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How to escape from extinction under climate change?

Space with a temperature gradient(south) (north)

1 Spatial range shift via dispersal

2 Climatic niche shift via in situ adaptation

Parmesan (2006), Lavergne et al. (2010), Hoffmann & Sgrò (2011), Bellard et al. (2012)
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Response to climate shift in animals: spatial range shift

Pease et al. (1989), Kirkpatrick & Barton (1997), Barton (2001), Polechová et al. (2009),
Bridle et al. (2010), Duputié et al. (2012)
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Response to climate change with pollen dispersal?

Hu & He (2006), Lopez et al. (2008), Aguilée et al. (2013)
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How pollen does affect the maximal sustainable rate of climate
change?
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Outline of the model

A quantitative genetic model for population size n(x , t) and mean
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p (Gaussian kernel)

Pollen is not limiting

Feedbacks between demography and adaptation

Two strong assumptions:

Global density dependence

Constant genetic variance Vg
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Change in population size n(x , t) and mean phenotype
z̄(x , t)

Following Pease et al. (1989), Kirkpatrick & Barton (1997), Polechová et al. (2009), Duputié

et al. (2012):

∂tn = effect of dispersal + effect of adaptation
∂t z̄ = effect of dispersal + effect of demography
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Effect of dispersal on population size n(x , t)

Random walk for seed only (pollen not limiting)

f (x , t) = P(a given seed is at location x at time t)
ls = P(seed moves left)
rs = P(seed moves right)
δt = small time interval

xx-δx x+δx

lsrs

f (x , t + δt) = rsf (x − δx , t) + lsf (x + δx , t) + (1− rs − ls)f (x , t)
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Effect of dispersal on population size n(x , t)

Random walk for seed only (pollen not limiting)

Using Taylor approximation:

f (x , t + δt) =

rs

(
f (x , t)− δx ∂x f (x , t) +

(δx)2

2
∂x ,x f (x , t) + o(δx)3

)
+ls

(
f (x , t) + δx ∂x f (x , t) +

(δx)2

2
∂x ,x f (x , t) + o(δx)3

)
+(1− rs − ls)f (x , t)

Assuming unbiased dispersal (ls = rs = ms):

f (x , t + δt)− f (x , t)

δt
= ms

(δx)2

δt
∂x ,x f (x , t) +

o(δx)3

δt
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Effect of dispersal on population size n(x , t)

Random walk for seed only (pollen not limiting)

Taking the limit when δx → 0 and δt → 0:

∂t f (x , t) =
σ2
s

2
∂x ,x f (x , t)

where σ2
s = lim

δx→0,δt→0
2ms

(δx)2

δt

Same reasoning true for all seeds, thus:

∂tn(x , t) =
σ2
s

2
∂x ,xn(x , t)
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Effect of dispersal on mean phenotype z̄(x , t)

Random walk for seed and pollen

g(x , t) = phenotype of a new born individual at t in x
lp = P(a pollen grain moves left)
rp = P(a pollen grain moves right)

A new born individual in x can originate from:

a seed dispersing from x − δx ; phenotype = g(x − δx , t)

a seed dispersing from x + δx ; phenotype = g(x + δx , t)

an ovule in x fertilized by pollen dispersing from x − δx ;

phenotype =
g(x − δx , t) + g(x , t)

2
an ovule in x fertilized by pollen dispersing from x + δx ;

phenotype =
g(x + δx , t) + g(x , t)

2
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Effect of dispersal on mean phenotype z̄(x , t)

Random walk for seed and pollen

Weighting each event by local population density:

g(x , t + δt) =

rsg(x − δx , t)n(x − δx , t) + lsg(x + δx , t)n(x + δx , t)

+rp
g(x−δx ,t)+g(x ,t)

2 n(x − δx , t) + lp
g(x+δx ,t)+g(x ,t)

2 n(x + δx , t)
+(1− rs − ls − rp − lp)g(x , t)n(x , t)

rsn(x − δx , t) + lsn(x + δx , t) + rpn(x − δx , t) + lpn(x + δx , t)
+(1− rs − ls − rp − lp)n(x , t)
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Effect of dispersal on mean phenotype z̄(x , t)

Random walk for seed and pollen

Assuming unbiased dispersal (ls = rs = ms and lp = rp = mp) and

denoting mt = ms +
mp

2
:

g(x , t + δt)− g(x , t) =

mt((g(x − δx , t)− g(x , t))n(x − δx) + (g(x + δx , t)− g(x , t))n(x + δx))

(ms + mp)(n(x − δx , t) + n(x + δx , t)) + (1− 2ms − 2mp)n(x , t)
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Effect of dispersal on mean phenotype z̄(x , t)

Random walk for seed and pollen

Using Taylor approximation of g and n:

g(x , t + δt)− g(x , t)

δt
=

mt
(δx)2

δt
∂x ,xg(x , t) n(x , t) + 2mt

(δx)2

δt
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Effect of dispersal on mean phenotype z̄(x , t)

Random walk for seed and pollen

Taking the limit when δx → 0 and δt → 0:

∂tg(x , t) =
σ2
t

2
∂x ,xg(x , t) + σ2

t ∂xg(x , t) ∂x log(n(x , t))

where σ2
t = σ2

s + 1
2σ

2
p and σ2

p = lim
δx→0,δt→0

2mp
(δx)2

δt

Same reasoning true for all births, thus:

∂t z̄(x , t) =
σ2
t

2
∂x ,x z̄(x , t) + σ2

t ∂x z̄(x , t) ∂x log(n(x , t))
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Effect of adaptation on population size n(x , t)

∂tn(x , t) = n(x , t)r̄(x , t, z̄)

where r̄(x , t, z̄) is the mean growth rate

r̄(x , t, z̄) = r0
(

1−
k

)
− (z̄(x , t)− θ(x , t))2

2Vs
− Vp

2Vs

Density-dependent
growth rate

Global density-
dependance,

λ =
∫
n(x ′, t) dx ′

Evolutionary load,
i.e. maladaptation
θ(x , t) = b(x − vt)

Phenotypic load

Vp

z z
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Effect of demography on mean phenotype z̄(x , t)

µ

µ

µ'

E(P)

S

R

slope
Vg/Vp

R =
Vg

Vp
S

⇒

∂t z̄(x , t) = Vg ∂z̄ r̄(x , t, z̄)

Constant genetic variance
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Rescaled equations

Following Kirkpatrick & Barton (1997):

R0 = r0 − Vp

2Vs

X =
√

2R0
σs

x
T = R0t
K = k R0

r0

Λ = λ
K

Z = z̄√
R0Vs

N = n
K
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Rescaled equations

After rescaling, only 4 parameters:

γ =
1
2
σ2
p

σ2
t

= contribution of pollen to dispersal

V = v
√

2
σs
√
R0

speed of climate change

A =
Vg

R0Vs
adaptive potential

B = b σs
R0
√

2Vs
slope of the optimal gradient

∂TN = ∂X ,XN + NR

∂TZ =
1

1− γ
∂X ,XZ +

2

1− γ
∂XZ ∂X log(N)− A ∂ZR

with R = 1− Λ− 1
2 (Z −Θ)2 and Θ = B(X − VT )
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With pollen: spatial range shift and climatic niche shift

Let’s assume there is a solution with spatial range shift and climatic
niche shift:

N(X ,T ) = N0 exp

(
−

(X − CT − Ln)2

2Vn

)

Spatial range shift at speed C

Z (X ,T ) = S(X − CT − Ln)

+ DT

Ecological niche shift at speed D
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With pollen: spatial range shift and climatic niche shift

Such solution indeed exists with:

S = sign(B)
A√

2
(1− γ)

Vn =
2

|B|
√

2− A(1− γ)

C =
V

1 + A
|B|
√

2
γ

Ln = − V

|B|
√

2 + Aγ

D = − ABV γ

|B|
√

2 + Aγ
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Vn = size of the
range

C = speed of
spatial range shift:
different from
climate

S = slope of the
realized phenotype

Lz = maladaptation
at the core of the
range

Ln = spatial lag

0

Space
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⇒ spatial range shift
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Maximal sustainable rate of climate change

Sustainable climate change if Λ = 1− 1

Vn
− Lz
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√
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Positive effect of better adaptation at the core (|Lz|)
Negative effect of smaller range size (Vn)

Pollen dispersal may allow to persist under faster climate changes than
without pollen dispersal
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Robustness of the results

Two strong assumptions to relax:

1 Density dependence: global → local

2 Genetic variance: constant → evolving
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With local density dependence: methods

Global density dependence

r̄(x , t, z̄) = r0
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λ

k
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− (z̄ − θ)2

2Vs
− Vp

2Vs

Local density dependence

r̄(x , t, z̄) = r0

1−
n(x , t)

k

− (z̄ − θ)2

2Vs
− Vp

2Vs

Resolution of the equations with numerical
integration

Parameters value as estimated for Sitka
spruce (Picea sitchensis) (Mimura and Aitken,

2007; Aitken et al., 2008)
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With local density dependence: results are robust

Maximal sustainable rate of climate change:

Global density dependence Local density dependence
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With local density dependence: results are robust

A travelling wave with spatial range shift and ecological niche shift:
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With local density dependence: results are robust
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Pollen still decreases the speed of the travelling wave (and magnifies
the climatic niche shift)

Quite small quantitative effect
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With evolving genetic variance: results are robust

Maximal sustainable rate of climate change:

Fixed genetic variance Evolving genetic variance
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With evolving genetic variance: results are robust

An equilibrium genetic variance is reached:
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With evolving genetic variance: results are robust

The equilibrium genetic variance slightly decreases with the relative
pollen dispersal distance:
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Qualitative effect of pollen dispersal unchanged

Quantitative effect quite small
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