaded by the v component. Here we have set σ = 0.25. (b) We observe locked fronts with
both components traveling at the same wave speed. Here we have set σ = 0.3. Note that p0 = (0, 0),
p1 = (1, 0) and p2 = (0, 1/8).

(H3) There exists a σ∗ > 0 such that the linearization of the v component about the pushed

front has marginally stable spectrum at σ = σ∗. If σ < σ∗, then small perturbations of

the front (Up(x− s∗t), 0) in the v component propagate slower than s∗ whereas for σ > σ∗

these perturbations spread faster than s∗.

(H4) We assume an ordering of the eigenvalues for the linearization of the traveling wave equa-

tion (4.2.2) near P0 and P1 together with a condition on the ratio of the eigenvalues.

(H5) There is a family of traveling front solutions connecting p2 to p1 for all wave speeds s

near s∗. These fronts have weak exponential decay representing the fact that the invasion

speed of p2 into p1 is slower than s∗.

One can think of u and v as representing independent species that diffuse through space

and interact through the reaction terms F (u, v) and G(u, v). When σ is small, we expect the

spreading speed of the u component to exceed that of the v component. The dynamics in this

regime is that of a staged invasion process: the zero state is first invaded by the u component,

then at some later time is subsequently invaded by the v component, see Figure 4.3(a). As σ is

increased, the speed of this secondary front will increase until eventually the two fronts lock and

form a coherent coexistence front where the unstable zero state p0 is invaded by the stable state

p2, see Figures 4.2 and 4.3(b). Broadly speaking, this transition to locking is the phenomena

that we are concerned with here. Our primary goal is to determine parameter values for which

this onset to locking is to be expected and whether the speed of the combined front is faster or

slower than the speed of the individual fronts. We refer to [42, 60, 105] for the study of stage

invasion processes in different two-components reaction-diffusion systems.
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Figure 4.4: Sketch of the different bifurcation scenarios covered by our main result. In each panel, the
horizontal black line s = s∗ illustrates the marginal stability assumption (H3) of the linearization of the v
component about the pushed front. The red diamond indicates the critical value σ∗ at which the pushed
front has marginal stable spectrum. The solid part of the line indicates a negative principal eigenvalue
of the corresponding linearized operator while the dashed part indicates a positive one. The bifurcating
curve in blue illustrates the existence of locked front solutions with wave speed s(σ) given by our main
result. Two scenarios can happen: the bifurcation will occur either for σ > σ∗ (super-critical case) or
for σ < σ∗ (sub-critical case), and in each case the direction of bifurcation can lead to larger wave speed
(top panels) or slower wave speed (bottom panels). These different scenarios can be characterized by the
signs of the constants Mρ and Ms (see Theorem 4.2.1).

Our main result is the existence of a bifurcation leading to locked fronts occurring at the

parameter values (s, σ) = (s∗, σ∗). Depending on properties of the reaction terms the bifurcation

will occur either for σ > σ∗ (super-critical) or for σ < σ∗ (sub-critical), see Figure 4.4 for a sketch.

In the super-critical case, the coexistence front does not appear until after the bifurcation at

σ∗ and the speed of the locked front changes continuously following the bifurcation – varying

quadratically in a neighborhood of the bifurcation point (see Figure 4.6 for an illustration on a

specific example). The dynamics of the system in the sub-critical case are much different. In

this scenario, the system transitions from a staged invasion process to locked fronts at a value of

σ strictly less than the critical value σ∗ and the spreading speed at this point is not continuous

as a function of σ and we refer to Figure 4.7 for an illustration on a specific example.

We employ a dynamical systems approach and construct these traveling fronts as heteroclinic

orbits of the corresponding traveling wave equation (4.2.2), see Figure 4.5. The traveling front

solutions that we are interested in lie near a concatenation of traveling front solutions: the

first being the pushed front connecting P1 to P0 (see (H2)) and the second connecting the

stable coexistence state P2 to this intermediate state P1 (see (H5)). A powerful technique for
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constructing solutions near heteroclinic chains is Lin’s method [152, 174, 175]. In this approach,

perturbed solutions are obtained by variation of constants and these perturbed solutions are

matched via Liapunov-Schmidt reduction leading to a system of bifurcation equations. Two

common assumptions when using these techniques are a) that the dimensions of the stable

and unstable manifolds of each fixed point in the chain are equal and b) the sum of tangent

spaces of the intersecting unstable and stable manifolds have co-dimension one. Neither of

these assumptions hold in our case. As fixed points of the traveling wave equation the stable

coexistence state P2 has two unstable eigenvalues and two stable eigenvalues, the intermediate

saddle state P1 has three stable eigenvalues and one unstable eigenvalue and the unstable zero

state P0 has four stable eigenvalues. Restricting to fronts with strong exponential decay, the

zero state can be thought of as having a two-two splitting of eigenvalues, but no such reduction

is possible for the intermediate state.

One interesting phenomena that we observe is a discontinuity of the spreading speed as a

function of σ in the sub-critical regime. The discontinuous nature of spreading speeds with

respect to system parameters has been observed previously, see for example [81, 94, 116, 120].

However, the discontinuity in those cases is typically observed as a parameter is altered from

zero to some non-zero value representing the onset of coupling of some previously uncoupled

modes. The mechanism here appears to be different.

There is a large literature pertaining to traveling fronts in systems of reaction-diffusion

equations. Directly related to the work here is [119], where system (4.2.1) is studied under the

assumption that the second component is decoupled from the first, i.e. that g(u, v) = g(v).

Further assuming that the system obeys a comparison principle, precise statements regarding

the evolution of compactly supported initial data can be made; see also [23]. Here, we do not

assume monotonicity and therefore a dynamical system approach is required. A similar approach

is used in [119], however, the decoupling of the v component reduces the traveling wave equation

to a three dimensional system.

The present work is also partially motivated by recent studies of bacterial invasion fronts

similar to [144]. In this context, the u component can be thought of as a bacterial population of

cooperators while the v component are defectors. In a well mixed population the defectors out

compete the cooperators. However, in a spatially extended system the cooperators may persist

via spatial movement by outrunning the defectors. This depends on the relative diffusivities,

where for σ small the cooperators are able to escape. However, for σ sufficiently large the

defector front is sufficiently fast to lock with the cooperator front and slow its invasion. Our

result characterizes how this locking may take place. See also [194, 195] for similar systems of

equations.

4.2.1 Discussion of methods: a dynamical systems viewpoint

We have thus far focused primarily on properties of the PDE (4.2.1). Mathematically, our

main result regards the construction of traveling fronts in the associated traveling wave ODE,

(4.2.2). We include a short discussion now to connect these two perspectives; see also [190] for a

longer discussion. To keep this discussion as straightforward as possible we restrict ourselves only

to the simplest case of constant coefficient reaction-diffusion systems giving rise to fixed form
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traveling front solutions connecting homogeneous steady states and ignore complications that

can arise for pattern forming systems, inhomogeneous problems, or systems including advective

terms to name a few.

The notion of spreading speeds for a PDE typically refers to the asymptotic speed of invasion

of compactly supported perturbations of an unstable state; see for example [8]. For scalar

equations having a comparison principle or for monotone systems of equations, it is often possible

to rigorously establish spreading speeds. In doing so, it is often the case that the compactly

supported initial conditions eventually converge to a traveling front. Thus, the system identifies

a unique selected front propagating at the selected spreading speed and the proof implies stability

(in an appropriate sense) of this front with respect to a large class of initial conditions.

Many systems, including the ones considered here, lack a comparison structure and con-

sequently it becomes extremely difficult to rigorously establish PDE spreading speeds in the

traditional sense. In these cases, one approach is to consider the speed selection problem as a

front selection problem and identify fronts which are consistent with selection from compactly

supported initial data. In doing this, one weakens the ”global” stability requirement of the se-

lected front to a local stability criterion. This local stability criterion is referred to as marginal

stability; see [57, 190].

Marginal stability requires that the selected front be pointwise marginally stable with respect

to compactly supported perturbations. As fronts propagating into unstable states, the essential

spectrum of any invasion front is unstable (in L2(R) for example). A common technique to

stabilize the essential spectrum is to work in exponentially weighted spaces. Weights shift the

essential spectrum and there is typically an optimal weight that pushes the essential spectrum

as far to the left as possible; see [177] for an introduction to the absolute spectrum and its role

in this regard. Marginal stability can then be defined in terms of stability properties in this

optimally weighted space. Generally speaking, there are two possibilities. For a pushed front,

the essential spectrum is stabilized while the point spectrum is stable with the exception of a

translational eigenvalue on the imaginary axis. For a pulled front, the essential spectrum is itself

marginally stable and there are no unstable eigenvalues.

Invasion fronts typically come in families parameterized by their speed of propagation. With

the previous discussion in mind, given this family of fronts we seek to identify the unique

marginally stable front. The speed of this marginally stable front then provides a prediction for

the spreading speed of compactly supported initial conditions for the original PDE (4.2.1).

We are interested in constructing candidate pushed fronts for (4.2.1) by constructing hete-

roclinic orbits for (4.2.2). The fronts of interest must possess two qualitative features that are

indicative of the existence of a pushed front. First, it must be possible to stabilize the essential

spectrum using exponential weights. Secondly, the decay of the front must be sufficiently steep

so that the derivative of the front profile remains as an eigenvalue in the weighted space.

For the problem considered in this paper, the second property is key and we focus on con-

structing traveling front solutions with sufficiently steep exponential decay rates. These are

candidate solutions for the selected front and their speed then gives a prediction for the spread-

ing speeds of the original PDE system (4.2.1). We do not pursue a full stability analysis of

the fronts that we construct, although such an analysis is conceivably possible through similar
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means as those used in the existence proof. In fact, we do not necessarily believe these fronts to

always be marginally stable. For example, in the sub-critical regime depicted in Figure 4.4 we

expect the bifurcating fronts to be pointwise unstable and this feature is essential to the jump

in spreading speed observed numerically in this regime.

In the next two subsections, we outline our assumptions in more detail and state our main

result.

4.2.2 Set up and main assumptions

In this subsection, we specify the precise assumptions required of (4.2.1) in order to state

our main result in the following one. We first make some assumptions on the reaction terms

F (u, v) and G(u, v) that have the specific form defined in (4.2.3).

Hypothesis (H1) Assume that that homogeneous system{
du
dt = F (u, v),
dv
dt = G(u, v),

with F (u, v) = uf(u, v) and G(u, v) = vg(u, v), has three non-negative equilibrium points which

we denote by p0 = (0, 0), p1 = (u+, 0) and p2 = (u∗, v∗) for some u∗ ≥ 0 and v∗ > 0. We

assume that f(p0) > 0 and g(p0) > 0 so that p0 is an unstable node for the homogeneous system.

We assume that Fu(p1) < 0 and g(p1) > 0 so that p1 is a saddle with one stable direction in

the v = 0 coordinate axis and an unstable direction transverse to this axis. Finally, we assume

that p2 is a stable node.

The traveling wave equation (4.2.2) naturally inherits equilibrium points from the homoge-

neous equation which we denote as P0 = (0, 0, 0, 0), P1 = (u+, 0, 0, 0) and P2 = (u∗, 0, v∗, 0).

At either the fixed point P0 or P1, the linearization is block triangular and eigenvalues can be

computed explicitly. At P0, the four eigenvalues are{
µ±u (s) = − s

2 ± 1
2

√
s2 − 4f(p0),

µ±v (s, σ) = − s
2σ ± 1

2σ

√
s2 − 4σg(p0),

where we used the fact that Fu(p0) = f(p0) and Gv(p0) = g(p0). Similarly, at P1, the lin-

earization has eigenvalues {
ν±u (s) = − s

2 ± 1
2

√
s2 − 4Fu(p1),

ν±v (s, σ) = − s
2σ ± 1

2σ

√
s2 − 4σg(p1),

where once again we used the fact that Gv(p1) = g(p1).

When the v component is identically zero, system (4.2.1) reduces to a scalar reaction-diffusion

equation

∂tu = ∂2
xu+ F (u, 0), (4.2.4)

and the traveling wave equation (4.2.2) reduces to the planar system{
u′1 = u2,

u′2 = −su2 − F (u1, 0).
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We now list assumptions related to traveling front solutions of (4.2.4).

Hypothesis (H2) We assume that there exists s∗ > 2
√
f(p0) for which (4.2.4) has a pushed

front solution Up(x− s∗t) moving to the right with speed s∗. By pushed front, we mean that the

solution has steep exponential decay Up(ξ) ∼ Ceµ
−
u (s∗)ξ as ξ → ∞ and has stable spectrum in

the weighted space L2
α(R), for some α > 0, with the exception of an eigenvalue at zero due to

translational invariance. There is, in fact, a one parameter family of translates of these fronts

and we therefore impose that U ′′p (0) = 0 and restrict to one element of the family.

To reiterate the connection to the PDE (4.2.1), we are interested in reaction terms for which

non-negative and compactly supported initial data for (4.2.1) of the form (u0(x), 0) would spread

with speed s∗ > 2
√
f(p0). Note that the quantity 2

√
f(p0) is the linear spreading speed of the

u component near p0 and so we require faster than linear invasion speeds. For the traveling

wave ODE, this translates to the existence of a marginally stable pushed front – which is exactly

what is laid out by assumption (H2).

Now consider the linearization of the v component of (4.2.1) around the traveling front

solution (Up(x− s∗t), 0),

Lv := σ∂2
ξ + s∗∂ξ + g(Up(ξ), 0).

The spectrum of this operator posed on L2(R) is unstable due to the instability of the asymptotic

rest states. However, this spectrum may be stable when Lv is viewed as an operator on the

exponentially weighted space

L2
d(R) =

{
φ(ξ) ∈ L2(R) | φ(ξ)edξ ∈ L2(R)

}
.

Let d = s∗

2σ . Then the operator Lv = σ∂2
ξ + s∗∂ξ + g(Up(ξ), 0) restricted to L2

d is isomorphic to

the operator Hσ : L2(R)→ L2(R), where

Hσ := σ∂2
ξ +

(
−(s∗)2

4σ
+ g(Up(ξ), 0)

)
.

We now state our assumptions on the spectrum of Hσ.

Hypothesis (H3) We suppose that the most unstable spectra of Hσ is point spectra and define

λ(σ) = sup
ω∈spec(Hσ)

ω.

Let σ∗ be defined such that λ(σ∗) = 0. Associated to this eigenvalue is a bounded eigenfunction

which we denote φ̃(ξ). In the unweighted space, this eigenfunction becomes φ(ξ) = e−
s∗
2σ∗ ξφ̃(ξ)

which is unbounded as ξ → −∞. We further assume that Gv(u, 0) = g(u, 0) > 0 for all

u ∈ [0, u+] such that φ′(ξ) < 0 for all ξ.

We will require some properties of the eigenvalues of the linearization of P0 and P1 in a

neighborhood of the critical parameter values (s∗, σ∗). These are outlined next.
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Hypothesis (H4) The eigenvalues of the linearization of (4.2.2) at P0 has four unstable

eigenvalues. We assume for some open neighborhood of parameter space including (s∗, σ∗) that

there exists an α > 0 such that

µ−u (s) < −α < µ+
u (s), µ−v (s, σ) < −α < µ+

v (s, σ). (4.2.5)

The fixed point P1 is a saddle point of (4.2.2) with a 3 : 1 splitting of the eigenvalues. We

assume that the eigenvalues of the linearization at P1 can be ordered

ν−v (s, σ) < ν−u (s) < ν+
v (s, σ) < 0 < ν+

u (s), (4.2.6)

again for for some open set of parameters including (s∗, σ∗). In addition, we assume the following

condition on the ratio of the eigenvalues:

ν−u (s) < 2ν+
v (s, σ). (4.2.7)

The eigenvalue splitting (4.2.5) in Hypothesis (H4) guarantees the existence of a two dimensional

strong stable manifold which we denote W ss(P0). Initial conditions in W ss(P0) correspond to

solutions of (4.2.2) that decay to P0 with exponential rate greater than e−αξ at ξ = +∞.

The final set of assumptions pertain to the existence and character of traveling front solutions

connecting P2 to P1.

Hypothesis (H5) We assume a transverse intersection of the unstable manifold W u(P2)

and stable manifold W s(P1) for all (s, σ) in a neighborhood of (s∗, σ∗). For (s∗, σ∗) we assume

the existence of a heteroclinic connection between P2 and P1 that approaches P1 tangent to the

weak-stable eigenspace corresponding to the eigenvalue ν+
v (s∗, σ∗), see (4.2.6). Thus, the two

dimensional tangent space of W u(P2) enters a neighborhood of P1 approximately tangent to the

unstable/weak-stable manifold of P1.

In terms of PDE assumptions, (H5) is consistent with a staged invasion process where

compactly supported perturbations of the steady state p1 form a traveling front propagating

with speed s < s∗ replacing the unstable state p1 with the stable state p2. Since the selected

invasion speed of fronts propagating into the state p1 is slower than s∗, any traveling front

solution with speed s∗ should be pointwise stable which requires that they converge to p1 with

weak exponential decay precluding the existence of a marginally stable translational eigenvalue.

Remarks on assumptions (H1)-(H5). We remark that (H1) and (H4) are straightforward to

verify for a specific choice of F (u, v) and G(u, v). Assumption (H2) is more challenging, but due

to the planar nature of the traveling wave equation it is plausible that such a condition could

be checked in practice. We refer the reader to [153] for a general variational method suited to

such problems. Assumption (H3) is yet more challenging to verify, however as a Sturm-Liouville

operator there are many results in the literature pertaining to qualitative features of the spectrum

of these operators. Finally, assumption (H5) is the most difficult to verify in practice, as it

requires a rather complete analysis of a fully four dimensional system of differential equations

(4.2.2). Nonetheless, our assumptions there simply state that the traveling front solutions have
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the most generic behavior possible as heteroclinic orbits between P2 and P1. In this sense, we

argue that assumption (H5) is not so extreme, in spite of the challenge presented in actually

verifying that it would hold in specific examples. We also remark that the precise ordering of

the eigenvalues assumed in (H4) are technical assumptions and could likely be relaxed in some

cases.

4.2.3 Main result and numerical illustrations

We can now state our main result.

Theorem 4.2.1. Consider (4.2.1) and assume that Hypotheses (H1)-(H5) hold. Then there

exists a constant Mρ such that:

• (sub-critical) if Mρ < 0 then there exists δ > 0 such that there exists positive traveling

front solutions (U(x− s(σ)t), V (x− s(σ)t)) for any σ∗ − δ < σ < σ∗ with speed

s(σ) = s∗ +Ms(σ − σ∗)2 +O(3);

• (super-critical) if Mρ > 0 then there exists δ > 0 such that there exists positive traveling

front solutions (U(x− s(σ)t), V (x− s(σ)t)) for any σ∗ < σ < σ∗ + δ with speed

s(σ) = s∗ +Ms(σ − σ∗)2 +O(3).

These traveling fronts belong to the intersection of the unstable manifold W u(P2) and the strong

stable manifold W ss(P0).

First, we make several remarks.

Remark 1. As part of the proof of Theorem 4.2.1 we obtain expressions for Mρ and Ms. In

particular,

sign(Mρ) = sign

(
−r2

∫ ∞
ξ0

e
s∗
σ∗ ξ

(
Guv(Up(ξ), 0)

σ∗
a1(ξ)φ(ξ)2 +

Gvv(Up(ξ), 0)

2σ∗
φ3(ξ)

)
dξ

− r1

(
φ̃′′(ξ0)φ̃(ξ0)− (φ̃′(ξ0))2

)
+

1

r2
e
s∗
σ∗ ξ0γ(2)(s∗, σ∗)

(
ν−v (s∗, σ∗)φ(ξ0)− φ′(ξ0)

))
,

where r1,2, a1(ξ) and γ(2)(s∗, σ∗) are all explicitly characterized. A similar expression holds for

Ms, but is quite complicated.

Remark 2. We comment on the sub-critical case. Our analysis holds only in a neighborhood of

the bifurcation point. However, we expect that this curve could be followed in (s, σ) parameter

space to a saddle-node bifurcation where the curve would subsequently reverse direction with

respect to σ. This curve can be found numerically using numerical continuation methods,

see Figure 4.7. These numerics reveal two branches of fronts that appear via a saddle node

bifurcation. It is the lower branch of solutions that appear to be marginally stable and reflect

the invasion speed of the system.
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Figure 4.5: Geometrical illustration in R4 of the construction of locked fronts. Locked fronts are het-
eroclinic orbits connecting P2 to P0 that lie at the intersection of the unstable manifold Wu(P2) and
the strong stable manifold W ss(P0). We track W ss(P0) backwards along the pushed front heteroclinic
(Up(ξ), U

′
p(ξ), 0, 0)T , represented by the dark red heteroclinic orbit on the figure, to a neighborhood of

P1 and track Wu(P2) forwards past the fixed point P1 from Σin to Σout to compare the two manifolds
near a common point on the heteroclinic (Up(ξ), U

′
p(ξ), 0, 0)T in Σout. In the figure, we represented in

dark green one heteroclinic orbit connecting P2 to P1 within Wu(P2). Schematically, the locked front,
represented by the blue heteroclinic orbit on the figure, is found to be close to the concatenation of the
two heteroclinic orbits connecting first P2 to P1 (dark green) and then P1 to P0 (dark red). In that
respect, our strategy of proof is a variation of Lin’s method.

For systems of equations without a comparison principle, the selected front is classified as

the marginal stable front, see [57, 190]. It is interesting to note that in these examples there

appear to be two marginally (spectrally) stable fronts – the original front (Up(x − s∗t), 0) and

the coexistence front – and the full system selects the slower of these two fronts.

Sketch of the proof. We now comment on the strategy of the proof that employs a variation

of Lin’s method; see Figure 4.5 for a geometrical illustration of our dynamical systems approach.

The traveling fronts that we seek are heteroclinic orbits in the traveling wave equations con-

necting P2 to P0. We further require that these fronts have strong exponential decay in a

neighborhood of P0. As such, these traveling fronts belong to the intersection of the unsta-

ble manifold W u(P2) and the strong stable manifold W ss(P0). Therefore, the goal is to track

W ss(P0) backwards along the pushed front heteroclinic (Up(ξ), U
′
p(ξ), 0, 0)T to a neighborhood

of P1. The dependence of this manifold on the parameters s and σ can be characterized using

Melnikov type integrals and the manifold can be expressed as a graph over the strong stable

tangent space. To track W u(P2) forwards we use (H5) to get an expression for this manifold as

it enters a neighborhood of P1. To track this manifold past the fixed point requires a Shilnikov

type analysis near P1. Finally, we compare the two manifolds near a common point on the hete-
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Figure 4.6: Numerically computed wave speeds of the u-component, black circles, and of the v-component,
green plus sign for ε = 1 in (4.2.8). The horizontal blue line s = s∗ =

√
2(a+ 1/2) represents the sign of

the associated principal eigenvalue of the operator Hσ and the red diamond indicates the critical value
σ∗ at which this principal eigenvalue vanishes. The solid part of the line indicates a negative principal
eigenvalue while the dashed part indicates a positive one. Here, σ∗ ' 0.314. For all numerical simulations
we have set a = 1/16.

roclinic (Up(ξ), U
′
p(ξ), 0, 0)T and following a Liapunov-Schmidt reduction we obtain the required

expansions of s as a function of σ.

Numerical illustration of the main result. To conclude, we illustrate the main result on an

example. We consider the following nonlinear functions fε(u, v) and g(u, v) that lead to a

supercritical bifurcation when ε = 1 and exhibit a sub-critical bifurcation for ε = −1:

fε(u, v) = (1− u)(u+ a) + εv, and g(u, v) = 2u(1− u) + 2a− v, (4.2.8)

where ε ∈ {±1}. In both cases, when v is set to zero the system reduces to the scalar Nagumo’s

equation

∂tu = ∂2
xu+ u(1− u)(u+ a). (4.2.9)

The dynamics of (4.2.9) are well understood, see for example [91]. For a < 1/2, the system

forms a pushed front propagating with speed s∗ =
√

2
(

1
2 + a

)
. For the numerical computations

presented in both Figures 4.6 and 4.7, we have discretized (4.2.1) by the method of finite

differences and used a semi-implicit scheme with time step δt = 0.05 and space discretization

δx = 0.05 with x ∈ [0, 400] and imposed Neumann boundary conditions. All simulations are

done from compactly initial data and the speed of each component was calculated by computing

how much time elapsed between the solution surpassing a threshold at two separate points in the

spatial domain. In Figure 4.6, we present the case of a super-critical bifurcation where locked

fronts are shown to exist past the bifurcation point σ = σ∗. In Figure 4.7, we illustrate the case

of a sub-critical bifurcation where locked fronts are shown to exist before the bifurcation point

σ = σ∗. We observe a discontinuity of the wave speed as σ is increased. We then implemented

a numerical continuation scheme to continue the wave speed of these locked fronts back to the

bifurcation point σ = σ∗. In the process, we see a turning point for some value of σ near 0.273.
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(b) Zoom of Figure (a) near σ ∼ 0.27.

Figure 4.7: (a) Numerically computed wave speeds of the u-component, black circles, and of the v-
component, green plus sign for ε = −1 in (4.2.8). We observe a discontinuity in the value of the measured
wave speed as σ is varied indicating a sub-critical bifurcation of the locked fronts. The horizontal blue
line s = s∗ =

√
2(a + 1/2) represents the sign of the associated principal eigenvalue of the operator Hσ

and the red diamond indicates the critical value σ∗ at which this principal eigenvalue vanishes. The solid
part of the line indicates a negative principal eigenvalue while the dashed part indicates a positive one.
Here, σ∗ ' 0.314. The red curve is a continuation of the wave speed of locked fronts up to the bifurcation
point σ = σ∗. (b) Refinement of Figure (a) near the fold point. Here, the red dots are wave speeds
obtained by numerical continuation. For all numerical simulations we have set a = 1/16.

We expect that locked fronts on this branch to be unstable as solutions of (4.2.1) which explains

why one observes the lower branch of the bifurcation curve. It is interesting to note the relative

good agreement between the wave speed obtained by numerical continuation and the wave speed

obtained by direct numerical simulation of the system (4.2.1).

4.3 Some stability results of fronts in reaction-diffusion equations

In this section, we investigate two types of stability results of fronts in reaction-diffusion

equations. The first result is about the asymptotic stability of the critical pulled front of the

scalar Fisher-KPP equation, and the second result investigates the asymptotic stability of planar

traveling fronts in nonlocal reaction-diffusion equations with bistable dynamics. By planar front,

we refer to as a traveling front in one direction and constant along the transverse directions. Both

results rely on pointwise semigroup estimates and in both cases the boundary of the essential

spectrum touches the imaginary axis resulting in an algebraic decay of the perturbations in some

well-chosen functional spaces.
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4.3.1 Asymptotic stability of the critical Fisher-KPP front using pointwise esti-

mates

We revisit the asymptotic stability analysis of Gallay [97] for the critical Fisher-KPP front

of the following scalar parabolic equation

∂tu = ∂2
xu+ c∂xu+ f(u), t > 0, x ∈ R, (4.3.1)

where f : R → R is a C 2 map satisfying f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0 and f ′′(u) < 0

for all u ∈ (0, 1) and c > 0. For such an example, it is well known that for any wavespeed

c ≥ 2
√
f ′(0) := c∗, there exist monotone traveling front solutions q(x) connecting u = 1 at −∞

and u = 0 at +∞ where the front profile q is solution of the second order ODE

0 = q′′ + cq′ + f(q). (4.3.2)

The stability of traveling fronts for the Fisher-KPP equation has been studied by many authors.

For the super-critical family of fronts propagating with speeds c > c∗, stability was established

by Sattinger using exponential weights to stabilize the essential spectrum and yield exponential

in time stability; see [181]. Stability of the critical front pulled q∗ was established by [141],

with extensions and refinements achieved in [35, 64, 97]. The sharpest of these results for the

Fisher-KPP equation is [97], where perturbations of the critical front are shown to converge in

an exponentially weighted L∞ space with algebraic rate t−3/2. Of course, we also mention that

strong results concerning the convergence of compactly supported initial data to traveling fronts

are possible for (4.3.1) using comparison principle techniques; see for example [9].

The primary challenge presented by the critical front is that it is not possible to stabilize the

essential spectrum using exponential weights, see Figure 4.8 for an illustration. This is due to the

presence of absolute spectrum at λ = 0 in the form of a branch point of the dispersion relation of

the asymptotic system near +∞. The presence of continuous spectrum near the origin suggests

algebraic decay and one might further anticipate heat kernel type decay of perturbations. As

we note above, perturbations of the critical front are known to converge slightly faster – in an

exponentially weighted L∞ space with algebraic rate t−3/2; see [97].

Our approach is similar to that of [181] where the linear eigenvalue problem is studied

in an exponentially weighted space and resolvent estimates are obtained via inverse Laplace

transform. For the super-critical fronts studied in [181] the Laplace inversion contours can be

placed in the stable half plane thereby simplifying the analysis. No such extension is possible

here and we instead approach the problem using pointwise semigroup estimates. Pointwise

semigroup methods were introduced by Zumbrun and Howard [204] and have been developed

over the past several decades to address stability problems where the essential spectrum can not

be separated from the imaginary axis. Applications include stability of viscous shock waves; see

[122, 204], stability and instability of spatially periodic patterns; see [130], stability of defects in

reaction-diffusion equations; see [19], and more recently stability of stationary reaction-diffusion

fronts; see [149], to mention a few.

A rough outline of our approach is as follows.



4.3. SOME STABILITY RESULTS OF FRONTS IN REACTION-DIFFUSION EQUATIONS 115

• Write the solutions of (4.3.1) as u(t, x) = q∗(x)+v(t, x), and obtain the following equation

for the perturbation v(t, x):

∂tv = ∂2
xv + c∗∂xv + f ′(q∗)v + f(q∗ + v)− f(q∗)− f ′(q∗)v. (4.3.3)

• For some well chosen smooth weight function ω(x) > 0 (see (4.3.10)), perform a change of

variable of the form v(t, x) = ω(x)p(t, x), where p now satisfies

∂tp = ∂2
xp+

(
c∗ + 2

ω′

ω

)
∂xp+

(
f ′(q∗) + c∗

ω′

ω
+
ω′′

ω

)
p+N (q∗, ωp)p, (4.3.4)

with nonlinear terms

N (µ, ν) :=
1

ν

(
f(µ+ ν)− f(µ)− f ′(µ)ν

)
,

and L denotes the linear operator

Lp := pxx +

(
c∗ + 2

ω′

ω

)
px +

(
f ′(q∗) + c∗

ω′

ω
+
ω′′

ω

)
p, (4.3.5)

with dense domain H2(R) in L2(R).

• Construct bounded solutions ϕ±(x) for the eigenvalue problem Lp = λp on R± where L
given in (4.3.5).

• Find bounds for the pointwise Green’s function,

Gλ(x, y) =


ϕ+(x)ϕ−(y)

Wλ(y)
, x ≥ y,

ϕ−(x)ϕ+(y)

Wλ(y)
, x ≤ y,

where the Wronskian Wλ(y) := ϕ+(y)ϕ−
′
(y) − ϕ+′(y)ϕ−(y), is often referred to as the

Evans function; see [2].

• Apply the inverse Laplace transform, and by a suitable choice of inversion contour show

that the Green’s function

G(t, x, y) =
1

2πi

∫
Γ
eλtGλ(x, y)dλ, (4.3.6)

decays pointwise with algebraic rate t−3/2. Actually, we prove that for some constants

κ > 0, r > 0 and C > 0, the Green’s function G(t, x, y) satisfies the following estimates.

(i) For |x− y| ≥ Kt or t < 1, with K sufficiently large,

|G(t, x, y)| ≤ C 1

t1/2
e−
|x−y|2
κt .
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Figure 4.8: Illustration of the action of the weight function ω on the boundaries Σ± of the essential
spectrum of the linearized equation around the critical traveling front solution q∗. Note that Σ− is
mapped to Γ− while Σ+ is mapped to the negative real axis Γ+ inclusive of the point at 0.

(ii) For |x− y| ≤ Kt and t ≥ 1, with K as above,

|G(t, x, y)| ≤ C
(

1 + |x− y|
t3/2

)
e−
|x−y|2
κt + Ce−rt.

• Deduce from the above inequalities that for t < 1 the usual short time estimate holds,∣∣∣∣∫
R

G(t, x, y)h(y)dy

∣∣∣∣ ≤ C‖h‖L∞ , (4.3.7)

and for t ≥ 1, the large time estimate is∣∣∣∣∫
R

G(t, x, y)h(y)dy

∣∣∣∣ ≤ C 1 + |x|
(1 + t)3/2

∫
R

(1 + |y|)|h(y)|dy. (4.3.8)

• Apply estimates (4.3.7) and (4.3.8) to the nonlinear solution expressed using Duhamel’s

formula,

p(t, x) =

∫
R

G(t, x, y)p0(y)dy +

∫ t

0

∫
R

G(t− τ, x, y)ω(y)N (q∗(y), ω(y)p(τ, y))p(τ, y)dydτ,

to show that the nonlinear system also exhibits the same algebraic decay rate.

This approach is motivated by the observation in [179] that the faster algebraic decay rate

is a consequence of the lack of an embedded zero of the Evans function at λ = 0 (the analytic

extension of the Evans function to the branch point is possible due to the Gap Lemma; see

[100, 134]). Indeed, the critical front has weak exponential decay near x = +∞,

q∗(x) ∼
+∞

bxe−γ∗x, (4.3.9)
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where γ∗ := c∗/2 and for some b > 0. This weak exponential decay implies that the derivative

of the wave also has weak exponential decay and therefore does not lead to a zero of Wλ(y) at

λ = 0. In the outline of our argument, this fact comes into play when we require bounds on the

supremum of G(t, x, y). We find that this quantity is dominated by a region where Gλ(x, y)

resembles Ce−
√
λ(x−y). Of course, this is exactly the Laplace transform of the derivative of the

heat kernel; from which we naturally expect algebraic decay with rate t−3/2.

We now state our main result. Let ω(x) > 0 be a positive, bounded, smooth weight function

of the form

ω(x) =

{
e−γ∗x x ≥ 1,

eβx x ≤ −1,
(4.3.10)

for some 0 < β < − c∗
2 +

√
c2∗
4 − f ′(1).

Theorem 4.3.1. Consider (4.3.1) with initial data u(0, x) = q∗(x) + v0(x) satisfying 0 ≤
u(0, x) ≤ 1. There exist C > 0 and ε > 0 such that if v0(x) satisfies,∣∣∣∣∣∣∣∣v0(·)

ω(·)

∣∣∣∣∣∣∣∣
L∞

+

∣∣∣∣∣∣∣∣(1 + | · |)v0(·)
ω(·)

∣∣∣∣∣∣∣∣
L1

< ε,

then the solution u(t, x) is defined for all time and the critical front is nonlinearly stable in the

sense that ∣∣∣∣∣∣∣∣ 1

(1 + | · |)
v(t, ·)
ω(·)

∣∣∣∣∣∣∣∣
L∞
≤ Cε

(1 + t)3/2
, t > 0,

where v(t, x) := u(t, x)− q∗(x).

Theorem 4.3.1 recovers the sharp algebraic in time L∞ decay rate of perturbations of the

critical front that was obtained in [97]. The proof in [97] uses as a weight the derivative of

the front profile. In this weighted space, the linearized operator as x → ∞ is equivalent to the

radial Laplacian in three dimensions; for which the fundamental solution possesses algebraic

decay rate t−3/2. The nonlinear argument relies on scaling variables and the application of

renormalization group techniques. In comparing Theorem 4.3.1 to the main result in [97] we

note small differences in the spatial decay rates of the allowable perturbations and note that the

result in [97] is stronger than the one presented here in that the author is able to identify an

asymptotic profile for the solution in addition to its decay rate.

The main novel contribution of our study is to present an alternative proof based upon

pointwise semigroup methods and make rigorous the observation in [179] that the faster algebraic

decay rate is a consequence of the lack of an embedded zero of the Evans function at λ = 0.

We contend that the proof of Theorem 4.3.1 presented here is more elementary than that of

[97] as it relies on (rather coarse) ODE estimates, contour integration and a standard nonlinear

stability argument avoiding the technical PDE estimates and renormalization group theory of

[97]. Furthermore, this alternative method paves the way to tackle a broader class of problems.

For example, one could consider the extended Fisher-KPP equation

∂tu = −γ∂4
xu+ ∂2

xu+ f(u), t > 0, x ∈ R, (4.3.11)
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where γ > 0 is a small parameter and f(u) is as in (4.3.1). For such an equation, there exists

a family of fronts with wavespeed c ≥ c∗(γ), in the limit γ → 0, which were shown to be

stable in exponentially weighted spaces [172]. It could be possible to adapt the above ideas

to prove that the critical front decays algebraically with rate t−3/2 in a weighted L∞ space.

The calculations in that case are more involved (a four-dimensional system of ODEs), but the

general key ingredients remain unchanged. Along similar lines, the approach developed in this

paper could be used to establish precise stability results for pulled invasion fronts in systems of

reaction-diffusion equations. For example, refinements of the stability results in [93, 170] may

be achievable.

From the perspective of pointwise semigroup methods, the application here is fairly straight-

forward. To reinforce the discussion in the preceding paragraph, we regard this relative simplicity

to be a strength of this study. One mathematical feature of interest is the presence of the branch

point at the origin which prevents the continuation of any contour integrals into the left half of

the complex plane. An important reference in this regard is Howard [122] where a marginally

stable branch point also arises when considering the stability of degenerate viscous shock waves.

The Fisher-KPP equation being studied here is quite different, but considerable similarities

remain between the approach taken here and the one in [122].

4.3.2 Multidimensional stability of planar traveling fronts for bistable nonlocal

reaction-diffusion equations

We consider the scalar nonlocal reaction-diffusion equation (1.0.3)

∂tu(t,x) = −u(t,x) +

∫
Rn
K(x− y)u(t,y)dy + f(u(t,x)) (4.3.12)

:= −u(t,x) +K ∗x u(t,x) + f(u(t,x))

where u ∈ R, (t,x) ∈ R+ × Rn and f is a smooth function of bistable type with three zeros,

0, 1 and a ∈ (0, 1). As usual, a prototypical example for f is the cubic nonlinearity of form

f(u) = u(1 − u)(u − a). Here K ∈ L1(R) is a nonnegative function with
∫
Rn K(x)dx = 1 and

that is even with respect to each variable. A planar traveling wave ϕ(ξ) is a smooth function

of the variable ξ = e · x − ct, for e ∈ Sn−1 and some c ∈ R, which is a solution of (4.3.12)

satisfying the limits lim
ξ→−∞

ϕ(ξ) = 1 and lim
ξ→+∞

ϕ(ξ) = 0. Without loss of generality, we suppose

that e = (1, 0, . . . , 0). In the moving frame x = (ξ, z) ∈ R × Rn−1, equation (4.3.12) can be

written as

∂tu(t,x)− c∂ξu(t,x) = −u(t,x) +

∫
Rn
K(x− y)u(t,y)dy + f(u(t,x)) (4.3.13)

such that the traveling wave ϕ(ξ) is a stationary solution of (4.3.13). If we define K0 : R → R
as

K0(ξ) =

∫
Rn−1

K(ξ, z)dz (4.3.14)

then (ϕ, c) satisfies

−cϕ′(ξ) = −ϕ(ξ)+

∫
R
K0(ξ−ζ)ϕ(ζ)dζ+f(ϕ(ξ)), lim

ξ→−∞
ϕ(ξ) = 1 and lim

ξ→+∞
ϕ(ξ) = 0, (4.3.15)
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where ϕ′ stands for dϕ
dξ and ϕ is decreasing.

Main assumptions. Throughout the paper, we will assume the following hypotheses for f and

K which ensure the existence and uniqueness (modulo translation) of a solution (ϕ, c) to (4.3.15),

see Theorem 1.2.5.

Hypothesis 4.3.1. We suppose that the nonlinearity f satisfies the following properties:

(i) f ∈ C∞(R);

(ii) f(u) = 0 precisely when u ∈ {0, a, 1};

(iii) f ′(0) < 0, f ′(1) < 0 and f ′(a) > 0.

Note that we only need f ∈ C 2(R) to obtain the existence result of [16] and here we require

more regularity to obtain uniform bounds on the nonlinear terms in our stability analysis.

Hypothesis 4.3.2. We suppose that the kernel K satisfies the following properties:

(i) K ≥ 0, is even with respect to each variable;

(ii) K ∈W 1,1(Rn);

(iii)
∫
Rn K(x)dx = 1,

∫
Rn ‖x‖K(x)dx <∞ and

∫
Rn ‖x‖2K(x)dx <∞;

(iv) K̂(k) = 1− d0‖k‖2 + o(‖k‖2) as k→ 0 with d0 > 0.

Here, W k,p(Rn) denotes the Sobolev space with its usual norm and we use the notation

Hk(Rn) := W k,2(Rn). The symbol K̂ denotes the Fourier transform of K defined as

K̂(k) =

∫
Rn
K(x)e−ik·xdx, k ∈ Rn.

The first assumption is natural from a modeling point of view while the second and third

assumptions are required to ensure the existence of traveling wave solution ϕ to equation (4.3.15).

The third and forth assumptions also imply that

∀j ∈ J1, nK
∫
Rn
xjK(x)dx = 0 and d0 :=

1

2n

∫
Rn
‖x‖2K(x)dx > 0.

Furthermore, as −1 + K̂(k) ∼ −d0‖k‖2 for k → 0, in the long wavelength limit, the linear

operator u 7→ −u + K ∗ u approaches the Laplacian d0∆Rn and we recover the classical Allen-

Cahn equation. Remark that in the short wavelength limit we have −1 + K̂(k) ∼ −1 for

‖k‖ → ∞ such that u 7→ −u+K∗u is a bounded operator which is a very different feature from

the Laplacian. Note that with Hypothesis 4.3.2 for the kernel K we recover all the hypotheses

of [16] for K0.

In this paper, we are concerned with determining the stability of the traveling wave ϕ. We

are thus let to study the spectral properties of the linear operator L

L : H1(Rn) −→ L2(Rn)

u 7−→ −u+K ∗x u+ c d
dξ + f ′(ϕ)u.

(4.3.16)
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It is natural to assume that the wave ϕ is linearly stable in one space dimension to get stability

in higher in space dimensions. In fact, it is consequence of Hypotheses 4.3.1 and 4.3.2 on f and

K. First, define the linear operator L0 associated to equation (4.3.15)

L0 : H1(R) −→ L2(R)

u 7−→ −u+K0 ∗ξ u+ c d
dξ + f ′(ϕ)u.

(4.3.17)

and its adjoint operator L∗0

L∗0 : D(L∗0) ⊂ L2(R) −→ L2(R)

u 7−→ −u+K0 ∗ξ u− c d
dξ + f ′(ϕ)u.

(4.3.18)

Lemma 4.3.1 ([12, 44]). Suppose that Hypotheses 4.3.1 and 4.3.2 are satisfied, then

(i) 0 is an algebraic simple eigenvalue of L0 with negative eigenfunction ϕ′;

(ii) there exists γ0 > 0 such that σess(L0) ⊂ {λ | |<(λ)| < −γ0};

(iii) there exists a unique negative solution ψ ∈ H1(R) which solves L∗0ψ = 0 with∫
R
ϕ′(ξ)ψ(ξ)dξ = 1.

Since the eigenvalue zero is isolated, there exists a spectral projection operator, P, onto the

null space of L0 given by

Pu =
1

2πi

∫
Γ

(L0 − λ)−1 udλ, (4.3.19)

where Γ is a simple closed curve in the complex plane enclosing the zero eigenvalue. If 〈·, ·〉
denotes the scalar product on L2(R) then we can write P as

Pu(ξ, z) = 〈ψ, u〉(z)ϕ′(ξ) :=

(∫
R
ψ(ξ)u(ξ, z)dξ

)
ϕ′(ξ). (4.3.20)

We define the operator Q as Qu := u− Pu.

Main result. We can now state our main result. The perturbation of the wave will be written

as

u(t,x) := ϕ(ξ − ρ(t, z)) + v(t, ξ − ρ(t, z), z) (4.3.21)

where ρ : Rn−1 → R ∈ Hk(Rn−1) and v : Rn → R ∈ Hk(Rn) is in the range of the operator L0

that is Pv = 0. And we set

E0 := ‖v0‖W 1,1(Rn) + ‖v0‖Hk(Rn) + ‖ρ0‖W 1,1(Rn−1) + ‖ρ0‖Hk+1(Rn−1).

Theorem 4.3.2. Let n ≥ 2 and k ≥
[
n+1

2

]
. Suppose that Hypotheses 4.3.1 and 4.3.2 are

satisfied. There exists C > 0 such that if E0 is sufficiently small, then the traveling wave solution
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ϕ of equation (4.3.13) is stable in the sense that the perturbation (ρ, v) given in (4.3.21) satisfies

the decay estimates for all t ≥ 0

‖v(t)‖Hk(Rn) ≤ C(1 + t)−
n−1
4
−1E0, (4.3.22a)

‖ρ(t)‖Hk(Rn−1) ≤ C(1 + t)−
n−1
4 E0, (4.3.22b)

‖∇z · ρ(t)‖Hk(Rn−1) ≤ C(1 + t)−
n+1
4 E0, (4.3.22c)

where ∇z = (∂x2 , · · · , ∂xn).

Note that Theorem 4.3.2 is well known in the case of local diffusion, namely when the nonlocal

term −u + K ∗x u in equation (4.3.12) is replaced by the standard Laplacian ∆ =
∑n

i=1 ∂
2
xi on

Rn. Xin [200] was the first to prove these results in dimension n ≥ 4 in the local case. His results

were then extended to the remaining dimensions n = 2, 3 in [148] and generalized to systems

of bistable reaction-diffusion equations by Kapitula [133]. Our strategy of proof is similar to as

[133, 200] where semigroup estimates for the associated linearized operator are used to prove the

multidimensional stability of the traveling wave ϕ. It is important to remark that in dimension

n ≥ 4, these semigroup estimates are sufficient to prove Theorem 4.3.2 (see the last paragraph

below). For the remaining dimensions n = 2, 3, the proof essentially relies on the decomposition

of the perturbation as written in (4.3.21) which basically allows one to split the problem into

two parts. One part controls the drift of the perturbations along the translates of the wave and

another part which controls the remaining part of the perturbations and will decay faster in time.

Although our proof will follow the strategy developed in [133, 200], we still have to deal with

the nonlocal nature of our equations. In our case, we use point-wise Green’s functions estimates

to obtain sharp decay estimates of the linear part of our linearized operator. These types of

estimates are reminiscent of the ones obtained by Hoffman and coworkers [115] in the study of

multi-dimensional stability of planar traveling of lattice differential equations, which are discrete

version of equation (4.3.12). In the nonlocal setting, using super- and sub- solution technique,

Chen [43] has been able to prove the uniform multidimensional stability of the traveling wave ϕ

of equation (4.3.12). As a direct consequence, our Theorem 4.3.2 generalizes Chen’s result.

An application. This present work was initially motivated by the study of Bates and Chen [11]

where they prove a multidimensional stability result for a slightly different multidimensional

bistable nonlocal reaction-diffusion equation. Their idea was to consider a generalization of the

Laplacian in n-dimension for which, each component ∂2
xi of ∆ is approximated by the convolution

operator −u+ J ∗xi u. They obtain an equation of form

∂tu =
n∑
i=1

(−u+ J ∗xi u) + f(u), (4.3.23)

with

J ∗xi u(x) :=

∫
R
J (y)u(x1, · · · , xi − y, · · · , xn)dy.

The kernel J satisfies the following Hypothesis.

Hypothesis 4.3.3. We suppose that the kernel J satisfies the following properties:
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(i) J ≥ 0, is even;

(ii) J ∈W 1,1
η (R) for η > 0.

Here W 1,1
η (R) denotes the exponentially weighted function space defined as

W 1,1
η (R) :=

{
u ∈W 1,1(R) | eη|·|u ∈ L1(R) and eη|·|∂xu ∈ L1(R)

}
.

A direct consequence of Hypothesis 4.3.3 is that Ĵ (k) = 1−d0k
2 +o(k2) as k → 0 for d0 > 0. In

this setting, the traveling wave ϕ is solution of (4.3.15) with K0 = J and the linearized operator

L0 has the same expression as in equation (4.3.17) and thus Lemma 4.3.1 is also verified provided

that f satisfies Hypothesis 4.3.1.

To study the stability of the traveling wave ϕ, we work with the same decomposition

u(t,x) = ϕ(ξ − ρ(t, z)) + v(t, ξ − ρ(t, z),x), t ≥ 0, (4.3.24)

with ρ : Rn−1 → R ∈ Hk(Rn−1) and v : Rn → R ∈ Hk(Rn) is in the range of the operator L0

that is Pv = 0. We also set

Ẽ0 := ‖v0‖L1(Rn) + ‖v0‖Hk(Rn) + ‖ρ0‖W 1,1(Rn−1) + ‖ρ0‖Hk+1(Rn−1).

As a bi-product of our proof, we obtain the following result.

Theorem 4.3.3. Let n ≥ 2 and k ≥
[
n+1

2

]
. Suppose that Hypotheses 4.3.1 and 4.3.3 are

satisfied. There exists C > 0 such that if Ẽ0 is sufficiently small, then the traveling wave solution

ϕ of equation (4.3.23) is stable in the sense that the perturbation (ρ, v) given in (4.3.24) satisfies

the decay estimates for all t ≥ 0

‖v(t)‖Hk(Rn) ≤ C(1 + t)−
n+1
2 Ẽ0, (4.3.25a)

‖ρ(t)‖Hk(Rn−1) ≤ C(1 + t)−
n−1
4 Ẽ0, (4.3.25b)

‖∇z · ρ(t)‖Hk(Rn−1) ≤ C(1 + t)−
n+1
4 Ẽ0. (4.3.25c)

Note that Bates and Chen [11] only proved Theorem 4.3.3 in dimension n ≥ 4 and thus our

result generalizes their analysis to the remaining dimensions n = 2, 3. Compared to Theorem

4.3.2, we obtain a sharper decay of v component of the perturbation. This is a consequence of

the fact that the projection P commutes with each linear operator −u+ J ∗xi u for i = 2 · · ·n.

Stability in dimension n ≥ 4. In this paragraph, we give a simple proof of Theorem 4.3.2 in the

high-dimensional case n ≥ 4, following ideas that have been developed for the multidimensional

local case [98, 133, 200]. The main ingredient of the proof is an estimate for the linearized

evolution operator L.

First, we consider a solution u(t,x) = ϕ(ξ) + v(t,x) of (4.3.12) which satisfies the equation

∂tv(t,x) = Lv(t,x) +N (v(t,x)), (4.3.26)
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where

N (v) := f(ϕ+ v)− f(ϕ)− f ′(ϕ)v. (4.3.27)

The Cauchy problem associated to equation (4.3.26) with initial condition v0 ∈ Hk(Rn)∩L1(Rn),

with k ≥ n+ 1 and n ≥ 4 is locally well-posed in Hk(Rn). This is equivalent to say that for any

v0 ∈ Hk(Rn) ∩L1(Rn) there exists a time T > 0 such that (4.3.26) as a unique mild solution in

Hk(Rn) defined on [0, T ] satisfying v(0) = v0. The integral formulation of (4.3.26) is given by

v(t) = SL(t)v0 +

∫ t

0
SL(t− s)N (v(s))ds, (4.3.28)

where SL is the semigroup associated to the linear operator L. From [72, Propositions 3.3 &

3.4], there exist positive constants C and θ > 0 such that

‖SL(t)v‖Hk(Rn) ≤ C
(

(1 + t)−
n−1
4 ‖v‖L1(Rn) + e−θt‖v‖Hk(Rn)

)
. (4.3.29)

The nonlinear contribution N (v) is at least quadratic in v close to the origin. As a consequence,

we can find a positive nondecreasing function κ : R+ → R+ such that, for all t ∈ [0, T ],

|N (v)| ≤ κ(R)|v|2, for |v| ≤ R.

Let T∗ > 0 be the maximal time of existence of a solution v ∈ Hk(Rn) with initial condition

v0 ∈ Hk(Rn) ∩ L1(Rn). For t ∈ [0, T∗) we define

Φ(t) = sup
0≤s≤t

(1 + s)
n−1
4 ‖v(s)‖Hk(Rn).

Using estimate (4.3.29) directly into the integral formulation (4.3.28) yields

‖v(t)‖Hk(Rn) ≤ ‖SL(t)v0‖Hk(Rn) +

∫ t

0
‖SL(t− s)N (v(s))‖Hk(Rn)ds

. (1 + t)−
n−1
4 ‖v0‖L1(Rn) + e−θt‖v0‖Hk(Rn) + κ(Φ(t))

∫ t

0
(1 + t− s)−n−1

4 ‖v(s)‖2Hk(Rn)ds

+ κ(Φ(t))

∫ t

0
e−θ(t−s)‖v(s)‖2Hk(Rn)ds.

Here, we use the notation A . B whenever A ≤ cB for c > 0 a constant independent of time t.

From [200], there exist constants C1 > 0 and C2 > 0 so that∫ t

0
(1 + t− s)−n−1

4 (1 + s)−
n−1
2 ds ≤ C1(1 + t)−

n−1
4 ,∫ t

0
e−θ(t−s)(1 + s)−

n−1
2 ds ≤ C2(1 + t)−

n−1
4 .

Note that the first inequality is a consequence of our careful choice of n. Indeed, this inequality

is only true for n−1
4 > 1

2 (n ≥ 4). Then, for all t ∈ [0, T∗) we have

Φ(t) ≤ C0

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
+ C̃0κ(Φ(t))Φ(t)2,
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for some positive constants C0 and C̃0. Suppose that the initial condition v0 is small enough so

that

2C0

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
< 1 and 4C0C̃0κ(1)

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
< 1,

then

Φ(t) ≤ 2C0

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
< 1,

for all t ∈ [0, T∗) by continuity of Φ. This implies that the maximal time of existence is T∗ = +∞
and the solution v of (4.3.26) satisfies:

sup
t≥0

(1 + t)
n−1
4 ‖v(t)‖Hk(Rn) ≤ 2C0

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
.



Chapter 5

What is not presented in this memoir

The works [49, 70, 74–77, 84, 85] were completed during my PhD and will thus not be

discussed here. The follow up paper [48] presents an overview of pattern formation on the

hyperbolic plane for the Swift-Hohenberg equation which is a canonical model equation for

pattern forming systems. Three different types of patterns are considered: spatially periodic

stationary solutions (based on [74, 75]), radial solutions (based on [85]) and traveling waves (see

[47]). Still directly related to my PhD is the collaboration [169], following up on [84, 85], which

deals with numerical continuation of localized coherent structures in neural field equations.

These two works [48, 169] could be almost considered as part of my doctoral thesis since they

were completed shortly afterwards and are thus not presented.

The paper [89] written with J. Touboul investigates the role of delays on the stability of

some coherent structures (localized stationary states and stationary interfaces) in neural field

equations. Linear stability analysis allowed to reveal the existence of Hopf bifurcation curves in-

duced by these delays, along different modes that may be symmetric or asymmetric. We showed

that instabilities strongly depend on the dimension, and in particular may exhibit transversal

instabilities along invariant directions. These instabilities yield pulsatile localized activity, and

depending on the symmetry of the destabilized modes, either produce spatiotemporal breathing

or sloshing patterns. I have decided to leave this work aside as it is not related to propagation

phenomena.

In [138], we explored with Z. Kilpatrick the combined effects of additive noise and linear

adaptation on localized unimodal symmetric stationary states of neural field equations in pe-

riodic domain. It is shown that for the deterministic system these stationary states undergo a

pitchfork bifurcation by increasing the strength of adaptation and destabilize into propagating

pulses. Near this criticality, we derived a stochastic amplitude equation describing the dynamics

of these bifurcating pulses when the noise and the deterministic instability are of comparable

magnitude. Away from this bifurcation, we investigated the effects of additive noise on the prop-

agation of traveling pulses and demonstrated that noise induces wandering of traveling pulses.

Although this work deals with traveling pulses, it does not relate well to the topic of this memoir
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as it primarily focuses about stochastic dynamics, and thus I decided not to include it here.

The paper [38] is the result of a Research Experience for Undergraduate (REU in short)

program which I jointly mentored and sponsored with A. Scheel during 6 weeks in the Summer

2014 at the School of Mathematics, University of Minnesota. It is about the study of coherent

structures in the form of invasion fronts in scalar feed-forward networks. It was published in

SIAM Undergraduate Research Online (SIURO) and was entirely written by C. Browne & A.L.

Dickerson, and as a consequence, it will not be further discussed.

Finally, the most important paper not included here is the rigorous derivation of the non-

local FitzHugh-Nagumo system obtained in [55] with my PhD student J. Crevat and F. Filbet.

It is proved that the hydrodynamic limit of a spatially extended transport kinetic FitzHugh-

Nagumo model converges towards the classical nonlocal reaction-diffusion FitzHugh-Nagumo

system. Our approach is based on a relative entropy method, where the macroscopic quantities

of the kinetic model are compared with the solution to the nonlocal reaction-diffusion system.

Even though this work opens very promising research perspectives, it is apart from my work

on propagation phenomena in reaction-diffusion equations and more importantly I felt that it

belongs to Joachim’s forthcoming PhD thesis and not to this memoir.
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[110] M. Hărăguş-Courcelle and G. Schneider. Bifurcating fronts for the Taylor?Couette problem in

infinite cylinders. Zeitschrift für angewandte Mathematik und Physik ZAMP, 50(1):120–151, 1999.

[111] J. Härterich, B. Sandstede, and A. Scheel. Exponential dichotomies for linear non-autonomous

functional differential equations of mixed type. Indiana University Mathematics Journal, pages

1081–1109, 2002.

[112] S. Hastings. On travelling wave solutions of the Hodgkin-Huxley equations. Archive for Rational

Mechanics and Analysis, 60(3):229–257, 1976.

[113] S. Hastings. Existence of travelling pulses in a neural model. Proceedings of the Royal Society of

Edinburgh Section A: Mathematics, 147(2):397–427, 2017.

[114] D. Henry. Geometric theory of semilinear parabolic equations, volume 840. Springer, 2006.

[115] A. Hoffman, H. Hupkes, and E. Van Vleck. Multi-dimensional stability of waves travelling through

rectangular lattices in rational directions. Transactions of the American Mathematical Society,

367(12):8757–8808, 2015.

[116] M. Holzer. Anomalous spreading in a system of coupled Fisher-KPP equations. Phys. D, 270:1–10,

2014.

[117] M. Holzer. A proof of anomalous invasion speeds in a system of coupled Fisher-KPP equations.

Discrete and Continuous Dynamical Systems, 36(4):2069–2084, 2016.

[118] M. Holzer, A. Doelman, and T. J. Kaper. Existence and stability of traveling pulses in a reaction–

diffusion-mechanics system. Journal of nonlinear science, 23(1):129–177, 2013.



134 BIBLIOGRAPHY

[119] M. Holzer and A. Scheel. Accelerated fronts in a two-stage invasion process. SIAM Journal on

Mathematical Analysis, 46(1):397–427, 2014.

[120] M. Holzer and A. Scheel. Criteria for pointwise growth and their role in invasion processes. J.

Nonlinear Sci., 24(4):661–709, 2014.

[121] J. J. Hopfield. Neural networks and physical systems with emergent collective computational

abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[122] P. Howard. Pointwise estimates and stability for degenerate viscous shock waves. J. Reine Angew.

Math., 545:19–65, 2002.

[123] X. Huang, W. Xu, J. Liang, K. Takagaki, X. Gao, and J.-y. Wu. Spiral wave dynamics in neocortex.

Neuron, 68(5):978–990, 2010.

[124] P. Huerre and P. A. Monkewitz. Local and global instabilities in spatially developing flows. Annual

Review of Fluid Mechanics, 22:473–537, 1990.

[125] H. Hupkes, D. Pelinovsky, and B. Sandstede. Propagation failure in the discrete Nagumo equation.

Proceedings of the American Mathematical Society, 139(10):3537–3551, 2011.

[126] H. Hupkes and B. Sandstede. Stability of pulse solutions for the discrete FitzHugh–Nagumo system.

Transactions of the American Mathematical Society, 365(1):251–301, 2013.

[127] H. J. Hupkes and S. V. Lunel. Center manifold theory for functional differential equations of mixed

type. Journal of Dynamics and Differential Equations, 19(2):497–560, 2007.

[128] H. J. Hupkes and B. Sandstede. Modulated wave trains in lattice differential systems. Journal of

Dynamics and Differential Equations, 21(3):417–485, 2009.

[129] H. J. Hupkes and B. Sandstede. Traveling pulse solutions for the discrete fitzhugh–nagumo system.

SIAM Journal on Applied Dynamical Systems, 9(3):827–882, 2010.

[130] M. A. Johnson and K. Zumbrun. Nonlinear stability of spatially-periodic traveling-wave solutions of

systems of reaction-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 28(4):471–483,
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