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FINITE CYCLICITY OF SLOW-FAST DARBOUX SYSTEMS

WITH A TWO-SADDLE LOOP

MARCIN BOBIEŃSKI AND LUBOMIR GAVRILOV

(Communicated by Walter Van Assche)

Abstract. We prove that the cyclicity of a slow-fast integrable system of
Darboux type with a double heteroclinic loop is finite and uniformly bounded.

1. Introduction

Let Fε be an analytic family of analytic real plane foliations (or vector fields),
depending on a small parameter ε, and having for all ε > 0 a bounded period
annulus (a nest of periodic orbits) Πε. We shall suppose, moreover, that Fε is
a Darboux integrable plane foliation, and F0 has a curve of singular points (slow
manifold), as in Figure 1.1. The family Fε will be referred to as a slow-fast integrable
system of Darboux type.

Consider a further multi-parameter analytic deformation Fε,δ of Fε, and denote
by Z(ε) = Cycl(Fε,δ, Π̄ε) the maximal number of limit cycles which bifurcate from
the closure Π̄ε for sufficiently small ‖δ‖. The number Z(ε) is therefore the cyclicity
of the closed period annulus Π̄ε with respect to the deformed foliation Fε,δ [10].
The purpose of the paper is to prove the ε-uniform boundedness of Z(ε) in the case
when the slow-fast foliation Fε has a Darboux type first integral H of the form

H = (y − x2)ε(1− y).

Another motivation for our result comes from the program of proving uniform
finiteness of the number of limit cycles of plane quadratic vector fields [7, 10] (the
existential Hilbert’s 16th problem). Indeed, a family of plane quadratic systems
can be slow-fast, with a first integral as above, and with degenerate graphics; see
Figure 1.1.

The main difficulty in the study of Fε,δ is on the one hand the neighborhood of
the “turning point” (0, 0) of F0, and on the other hand the double heteroclinic loop
{y = x2} of Fε (ε > 0). The zeros of pseudo-Abelian integrals appearing in the
usual Poincaré-Melnikov method does not detect the so-called alien limit cycles [5].
Nevertheless, in recent papers [1, 2], it has been shown that the number of zeros
of pseudo-Abelian integrals, which arise as a first approximation of the first return
map of our slow-fast system, have the desired uniform finiteness property.

In this paper we replace the pseudo-Abelian integrals, associated to Fε,δ and
studied in [1, 2], by the true Dulac maps defining the limit cycles as fixed points.
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4206 MARCIN BOBIEŃSKI AND LUBOMIR GAVRILOV

Figure 1.1. The slow-fast Darboux foliation Fε.

Our main result is the uniform finiteness of the number of limit cycles of the slow-
fast Darboux system under consideration. The analytic deformations Fε,δ which we
consider are arbitrary and can depend on an arbitrary given number of parameters.

Our method makes strong use of the properties of the foliation Fε,δ in a complex
domain, where we apply a technique derived from the so-called “Petrov trick”,
along the lines of [8, 9].

Remark 1.1. Limit cycles of slow-fast foliations Fε,δ can be studied in the general
framework of the method of slow-fast divergent integrals, developed by Dumortier,
Roussarie (see [3,4] and others). Such an approach reveals the existence of “canard
limit cycles”, but cannot capture all of the limit cycles of the foliation. The slow-fast
divergent integrals cannot detect the limit cycles which tend to the big separatrix
polycycle, when ε, δ → 0. Similarly, there are also limit cycles tending to the
turning point; see the recent paper [6] on this subject.

On the other hand, the divergence integral method can detect and locate the
canard limit cycles in a more accurate way. The difference of these two methods is
presented in Figure 1.2. Our method covers a narrow region around the integrable
direction which is the ε-axis, while the slow-fast technique covers a narrow region
around the canard manifold. If the parameter δ is appropriately chosen, then the
canard curve is the δ-axis; see Figure 1.2.

Nevertheless, it would be interesting to compare these two methods, but this is
definitely beyond the scope of this paper.

Remark 1.2. We tried to make the paper as self-contained as possible, but we used
quite essentially some ideas from papers [2,8,9]. To help the reader we recall below
the main ideas used. The key point of the papers [8, 9] is the observation that
the Dulac map along the non-degenerate saddle has analytic continuation to the
complex domain and the real locus (i.e., the set where the imaginary part vanishes)
is a smooth analytic curve up to the origin. The key point of the paper [2] is
the iterated variation technique applied to the slow-fast systems. The geometric
variation of the integrable trajectory allows us to avoid the slow manifold. This
idea combined with the blow-up in extended phase-space gives the upper bound for
the limit cycles bifurcating the slow-fast integrable system.
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δ

ε

Figure 1.2. Dashed region of parameters covered by the paper,
the slow-fast part marked by net.

2. Statement of the result

Using the notation of [2], let P0 = P0(x, y), P1 = P1(x, y) be real bivariate
polynomials and consider the differential system

(2.1) P ′
1 = εP1, P ′

0 = −P0, ε ∈ R+,

which induces the foliation

(2.2) Fε : εP1dP0 + P0dP1 = 0.

It has a Darboux type first integral

H = P ε
0P1,

and for ε = 0 a curve of singular points {(x, y) : P0(x, y) = 0}. For ε close to zero
the curve is the slow manifold of the slow-fast system (2.1).

In the present paper we are interested in the simplest possible slow-fast Darboux
system, shown in Figure 1.1. More precisely, assume that

P0 = y − x2, P1 = 1− y.

Consider further the following perturbed slow-fast Darboux integrable foliation

(2.3) Fε,δ : εP1dP0 + P0dP1 + Pdx + Qdy = 0,

where P = P (x, y, δ), Q = Q(x, y, δ) are real polynomials in x, y depending analyt-
ically on δ ∈ (RN , 0), and such that

P (x, y, 0) = Q(x, y, 0) ≡ 0.

Alternatively, we may consider the vector field Xε,δ underlying the foliation Fε,δ:

(2.4) Xε,δ :

{
ẋ = y − x2 − ε + εy − Q(x, y, δ),
ẏ = −2εx + 2εxy + P (x, y, δ).

For every fixed sufficiently small ε > 0, denote by Z(ε) the maximal number of limit
cycles of Fε,δ, which bifurcate from the compact region Π̄ bounded by the curves
{P0 = 0}, {P1 = 0}, for sufficiently small ‖δ‖. The number Z(ε) is therefore the
cyclicity of the closed period annulus Π̄ of Fε,0 under the deformation Fε,δ. The
main result of the paper is the following theorem.

Theorem 2.1. The cyclicity Z(ε) is finite and uniformly bounded in ε > 0.
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Remark 2.2. We expect that Theorem 2.1 remains true under the following more
general assumptions on the unperturbed Darboux integrable foliation (2.2).

Let P0, P1 be analytic functions, such that the real curves {P0 = 0}, {P1 = 0}
are smooth, intersect transversally, and bound a compact region Π in which the
foliation (2.2) has no singular points. The curve {P0 = 0} is, moreover, transverse
to the foliation dP1 = 0.

3. The integrable foliation Fε,0 where ε > 0

Figure 3.1. The real integrable plane foliation Fε,0 for ε > 0.

In this section we assume that δ = 0 and ε > 0 is a sufficiently small fixed real
parameter. The foliation Fε,0 has a Darboux type first integral H = (y−x2)ε(1−y)
and its phase portrait is shown in Figure 3.1. It has a real nest of cycles bounded
by the parabola y − x2 = 0 and a line y − 1 = 0. The center point is located at

pc = (0, yc), yc =
ε

ε+1 .

3.1. The complex leaves of Fε,0. The leaves of dimension one of Fε,0 are con-
nected open Riemann surfaces, on which the function

(y − x2)ε(1− y)

is constant. Every leaf intersects the cross-section {x = 0} at at least one point
(0, y0). The Riemann surface Cε of the multi-valued analytic function

(3.1) f(y) := y(1− y)1/ε, y �= 1,

is conformally equivalent either to C (ε �∈ Q), or to C∗ (ε ∈ Q), and on the leaf
through (0, y0)

(3.2) x2 = (f(y)− f(y0))(1− y)−1/ε
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Cεγy

Figure 3.2. Every complex leaf of the foliation Fε,0, which is not
the line {y = 1}, is a double covering of the Riemann surface Cε.

holds. This implies the following.

Proposition 3.1. Every complex leaf of the integrable foliation Fε,0 which does
not contain the center point (0, yc), or is not the line {y = 1}, is a double covering
of Cε given by the formula (3.2). The y-coordinates of the ramification points of
the covering are the solution of the equation f(y) = f(y0). The leaf of Fε,0 through
the center point pc = (0, yc) has a single singular point at pc which is a normal
crossing, and otherwise is a double covering of Cε given by the formula (3.2), with
ramification points (0, y) satisfying f(y) = f(yc).

3.2. Analytic continuation of the Dulac maps. Consider the cross-section
{x = 0} parameterized by y, as well the two Dulac maps D1 = D2

(3.3) D1,2 : (yc, 1) → (0, yc),

shown in Figure 3.1. One obvious extension of D1,2 is

(3.4) D1,2 : (0, 1) → (0, 1),

which is a real-analytic involution

D1,2(ȳ) = D1,2(y), D2
1,2 = id, D1,2(pc) = pc.

For the needs of the present paper we do not need a global description of the Dulac
maps, but only an appropriate domain of analyticity in which we shall later apply
the argument principle. This domain is described as follows.
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Let C±π, C±0 be the real curves in the complex y-plane, defined in polar coor-
dinates as

C+0 = {ρ =
sin(εϕ)

sin(ϕ + εϕ)
: − π

1 + ε
< ϕ <

π

1 + ε
},

C−0 = {ρ =
sin(εϕ)

sin(ϕ + εϕ)
: 0 < ϕ <

π

1 + ε
},

C−π = {ρ =
sin(εϕ + επ)

sin(ϕ + εϕ + επ)
: 0 < ϕ <

π(1− ε)

1 + ε
},

Cπ = {ρ =
sin(εϕ − επ)

sin(ϕ + εϕ − επ)
: −π(1− ε)

1 + ε
< ϕ < 0}.

Let D1 be the open complex domain delimited by the curves C±0 and C±π,
and let D0 be the complex domain delimited by the curves C±0 and the segment
(−∞, 0); see Figure 3.3.

Proposition 3.2. The real Dulac maps (3.4) allow an extension to biholomorphic
maps

D1,2 : D0 ∪D1 ∪ C+0 ∪ C−0 ∪ {yc} → D0 ∪D1 ∪ C+0 ∪ C−0 ∪ {yc},
where

D1,2(D1) = D0, D1,2(C+0) = C−0,D1,2(yc) = yc.

They can be further analytically continued to a suitable open neighborhood of Cπ,
C−π, and

D1,2(C−π) = D1,2(Cπ) = (−∞, 0).

The limit of D1,2 at y = 1 exists and D1,2(1) = 0.

Proof. The function H(0, y) = yε(1 − y) allows an analytic continuation in C \
(−∞, 0]. The real Dulac map satisfies H(0, y) = H(0,D1,2(y)) and so does its
complex extension, when it exists. Consider the isoclines

Cθ = {y ∈ D0 ∪D1 : arg(yε(1− y)) = εθ},
or equivalently

Cθ = {y : ε arg(y) + arg(1− y) = εθ},
which implies in polar coordinates

Cθ = {(ρ, φ) : ρ =
sin(εϕ − θ)

sin(ϕ + εϕ − θ)
}.

Thus D1 ∪D0 is a union of the isoclines Cθ:

D1 ∪D0 = {Cθ : −π < θ < π},
where each Cθ has exactly two connected components, contained respectively in D1

or D0; see Figure 3.3. For θ = 0 the Dulac map exchanges the segments (0, yc) and
(yc, 1); by continuity the same holds true for all θ. Moreover, by a local analysis of
the Dulac map near 1 we have

lim
y→1

D1,2(y) = 0,

and the identity |yε(1− y)| = |D1,2(y)
ε(1−D1,2(y))| implies that when |y| tends to

infinity along Cθ, then so does D1,2(y). As D′
1,2(y) �= 0, then D1,2 is a bianalytic

map between connected components of Cθ, a bijection between D1 and D0, and
finally a biholomorphic map between D1 and D0. The claims about the behavior
of D1,2 along the border of the domains D1, D0 are straightforward. �
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D1

D0

0

1

C−0

C+0

C−π

yc = 

Cπ

Imy

Rey
ε

1+e

Figure 3.3. The isoclines of the function yε(1− y)

Consider the continuous family of orbits {γ1,2
y }y, y ∈ (ε/(1 + ε), 1), defining

D1,2(y) in Figure 3.1 respectively. Each γ1,2
y is a real path starting at y and termi-

nating at D1,2(y).

Definition 3.3. We shall say that the analytic functions D1,2 defined in the domain
D1 allow a geometric realization, provided that the continuous families of real paths
{γ1,2

y }y, y ∈ (yc, 1), allow an extension to continuous families of paths {γy}y∈D1
,

contained in the complex leaves of the foliation Fε,0, such that each γ1,2
y starts at

y and terminates at D1,2(y).

Of course, the families of paths {γy}y are defined up to a homotopy. We note
that although D1 = D2 they allow non-equivalent geometric realizations.

Proposition 3.4. The real Dulac maps D1,2 allow a geometric realization in the
domain D1.

Proof. Consider the projection

π : C → C : (x, y) 	→ y,

and let Γy be the connected component of a leaf of the foliation Fε,0 through the

point (0, y) which is contained in the pre-image under π of the domain D0 ∪D1. If
c = yε(1− y), then along Γy

(3.5) x2 = y + c(1− y)−
1
ε

holds, which shows that π : Γy → D0 ∪ D1 is a double covering, ramified at the
points y and D1(y) = D2(y). The leaf Γy is therefore a smooth open Riemann
surface, except Γyc

, which has a normal crossing at (0, yc), where yc = D1(yc) =
D2(yc).
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Let σy be a path in D0 ∪D1 connecting y to D1(y) = D2(y). Such a path can
be lifted in Γy under π in two different ways. To every continuous family of paths
σy correspond therefore two continuous families of lifts in γy ⊂ Γy. We now apply
these considerations to the continuous family of segments σy = [y,D1,2(y)] ⊂ R,
y ∈ (yc, 1). The lift of σy will be the real orbit γ1

y or γ2
y defining D1(y) or D2(y),

and shown in Figure 3.1.
To complete the proof:

• First extend, the segments σy = [y,D(y)] ⊂ R to a continuous family of
paths σy ⊂ D1 ∪ D0, y ∈ D1 which connect y ∈ D1 to D(y) ∈ D0, as is
illustrated in Figure 3.4.

0

0

0

1

1

1

D1,2(y)

yc

yc

yc

D1,2(y)

D1,2(y)

y

y

y

Figure 3.4. The continuous family of paths {σy}y.

• Second, to each path σy, y ∈ D1, we associate its lift γy with respect to
π with initial point (0, y). For y ∈ (yc, 1) the lift γy was already defined,
by continuity it will be defined without ambiguity for all y ∈ D1. For
y ∈ (yc, 1) the end point of γy is (0,D(y)). As the end point of γy depends
analytically on y, then it is (0,D(y)) for all y ∈ D1. �

Remark 3.5. The above considerations show that the Riemann surface Γy is a

topological cylinder, which is a double covering of the topological disc D0 ∪ D1,
ramified over y and D(y). The closed loop γ1

y ◦ (γ2
y)

−1 is the generator of the
fundamental group of the cylinder.

Remark 3.6. It can be shown by making use of Proposition 3.1 that D1,2 also allows
an analytic extension to C \ {1} with countably many algebraic singularities. More
precisely, if y0 �= 1 is a singular point, then y0 belongs to the leaf through the center
point pc. The curve on the y-plane containing the possible singular points is defined
therefore by the equation

{y : |f(y)| = |f(yc)|}.
This curve is easily analyzed and it is shown in Figure 3.5.

Licensed to University Paul Sabatier. Prepared on Thu Nov  3 10:29:10 EDT 2016 for download from IP 195.220.58.237.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



FINITE CYCLICITY OF SLOW-FAST DARBOUX SYSTEMS 4213

10

Figure 3.5. The curve {y : |f(y)| = |f(yc)|}.

3.3. Geometric variation. We describe a geometric construction of the variation.
It will be used later to control intersection points of curves {ImD1 = 0} and
{ImD2 = 0}.

0 1

y+

y−

D1,2(y±)

Figure 3.6. Projection of the figure-eight loop γ8 to the x = 0 transversal.

−√c √c
y = c

Figure 3.7. The figure-eight loop γ8 at the limit ε → 0.

In the following proposition a dot denotes the product in the path groupoid, i.e.,
γ1 · γ2 denotes the path consisting of γ1 followed by γ2, where the end point of γ1
coincides with the starting point of γ2, the analog meaning for the inverse.

Proposition 3.7. Let γ1,2
y be a geometric realization of the Dulac maps D1,2 and

let y± ∈ C±π and y− = y+. The path γ8 = (γ1
y+

· (γ2
y−)

−1) · (γ1
y+

· (γ2
y−)

−1) is a
closed loop that projects on the y-plane to the loop shown in Figure 3.6. It can be
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homotopically deformed to a loop located a finite (ε-independent) distance from the
slow parabola y − x2 = 0. At the limit ε → 0 it is the figure-eight loop in the leaf of
fast foliation; see Figure 3.7.

Proof. By definition of the curves C±π, D1,2(y±) ∈ R−; due to the conjugation rela-
tion y− = y+ and the Schwartz reflection principle, the images of y± coincide. Thus,
the path (γ1

y+
· (γ2

y−)
−1) joins Y+ with y− and passes through the third ramification

point D1,2(y±) of the double covering (3.5). It can be deformed homotopically to
the path avoiding the ramification point D1,2(y±) from the left.

The next path is a complex conjugacy of the first one. It is the same composition
of γ paths with indices (1, 2) exchanged and the direction reversed. The composition
is as shown in Figure 3.6 after homotopical deformation that avoids the ramification
points y±. �

4. Blowing up the turning point

Figure 4.1. The real level sets of e−y(y − x2).

When ε tends to zero, the center pc of the integrable foliation tends to the
contact point p0 = (0, 0) of the slow manifold {y = x2} with the leaves y = const.
The point p0 is therefore the turning point of our slow-fast Darboux foliation Fε,0,
and the study of the Dulac map near p0 when ε tends to zero will be studied, as
explained in detail in [2, section 3], by a weighted blow-up in the (x, y, ε)-space.
Namely, the rescaling

(4.1) x →
√

εx, y → εy, ε → ε,
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FINITE CYCLICITY OF SLOW-FAST DARBOUX SYSTEMS 4215

sends the center point yc to 1/(1 + ε), leaves the parabola y = x2 invariant, and
transforms the first integral [(1− y)(y − x2)ε]1/ε of the foliation Fε,0 to the form

ε(1− εy)
1
ε (y − x2) = εe−y+O(ε)(y − x2) = εe−y(y − x2) + O(ε2).

The blown-up foliation has therefore, in every compact neighborhood of the origin,
an analytic first integral, uniformly in x, y, O(ε)-close to

e−y(y − x2);

see Figure 4.1. Finally, the curves C±π are transformed to curves on a finite distance
from the origin y = 0; see Figure 4.2.

D0

D1

C−0

C+0

C−π

Cπ

0

3π
2

+ O(ε)

3π
2

+ O(ε)

1
1+ ε

π
2

+ O(ε)

π
2

+ O(ε)−

−

Figure 4.2. The cross-section {x = 0} in a neighborhood of the
turning point after the weighted blow-up of the (x, y, ε)-space.

5. The perturbed foliation Fε,δ where ε > 0
and ‖δ‖ is much smaller than ε

D1 D2

pc(ε,δ)

Figure 5.1. Two Dulac maps for the perturbed system.
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In the preceding section we considered two Dulac maps D1 and D2 which coincide
as analytic functions, but were defined geometrically in two different ways. We
have respectively two non-equivalent geometric realizations {γ1,2

y }y∈D1
of the same

analytic function D = D1 = D2. In this section we suppose that ε > 0 is fixed,
δ ∈ RN , and ‖δ‖ is sufficiently small with respect to ε. Let pc = (xc, yc) be the
singular point (a focus) of Fε,δ, close to the center of Fε,0. We consider the cross-
section {x = xc} and as before define geometric realizations of the corresponding
Dulac maps D1 and D2. Indeed, when δ �= 0, the continuous family of paths
{γ1,2

y }y∈D1
, contained in the leaves of the foliation Fε,0, persist under a small

perturbation, at least when the initial point (0, y) belongs to a relatively compact
domain K∪D1, and the leaves of the foliation Fε,0 are transverse to the line {x = 0}
at (0, y), as well as at (0,D(y)). We obtain in this way two continuous families of
paths in the leaves of the perturbed foliation Fε,δ, which begin at a point (0, y) and
terminate at a point (0,D1(y) or (0,D2(y) respectively.

The above also holds true in a neighborhood of the center point pc (which be-
comes a focus after the perturbation), but also in a neighborhood of the singular
point (0, 1) ∈ {x = 0}. Indeed, after the perturbation a saddle point persists, and
the Dulac map near such a point is defined in every fixed sector, centered at the
singular point. The image of the real analytic curves C±π under the Dulac map
is the negative real semi-axes; see Proposition 3.2. Therefore these curves can also
be defined by the condition that {y : Im(D1(y)) = 0 and Im(D2(y)) = 0. We de-
note for a further use these two curves by C1

±π = C1
±π(ε, δ) and C2

±π = C2
±π(ε, δ),

respectively (when there is no ambiguity, the dependence on ε and δ is omitted).

As shown in [8, 9], the curves C1,2
±π are analytic, including at the singular points

of the Dulac maps, corresponding to the saddles s1 and s2. Consider the closed

Figure 5.2. The complex domain D, bounded by C1,2
±π, and the

line Re y > yc.
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complex domain D, which is bounded by C1,2
±π, and the line Re y > yc, as in

Figure 5.2.

Proposition 5.1. The number of the limit cycles of Fε,δ, bifurcating from the
closed period annulus of Fε,0 is bounded by the variation of the argument of the
analytic function D1 −D2 divided by 2π along the border ∂D of the domain shown
in Figure 5.2.

Proof. The Dulac maps have analytic continuations in D, as their geometric re-
alizations persist under sufficiently small perturbation. The limit cycles are in a
one-to-one correspondence with the fixed points y, D1(y) = D2(y) of the first return
map. Therefore it is enough to bound the zeros of D1 − D2 by making use of the
argument principle, as explained in [9, Section 2.1]. �

Corollary 5.2. For every fixed ε > 0 and for every sufficiently small δ, the Dulac
maps D1,D2 are real analytic functions in a suitable neighborhood of D\{si} where
si ∼ 1 are the singular points of the Dulac maps.

Our intention is to apply the argument principle to the analytic function D1−D2

in D in order to bound its complex zeros (equivalently, fixed points of the return
map, or complex limit cycles). For this we note that although the Dulac map is
singular at si, it is continuous at these points. We shall bound uniformly on one
side, the variation of the argument of D1 −D2 along the segment {Re y > yc}∩D,
and on the other hand the number of the zeros of the imaginary part of D1 − D2

along {C±
1 ∪ C±

2 } ∩ D. By definition of the curves C±
1 , C±

2 , these zeros are just
the intersection points C+

1 ∩ C+
2 + and C−

1 ∩ C−
2 , counted with multiplicity. The

curves C±
1 , C±

2 depend, however, on ε, δ, and their behavior when the parameters
ε, δ tend to zero is crucial. When δ = 0, ε > 0 the curves are explicit and tend to
the real axes as ε → 0.

6. Proof of Theorem 2.1

Figure 6.1. The geometric realization of the holonomy Hol and
its projection on the cross-section.
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Suppose first that ε > 0 belongs to a sufficiently small but fixed neighborhood
of the origin. Consider first the segment corresponding to the part of ∂D contained
in the line {Re y = yc}. It follows from Proposition 3.4 that along this segment the
functions D1, D2 have a geometric realization and hence are analytic, both in y and
ε, δ, provided that ε �= 0 and ‖δ‖ is much smaller than ε. To prove the analyticity
in a neighborhood of ε = 0 we consider the rescaling (4.1) and the domain D1

shown in Figure 4.2. It can be shown along the same lines as in Proposition 3.4
that the Dulac maps have a geometric realization in D1 again, and hence it is also
analytic in

√
ε, δ, in a neighborhood of ε = 0, δ = 0. This implies the analyticity

for ε, δ close to zero (after the rescaling). Therefore the variation of the argument
along the compact segment, corresponding to the part of ∂D, contained in the line
{Re y = yc}, is uniformly bounded.

Along the remaining part of ∂D the displacement map D1−D2 is analytic, except
at the singular points si. For this purpose we bound the increase of the argument
of D1 −D2 by the number of the zeros of its imaginary part (the so-called “Petrov
trick”) along ∂D. Clearly, these zeros are exactly the intersection points of the
curves {Im D1 = 0}, {Im D2 = 0}, that is to say C1

−π ∩ C2
−π and C1

+π ∩ C2
+π.

The intersection points have a transparent geometric meaning: they correspond to
complex limit cycles intersecting the cross-section, or fixed points of the holonomy
map Hol along the “figure-eight loop” which we recall now (see [2, 8, 9]). If the
holonomy map Hol were analytic with respect to the parameters too, this would
imply a uniform bound for the number of fixed points, and hence completes the
proof of the theorem.

The one-dimensional leaves of the foliation F0,0 are the punctured discs {(x, y) :
y = c} \ {(±√

c, c)}, where c �= 0. The geometric realization of Hol = id is
then explained in Proposition 3.7 and shown in Figures 3.6, 3.7 from which the
analyticity follows, except along the leaf {y = 0} through the turning point (0, 0).
In a neighborhood of the turning point we use the rescaling (4.1) and describe the
geometric realization of Hol as follows. Let y ∈ C−π in Figure 6.1 and note that
ȳ ∈ C+π. Consider the paths in the leaves of the foliation F0,0

γ1
y , (γ1

ȳ)
−1, γ2

y , (γ2
ȳ)

−1,

connecting the points y,D1(y), ȳ,D2(y), y. These paths can be composed and the
resulting closed path defines the holonomy mapHol which is then obviously analytic
in ε, δ. The projection of these four paths on the cross-section, in the case of a fixed
point of Hol, are shown in Figure 6.1.
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