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Cette activité n’aurait pas été ni possible ni si passionnante sans l’aide, l’amitié et
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L’ambiance de l’IRMA n’aurait pas été aussi stimulante pour moi sans l’apport
constant de plusieurs collègues que je tiens à remercier: Adriano, Alex, Athanase,
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CHAPTER 1

Introduction

My recent research activity has been concentrated on the study of the relations between
geometry and quantum invariants of topological objects as knots, links, trivalent graphs
and manifolds. Spin networks may be seen as a central object in these researches and will
constitute the unifying “fil rouge” of the present work. In Appendix A I provide a list of
all my works including those related to the previous research activity not cited here.

1. A short history of spin networks

The theory of classical spin networks originates from the techniques developed by
Giulio Racah ([51]) and Eugene Wigner ([65]) in the 1950’s to perform computations in
atomic spectrography, and later used by Roger Penrose ([49]) who first gave a general
definition of these objects.

A spin network is a number ⟨Γ, col⟩ ∈ Q associated to a couple (Γ, col) where Γ is
a finite trivalent graph equipped with a cyclic ordering of the edges around each vertex
and col is an admissible coloring, i.e. a map col : {edges of Γ} → N such that for each
three-uple of edges e1, e2, e3 around a vertex col(e1), col(e2), col(e3) have even sum and
satisfy triangular inequalities. This number is defined as a contraction of a tensor with
values in finite dimensional representations of SU(2) and using Wigner’s 3j-symbols (we
will provide combinatorial definitions in Chapter 2). Besides the initial application to
atomic spectrography spin networks have a central role in loop quantum gravity and in
the study of quantum field theory.

The interest of spin networks in topology is due to the more recent ideas of quantum
field theory and quantum invariants. At the beginning of 1980’s, V.G. Drinfeld ([18])
and M. Jimbo ([30]) introduced the notion of quantum group and used the theory of
representations of these objects to produce solutions to Yang-Baxter equations and thus
representations of braid groups. In the meantime, V. Jones ([31]) defined his invariant
of knots in S3 through the theory of representations of Von Neumann algebras and L.
Kauffman ([34]) found a purely combinatorial definition for this object. Shortly later, A.
Kirillov and N. Reshetikhin ([39]) generalised the Jones polynomial using the theory of rep-
resentations of the quantum group Uq(sl2) and defined the quantum analogues of classical
spin networks; these objects are rational functions associated to trivalent graphs embed-
ded in S3 and equipped with a framing and a coloring (we will recall all the definitions
in Chapter 2). Later V. Turaev and N. Reshetikhin ([53]) generalized these constructions
to produce invariants of graphs associated to the representations of any quantum group
and used these invariants ([54]) to build invariants of 3-manifolds which are universally
accepted to be the rigourous realization of the invariants whose existence was predicted
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2 1. INTRODUCTION

by E. Witten ([66]) through Feynmann integrals on the space of SU(n)-connections of the
Chern-Simons action. Moreover using the rigourous construction of Reshetikhin-Turaev
invariants, C. Blanchet, N. Habegger, G. Masbaum and P. Vogel ([6]) gave a first rigourous
construction of the TQFT underlying these invariants.

One of the main interesting points in the study of these objects is that they allow
a direct computation of expectation values of topological quantum field theories which,
according to the physical interpretation, are based on infinite dimensional Feynmann inte-
grals. Hence they provide a tool to test conjectures issued from the physical interpretation;
instances of these conjectures are those studying the asymptotical behavior of quantum in-
variants when the level goes to infinity, like Witten’s asymptotic expansion conjecture and
the Volume Conjecture. In the present text we will only deal with the second conjecture
which we will recall later on.

2. Physical motivation for spin networks

Spin networks (both in their classical and quantum versions) provide a bridge for
mathematicians towards different theories and models in modern physics. We briefly
recall three of these connections here below.

2.1. Classical spin networks and Penrose’s toy-model for a universe. In [49],
Roger Penrose proposed a toy model for a universe based on the combinatorial definition
of classical spin networks. Roughly speaking according to the model (and to the best
of our understanding of the physical statements in the paper), the universe is a spin
network with boundary whose topology is unknown and performing an experiment on
it corresponds to gluing small graphs along the boundary and observing the probability
distributions of the colors on the so-obtained new boundary components of the universe.
When the spins (colors) of the new graphs glued are small with respect to those of the
universe, and the experiment is repeated enough times one may define angles formed by
pairs of particles by inverting the solution to the question “If two particles of spin n and m
moving in directions forming an angle α interact, what will be the probability distribution
of the resulting spins after the interaction?”. According to Penrose, no matter how big the
universe is, the set of angles one can find through this procedure will always be compatible
with a 3-dimensional euclidean geometry, i.e. the matrix whose entries are the cosines of
the angles so found (between the directions of the particles represented by the boundary
of the universe-graph) will always have rank at most 3. Unfortunately, as Penrose himself
points out in the same paper, this toy-model for the universe does not allow a definition of
distances between particle thus it provides only “half” of the geometry one would desire;
thus the model was immediately abandoned for the more promising theory of twistors.

We cite this model here because we find it quite anticipatory of the ideas which later
on showed up in the study of asymptotical behavior of quantum invariants in relation
with geometry. It is indeed our opinion that the lessons learned in the last twenty years,
namely the use of quantum-groups to enhance classical spin networks and the relations
of the resulting objects with geometries other than the Euclidean one, should be used to
modify and possibly improve Penrose’s model.
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2.2. Loop Quantum Gravity and spin networks. Classical spin networks have
been extensively used in their gauge enhanced version to provide basis for the Hilbert space
of observables in Loop Quantum Gravity (LQG). Very roughly speaking, the starting idea
underlying LQG is that even if the position of a point is not well defined up to the action
of the group of self-diffeomorphisms of the ambient (three-dimensional) manifold, the
topology of a knot is; thus any kind of observable associated to knots (or graphs) could be
viewed as an observable for a potential theory of quantum gravity. So a preliminary Hilbert
space H̃ underlying LQG is defined as the span of the functions on the space of SU(2)-
connections of a 3-dimensional universe M provided by pairs (Γ, col) embedded in M
(these pairs, enhanced with the connections, become the “spin networks with connections”
defined in Chapter 2, Section 5) which are declared to be a orthonormal basis; the final
space of the theory is the quotient H of H̃ by the unitary action of the group of self-
diffeomorphisms of M . It is claimed ([55]) that H is separable and that isotopy classes of
spin networks with holonomies provide bases for it. Even though theoretically speaking
some predictions made by LQG could be tested there is today no evidence for or against
the theory, which remains thus one of the proposals for a quantum version of gravity.
One of the main difficulties in the theory is to show that a suitable semi-classical limit
of it recovers general relativity: such a problem may be seen as a generalization of the
problem of studying asymptotical behavior of classical spin networks because the limit to
be considered is also a limit on the topology of the network (as opposed to a limit only on
the colors of a fixed Γ treated later on in this work).

2.3. Chern-Simons quantum field theory. The last (and probably most impor-
tant) use of spin network in physics we will cite is due to E. Witten ([66]) and appears
while studying the topological quantum field theory associated to Chern-Simons theory
with group SU(2). Given a 3-manifold M and a SU(2)-principal bundle P on it, let A be
the space of connections on P . Witten considered the following partition function:

Zr(M) =

∫

A
exp(2πirCS(ω))dA

where r ≥ 3 is the level, CS(ω) ∈ R/Z is the Chern-Simons functional of a connection ω
and dA is the (yet undefined at a mathematical level of rigour) Feynmann measure on
connections. Introducing a “Wilson line” i.e. a link L = 'iLi embedded in M whose
components are colored by simple representations of SU(2) (which may be indexed by
their dimensions ni) one may also extend the above partition function to:

Zr(M,L) =

∫

A exp(2πirCS(ω))
∏

i trni(holLi(ω))dA
Zr(M)

where trni is the trace in the ni-dimensional representation and holLi(ω) is the (conjugacy
class of) the parallel transport of ω along the component Li of L. As Witten pointed
out, for physical renormalization matters the link should be framed. Moreover, one may
extend the above “definition” of the partition function to general framed, colored trivalent
graphs in M . The resulting invariants where rigourously defined by N. Reshetikin and V.
Turaev ([53]) using the theory of quantum groups and can also defined in a combinatorial
way using the evaluations at suitable roots of unity of the quantum spin-networks (defined
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in Chapter 2). Even if the physical definitions are still not rigourous the existence of a
mathematical definition of the invariants and the combinatorial formulas allowing one to
compute their values explicitly make their study very intriguing. In a sense we are able to
compute certain Feynmann integrals even without knowing their direct definitions! The
quantum field theory associated to the Chern-Simons functional is one of the most impor-
tant examples of “toy models” for quantum gravity (and this was the initial motivation of
Witten) as the action is purely topological and hence invariant under the diffeomorphism
group of the manifold.

3. Mathematical problems on spin networks

Spin networks are rational functions ⟨Γ, col⟩A of a parameter A called the quantum
parameter and indexed by a framed trivalent graph embedded Γ ⊂ S3 equipped with an
integral coloring col of its edges; they are defined as contraction of tensors with values
in representations of Uq(sl2) or via a combinatorial description (we will adopt here the
combinatorial point of view, recalled in Chapter 2). In particular, when Γ has no vertices
it is a link or a knot. Setting A = −1 one gets a number called classical spin network :
we shall denote it ⟨Γ, col⟩. Despite their rigourous definitions, the topological meaning of
these objects is still unclear:

Problem 1.1. Understand the topological meaning of ⟨Γ, col⟩A, at least for planar Γ′s.

Let us try to make more precise the vague statement of the above problem and give
an example of how one could attempt to treat it. In the classical case (i.e. A = −1)
Bruce Westbury ([64]) showed that instead of focusing on the meaning of a single ⟨Γ, col⟩
one should rather consider the “generating series”: Z(Γ) =

∑

col⟨Γ, col⟩Y col where Y is a
multivariable indexed by the edges of Γ. Indeed he was able to compute Z(Γ) (up to a
suitable renormalization of ⟨Γ, col⟩) for planar Γ and showed hence that each ⟨Γ, col⟩ is a
suitable derivative of a single function associated to Γ whose topological meaning is clear
(see Chapter 3 for details). His result was later extended to general Γ (but still in the
classical case A = −1) by Garoufalidis and van der Veen ([28]). We consider this as an
example of explanation of the topological meaning of classical spin networks. Recently,
jointly with Julien Marché, we provided an extension of these results to the case of classical
spin networks equipped with SL2(C)-holonomies (Theorem 3.4). In Chapter 3, we detail
our result (which also provides a new and independent proof of Westbury’s results) and
relate it to the Ising model on one side and to the geometry of SL2(C)-character varieties
on the other side. Motivated by Westbury’s approach one can then formulate the problem:

Problem 1.2 (Quantum Generating Series). Compute SA(Γ) =
∑

col⟨Γ, col⟩AY col

where Γ is a graph and Y is a multi variable indexed by the edges of Γ.

This problem is very difficult if Γ is a knot but some first evidences and results in
this direction are presented in the last section of Chapter 3 when Γ is planar. Indeed in
Examples 3.24 and 3.25 we show that for Γ = and Γ = one can still get a result “à
la Westbury” computing a suitable non commutative generating series thus interpreting
the values ⟨Γ, col⟩A as “derivatives” of a single element of a non-commutative ring. It is
our expectation that such an interpretation does still exist for all planar Γ: this could
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help clarifying the meaning of quantum spin networks at least for this class of graphs.
The partial results in this direction presented in Chapter 3, Section 4 are based on an
integrality result for quantum spin networks we proved in [15] (Theorem 3.15). In the
same section we briefly discuss some of the other problems one might be able to treat by
using the theorem and the techniques used to prove it: the problem of categorification
of spin networks and that of finding an integral orthogonal base of the skein algebra of a
punctured surface.

Besides the topological meaning, probably the most important open problems and
questions in the study of TQFT’s and in particular in the study of quantum spin networks
are those concerning their “asymptotical behavior”:

Problem 1.3. Understand the behavior for large n ∈ N of the sequence of numbers
obtained by evaluating ⟨Γ, n · col⟩A at A = An, where {An}n∈N is a given sequence of
complex numbers.

From a physical point of view this study includes the “semi-classical” limit of the
theory and should recover classical properties of systems modelled by the networks. From
a mathematical point of view the problem of asymptotics has been given different names
according to the setting in which the problem was formulated:

• Semi-classical limit of classical spin networks (Wigner’s conjecture).
• Melvin-Morton-Rozansky conjecture (which is nowadays a theorem).
• The Volume Conjecture (and its generalizations).

(Another example of such conjectures is Witten’s asymptotic expansion conjecture but we
will not deal with it in the present work.)

In the study of semi-classical limit of classical spin networks {An}n∈N is constantly −1,
so one deals only with classical spin networks and tries to understand the asymptotical
behavior of the sequence ⟨Γ, n·col⟩ (suitably normalized). A particular case of this problem
was formulated by E. Wigner who conjectured that if Γ = and if the coloring col provides
the edge-lengths of a euclidean tetrahedron then the norm of the sequence should go like

(32πn
3Vol)−

1
2 times an oscillating correcting factor, where Vol is the volume of the euclidean

tetrahedron whose edge lengths are col (a more precise statement of the conjecture will
be provided in Chapter 4). There are nowadays many different independent proofs of
this conjecture: by J. Roberts [56], by J.W. Barrett and C.M. Steele ([4]) and a more
recent one, based on different techniques by S. Garoufalidis and R. van der Veen ([28]). For
general Γ the problem is much harder as it is related to the problem of rigidity of euclidean
polyhedra: in Chapter 4 we discuss a result (Theorem 4.4) obtained in collaboration with
Julien Marché which reduces the study to some algebraic “non-degeneracy” conditions on
col. Our result applies to any spin network Γ and in particular can be shown to recover
the proof of Wigner’s conjecture. In the last section of the chapter we relate the result to
the study of classical problems of rigidity of euclidean polyhedra.

Both the Melvin-Morton-Rozansky and the Volume Conjecture (respectively MMR
and VC from now on) deal with the case when Γ is a framed knot K. It is customary to
state them in terms of the nth-colored Jones polynomial of K defined as Jn(K) = ⟨K,n⟩A
and its normalized version J ′

n(K) = Jn(K)
(−1)n+1[n] (it turns out that J

′
n(K) ∈ Z[A±1]).
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The MMR conjecture deals with the evaluations of J ′
n(K) at An = exp( iπα2n ) for some

fixed α ∈ C; it was proved by D. Bar Natan and S. Garoufalidis ([7]). We state it in a
stronger form proved by S. Garoufalidis and T. Q. Le ([23]), keeping the name “conjecture”
just for the sake of continuity with the nomenclature used in the litterature:

Conjecture 1.4 (Melvin-Morton-Rozansky). There exists a neighborhood U of 0 ∈ C

such that ∀α ∈ U it holds:

(1) lim
n→∞

J ′
n(K)|A=exp( iπα

2n ) = ∆(eiπα)−1

where ∆(x) is the Alexander polynomial of K normalized so that ∆(x−1) = ∆(x) and
∆(1) = 1.

The Volume Conjecture is due to R. Kashaev who defined ([33]) an invariant Kn(K) ∈
C which was later shown by H. Murakami and J. Murakami to be equal to the value at
An = exp( iπ2n) of J

′
n(K). It states :

Conjecture 1.5 (Volume Conjecture).

(2) lim
n→∞

2π

n
log(||J ′

n(K)|A=exp( iπ
2n )||) = Vol(S3 \K)

where Vol(S3 \K) is the sum of the hyperbolic volumes of the hyperbolic pieces in the JSJ
decomposition of S3 \K.

The VC in the above form has been formally checked for the Figure Eight knot ([43]),
the Borromean link ([24]), for torus knots ([40], [45]), their Whitehead doubles ([68]) and
for the family of “Whitehead chains” ([62]). Moreover, there is experimental evidence of
its validity for the knots 63, 89 and 820 ([46]). In [27], S. Gukov proposed the following
extension of the conjecture (and proved it for the figure-eight knot):

Conjecture 1.6 (Generalized Volume Conjecture). Let I = (R\Q)∪{0} and K be a
hyperbolic knot; then there exists a neighborhood UK of 0 in I such that ∀α ∈ UK it holds:

(3) lim
n→∞

2π(1 + α)

n
log(||J ′

n(K)|
A=exp( iπ(1+α)

2n )
||) = Volα(S

3 \K)

where Volα(S3 \ K) is the volume of the (non-complete) hyperbolic structure on S3 \ K
such that the holonomy of the structure around the meridian of K is conjugated to the
diagonal matrix with eigenvalues e±iπα.

A different and more general extension has also been proposed by H. Murakami ([47])
which agrees with above one but also allows complex values of α.

In [16], we proposed an extension of the VC to include the case of links in S3 or in
connected sums of copies of S2 × S1 and proved it for the infinite family of “fundamental
shadow links” (see Theorem 5.11). This is the first proof of the conjecture for an infinite
family of hyperbolic links (and knots); moreover these links were already studied in [17]
because of their remarkable geometric properties; in particular they are universal in the
sense that every pair (M3, L) where M3 is a three-manifold and L ⊂ M3 is a link can
be obtained by an integral Dehn-surgery on some components of a fundamental shadow
link (see Theorem 5.10). This feature may allow one to attack the volume conjecture (for
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M3 = S3 and L a knot K) by computing Jn(K) as a weighted sum of the invariants of
the fundamental links and then using our asymptotical analysis of the invariants of the
links: the difficulties of this approach will be discussed in Chapter 5.

The proof of the Volume Conjecture for fundamental shadow links was based on our
computation of the asymptotical behavior of 6j-symbols of Uq(sl2). To state it, let us
extend the definition of the initial problem of asymptotics to:

Problem 1.7. Given a sequence {coln}n∈N of colorings of Γ with values in N such
that the limit limn→∞

coln
n = col∞ exists (col∞ is then a coloring with positive real values)

and a sequence {An}n∈N of complex numbers, understand the behavior for large n ∈ N of
the sequence of numbers ⟨Γ, coln⟩An obtained by evaluating ⟨Γ, coln⟩A at An.

(We stress here that since ⟨Γ, col⟩A is a rational function it may have poles at An: the
notion of “evaluation” is then to be understood as in Definition 5.1.)

In our result we computed the sequence ⟨ , coln⟩An at An = exp( iπ2n) with coln
being n on all the edges (so that col∞ = 1 on all the edges) and showed that it grows
exponentially fast with a growth rate proportional to the volume of a hyperbolic ideal
regular octahedron. Later (see Theorem 5.3), we computed the asymptotical behavior
of ⟨ , coln⟩An at An = exp( iπ2n) for a full open range of values for the “limit coloring”
col∞ which we called “hyperbolic regime” ([11]): such an analysis shows that when the
colors satisfy certain inequalities corresponding directly to the inequalities satisfied by the
angles of a hyperbolic tetrahedron, the growth of 6j-symbols is exponential with growth
rate given by the volume of the tetrahedron (the regular ideal octahedron being a special
case of this). This result may be considered as a “proof of the Volume Conjecture for
the tetrahedron”; indeed we formulate a volume conjecture for planar trivalent graphs
(Conjecture 5.5) and using the above analysis of the asymptotical behavior of 6j-symbols
we prove it (Theorem 5.6) for all the graphs obtained from the tetrahedron by iterating
the operation replacing a vertex by a triangle: . All these results will be stated
formally and detailed in Chapter 5.

A promising technique to attack the Volume Conjecture is the use of the so-called
nilpotent spin networks ⟨Γ, col⟩Nil

r : the quantum invariants of framed graphs Γ ⊂ S3 whose
edges are colored by a special kind of simple representations of Uq(sl2) when q = exp(iπ/r)
is a root of unity (those where Er = F r = 0 and called nilpotent here below), which
are parametrized by non integer complex numbers. In [14], jointly with Jun Murakami
we defined these objects (Theorem 6.1) and provided a “shadow-state sum” model for
it (Theorem 6.2). (These invariants were also defined independently by N. Geer and
B. Patureau-Mirand in [25].) In our work we also showed that if Γ is a knot K then
Kr(Γ) = limα→0⟨K,α⟩Nil

r where Kr(K) is the Kashaev invariant of the knot ([14], Remark
3.7). Moreover we studied a version of Problem 1.2 for the nilpotent case by proving:

lim
r→∞

π

2r
log

(

⟨ , col⟩Nil
r ⟨ ,−col⟩Nil

r

)

= Vol(Tet)

where Tet is a hyperbolic truncated tetrahedron whose internal dihedral angles are given
by πcol∞ (see Theorem 6.3 for a precise statement). These evidences, exposed in Chapter
6, seem to support the idea that nilpotent spin networks may be a useful tool to tackle the
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Volume Conjecture. In the same chapter we also discuss the construction of the analogue
of Reshetikhin-Turaev invariants based on nilpotent spin networks: in collaboration with
Nathan Geer and Bertrand Patureau-Mirand we obtained invariants N(M,T,ω) of three-
manifolds M with some graphs T ⊂ M and a cohomology class ω ∈ H1(M \ T ;C/2Z)
(see Theorem 6.5). It is our hope that these invariants will allow to extend the Volume
Conjecture to knots in general manifolds and maybe to general, empty, manifolds.

4. Structure of the memoire

All the preliminary definitions were concentrated in Chapter 2: experts may skip it or
use it as a reference for notations.

Chapter 3 is devoted to the study of generating series of classical and quantum spin
networks. There we first discuss the classical case and Theorem 3.4 we proved jointly
with J. Marché. In Chapter 3, Section 4 we discuss our integrality result of quantum
spin networks and its consequences and potential applications. Then we pass to the study
of asymptotics of spin networks and discuss in three separate chapters the classical, the
quantum and the nilpotent cases. Using nilpotent networks we also define invariants “à
la Reshetikhin-Turaev” of manifolds possibly containing links (or graphs) and equipped
with a suitable cohomology class. We summarize the chapters of the memoire by a table:

Our main results Bibliographical references
Chapter 3: generating
series

Theorems 3.4, 3.5, and 3.15, Exam-
ples 3.24 and 3.25

[13], [15]

Chapter 4: asymptotics
of classical spin net-
works

Theorems 4.3 and 4.4 [13]

Chapter 5: asymptotics
of quantum spin net-
works

Theorems 5.3, 5.6, 5.11 and 5.10,
Proposition 5.4

[11],[16],[17]

Chapter 6: nilpotent
spin networks

Theorems 6.1, 6.2, 6.3, 6.5 and 6.7 [14], [12]

The first section of each chapter recalls the context of the research on the chapter’s
topic. The last section (and in Chapter 3 also Section 3) discusses open problems and
future directions of research by asking a list of questions and stating open problems.
Moreover, we structured the sections so that all the essential informations are contained
in the beginning of the section and all the subsections are accessory and contain examples,
sketches of proofs, remarks or connections with other problems: the reader may decide to
skip all the subsections.

The only exception to the above comments is Chapter 6 whose three sections are meant
to detail the three aspects of our research on nilpotent spin networks: the definition and
computation of ⟨Γ, col⟩Nil

r , their asymptotical behavior and their use to build 3 manifold
invariants.



CHAPTER 2

Classical and quantum spin networks, basic definitions and

facts

For the sake of self-containedness we recall in this chapter the basic definitions of
classical and quantum spin network and some of the key facts we will use later on.

1. Basic definitions and notation

Definition 2.1 (KTG). An Abstract Trivalent Graph (ATG) is a finite trivalent
graph Γ equipped with a “framing”, i.e. the germ of an orientable smooth surface Σ such
that Σ retracts on Γ. A Knotted Trivalent Graph (KTG) is an ATG embedded in S3, i.e.
a finite trivalent graph Γ ⊂ S3 equipped with a “framing”, i.e. the germ of an orientable
smooth surface Σ ⊂ S3 such that Σ retracts on Γ. In all the work we will denote by:

• V the set of vertices of Γ; #V = 2n for some n ∈ N. To specify the edges (or
half-edges) touching a vertex v we will write: v : (g, h, k).

• E the set of edges of Γ; #E = 3n. To specify the ends of an unoriented edge we
will write e : i↔ j; if e is oriented we will write it as e : i→ j.

• H the set of half-edges i.e. H = {(e, v)|e ∈ E, v ∈ V such that v ∈ e}; #H = 6n.
To specify the half-edges g, h contained in an edge e we will write e : g ↔ h and
if e is oriented: e : g → h.

• A the set of angles i.e. A = {(e, f)|e, f ∈ E such that e ∩ f ̸= ∅, e ̸= f};
#A = 6n. We will denote angles by greek letters and to specify the two half
edges g, h forming an angle α we will write α : g ↔ h; if α is oriented we will use:
α : g → h.

Remark 2.2. Note that a ATG is equivalent to a “fat graph” but a KTG is not as we
require Γ to be embedded in S3.

Remark 2.3. We allow Γ to contain some “circle component” which we will alterna-
tively consider as formed either by a single edge of Euler characteristic 0 or by a vertex
and an edge (and hence one angle and two half-edges). The cardinalities indicated above
are correct only for the union of the components of Γ which contain trivalent vertices.

In order to specify a framing Σ on a KTG or ATG Γ we will only specify (via thin lines
as in Figure 1) the edges around which it twists with respect to the blackboard framing in
a diagram of Γ, implicitly assuming that Σ will be lying horizontally (i.e. parallel to the
blackboard) around Γ out of these twists (in the case of an ATG only the topology of the
surface Σ is relevant and not the embedding chosen to draw it). Let us also remark that
if D is a diagram of Γ there is a framing ΣD (called the blackboard framing) induced on Γ

9
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4

6

7 7

3

5

Figure 1. An admissibly colored KTG containing 4 vertices and 6 edges.

simply by considering a surface containing Γ and lying almost parallel to the projection
plane. Pulling back the orientation of R2 shows that ΣD is orientable. The following
converse is easily proved:

Lemma 2.4. If Γ is a KTG and Σ is the framing on Γ then there exists a diagram D
of Γ such that ΣD = Σ.

Definition 2.5 (Coloring). A coloring of Γ (see Figure 1 for an example) is a map
col : E → N (whose values are called colors) such that ∀v ∈ V the following conditions
are satisfied:

(1) av + bv + cv ∈ 2N
(2) av + bv ≥ cv, bv + cv ≥ av, cv + av ≥ bv

where av, bv , cv are the colors of the edges touching v. We extend an admissible to a map
col : E ∪ A → N by defining col(α) = bv + cv − av if α is the angle formed in v by the
edges colored by bv and cv.

2. Skein algebras of surfaces

Let us fix a complex number A ̸= 0, let A2 = q and let {n} = −
√
−1(A2n − A−2n).

The quantum integer [n] is defined as [n] ≡ {n}
{1} and the quantum factorial as [n]! ≡

∏n
j=1[j], [0]! = 1. Let also

[

n
k

]

≡ {n}!
{k}!{n−k}! ∈ Z[A±1].

Definition 2.6 (Skein module of an oriented 3-manifold). Let N be an oriented
compact three-manifold (possibly with boundary) and let S(N) be the quotient of the
free Z[A±1]-module generated by framed (possibly empty) links in N modulo the ideal
generated by the relations induced by isotopy and the following well-known two “Kauffman
rules”:

= A +A−1 and = −[2]

where the drawings are meant to represent strands of the links in an embedded ball in N
and the framing are horizontal in the drawings. Let QZ[A±1] be the localization of Z[A±1]
by the subset S formed by finite products of quantum integers. Let us also define SQ(N)
as SQ(N) = QZ[A±1]⊗Z[A±1] S(N). The elements of S(N) are referred to as skeins.
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Remark 2.7. If i : N ↪→M is an embedding then there is an induced map of Z[A±1]-
modules i∗ : S(N)→ S(M).

If N = S3 then S(N) = Z[A±1] and the value of a framed link is what is usually
called its Kauffann brackets, which is essentially identical to its Jones polynomial, up to
a change of variable and a renormalization. Using Lemma 2.17 it is not difficult to check
that for each k ≥ 0 it holds SQ(#kS2 × S1) = QZ[A,A−1]. If N = Σ × [−1, 1] then
S(N) can be equipped with the structure of an associative (non commutative) ring (the
multiplication being vertical stacking induced by the embedding of two copies of Σ×[−1, 1]
one in Σ × [−1, 0] and the other in Σ × [0, 1]). We will denote from now on this ring by
S(Σ) (or SQ(Σ) for the ring build analogously from SQ(Σ)). It was proven by Turaev
([60]) that S(Σ) is a quantization of Goldman’s Poisson algebra.

Given an ATG Γ let D(Γ) be the closed orientable three manifold obtained by gluing
a solid torus to each boundary component of Σ×S1 so that the meridian is {pt}×S1; it is
easy to check that topologically it is #kS2×S1 where k = 1−χ(Γ) (χ(Γ) being the Euler
characteristic of Γ). There is a natural embedding i : Σ ↪→ D(Γ) and using the fact that
SQ(#kS2 × S1) = QZ[A,A−1] C. Frohman and J. Kania-Bartonszynska ([20]) defined by
this embedding:

Definition 2.8 (Yang-Mills trace). The Yang-Mills trace is YM : SQ(Σ)→ QZ[A±1].
It is a trace on the non commutative algebra SQ(Σ), i.e. YM(xy) = YM(yx), ∀x, y ∈
SQ(Σ).

The proof of the statement in the definition is straightforward: the vertical stack-
ing of two skeins in Σ × [−1, 1] can be permuted in D(Γ) by isotoping one of the two
skeins through the S1 part. The orientation reversing self-homeomorhism of Σ × [−1, 1]
sending (p, t) → (p,−t) induces an involution on · : SQ(Σ) → SQ(Σ). This together
with the above trace allows to build a “A-hermitian” product with values in QZ[A±1]
on SQ(Σ) by (x, y) ! YM(xy) such that (f(A)x, y) = f(A)(x, y) and (x, f(A)y) =
f(A−1)(x, y), ∀x, y ∈ SQ(Σ), ∀f ∈ QZ[A±1]. In particular if one evaluates in A ∈ C

with ||A|| = 1 then the above becomes a standard hermitian product.

3. Quantum spin networks

Given an ATG Γ and a coloring col on it, we will now recall a standard procedure
to associate to (Γ, col) an element S(Γ, col) ∈ SQ(Σ) which we will call the abstract spin
network associated to (Γ, col). Let us first define the Jones-Wenzl projectors JWa ∈
QZ[A±1][B(a)] (the group ring of the braid group on a strands tensored with QZ[A±1]):

(4) JWa = a !

∑

σ∈Sa

A−a(a−1)+3T (σ)

[a]!
σ̂

where σ̂ is the positive braid containing the minimal number (T (σ)) of crossings and
inducing the permutation σ on its endpoints (it is a standard fact that such braid is well
defined). Actually JWa is defined as an element of the Temperley-Lieb algebra, but for
the purpose of this presentation we will just consider it as a formal sum of braids. One
defines S(Γ, col) by the following algorithm:
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(1) Cable each edge e of Γ by JWcol(e), i.e., in Σ× [−1, 1] replace an edge e colored
by a by a formal sum of braids in B(a) according to the above definition of JWa:

a→ a

(2) Around each vertex of Γ, connect the (yet free) endpoints of the so-obtained
strands in the unique planar way (i.e. contained in Σ) without self returns:

a b

c
→

a b

c

(3) This way one associates to (Γ, col) a formal sum with coefficients ci ∈ Q(A) of
links Li contained in a small neighborhood of Σ in Σ×[−1, 1] and therefore framed
by annuli running parallel to it. Define S(Γ, col) =

∑

i ciLi ∈ SQ(Σ× [−1, 1]).

Definition 2.9. We will call the skein S(Γ, col) ∈ SQ(Σ) defined above the abstract
spin network associated to (Γ, col).

Definition 2.10 (Quantum spin networks). If Γ is a KTG then the inclusion of Σ in S3

induces a QZ[A±1]-module map i∗ : SQ(Σ) → SQ(S3) = QZ[A±1] ⊂ Q(A): the quantum
spin network associated to (Γ, col) is the rational function ⟨Γ, col⟩A = i∗(S(Γ, col)).

Theorem 2.11 (Kauffman, [36]). ⟨Γ, col⟩A is an invariant up to isotopy of (Γ, col).

In particular if Γ is a framed link then ⟨Γ, col⟩A is also known as the colored Jones
polynomial of Γ (up to a suitable change of variable and renormalization).

Definition 2.12 (Classical spin networks). If Γ is an ATG then the classical spin
network ⟨Γ, col⟩ ∈ Q associated to (Γ, col) is the evaluation at A = −1 of the rational
function ⟨Γ, col⟩A where ⟨Γ, col⟩A is obtained by using any arbitrary embedding of Γ in
S3.

Remark 2.13. Definition 2.12 makes sense because of the following two reasons:

(1) all the denominators appearing in the definition of L(Γ, col) are of the form [a]!
for some a ∈ N and thus are not zero at A = −1;

(2) any two embeddings of Γ in S3 as a KTG are related by isotopies and a finite
number of crossing switches. The former transformations do not change ⟨Γ, col⟩A
by Kauffman’s theorem and the latter don’t change it by Kauffman’s rules at
A = −1.

4. Examples and properties

Example 2.14 (Unknot).

(5)
a
≡ ⟨

a
⟩A = (−1)2a[2a+ 1]
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Example 2.15 (Theta graph).

(6)
a

b

c
≡ ⟨

a
b

c
⟩A = (−1)

a+b+c
2 [

a+ b+ c+ 2

2
]!
[a+b−c

2 ]![ b+c−a
2 ]![ c+a−b

2 ]!

[a]![b]![c]!

Example 2.16 (The tetrahedron or symmetric 6j-symbol).
(7)

a
bc

d

e f
=

∏3
i=1

∏4
j=1[Qi − Tj ]!

[a]![b]![c]![d]![e]![f ]!

z=MinQj
∑

z=MaxTi

(−1)z
[

z + 1
z−T1, z−T2, z−T3, z−T4, Q1−z,Q2−z,Q3−z, 1

]

where T1 = a+b+c
2 , T2 = a+e+f

2 , T3 = d+b+f
2 , T4 = d+e+c

2 , Q1 = a+b+d+e
2 , Q2 =

a+c+d+f
2 , Q3 =

b+c+e+f
2 .

Lemma 2.17 (Properties of quantum spin networks, [36],[48]). The following are some
of the properties of ⟨Γ, col⟩A :

(1) (Erasing 0-colored strand) If Γ′ is obtained from (Γ, col) by deleting a 0-colored
edge, then ⟨Γ′, col′⟩A = ⟨Γ, col⟩A.

(2) (Half-Twisting) Adding k half-twists to the framing of Γ around an edge colored

by a multiplies ⟨Γ, col⟩A by
√
−1akA

k
2 (a

2+2a).
(3) (Whitehead move) If Γ and Γ′ differ by a Whitehead move then:

a

b c

d

j
=

∑

i

i a
bi

c

d j

a
i

d

b
i

c
a

b c

d

i

where i ranges over the all the admissible values.
(4) (Fusion rule) In particular, applying the preceding formula to the case j = 0 one

has:

a b =
∑

i

i

a
i

b
a

a

b

b

i

(5) (Connected sum) If Γ = Γ1#Γ2 along an edge colored by a, then

a

a
Γ1 Γ2 ⟩⟩ =

1

(−1)2a[2a+ 1]
aaΓ1 Γ2

(6) (Twisting vertices) For every admissible 3-uple (a, b, c) it holds:

ab

c

= ab

c
=
√
−12(c−a−b)

qc
2+c−a2−a−b2−b

a b

c

.

Actually all the above properties hold in SQ(N3) for any compact, oriented 3-manifold N3,
where the skein represented by a colored graph i : (Γ, col) ↪→ N3 is i∗(S(Γ, col)).



14 2. CLASSICAL AND QUANTUM SPIN NETWORKS, BASIC DEFINITIONS AND FACTS

5. Classical spin networks with holonomies

The notion of classical spin network has a natural generalization in the gauge theoret-
ical setting based on the use of connections:

Definition 2.18 (Connections). A connection on a graph Γ is a map ψ :
−→
E → SL2(C)

(where
−→
E = {oriented edges of Γ}) such that ψ(−→e ) = ψ(←−e )−1, ∀−→e ∈ −→E .

Let S−1(Σ) be the evaluation at A = −1 of SQ(Σ) i.e. S−1(Σ) = Q ⊗QZ[A±1] SQ(Σ)
where Q is a QZ[A±1]-module via the evaluation map at A = −1. It was proved by
Przyticki that SQ(Σ) is a free QZ[A±]-module with a basis formed by the (possibly empty)
multicurves in Σ whose components are all essential; hence S−1(Σ) is a free Q-vector space
generated by the same set.

A connection ψ on Γ provides a function holψ : S−1(Σ) → C by the following con-
struction. Given a connected essential curve c ⊂ Σ, fix an orientation of c and an initial
point p0 ∈ c and let holψ(c) = −tr

(
∏

−→e ⊂c ψ(
−→e )

)

where the product is ordered according
to the edges met while following the orientation of c and starting from p0; if c = ∪ci then
let holψ(c) =

∏

holψ(ci). Since tr(A) = tr(A−1), ∀A ∈ SL2(C) the so-obtained value is
well defined; extend this definition of holψ(·) by linearity to the whole S−1(Σ).

Definition 2.19 (Equivalence of connections). Two connections ψ1,ψ2 are equivalent
if holψ1 = holψ2 . If they take values in SU(2) this is equivalent to the existence of
g : V → SU(2) such that

ψ1(
−→e ) = g(f(−→e ))ψ2(

−→e )g(i(−→e ))−1, ∀−→e ∈ −→E
where f(−→e ) and i(−→e ) are respectively the final and initial point of −→e . A holonomy on Γ
is an equivalence class of connections; the trivial holonomy is the class of ψ(−→e ) = Id, ∀−→e .

Definition 2.20 (Classical spin networks with holonomies). Let Γ be equipped with
a connection ψ and col be an admissible coloring on Γ. The classical spin network with
holonomy ⟨Γ,ψ, col⟩ ∈ C is ⟨Γ,ψ, col⟩ = hol[ψ](S(Γ, col)|A=−1) where S(Γ, col) ∈ SQ(Σ)
was defined in 2.9 and S(Γ, col)|A=−1 is its image in S−1(Σ). In particular ⟨Γ, [Id], col⟩ =
⟨Γ, col⟩ ∈ Q.

5.1. Classical spin networks as contractions of tensors. In this subsection we
sketch how to compute ⟨Γ,ψ, col⟩ as a contraction of tensors valued in representations of
SL2(C). Pick an embedding of Γ in R3 such that all the vertices look like and are
placed at different horizontal coordinates. We compute ⟨Γ,ψ, col⟩ by assigning morphisms
of representations of SL2(C) at each elementary tangle: we first sketch how to do this when
Γ is a link and col = 1 on all its components. Let V a = {P (z, w)|deg(P ) = a} be the a+1-
dimensional irreducible representation of SL2(C) (the action of a matrix being A·P (z, w) !
P (A−1(z, w))) and in particular let V = V 1. The vector ∪ =

√
−1(z⊗w−w⊗z) ∈ V ⊗V

is the only (up to scalar) invariant vector. Similarly, the operator ∩ : V ⊗ V → V 0 = C

defined by ∩(z⊗w) =
√
−1, ∩(w⊗z) = −

√
−1, ∩(z⊗z) = ∩(w⊗w) = 0 is the unique (up

to scalar) projector from V ⊗V to V 0. One checks that : V 0 → V 0 is the multiplication
by −2 and that (Id⊗∩) ◦ (∪ ⊗ Id) = Id = (∩ ⊗ Id) ◦ (Id⊗∪) (planar isotopy invariance).
Moreover in order for the Kauffman relation to be satisfied with A = −1 (classical case)
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one needs: (x⊗ y) = −y ⊗ x, ∀x, y ∈ V . This suggests to consider V as an odd vector
space. Using the above operators and the invariance of ∪ and ∩ under the action of
SL2(C) one can move any coupon containing SL2(C) matrices to a single vertical strand
and take their product, thus reducing the coupons to just one per component of Γ. Using
the Kauffman relation it is then easy to check that the tensor contraction build by the
above tensors is ⟨Γ,ψ, col⟩.

When Γ is a graph, using the Jones-Wenzl projectors one can reinterpret the above
tensor contraction as one valued in polynomials (thus simplifying the computations); let
us sketch how. Having remarked that V can be considered as an odd vector space of
polynomials of degree 1 in z, w, then the Jones-Wenzl projectors JWa (see Equation (4)
at A = −1) become standard antisimmetrizers of V ⊗a in the super sense, i.e. projectors on
the symmetric polynomials V a = {P (z, w)|deg(P ) = a} (in the non-super sense). Thus up
to replacing each JWa by (JWa)2 (they are projectors) and distributing these projectors
on the strands near the maxima, the minima and the vertices of the fixed diagram of Γ,
one can compute ⟨Γ, col⟩ as a contraction of tensors with values in tensor products of V a’s.
The tensor product V a1 ⊗ · · · ⊗ V ak can be seen as the space of polynomials in variables
z1, w1, z2, w2, . . . , zk, wk with degree aj with respect to zj , wj . With this convention in
mind, it is not difficult to check that if a, b, c are an admissible three-uple then the invariant
vector in V a ⊗ V b ⊗ V c associated by the above construction to the diagram whose
strands are colored by a, b, c and whose half-edges are (g, h, k) ∈ H3 respectively, is the
polynomial:

ωa,b,c =
√
−1a+b+c

(zgwh − zhwg)
a+b−c

2 (zgwk − zkwg)
a+c−b

2 (zhwk − zkwh)
b+c−a

2 .

Similarly the operator associated to ∩a : V a ⊗ V a → V 0 = C is ∩a =
√
−1

a

a!2 ( ∂
∂z1

∂
∂w2
−

∂
∂z2

∂
∂w1

)a (where z1, w2 are the variables representing the polynomials on the left strand and

z2, w2 those on the right strand). The crossings operate as
a b

(x⊗y) = (−1)aby⊗x, ∀x ∈
V a, y ∈ V b Finally the role of the holonomy on an edge e ∈ E is just to act on the
polynomials V col(e) via V col(e) ∋ P (z, w)→ P (ψ−1

e (z, w)).





CHAPTER 3

Generating series of spin networks

1. Generating series of classical spin networks: context

Let Γ be an ATG and let:

(8) Z(Γ) =
∑

col

⟨Γ, col⟩
∏

e∈E col(e)!
∏

α∈A col(α)!

∏

e∈E

Y col(e)
e ∈ C[[{Ye}e∈E]]

where the sum is taken over all the colorings of Γ. One says that Γ is planar if it can
be embedded in R2 so that the cyclic ordering of the edges around its vertices coincides
with that induced by the standard orientation of R2. In 1996, Bruce Westbury proved the
following:

Theorem 3.1 (Westbury, [64]). Let PΓ =
∑

c∈Γ
∏

e∈c Ye where c runs over all the

curves (possibly empty or disconnected) embedded in Γ. If Γ is planar then Z(Γ) = P−2
Γ .

Example 3.2.

Z( ) = (1 + Y )−2

Z( ) = (1 + Y1Y2 + Y1Y3 + Y2Y3)
−2

The above result was then extended by S. Garoufalidis and R. van der Veen ([28]) to
the case of non-planar Γ.

Surprisingly enough, it was never acknowledged in the literature that Westbury’s result
provides a bridge between the theory of classical spin networks and the study of the Ising
model (probably the most studied statistical model): let us do this here below. Let us first
rapidly recall what the Ising model is. Let G be a finite graph with vertex set V (G) and
edge set E(G). A spin configuration on G is a map σ : V (G) → {−1,+1}. Any positive
edge weight system {Je}e∈E(G) determines a probablity measure on the set Ω(G) of spin
configurations: by

P (σ) =
1

ZJ(G)
exp(

∑

e:u↔v

Jeσuσv)

where

ZJ(G) =
∑

σ∈Ω(G)

exp(
∑

e:u↔v∈E(G)

Jeσuσv)

17
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is the partition function of the Ising model on G with coupling constants {Je}. As observed
by van der Waerden, the identity exp(Jeσuσv) = cosh(Je)(1 + tanh(Je)σuσv) allows to re-
express the partition function as:

(9) ZJ(G) =
(

∏

e∈E(G)

cosh(Je)
)

∑

σ∈Ω(G)

∏

e:u↔v

(1 + tanh(Je)σuσv) =

(

∏

e∈E(G)

cosh(Je)
)

2#V (G)
∑

γ∈E(G)

∏

e∈γ
tanh(Je)

where E(G) is the set of even subgraphs de G i.e. subgraphs γ such that every vertex of
G is adjacent to an even number of edges of γ. To solve the Ising model is to compute
explicitly the function ZJ(G) for some G.

To go back to the connection with spin networks, let us put G = Γ. Then E(G) is the
set of curves contained in Γ and, setting tanh(Je) = Ye one recovers:

ZJ(Γ)

2#2n
∏

e∈E cosh(Je)
= PΓ

so up to a renormalization factor (2#2n ∏

e∈E cosh(Je)) the partition function of the Ising
model on Γ coincides with Westbury’s polynomial and thus is the inverse of the square-root
of the generating series Z(Γ, Id).

This relation opens up many natural and deep questions which we will comment in
Chapter 3 Section 3, after exposing our main contributions on the study of generating
series of spin networks.

2. A generalization of Westbury’s theorem to spin networks with holonomies

In this section we present a recent result obtained jointly with Julien Marché which
extends Westbury’s theorem to the case of general Γ possibly equipped with non-trivial
holonomy ψ. Let:

(10) Z(Γ,ψ) =
∑

col

⟨Γ, [ψ], col⟩
∏

e∈E col(e)!
∏

α∈A col(α)!

∏

e∈E
Y col(e)
e ∈ C[[{Ye}e∈E ]]

Our result computes explicitly Z(Γ,ψ) and, when ψ = Id, recovers Westbury’s theorem
through a new approach based also on the theory of dimer configurations.

Let us first fix the notation to state our result: fix an auxiliary embedding of Γ in
S3 and a diagram of it in R2 such that all the vertices look like and are placed at
different horizontal coordinates; moreover for each crossing x in the diagram of Γ we fix
a rectangular box containing x whose bases are parallel to the coordinate axes and such
that the strands forming x are the diagonals of the box. Orient all the edges from left to
right in the drawing; this allows to define a winding number w(e) ∈ Z

2 for each edge; for
instance w(∩) = −1

2 . Let also:
(11)

W (Γ,ψ) =
∑

col

⟨Γ, [ψ], col⟩
∏

e∈E col(e)!
∏

α∈A col(α)!

∏

e∈E

Y col(e)
e

∏

x∈crossings
(−1)col(l(x))col(r(x)) ∈ C[[{Ye}e∈E ]]
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where for each crossing x we let l(x) be the strand running from the lower-left corner of
the box containing x to the upper right corner and r(x) be the other strand forming x.

Remark 3.3. The value of W (Γ,ψ) depends on the chosen embedding because of the
presence of the factor

∏

x(−1)l(x)r(x). Clearly Z(Γ,ψ) does not depend on any choice.

Enumerate the vertices of Γ from left to right and let Γ′ be the graph obtained from Γ
by blowing up vertices, i.e. replacing → . Vertices of Γ′ are in 1-to-1 correspondence
with the set H of half-edges of Γ and the holonomy may be seen as a map ψ : H → SL2(C)
by stipulating that, if h is a half-edge contained in an edge e then ψ(h) = ψ(e) if h
contains the initial point of e and ψ(h) = Id otherwise. Then, we set Fh = R2 for every
half-edge and for any pair of half-edges g, h, we define bg,h : Fg × Fh → C by the formula
bg,h(zg, wg, zh, wh) = zgwh − zhwg.

We define the following C[[{Y ± 1
2

e }e∈E ]]-valued quadratic form on
⊕

h∈H
Fh :

Q(x) = 2
∑

α:g→h

ibg,h(ψ
−1
g xg,ψ

−1
h xh)

√

Ye(g)Ye(h) + 2
∑

e:g→h

i−2w(e)bg,h(xg, xh).

In the above expression α : g → h means that α is an angle between the half-edges g and
h such that vertex of Γ′ corresponding to g is at the left of that corresponding to h, and
e(·) : H → E is the map assigning to each half-edge the edge it is contained in. In the
same way, e : g → h means that the edge e contains the half-edges g and h and g is the
“left half-edge” (i.e. g contains the initial point of e) while h is the “right half edge” of e.
Using Gaussian integrals, we prove the following result:

Theorem 3.4 (Generating series of spin networks with holonomy, Costantino-Marché
[13]). Let Γ be a graph with holonomy ψ : H → SL2(C), and let Q be constructed as
above. Then det(Q) is a polynomial in {Ye}e∈E, its evalution at {Ye = 0 ∀e} is 1 and
the following formula holds: W (Γ,ψ) = det(Q)−1/2. In particular if Γ is planar then
Z(Γ,ψ) = det(Q)−1/2.

In the above result, the determinant is computed in the canonical basis of ⊕h∈HFh.
We remark that strictly speaking, the formula makes sense only for holonomies in SL2(R)
because of the indeterminacy in the square root. By analytic continuation, the formula
holds in general.

In the case when ψ takes values in the group of diagonal matrices D⊂SL2(R), we
provided a combinatorial interpretation of our formula which extends Westbury’s formula:

let t be a map t : H → R∗ such that for all h, one has ψh =

(

th 0
0 t−1

h

)

in the basis (zh, wh)

and let C(Γ) be the set of all oriented curves immersed in Γ which pass over an edge of
Γ either 0, 1 or 2 times, in the latter case with opposite orientations (and without “self
returns”). Given γ ∈ C(Γ) we denote by cr(γ) the number of crossings modulo 2 of the
corresponding immersion.

Let Y γ =
∏

e⊂γ Ye (hence each edge may appear 0, 1 or 2 times) and tr(γ) =
∏

h⊂γ t
ϵ(γ,h)
h (ϵ(γ, h) being 1 if γ crosses h in the positive direction, −1 otherwise). In
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the following result we generalized Westbury’s result to the case of holonomies with values
in diagonal matrices:

Theorem 3.5 ([13], Theorem 3.1). Let Γ be a planar graph equipped with an abelian
holonomy ψ. Then:

Z(Γ,ψ) =
(

∑

γ∈C(Γ)

(−1)cr(γ)tr(γ)Y γ
)−1

The non-planar case of Theorem 3.4 (and Theorem 3.5), can be easily treated as
follows. One needs to fix the sign

∏

x(−1)l(x)r(x) in W (Γ,ψ); to do this use the identity

(−1)ab = 1

2
(1 + (−1)a + (−1)b − (−1)a+b), ∀a, b ∈ Z.

More explicitly, for each edge e let Ope : C[[{Ye}e∈E ]]→ C[[{Ye}e∈E ]] be the automorphism
that switches the sign of Ye. Then, for a crossing x between edges e1 and e2 define
Sx : C[[{Ye}e∈E ]] → C[[{Ye}e∈E ]] as Sx = 1

2 (id + Ope1 + Ope2 − Ope1 ◦ Ope2). Then we
recover Z(Γ,ψ) as

Z(Γ,ψ) = Sx1 ◦ · · · ◦ Sxk(W (Γ,ψ)).

In particular, when ψ is trivial this recovers Garoufalidis and Van der Veen’s extension to
non-planar graphs of Westbury’s theorem [28].

2.1. Recovering Westbury’s theorem: dimers and the Ising model. Com-
paring the statement of Theorem 3.4 and that of Westbury’s result (3.1) one sees that in
the former, Z(Γ, Id) is the inverse of a square-root as opposed to the inverse of a square.
To match the two, one can observe that writing the bilinear form Q of Theorem 3.4 as a
matrix in the basis z1, . . . , z6n, w1, . . . w6n (where the indices correspond to the half-edges
of Γ ordered from left to right in the fixed diagram of Γ), when ψ = Id is planar, one gets:

Q =

(

0 M t

M 0

)

where M is antisimmetric, thus det(Q) = det(M)2 (because the number of columns of M
is 6n, where n = #V

2 ∈ N). Moreover since M = −M t then det(M) = Pf(M)2, thus one is
left to prove that Pf(M) = PΓ where PΓ is provided in Theorem 3.1.

Thanks to Kasteleyn’s works, we know that the Pf(M) counts dimer configurations
on a graph whose vertices are in 1− 1 correspondence with the columns of M and whose
oriented edges have weights given by w(e : i→ j) = Mi,j :

Definition 3.6 (Dimer configurations). Given a finite graph G a dimer configuration
on G is a subset C of {edges of G} such that every vertex of G is contained in exactly
one edge in C. If the edges are equipped with weights w(e) ∈ R in an abelian ring R, the
weight w(C) of C is

∏

e∈C w(e). The generating series of dimer configurations is
∑

C w(C).

Theorem 3.7 (Kasteleyn, [35]). Given a graph G and weights w(e : i → j) = Mi,j

such that Mi,j = −Mj,i it holds: Pf(M) =
∑

C ±w(C). The signs can be fixed if G is
equipped with a so-called Kasteleyn orientation of the edges.
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We apply the above theorem to the case when G is the graph Γ′ obtained from Γ
by applying the following local transformation to each vertex: → . The vertices of
Γ′ are indexed by the half-edges of Γ and the oriented edges are equipped with weights:
w(g → h) = Mg,h where M was given above. The idea to recover Westbury’s theorem
is to set ψ = Id and apply Kasteleyn’s theorem to Γ′ (whose edges are equipped by the
entries Mi,j), and to observe that there is a bijection bij : {dimer configurations on Γ′}→
{curves in Γ} such that the weight w(d) of a dimer configuration d on Γ′ is equal to the
∏

e∈bij(d) Ye. We refer to [13] for further details.

2.2. Examples.
2.2.1. The unknot. Let ψ ∈ SL2(C) be a fixed matrix and let λ,λ−1 be its eigenvalues.

Then Z( ,ψ) = (1 + λY )−1(1 + λ−1Y )−1. This can be checked directly by using the

standard diagram of the unknot (here we consider Γ = as a graph with one 2-valent

vertex and one edge composed of two half-edges), and writing: Q = 2(
√
−1(λ−1z1w2 −

λz2w1)Y +
√
−1(z1w2 − z2w1)) which, in the basis z1, z2, w1, w2 is represented by the

matrix:

Q =
√
−1

⎛

⎜

⎜

⎝

0 0 0 1 + λ−1Y
0 0 −(1 + λY ) 0
0 −(1 + λY ) 0 0

1 + λ−1Y 0 0 0

⎞

⎟

⎟

⎠

2.2.2. The abelian theta-graph. Let Γ = and let ψi =

(

ti 0
0 t−1

i

)

, i = 1, 2, 3 be the

values of the holonomies of the edges of Γ. Using Theorem 3.5 one can check that, letting
Ti =

tj
tk
+ tk

tj
(with i ̸= j ̸= k) then Z(Γ,ψ)−1 = 1+T1Y2Y3+T2Y1Y3+T3Y1Y2+T1Y 2

1 Y2Y3+

T2Y 2
2 Y3Y1+T3Y 2

3 Y1Y2+Y 2
1 Y

2
2 +Y 2

2 Y
2
3 +Y 2

1 Y
2
3 , which for ti = 1 (and hence Ti = 2) equals

Westbury’s formula: (1 + Y1Y2 + Y1Y2 + Y3Y2)2. Of course one could also use Theorem

3.4, in which case one would compute the determinant of a matrix Q =

(

0 M t

M 0

)

where

M is:

M =
√
−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −
√
Y1Y2 −

√
Y1Y3 0 0 −1√

Y1Y2 0 −
√
Y2Y3 0 −1 0√

Y1Y3
√
Y2Y3 0 −1 0 0

0 0 1 0 −
√
Y3Y2 −

√
Y3Y1

0 1 0
√
Y3Y2 0 −

√
Y2Y1

1 0 0
√
Y3Y1

√
Y2Y1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

2.3. Sketch of the proof of Theorem 3.4. Using the ideas and the notation
sketched in Subsection 5.1 we can compute ⟨Γ,ψ, col⟩ as a differential operator applied
to a polynomial in variables z1, . . . z6n, w1, . . . w6n, where zi, wi are associated to the ith

half-edge of Γ (the numbering being induced by the embedding chosen at the beginning).
Suppose for the moment that ψ is trivial. Using the machinery introduced in Subsection
5.1, one can remark that:
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W (Γ, col) =
∑

col

(
∏

e:g→h

col(e)!∩col(e))◦
(

∏

v∈V

ωav,bv,cv

(av+bv−cv)!(bv+cv−av)!(cv+bv−av)!
)

∏

e∈E
Y col(e)
e

where for every vertex we let av, bv , cv be the colors of the three strands surrounding it
(from left to right). But, after a little manipulation, the latter can be also re-expressed as
the evaluation in {zh = wh = 0, ∀h} of the function obtained by applying the differential
operator

exp(
P op

2
) = exp(

∑

e:g→h

√
−1wind(e)

(
∂

∂zg

∂

∂wh
− ∂

∂zh

∂

∂wg
))

to the function

(12) exp(
Q

2
) = exp

(

∑

v∈V, v:(h,g,k)

√
−1((zgwh − zhwg)

√

YgYh

+ (zgwk − zkwg)
√

YgYk + (zhwk − zkwh)
√

YkYh)
)

.

Thus to evaluate Z(Γ, Id) =
(

exp(P
op

2 ) ◦ exp(Q2 )
)

|0 one remarks that both P op and Q
have degree 2 (they are elements respectively of S2(⊕Fh) and of S2(⊕F ∗

h )) and uses the
following is an ubiquitous generalization of the Gaussian integration formula:

Proposition 3.8 (Fourier transforms of Gaussian functions). Let V be a real vector
space equipped with a basis, P ∈ S2(V ∗) and let Q ∈ S2(V ∗) be a non-degenerate R-bilinear
form; let Q−1 ∈ S2(V ) be its inverse (i.e. represented in the dual basis by the inverse of
the matrix representing Q). Then using Lebesgue integration in the given basis:

(13)

∫

V
P (x) exp(−1

2
Q(x))dµ =

(2π)n/2
√

det(Q,µ)

(

P op exp(
1

2
Q−1)

)

|0

where P op is P seen as a differential operator on C∞(V ∗,C).

Consider a deformation Qϵ of Q which is non-degenerate and has positive real part.
For concreteness, we can pick Q0 =

∑

h∈H(z2h + w2
h) and set Qϵ = Q + ϵQ0. We define

Zϵ =
(

exp(12P )op exp(12Qϵ)
)

|0 so that Z(Γ, 1) = limϵ→0 Zϵ. Then replacing Q by Q−1
ϵ and

1
2P by exp(12P ), Formula (13) gives

Zϵ = (2π)−n/2 det(Q−1
ϵ )1/2

∫

F ∗

exp(
1

2
P (x)− 1

2
Q−1
ϵ (x))dx.

We apply now gaussian integration, noting that the quadratic form Q−1
ϵ − P is still

non-degenerate and has positive real part. Hence, we have

Z2
ϵ =

det(Q−1
ϵ )

det(Q−1
ϵ − P )

= det(Q0 −QϵP )−1

Letting ϵ go to 0, we find that Z(Γ, 1) = det(Q0 −QP )−1/2.
Suppose now that ψ is represented by a discrete connection on Γ with values in SL2(R).

To adapt the construction: for each angle α connecting two half-edges g and h, we need to
replace bg,h : Fg×Fh → C by bg,h(ψ−1

g xg,ψ
−1
h xh). We denote by Qψ the resulting quadratic
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form. By the assumption that ψ lives in SL2(R), P takes again only imaginary values.
Hence, the argument above repeats exactly and we obtain Z(Γ,ψ) = det(Q0−QψP )−1/2.
The general case, that is, for ψ taking values in SL2(C) follows by analytic continuation.

One can simplify this formula by remarking that the matrix of P in the canonical basis
satisfy P−1 = −P and moreover, we have det(P ) = 1. We obtain the formula of Theorem
3.4: Z(Γ,ψ) = det(Q)−1/2.

3. Perspectives on generating series of classical spin networks

In this section we discuss some of the many questions left open in the study of gen-
erating series of classical spin networks: as it will be clear most of them tend to relate
spin-networks to geometry and to statistical models.

Let us first remark that given Γ and a coloring col on it, the values ⟨Γ, ·, col⟩ form a
function from the set of equivalence classes of connections to C. By the very definition of
the notion of holonomy (Definition 2.19) such a class is a point in the SL2(C)-character
variety of Σ:

χSL2(C)
Σ = Hom(π1(Σ), SL2(C))//SL2(C).

Hence it is very natural to see spin-networks as maps ⟨Γ, ·, col⟩ : χSL2(C)
Σ → C. Moreover,

let us define χSU(2)
Σ = Hom(π1(Σ), SU(2))/SU(2); it is not difficult to check that actually

χSU(2)
Σ ⊂ χSL2(C)

Σ (two SU(2) representations which are conjugated in SL2(C) are also

conjugated in SU(2)), that χSU(2)
Σ is compact (it is homeomorphic to the quotient of

SU(2)#E by the action of SU(2)#V acting as explained in Definition 2.19), and that

χSU(2)
Σ is the real part of the involution on χSL2(C)

Σ which sends a morphism ρ to (ρ∗)−1.

Equipping χSU(2)
Σ with the measure induced by the Haar measure on SU(2)#E , one can

prove, using Peter-Weyl’s theorem, the following:

Theorem 3.9 ([13], Section 4.2). The set of functions {⟨Γ, ·, col⟩} where col ranges

over all the admissible colorings of Γ, forms an orthogonal Hilbert basis of L2(χSU(2)
Σ ,C).

Moreover

||⟨Γ, ·, col⟩||2 = |
∏

v∈V

avbv
cv

∏

e∈E

( col(e) )−1
|

Thus, reinterpreting Theorem 3.4 in view of the above theorem one sees that for
character varieties of orientable surfaces with boundary one can pick Hilbert bases of

χSU(2)
Σ naturally associated to spines of Σ (our initial Γ) sum them up and get a nice

function of additional formal variables indexed by the edges of the spine. This phenomenon
is quite surprising as in general, given a Hilbert basis of L2(X,C) for some space X one
is not able to sum explicitly the generating series of the basis.

Example 3.10. To better seize the above peculiar fact let us apply Theorem 3.4 to the
case of Γ = , when Z(Γ,ψ) = (1+λY )−1(1+λ−1Y )−1 where λ,λ−1 are the eigenvalues

of ψ (see Subsection 2.2). Letting x = λ+ λ−1 then one has Z(Γ,ψ) = (1 + xY + Y 2)−1:
in view of the above theorem we are computing the generating series of the trace functions
on the conjugacy classes of SL2(C) i.e. the generating series of Tchebischev polynomials.
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So a natural question (but vague) to ask is:

Question 3.11. What is the geometric meaning (if any) of the formal variables Ye

used to build the generating series? And what is the meaning of Z(Γ, ·) itself?

In all the above discussion Γ was kept fixed, but it is well known that any two spines Γ
and Γ′ of a surface Σ can be connected by a finite sequence of Whitehead moves. Indeed
any spine Γ of Σ is dual to an ideal triangulation T (Γ) and any two such triangulations,
thanks to a theorem independently proved by Penner and Harer, are connected by flips
(which are dual to Whitehead moves). So another natural question to ask is:

Question 3.12. How does Z(Γ, ·) change after a flip?

Moreover there exist other, more geometrically meaningful, bases of functions of

L2(χSL2(C)
Σ ,C): namely the Chekhov-Fock coordinates (and the monomials in these coor-

dinates) based on the triangulation T (Γ) (extended holomorphically from the Teichmuller

space to the whole χSL2(C)
Σ ). So it is natural to ask:

Question 3.13. What is the change of base from the spin networks to the set of
monomials in the Chekhov-Fock coordinates?

All these questions are susceptible of relating the theory of spin networks to the study
of geometrical properties of Teichmuller spaces.

Moreover, the relation we pointed out between the Ising model and the generating
series of spin networks are proven only when ψ is the trivial connection:

Question 3.14. What is the statistical model generalizing the Ising model whose par-
tition function is the inverse of the square root of Z(Γ,ψ) for general ψ? Is it phisically
meaningful? What is the physical quantity it is modeling?

4. Quantum spin networks: integrality, categorification and generating series

Until now, in this chapter we have focused on classical spin networks. In this last
section we discuss the more mysterious quantum case by examining three problems related
to an integrality result we obtained in [15].

In the litterature different kind of renormalizations of the invariant ⟨Γ, col⟩ ∈ Q(A)
have been used; of these let us mention:

• The skein (or “Kauffman bracket”) normalization: ⟨Γ, col⟩A, of Definition 2.10.
• The integral renormalization:

(14) ⟨Γ, col⟩IntA = ⟨Γ, col⟩A
∏

e∈E([2col(e)]!)
χ(e)

∏

α∈A[col(α)]!

where χ(e) is 0 if e is a closed (circle) component and 1 otherwise.
• The unitary renormalization:

⟨Γ, col⟩UA = ⟨Γ, col⟩A
∏

v∈V

√
−1av+bv+cv

√

[av + bv − cv]![bv + cv − av]![cv + av − bv]!

[av + bv + cv + 1]!

where we use the notation of Definition 2.5.
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In general, when Γ is not a link, neither ⟨Γ, col⟩ nor ⟨Γ, col, ⟩UA is a Laurent polynomial:
this can easily be checked already for the case of Γ = (the so-called θ-graph). On
contrast, the following was proved in [15] for the case of the integral normalization:

Theorem 3.15 (Integrality of the renormalized Kauffman brackets). There exist m,n ∈
Z such that ⟨Γ, col⟩IntA ∈ (

√
−1)mAnZ[A2, A−2].

It is worth remarking that the normalization ⟨·, ⟩IntA depends only on the abstract
colored graph (Γ, col) and not on its embedding and that the rational function used to
renormalize is a q-hypergeometric balanced function: it is a ratio of quantum factorials
such that the sums of the arguments of the factorials in the numerator and in the denomi-
nator are equal. The integrality of the following examples is manifest from the integrality
of quantum binomials:

Example 3.16 (Theta graph).

(15) ⟨
a

b

c
⟩IntA = (−1)a+b+c[a+ b+ c+ 1]

[

a+ b+ c
a+ b− c, b+ c− a, c+ a− b

]

Example 3.17 (The tetrahedron or symmetric 6j-symbol).
(16)

⟨ a
bc

d

e f ⟩IntA =

z=MinQj
∑

z=MaxTi

(−1)z
[

z + 1
z − T1, z − T2, z − T3, z − T4, Q1 − z,Q2 − z,Q3 − z, 1

]

where T1 = a+b+c, T2 = a+e+f, T3 = d+b+f, T4 = d+e+c, Q1 = a+b+d+e, Q2 =
a+ c+ d+ f, Q3 = b+ c+ e+ f .

In our view, Theorem 3.15 may be relevant to three main problems detailed below:

(1) Search for integral bases for skein algebras;
(2) Categorification of quantum spin networks;
(3) Study of generating series of quantum spin networks.

Integral bases for skein algebras. The study of the skein algebra of a surface and the
action of the mapping class group on it is an important, still developing subject. It is well
known that for a fixed Γ, letting Σ be the orientable surface formed by its framing, the
skeins S(Γ, col) ∈ SQ(Σ) (see Definition 2.9) form a basis of SQ(Σ) when col ranges over
all the colorings on Γ. This basis has good properties with respect to the other natural
one formed by multicurves: all its elements are mutually orthogonal with respect to the
bilinear product induced by the Yang-Mills measure on Σ and the structure constants of
the algebra are easy to compute in this basis; on contrast both statements are false for
the base of multicurves. But this is known at present only in SQ(Σ) and not in S(Σ).
Multicurves clearly form a basis also of the latter algebra but in general S(Γ, col) /∈ S(Σ).
So defining SInt(Γ, col) ≡ S(Γ, col)

∏
e∈E([2col(e)]!)χ(e)
∏

α∈A[col(α)]! , in view of Theorem 3.15 it is natural

to ask:

Question 3.18. Is it true that SInt(Γ, col) ∈ S(Σ)? Do they form a basis of S(Σ) as
Z[A±1]-module?
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Theorem 3.15 gives a strong evidence for a positive answer to the first question: indeed
it implies that given an embedding i : Γ → S3, the image i∗(SInt(Γ, col)) is integral (i.e.
it is in Z[A±1]), and this holds for any embedding i.

Categorification of quantum spin networks. Roughly speaking to categorify a polyno-
mial invariant of knotted objects in S3 is to find an algebraic complex whose Poincaré
polynomial provides the invariant and whose homology is an invariant of the object. Such
a complex was build first by M. Khovanov for the Jones polynomials of knots. The con-
struction of the categorification of quantum spin networks strictly includes that case: it
was recently solved by I. Frenkel, C. Stroppel and J. Sussan ([22]) who build an infinite
complex whose Poincaré polynomial is ⟨Γ, col⟩A. Unfortunately, since in general ⟨Γ, col⟩A
is not a Laurent polynomial, the complex is necessarily going to be infinite dimensional
and the computation of its homology is hard. Theorem 3.15 may provide a path to a
finite dimensional categorification of quantum spin networks: since ⟨Γ, col⟩IntA is a Laurent
polynomial one may hope to find a finite dimensional complex categorifying it.

Question 3.19. Can one categorify ⟨Γ, col⟩IntA by a finite dimensional complex?

In the proof of Theorem 3.15 one shows that the morphisms associated to a decompo-
sition of Γ into “elementary pieces” (maxima, minima, crossings and vertices) are integral:
it is our hope that this may be used to answer the above question by categorifying the
elementary morphisms one at a time. This would mean to find suitable categories as-
sociated to colored points (most probably, according to the ideas of [21], categories of
modules over cohomology algebras of suitable flag manifolds) and bimodules associated to
each elementary piece such that tensoring with the bimodules gives “elementary functors”
whose induced maps at the level of the Grothendieck groups of the categories is the map
associated to the elementary piece. This program is most probably very ambitious in the
presence of crossings, but may turn out to be manageable in the case of planar graphs:

Problem 3.20. Find a categorification of the planar elementary pieces such that the
functors obtained by composing the elementary functors are invariant under planar iso-
topies.

Study of generating series of quantum spin networks. In terms of generating series of
spin networks, observe that, already in the classical case (when A = −1), one has:

Z(Γ, Id) =
∑

col

⟨Γ, col⟩IntA=−1

∏

e∈E

Y col(e)
e

that is: the integral normalization is exactly that used in Westbury’s result. Letting
R = C[A±1], it is therefore natural to ask:

Question 3.21. Working in the completion of the commutative ring R[{Ye}e∈E ] with
respect to the degree filtration, what is the value of ZA(Γ) =

∑

col⟨Γ, col⟩IntA

∏

e∈E Y col(e)
e ?

Example 3.22. ZA( ) = (1 +A2Y )−1(1 +A−2Y )−1.

Remark 3.23 (Integrality is a necessary condition to a positive answer). If one expects
an answer “à la Westbury” i.e. of the form (1+PA(Y ))−1 for some “quantum polynomial”
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PA(Y ) then a necessary condition for this to be possible is the integrality of ⟨Γ, col⟩IntA :
from this point of view Theorem 3.15 may be considered as a positive evidence for such
an expectation.

Actually it is our opinion that Question 3.21 is not the “correct one” and that rather
one should work in a suitable non-commutative ring. We motivate our opinion here below.

Given a planar graph Γ let c1, . . . ck be the (finitely many) curves embedded in it and
let R[c1, . . . ck] be as a R-module the algebra of polynomials in c1, . . . ck with coefficients
in R; let also φ : R[c1, . . . ck] → R[{Ye}e∈E ] be the morphism of R-modules defined on
monomials by:

φw(c
α1
1 · · · cαk

k ) = Aw(α1,...αk)
∏

e∈E

Y col(e)
e

where col is the coloring which on an edge e ∈ E takes the value col(e) =
∑

i|e⊂ci
αi

and w(α1, . . . ,αk) is a polynomial function of the αi’s depending on Γ. In the following
two examples we show that, if one equips with a suitable algebra structure the R-module
R[c1, . . . ck] and finds a suitable w(α1, · · ·αk) one can recover ZA(Γ) by first performing
computations in R[c1, . . . , ck] (more precisely in its completion with respect to the degree
filtration) and then applying φw.

Example 3.24. Let c1, c2, c3 be such that cicj = A4cjci,∀j > i. It holds:

Xa( ) ≡
∑

α,β,γ

⟨
a

b

c
⟩IntA A2(αβ+αγ+βγ)cα1 c

β
2 c
γ
3 =

1

(1 +A2(c1 + c2 + c3))

1

(1 +A−2(c1 + c2 + c3))

where a = β + γ, b = α + γ, c = β + α. Moreover φw(XA( )) = Z( ) if one sets
w(α1,α2,α3) = −2

∑

i<j αiαj.

Example 3.25. Let c1, . . . , c7 be such that cicj = A4cjci, ∀j > i. It holds:

Xa( ) ≡
∑

N7

⟨ , col⟩IntA A2
∑

i<j αiαjcα1
1 · · · cα7

7 =
1

(1 +A2(c1 + · · ·+ c7))

1

(1 +A−2(c1 + · · · + c7))

where the summation is on α′
is and for each 7-uple of values for αi one defines a coloring

col as col(e) =
∑

i|e⊂ci
αi. Moreover φw(XA( )) = Z( ) if one sets w(α1, · · · ,α7) =

−2
∑

i<j αiαj.

The above examples (which can be proved using the A4-multinomial theorem and the
formulas in Example 3.16 and 3.17) suggest that for planar Γ the definition of ZA(Γ) is
not as natural as that of XA(Γ) and that the “correct” set of variables to be used to index
the colorings may be related to the set of simple curves embedded in Γ: this is clearly in
line with Westbury’s theorem. We formulate hence the following:

Question 3.26. Given a planar Γ, using the notation introduced above, can one find an
R-algebra structure on R[c1, . . . ck] and a polynomial function w(c1, . . . ck) such that, letting
XA(Γ) ≡

∑

Nk⟨Γ, col(α)⟩A−w(α1 ,··· ,αk)
∏

i c
αi
i it holds XA(Γ) =

1
1+A2(c1+···+ck)

1
1+A−2(c1+···+ck)

?
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A positive answer would provide clear “meaning” to planar quantum spin networks
(and would imply that one could compute ZA(Γ) by applying φw to XA(Γ)). Even with
this formulation, Theorem 3.15 is in line with a positive answer in general: Remark 3.23
still holds. We are currently working on Question 3.26 by trying to generalize our proof of
Westbury’s theorem in non-commutative algebras: indeed one can use a notion of quantum
calculus to interpret the variables zh, wh, h ∈ H as elements of a module-algebra in the
braided category of Uq(sl2)-modules.



CHAPTER 4

Asymptotics of classical spin networks

In this chapter we discuss the problem of computing the asymptotical behavior of
classical spin networks: first we recall the problem, Wigner’s conjecture and the known
results. Then we detail a result obtained jointly with Julien Marché ([13]) which computes
the asymptotical behaviour for a general spin network provided some non-degeneracy
conditions are satisfied. We then conclude with a list of open problems and questions
which relate the semi-classical analysis of spin-networks to the surprisingly hard problem
of rigidity of euclidean polyhedra.

1. Semi-classical analysis of classical spin network

Given a spin network (Γ, col) define

[Γ, col] =
⟨Γ, col⟩2

∏

v:(e1,e2,e3)
⟨Θ, col(e1), col(e2), col(e3)⟩

where by v : (e1, e2, e3) we indicate the edges touching the vertex v and

⟨Θ, col(e1), col(e2), col(e3)⟩

is the value of the Θ-graph colored by col(e1), col(e2), col(e3). The problem of computing
the asymptotical behavior of spin networks is the following:

Problem 4.1. Given a pair (Γ, col), compute the asymptotical behavior of the sequence
sn = [Γ, ncol] as n goes to ∞.

This behaviour corresponds to a classical limit of quantum mechanics and is expected
to be related to euclidean geometric quantities. Wigner’s conjecture (now proved) dealt
with the case Γ = :

Conjecture 4.2 (Wigner’s conjecture). Let Tet be the tetrahedron whose edge lengths
are ℓ(e) = col(e), ∀e ∈ E. If Tet is euclidean (i.e. the Cayley-Menger determinant is
positive), then it holds:

(17) [ , ncol] ∼n→∞
2

3πn3Vol

(

cos
(π

4
+

∑

e∈E
(ncol(e) + 1)

θe
2

)

)2

where θe is the exterior dihedral angle at e (note that Tet is unique up to isometry) and Vol
is the euclidean volume of Tet. If Tet is minkowskian (i.e. the Cayley-Menger determinant
is negative) then [ , ncol] decays exponentially.

29
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The first rigorous proof of the above conjecture was obtained (in the euclidean case)
by Roberts [56] and then re-obtained and extended to the minkowskian and flat case using
different techniques [9, 28]. (For the sake of expliciteness: the value of [Γ, ncol] can be
easily computed using Formulas 6 and 7, after setting A = −1, i.e. replacing “quantum
numbers” by standard integers and “quantum multinomials” by standard multinomials.)

In the 1990’s physicists used spin networks in the spin foam models for quantum gravity
([3]) and the study of the asymptotical behavior was extended from the 3j ( ) and 6j ( )
to more complicated networks as the 9j (complete bipartite 3,3 graph) 10j, 15j (skeleta of
the 4 and 5 simplices), see [4, 19]. For general graphs, Garoufalidis and Van der Veen
proved that the generating series of the sequence k 9→ ⟨Γ, kc⟩ is a G-function, implying
that the sequence ⟨Γ, kc⟩ is of Nilsson type and thus that the asymptotic behavior does
exist [28]. Abdesselam obtained estimates on the growth of spin-network evaluations,
specially for generalized drum graphs, see [1].

2. Our results on general networks

In his book [65], Wigner showed that the square of a 6j-symbol may be computed
by a simple integral formula over 4 copies of G = SU(2). Barrett observed that this
formula may be generalized to any graph [4]. In [13] Section 4, in collaboration with
Julien Marché, we extended it to the case of spin networks equipped with holonomies and
computed the generating series of squares of spin networks:

Theorem 4.3. Let G = SU(2) equipped with its Haar measure and (Γ, col,ψ) be a
spin network equipped with a holonomy with values in SL2(C). Define

[Γ, col,ψ] =
⟨Γ, col,ψ⟩2

∏

v:(e1,e2,e3)
⟨Θ, col(e1), col(e2), col(e3)⟩

where by v : (e1, e2, e3) we indicate the edges touching v and ⟨Θ, col(e1), col(e2), col(e3)⟩ is
the value of the Θ-graph colored by col(e1), col(e2), col(e3). It holds:

(18) [Γ, col,ψ] =

∫

GV

∏

e:v↔w

trcol(e)(ψe,vgvψ
−1
e,vψe,wg

−1
w ψ−1

e,w)dg

Considering the generating series W (Γ,ψ) =
∑

col[Γ, col,ψ] Y
col(e), the following holds:

W (Γ,ψ) =

∫

GV

dg
∏

e=h1↔h2=v↔w
det(ψh2gwψ

−1
h2
− ψh1gvψ

−1
h1

Ye)

Using Kirillov’s trace formula, the integral formula (18) may be transformed in order
to apply the stationary phase approximation and try to compute the asymptotical behav-
ior of [Γ, ncol, Id] when n→∞. This method was applied in [3, 19] for some specific spin
networks but it faces some technical difficulties because of the existence of so-called “de-
generate configurations”. In [13] Section 5, we use a different transformation which allows
us to treat uniformly all configurations corresponding to critical points: in Subsection 2.1
we briefly recall the transformation we use.
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Using this transformation, in [13] we describe precisely the critical points of the inte-
grand of (18) and compute the associated Hessian. Under suitable genericity hypotheses
on Γ and col described here below, we compute the dominating terms in the asymptotical
development of [Γ, ncol, Id] for general Γ.

We now describe our result leaving further details for Subsection 2.1. Let I be the set
of maps P from oriented edges of Γ to S2 which satisfy the following relations:

- Denoting by −e the edge e with opposite orientation, we have P−e = −Pe

- For all vertex v with outgoing edges e1, e2, e3 we have
∑

i ceiPei = 0

and seen up to the diagonal action of SO(3). Given P ∈ I we define rP (ξ) =
∑

e ce||Pe×ξ||2
for ξ ∈ R3 and qP (ξv) =

∑

e:(v,w) ce||Pe×(ξv−ξw)||2 for (ξv) ∈
⊕

v∈V R3. In these formulas,

we denoted by × the bracket in the cross-product in R3.
Given a pair (P,Q) of non-isometric elements of I, in [13] Subsection 5.2 we show how

to associate to each edge a value θe ∈ [0,π[ and the associated phase function τe = exp(iθe)
(since the definition of θe is a little technical we will skip it here). Then we set for κ ∈ R+

and (ξv) ∈
⊕

v∈V R3:

qκP,Q(ξv) =
∑

e

ce
(κ2τ2e + 1

κ2τ2e − 1
||Qe × (ξv − ξw)||2 + 2i⟨Qe, ξv × ξw⟩

)

.

Then, given a quadratic form q on Rn, we denote by det′(q) the determinant of the
restriction of the quadratic form to the orthogonal of the kernel of q, that is the product
of all non-zero eigenvalues of the matrix of q. We also set det′(qP,Q) = limκ→1(κ −
1)−3 det′(qκP,Q).

The following are the non-degeneracy conditions we shall need to impose to state our
theorem:

(1) For all P ∈ I it holds det(rP ) ̸= 0.
(2) For all P ∈ I it holds det′(qP ) ̸= 0.
(3) For each pair (P,Q) ∈ I2, P ̸= Q it holds det′(qP,Q) ̸= 0.

Theorem 4.4. Let (Γ, col) be a colored graph satisfying the above non-degeneracy
conditions. Then denoting by χ the Euler characteristic of Γ, one has

[Γ, ncol(c)] =
(2χ)3/2

(πn3)−χ−1

(

∑

P∈I

det(rP )1/2

det′(qP )1/2

+
∑

(P,Q)∈I2/±1,P ̸=Q

2Re
( i−χ det(rP )1/2ei

∑
e(ncol(e)+1)θe

det′(qP,Q)1/2
∏

e sin(θe)

)

+O(n−1)
)

The above formula is completely general and can be tested on a computer; for instance we
tested it in the case of the tetrahedron and of the prism with triangular base and of course
its results are in line with the known asymptotics ([56], [28], [4], [9]), thus it provides yet
another proof of Wigner’s conjecture in the euclidean case. Surprisingly enough, in that

case the ratio det(rP )1/2

det′(qP )1/2
provides the volume term showing up in Formula 17.
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2.1. Some ideas of the proof of Theorem 4.4. Let V be the 2-dimensional rep-
resentation of G and for any v,w ∈ V let h(v,w) = ⟨v,w⟩ be the hermitian product on
V . Denote by S3 the unit sphere of V and dv the Haar measure on it (i.e. such that
∫

S3 1dv = 1). One can prove that for any g ∈ G, it holds trn(g) = (n+1)
∫

S3⟨v, ρ(g)v⟩ndv
where trn is the trace in the n+1-dimensional representation of G. Then, combining this
with Formula 18 we deduce the following formula:

(19) [Γ, col] = [Γ, col, Id] =
∏

e

(col(e) + 1)

∫

GV

∫

(S3)E

∏

e:v→w

⟨gvue, gwue⟩cedgdu

where the notation e : v → w means that e is an oriented edge joining v to w, ue is an
element of S3 corresponding to the edge e.

Let X be the following subset of GV × (S3)E :

X = {(gv , ue) ∈ GV × (S3)E such that ∀e : v → w, ⟨gvue, gwue⟩ ̸= 0

and the family (π(ue))e∈E has rank at least 2 in g}
Let F : X → C/2iπZ be the map F (g, u) =

∑

e:v→w
ce ln⟨gvue, gwue⟩; clearly by (19) it

holds:

(20) [Γ, col] =
∏

e

(col(e) + 1)

∫

X
exp(F (g, u)).

The integral (20) presents some symmetries; the group (S1)E × G × G acts on the
integrand as follows: (αe, g, h) · (gv, ue) = (ggvh−1, h(αeue)) and F is constant on the
orbits. Notice that the stabilizer of the action of (S1)E ×G×G on X is {±1}, hence the
quotient Y is a smooth manifold of dimension 12χ − 6. We denote by F̃ : Y → C/2iπZ
the induced map.

The main tool of the proof of Theorem 4.4 is stationary phase approximation when
replacing the coloring col by ncol and letting n go to infinity in

∫

Y exp(nF̃ )dµ. In this
formula, the measure µ is obtained from the Haar measure on (S3)2χ×(S3)3χ by integration
over the action of (S1)E ×G×G/{±1}, equipped with its Haar density.

The non-degeneracy hypotheses imply that any critical point x is isolated in Y . Pro-
vided that Hess(F̃ )x is non-degenerate, we can apply the stationary phase expansion
theorem to F̃ which is a smooth function with non-positive real part, and obtain that the
local contribution of x to [Γ, ncol] when n goes to infinity is:

(21) I(x) =
∏

e

⟨e⟩ enF̃ (x)

(

(2π)12χ−6

det(−nHess(F̃ )x, µ)

)1/2

=
∏

e

⟨e⟩ enF̃ (x)I(nq(x)).

The proof of Theorem 4.4 consists then in:

(1) finding all the critical points of F̃ in Y ;
(2) computing the Hessian of F at a critical point y;
(3) computing the gaussian integral I(q̃(y)) where q(y) is the opposite of the Hessian

at y;
(4) summing up all the contributions.
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The most delicate point in the above list is the third. Indeed instead of working on Y one
works in X (and thus with F ) and computes I(−Hess(F̃ )y) as a quotient of I(−Hess(F )x)
at a preimage x of y deformed by a quadratic form which is non-degenerate on the kernel
of Hess(F )x, and takes the limit when the deformation is small. To build this form one
has to deal with the Haar density on the kernel induced by the identification of the kernel
with the tangent space to (S1)E ×G×G. All the details are treated in [13], Section 5.

3. Open questions and perspectives

The geometric meaning of the non-degeneracy conditions of Theorem 4.4 is still not
completely clarified. First of all let us note that a P ∈ I provides a geometric realization
in R3 of the polyhedron whose edges are in correspondence with those of Γ (and have
lengths given by col) and whose faces are triangles (corresponding to vertices of Γ); in
particular if Γ is planar, it is a (possibly non-convex) geometric realization of the dual of
Γ. Trying to interpret the non-degeneracy conditions of Theorem 4.4 in these terms one
sees that:

(1) The quantity det(rP ) is zero only if the configuration P is planar which can occur
only for very special values of c.

(2) The non-vanishing of det′(qP ) is equivalent to the infinitesimal rigidity of the
configuration P . In particular, the hypothesis does not hold if the set I is not
discrete: this happens for instance for the regular cube or more generally, the
cube whose edges are colored by the lengths of Bricard’s flexible octahedron.

(3) We do not have a geometric interpretation of the determinant det′(qP,Q) but in
our numerical experiments on the spin-networks formed by the 1-skeleton of a
tetrahedron and of a triangular prism this determinant was non-zero. In any
case, the conditions define a Zariski open set of configurations.

We believe that describing when the non-degeneracy conditions hold is a very difficult task
as it contains the problem of the flexibility of polyhedra, a notoriously hard problem. We
recall here that:

• by Cauchy’s theorem a convex euclidean polyhedron with triangular faces, fixed
combinatorial structure and fixed edge lengths is rigid;

• dropping the convexity hypothesis one may get flexible polyhedra (the easiest
example being Bricard’s octahedron);

• in the latter case the volume of all the deformed polyhedra is constant (it is a
solution to an algebraic equation in the edge lengths as proved in [57]).

We expect that for planar graphs whose colors correspond to the lengths of a generic
convex configuration of the dual graph, there is a simple geometric condition ensuring
that the non-degeneracy conditions hold, so a natural (and classical!) question derived by
the above analysis is:

Question 4.5. Suppose Γ is planar, is it true that for a generic (in a suitable sense)
coloring R+-valued coloring of the edges of Γ the set of non-isometric geometric realizations
I is finite? What if the coloring takes values in N?
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The matrices rP , qP , qP,Q showing up in Theorem 4.4 are defined geometrically (and
combinatorially). Moreover the fact that in the case of the tetrahedron the ratio of de-

terminants
√

det(rP )
det′(qP )

is related to the volume is an intriguing fact for which we have no

conceptual explanation:

Question 4.6. What is the geometric meaning of the ratios
√

det(rP )
det′(qP )

and
√

det(rP )
det′(qP,Q)

?

Are they related to the volume of the configuration P and/or Q?

Consider the case when (Γ, col) is the cube with all colors equal to 2: it is not difficult to
check that this case is not covered by our theorem as the space of geometric configurations
contains flexible realizations. Moreover in [28] it is shown that in this case the highest
order term goes like n−4 (instead of a n−9 term predicted by our result when the degeneracy
hypotheses hold). So a hard general problem is:

Problem 4.7. Compute the highest order terms of the expansion of [Γ, ncol] when the
non-degeneracy hypotheses do not hold: what is the rate of decay (as a power of n)? What
is the coefficient of the highest order term?



CHAPTER 5

Asymptotical behavior of quantum spin networks

In this chapter we first comment on the volume conjecture on knotted objects different
from knots. Then we discuss our result ([11]) computing the asymptotical behavior of 6j-
symbols of Uq(sl2) in what we called the “hyperbolic regime” and compare it with a
previoulsy known result by Woodward and Taylor. Based on our result, we formulate a
volume conjecture for planar trivalent graphs which we prove for an infinite family of such
graphs (and currently being studied in collaboration with François Guéritaud and Roland
van der Veen). We then pass to knots and links and state a result proving the conjecture
for an infinite family of hyperbolic links ([16]). We conclude by discussing the perspectives
open by these results and the many open problems.

1. Volume Conjecture for links or graphs

The analysis of the Volume Conjecture for quantum spin networks other than knots
is more delicate. One of reason is that the VC, as stated in the Introduction, is known
to be false for links: indeed Jn(K1 ' K2) = Jn(K1) · Jn(K2) and so J ′

n(K1 ' K2) =
[n]J ′

n(K1)J ′
n(K2) so that Kn(K1 'K2) = J ′

n(K1 'K2)|A=exp( iπ
2n ) = 0. Moreover T.Q. Le

and A.T. Tran ([42]) showed that the Kashaev invariant of some non trivial cables of a
knot are 0 for odd n (in our notation). So to correct the statement of the conjecture and
make it plausible in the case of links one may use the following notion of “evaluation” as
follows:

Definition 5.1. Let f : Ω ⊂ C → C be a meromorphic function. We denote evn(f)
the first non-zero coefficient of the Laurent series expansion of f around A = exp( iπ2n).

Then in Conjecture 1.5 replace J ′
n(K)|A=exp( iπ

2n ) by evn(Jn(K)) and restrict to even

n: at the best of our knowledge there are no known counterexamples to this version of
the conjecture, even considering links. This conjecture was proved for Whitehead doubles
of torus knots ([68]), Whitehead chains ([62]) and for certain 2-cables of the figure eight
knot ([58]).

Another reason why the VC is more delicate for general spin networks is that as soon
as there are more than one edge in the object considered, there are infinitely many ways
of rescaling a coloring to ∞. In the above statement we were coloring all the components
of a link by n but a geometric meaning could be assigned also to different rescaling of the
colors. This is evident in the the most relevant result concerning graphs we are aware of
which is to be considered as an answer to the problem of asymptotical behavior of graphs
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in the case of Γ = due to Y. Taylor and C. Woodward ([61]) for a certain range of
colors:

Theorem 5.2. Let col be an admissible coloring of Γ = and let r ∈ N be greater

than 1
2 max(T1, T2, T3, T4) (using the notation of Example 2.16). Let τn be the spherical

tetrahedron whose edge-lenghts are ℓne = π(ncol(e)+1)
n(r−2)+2 and θne be the internal dihedral angles

of τn and let G(n) be the Gram matrix of τn (i.e. 4× 4 matrix whose columns and rows
correspond to vertices of Γ and whose (i, j)th entry is cos(ℓne ) with e : i ↔ j). Then it
holds:

⟨ , n · col⟩U |A=exp( iπ
2nr

) ∼n→∞

2π cos
(

π
4 + n(r−2)+2

2π

(
∑

e ℓ
n
e θ

n
e − 2Vol(τn

))

)

(n(r − 2) + 1)
3
2 det(G(n))

1
4

Where ⟨Γ, col⟩UA is the unitary renormalization introduced in Chapter 2 Section 4.

2. A Volume Conjecture for planar graphs and for links in #kS2 × S1

Let us compare the Melvin-Morton-Rozansky and the Volume Conjecture:

MMR-Conjecture Generalized VC
Values of α: Near to 0 Near to 1

Asymptotical behavior: Polynomial Exponential
Geometry appearing: SU(2) PSL(2,C)

(The last row of the table refers to the fact that the Alexander polynomial of is related
to representations of π1(S3 \K) into SU(2), and even U(1), while hyperbolic structures
provide morphisms into PSL(2,C).) In Theorem 5.2 Γ is colored by an initial coloring col
and one evaluates at the (r · n)th-root fo unity the colors coln = n · col so that the limit
limn→∞

coln
rn = col

r takes values in [0, 1]. So according to the philosophy underlying the
above table, Theorem 5.2 should rather be viewed as an analogue of the Melvin-Morton-
Rozansky conjecture than of the Volume Conjecture as the ratio between the colors of Γ
and the order of the root of unity used in the evaluation is “small” (i.e. less than 1). Our
analysis of the asymptotical behavior of 6j-symbols of Uq(sl2) deals with a completely
disjoint set of cases where the behavior is in line with the right column of the table. Our
main result (proved with a different notation and wording in [11]) states :

Theorem 5.3. Let τ be the hyperbolic hyperideal tetrahedron whose exterior dihedral
angles are θe and let col∞(e) = 2 − θe

π . Then for any sequence {coln}n∈N of colorings on

the 1-skeleton of τ such that limn→∞
coln
n = col∞ it holds:

lim
n→∞

2π

n
log

(

|evn(⟨ , coln⟩A=exp( iπ
2n ))|

)

= 2Vol(τ)

In the above result by “hyperbolic hyperideal polyhedron” we mean the (non-compact)
polyhedron obtained in the Klein model by considering the convex-hull of the intersection

of H
3
with a convex polyhedron whose vertices lie outside H3 and such that all its edges

touch H
3
(we allow tangent edges). Comparing Theorems 5.3 and 5.2 one sees various

differences:
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θa
θb

θc

θd
θe

θf

Figure 1. A hyperideal tetrahedron and its exterior dihedral angles in the
ball model.

Theorem 5.2 Theorem 5.3
Range of col∞ to which it applies col∞(e) < 1 col∞(e) > 1

Asymptotical behavior: Polynomial Exponential
Geometry appearing: Spherical Hyperbolic
Order of evaluation: 0 −5
Meaning of colors: Edge lengths Dihedral angles

In the table by “order of evaluation” we mean the order of the zero (or pole) of the function
⟨ , coln⟩A at An = exp( iπ2n ): one can show that in the hyperbolic case there is a pole of
order 5. Another striking difference between the two results is that the limit considered
in Theorem 5.2 is much more delicate: the statement applies to a precise sequence coln
such that limn→∞

coln
n = col∞ not to any such sequence and moreover one has to evaluate

only at roots of unity which are multiples of the initial r.
We will not provide the proof of the Theorem 5.3 but we will bound ourselves to

remark that the proof exploits a peculiar behavior of 6j-symbols when col∞ is in the
range given by the inequalities satisfied by the angles of a hyperbolic tetrahedron: they
are finite sums positive real numbers each of which is growing exponentially fast. To
compute the overall exponential growth of the sum it is therefore sufficient to identify the
summands with maximal growth rate. These numbers are obtained by applying Lemma
5.7 to the binomials of Formula (7). The rest of the proof shows that the maximal growth
rate coincides with the Murakami-Yano formula for the volume of a truncated hyperbolic
hyperideal tetrahedron plus a term which corresponds to the volume of the truncation
half-prisms.

Another (easier) instance of the above dichotomy in the asymptotic behavior and of
the appearence of geometry is the following (unpublished):

Proposition 5.4. Let col∞ = (a, b, c) ∈ R3
+ be a real-valued coloring on . For

every sequence coln such that limn→∞
coln
n = col∞ it holds:

|evn
(

⟨ , coln⟩A
)

| ∼
n→∞

exp
(n

π
V (a, b, c)

)
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where V (a, b, c) = Λ(πa)+Λ(πb)+Λ(πc)−Λ(π a+b+c
2 )−Λ(π a+b−c

2 )−Λ(π a−b+c
2 )−Λ(π−a+b+c

2 )

and Λ(x) = −
∫ x
0 log(2|sin(t)|)dt is the Lobatchevski function. Moreover, if a = 2− θa

π , b =

2 − θb
π , c = 2 − θc

π where θa, θb, θc are the exterior dihedral angles of an ideal hyperbolic
triangular prism P (see Figure 2) then V (a, b, c) = Vol(P ). On contrast if a, b, c < 1 and
a+ b+ c > 2 then V (a, b, c) < 0 and the behavior is exponentially decaying.

θa
θb

θc

θdθe

θf

Figure 2. A hyperideal prism, its exterior dihedral angles and its de-
composition into three ideal tetrahedra in the ball model. It holds:
θe = π − θa+θb−θc

2 , θf = π − θa+θc−θb
2 , θd = π − θc+θb−θa

2 .

Comparing the statements of Proposition 5.4 and of Theorem 5.3 we formulated the
following version of the Volume Conjecture for planar trivalent graphs:

Conjecture 5.5 (VC for planar graphs). Let Γ be the 1-skeleton of an hyperideal
hyperbolic polyhedron P (Γ) and let θ = E →]0,π] be the map associating to each edge the
exterior dihedral angle of P (Γ) at the edge. Then for any sequence {coln}n∈N of colorings
on Γ such that col∞ = limn→∞

coln
n = 2− θ

π (as maps E → [1, 2[) it holds:

(22) evn
(

|⟨Γ, coln⟩A|
)

∼
n→∞

exp
(2n

π
Vol(P )

)

The combination of Proposition 5.4 and of Theorem 5.3 gives as a direct consequence
(unpublished):

Theorem 5.6. The Volume Conjecture for planar graphs is true for all the graphs
obtained from the tetrahedron by a finite sequence of .

Indeed it is sufficient to use the equality:

(23) ⟨ Γ Γ′ ⟩A = ⟨ Γ Γ′ ⟩A
( )−1

for the vertex connected sum of two spin networks and to remark that the polyhedron
obtained by gluing two hyperideal ones along a prism is obtained by cutting out of the
two polyhedra two half-prisms and then gluing: by Proposition 5.4 the volume of the two
half-prisms cut out is exactly taken into account by the −1.
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0

0

0

Figure 3. An instance of construction of fundamental hyperbolic link.

2.1. Sketch of proof of Proposition 5.4. The proof of the first statement of the
proposition is a direct application to the formula in Example 2.15 of the following fun-
damental lemma (whose proof is a straightforward analysis) which may be seen as on of
the key reasons why hyperbolic geometry shows up when considering certain asymptotic
limits of quantum factorials:

Lemma 5.7. Let α ∈ R+, {bn}n∈N be a sequence such that limn→∞
bn

n = α. Let also

{k} = −i(A2k − A−2k) (so that [k] = {k}
{1} ) and {k}! =

∏k
j=1{j}. Then for n big enough

{bn}! has a zero of order ⌊α⌋ at A = exp( iπ2n ); moreover evn{bn}! ∈ R and |evn{bn}!| ∼
n→∞

exp
(

− n
πΛ(πα)

)

.

The second statement of Proposition 5.4 is a consequence of Milnor’s formula for
the volume of ideal tetrahedra, applied to three tetrahedra decomposing the prism (the
formula provides a sum of 9 evaluations of the Λ function of which two are opposite). The
last statement is obtained by re-expressing V (a, b, c) in terms of internal dihedral angles
αa,αb,αc of P , observing that the conditions a, b, c,< 1, a + b + c > 2 are equivalent to
a = 1− αa

π , b = 1− αb
π , c = 1− αc

π (and so on) and finally noting that V (−αa,−αb,−αc) =
−V (αa,αb,αc) (because each summand changes sign).

3. The volume conjecture for links in #kS2 × S1

In [16] we extended the VC to links in #kS2 × S1 by remarking that Q(A) ⊗Z[A±1]

S(#kS2 × S1) = Q(A) and thus one may define ⟨Γ, col⟩A ∈ Q(A) for any colored Γ ⊂
#kS2 × S1. We used this for a family of links we studied with D. Thurston in [17]:

Definition 5.8 (Fundamental hyperbolic links). A fundamental hyperbolic link is one
obtained by the following procedure:

(1) pick a 4-valent graph G in S3 and a maximal tree T ⊂ G;

(2) replace each vertex of G by the diagram ;

(3) connect the so-obtained three-uples of boundary points (with any permutation)
following the edges of G;

(4) put 0-framed meridians around the three-uple of strands passing along the edges
of G \ T .
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Example 5.9. Using as G the graph with 2 vertices and 4 edges connecting them, for
one of the possible choices of gluing the strands along the edges of G one gets the link in
Figure 3. The link is contained in the connected sum of 3 copies of S2 × S1.

Theorem 5.10. [[17]] A fundamental hyperbolic link obtained from a connected graph
with c vertices is contained in #c+1S2×S1 and its complement admits a hyperbolic complete
structure with volume cVol(Oct) where Oct is the regular ideal octahedron. Moreover
the family of fundamental hyperbolic links is universal in the sense that for every pair
(M3, L) where M3 is a compact orientable 3 manifold and L ⊂ M is a link, there exists
a fundamental hyperbolic link F such that (M,L) is the result of an integral Dehn-filling
on some components of F (the non-filled ones forming L); moreover F can be chosen to
be obtained by a graph with c vertices where h||M || < c < k||M ||2 where h and k are two
universal constants (not depending on (M,L)) and ||·|| is the Gromov norm.

(Through this theorem we also proved that “3-manifolds efficiently bound 4-manifolds”
i.e. for any M triangulated with t tetrahedra there exist a 4-manifold W bounded by M
admitting a triangulation with less than kt2 simplexes.)

Using Theorem 5.10 we proved (in [16] for the complete case and in [11] for the non
complete one) the following result which is the first proof of the VC for an infinite family
of hyperbolic links and knots:

Theorem 5.11. The VC is true for each fundamental hyperbolic link F , namely: there
exists a neighborhood U of (0, . . . , 0) ∈ R#F such that for any sequence of even colorings

{coln} on F with limn→∞
coln(e)

n = col∞(e) ∈ 1 + U , ∀e ∈ E it holds:

lim
n→∞

2π

n
evn(⟨F, coln⟩n) = Volcol∞−1(F )

where by Volcol∞−1(F ) we denote the hyperbolic volume of the complement of F in the
#kS2×S1 equipped with the (not necessarily complete) structure whose holonomy around
the meridian of a component e of F has eigenvalues exp

(

± iπ(col∞(e)− 1)
)

.

4. Open questions and perspectives

The volume conjecture for planar graphs opens a possibly easier problem which directly
relates to hyperbolic geometry of polyhedra. For fixed Γ the range of col∞ to which the
conjecture should apply is well understood: thanks to a result of I. Rivin ([52]) we know
completely which are the possible sets of dihedral angles on a polyhedron P (Γ). Even if
the evidence given by Theorem 5.6 is encouraging, the case where Γ is a cube (we state it
here in the symmetric completely ideal case) is very hard:

Question 5.12. Let Γ be the 1 skeleton of a cube and let coln be the uniform color n
on all the edges. Is it true that limn→∞ evn

(

⟨Γ, coln⟩A
)

∼
n→∞

exp
(

2n
π Vol(D)

)

where D is

the regular ideal dodecahedron?

Numerical experiments seem to support a positive answer but the complexity of cal-
culations grows too fast to allow any confidence on these evidences. In work in progress
with François Guéritaud and Roland van der Veen we are proving that a set of recurrence
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relations on the different colored invariants of a fixed planar graph may be “taken to the
limit” and produce a set of differential equations “à la Schäfli” on the set of functions
of the angles of P (Γ) which would be satisfied by the exponential growth function (if it
existed!). We are also able to show that Vol(P ) viewed as a function of the dihedral angles
is a solution to all these differential equations: the uniqueness of the solution, though is
still unclear.

On the side of links, the universal property of fundamental hyperbolic links may be
used to attack the VC for a general knot K in S3: indeed it can be shown that K
can be obtained from a fundamental shadow link F by successively Dehn-filling all the
components of F but one so that at every step the resulting link is still contained in a
connected sum of copies of S2 × S1. Then at every step the “colored Jones polynomial”
is defined and one may study the VC for the link. So one is reduced to attacking the
VC by increasing complexity: the initial step (that of fundamental shadow links) being
already completely treated (Theorem 5.11). The second step would be to perform a single
hyperbolic surgery on a component of F and to prove the conjecture for this case. The
invariant of the resulting link is a linear combination of the invariants of F ; since we know
that the invariants of F have an exponential behavior given by the volume of a deformed
hyperbolic structure, the linear combination way be seen as an average or integration over a
path of hyperbolic structures on F of an integrand which is proportional to exp(nVolα(F ))
(where α parametrizes some non-complete structure on the complement of F ). This kind
of idea is similar in spirit to that proposed by Yokota ([67]) but may be easier to study as
the geometry of fundamental shadow links is quite clear. Of course one gets more and more
complicated formulas when dealing with the subsequent surgeries but all the difficulties of
the Volume Conjecture are already present at this first surgery level. Moreover one can
show that from this point of view the knots in S3 are not the simplest examples: they
cannot be obtained with less than 2 surgeries on a fundamental shadow link, while it is not
difficult to provide examples of hyperbolic knots in S2 × S1 obtained by a single surgery.
So the next step to attack the VC according to this programme would be:

Problem 5.13. Let F be a fundamental shadow link and F ′ be obtained by a single
integer Dehn-surgery on a component of F . Suppose that F ′ is contained in a connected
sum of copies of S2 × S1 and that its complement is hyperbolic. Prove the VC for F ′.





CHAPTER 6

Nilpotent spin networks and Reshetikhin-Turaev invariants

In this chapter we discuss the theory of spin-networks colored by irreducible repre-
sentations of Uq(sl2) at q = exp( iπr ) (r ∈ N) of a special type called nilpotent, i.e. such
that Er = F r = 0. In order to avoid recalling the details of the representation theory of
Uq(sl2) and to keep the constructions as combinatorial as possible, we define these objects
by providing a set of characterizing properties they satisfy and cite a result (joint with Jun
Murakami, proved also independently by Nathan Geer and Bertrand Patureau-Mirand)
ensuring the actual existence of these objects. Then we cite a result (joint with Jun Mu-
rakami) analyzing the asymptotical behavior (when r →∞) of these networks for a certain
family of tetrahedral networks and relate it to the geometry of hyperbolic tetrahedra. We
conclude by discussing a construction of invariants of triples (M3,Γ,ω) where M3 is a
closed three-manifold, Γ ⊂ M is a (possibly empty) KTG and ω ∈ H1(M \ Γ;C/2Z):
these invariants (constructed jointly with Bertrand Patureau-Mirand and Nathan Geer)
are the analogue of Reshetikhin-Turaev invariants of 3-manifolds but constructed by means
of the theory of the nilpotent representations of Uq(sl2).

1. Nilpotent spin-networks

From now on Γ will be a KTG, the edges of Γ will be oriented and q = exp( iπr )

(r ≥ 3 ∈ N). For x ∈ C we extend the notation qx by setting qx = eiπx/r and we keep the
notation {x} = qx − q−x. For x ∈ N we let {x}! =

∏x
j=1{j} and for a, b ∈ C such that

a− b ∈ {0, 1, . . . , r − 1} we also let

[

a
b

]

=
∏c=a

c=b+1{c}
{a−b}! .

Let Hr = {1−r, 3−r, . . . , r−3, r−1}, Xr = Z∪\rZ and let the “modified dimension”

d : C \Xr → C be given by d(a) = (−1)r−1

[

a+ r − 1
a

]−1

. A (nilpotent) coloring of Γ

from now on will be a map col : E → C \Xr.
The 2rth nilpotent sl(2) invariant ⟨·⟩r of isotopy classes of colored framed oriented

graphs has been first considered for the class of colored links by Y. Akutsu, T. Deguchi
and T. Ohtsuki in [2]. Jointly with Jun Murakami ([14], Theorem 3.4) we extended
the construction to all framed colored trivalent graphs; this was also done independently
by Nathan Geer and Bertrand Patureau-Mirand ([25]). Here below we summarize these
results (together with all the properties of the invariant) using the middle weight notation
for colors as opposed to the highest weight notation used in [14] (i.e. a color a in [14]
corresponds to a color α = 2a+ 1− r here):

43
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Theorem 6.1 (Nilpotent spin networks, [14], [25]). There is a unique invariant
⟨Γ, col⟩Nil

r ∈ C of framed, colored, oriented graphs in S3 which enjoys the properties 1) · · · 9)
here below.

(1) If (Γ′, col′) is obtained from (Γ, col) by simultaneously changing the orientation
of an edge and its color α to −α then ⟨Γ′, col′⟩Nil

r = ⟨Γ, col⟩Nil
r . This property

allows us to extend the coloring to all orientations of a fixed graph.
(2) ⟨Γ, col⟩Nil

r = 0 if for one of the vertex of Γ, the sum of the colors of the incoming
edges is not in Hr. We then say that the coloring of Γ is trivially null:

(24a) ⟨ α β

γ
⟩Nil
r = 0 if α+ β + γ /∈ Hr

(3) Let C(Γ) be the set of non trivially null colorings of a fixed oriented trivalent
framed graphs Γ. C(Γ) is a Zariski open subset of a disjoint union of affine
subspaces of CE . Then as a function on C(Γ), ⟨Γ, ·⟩Nil

r is holomorphic on each
connected component of C(Γ).

(4) If Γ♯Γ′ denotes the connected sum of two colored graphs along an edge col-
ored by α and col♯col′ the induced coloring on Γ♯Γ′ then ⟨Γ♯Γ′, col♯col′⟩Nil

r =
d(α)−1⟨Γ, col⟩Nil

r ⟨Γ′, col′⟩Nil
r :

(24b) ⟨ Γ Γ′
α

β

⟩Nil
r = δβα d(α)

−1 ⟨ Γ α⟩Nil
r ⟨ Γ′α ⟩Nil

r

(5) If Γ′′ denotes the connected sum of two colored graphs Γ, Γ′ along a vertex with
compatible incident colored edges then ⟨Γ′′, col′′⟩Nil

r = ⟨Γ, col⟩Nil
r ⟨Γ′, col′⟩Nil

r :

(24c) ⟨ Γ Γ′ ⟩Nil
r = ⟨ Γ ⟩Nil

r ⟨ Γ′ ⟩Nil
r

(6) ⟨·⟩Nil
r is zero on split graphs: ⟨Γ ' Γ′, col ' col′⟩Nil

r = 0.
(7) Normalisation (the “Θ” graph is assumed not to have trivially null coloring):

(24d) ⟨ α ⟩Nil
r = d(α), ⟨ ⟩Nil

r = 1, ⟨ ⟩Nil
r = 0.

(8) The framing twist. Letting tα = α2−(r−1)2

2 it holds:

(24e) ⟨
α
⟩Nil
r = qtα⟨α ⟩Nil

r .

(24f) ⟨
α β

γ
⟩Nil
r = q

tγ−tα−tβ
2 ⟨ α β

γ
⟩Nil
r .

(24g) ⟨ α
β ⟩Nil

r = (−1)r−1rqαβ.
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(9) The following two relations hold whenever all appearing colors are in C \Xr:

(24h) ⟨α β ⟩Nil
r =

∑

γ∈α+β+Hr

d(γ)⟨ γ ⟩Nil
r

(24i) ⟨ j2

j1 j6

j3 j4

⟩Nil
r =

∑

j5∈j1+j6+Hr

d(j5)
−1

∣

∣

∣

∣

j1 j2 j3
j4 j5 j6

∣

∣

∣

∣

⟨ j5

j1 j6

j3 j4

⟩Nil
r

where the 6j-symbols

∣

∣

∣

∣

j1 j2 j3
j4 j5 j6

∣

∣

∣

∣

= ⟨
j1

j2

j3

j4

j6

j5 ⟩Nil
r are given by:

∣

∣

∣

∣

j1 j2 j3
j4 j5 j6

∣

∣

∣

∣

= (−1)n−1+B165
{B345}! {B123}!
{B246}! {B165}!

[

j3 + n− 1
A123 + 1− n

] [

j3 + n− 1
B354

]−1

×

×
M
∑

z=m

(−1)z
[

A165 + 1
j5 + z + n

] [

B156 + z
B156

] [

B264 +B345 − z
B264

] [

B453 + z
B462

]

where Axyz = jx+jy+jz+3(r−1)
2 , Bxyz = jx+jy−jz+r−1

2 , m = max(0, j3+j6−j2−j5
2 ) and M =

min(B435,B165). (Here are using the formula provided in Theorem 1.12 of [14] taking into
account that a color a ∈ C in [14] corresponds to the color 2a+ 1− r here.)

1.1. IRF (or shadow-state) model for ⟨Γ, col⟩Nil
r . Let (Γ, col) be a colored, ori-

ented, framed trivalent graph. In [14] we provided a shadow-state sum model for comput-
ing ⟨Γ, col⟩Nil

r . We recall it in this subsection. Let us cut open a diagram of Γ along an edge
e1 ∈ E and put it in a (1, 1)-tangle like position so that the two strands which were con-
tained in e1 are directed towards the bottom. The diagram TΓ just constructed splits the
plane into regions R0, . . . , Rk, where we let R0 and R1 be respectively the leftmost and the
rightmost regions. Let a0, a1 ∈ C\Xr be complex numbers satisfying a0+col(e1)−a1 ∈ Hr.
We define a state of TΓ as a mapping ϕ : {R0, R1, R2, · · · , Rd} −→ C which satisfies the
following conditions.

(1) ϕ(R0) = a0, ϕ(R1) = a1,
(2) If Ri and Rj are adjacent along ek, Ri is on the left of ek (with respect to the

reader) and Rj is on the right of ek, then ϕ(Ri) + col(ek) (or ϕ(Ri) − col(ek) if
ek is oriented upwards) = ϕ(Rj) + l, for some l ∈ Hr.

(3) ∀i ϕ(Ri) /∈ Xr.

Let Za0,a1(TΓ) be the following state sum.

(25) Za0,a1(TΓ) =
∑

ϕ:

states

∏

p :maximum

Wmax(p)
∏

p : minimum

Wmin(p)
∏

p : crossing

Wc(p)
∏

p : vertex

Wv(p)
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where Wmax(p), Wmin(p), Wcrossing(p), Wvertex(p) are given as follows (in the pictures we
denote by λ, µ, η the colors of the edges of Γ and by a, b, c the states of the regions):

a
λ

p★✥
❄

b
−→

Wmax(p)
d(a)−1,

a✧✦
❄

b

p

λ −→
Wmin(p)

d(b).

λ µ
"

"
"

""✠

❅❅

❅❅❘

d
a b

c

−→
Wcrossing(p)

qta+tb−tc−td d(d)

∣

∣

∣

∣

µ a c
λ b d

∣

∣

∣

∣

λ µ
❅
❅
❅
❅❅❘

""

""✠

d
a b

c

−→
Wcrossing(p)

q−ta−tb+tc+td d(d)

∣

∣

∣

∣

µ a c
λ b d

∣

∣

∣

∣

λ µ
❅
❅❅❘

"
""✠

❄

a

b c

η

−→
Wvertex(p)

d(a)

∣

∣

∣

∣

µ λ η
b c a

∣

∣

∣

∣

,

η

❅
❅❅❘

"
""✠

❄

a

b c

λ µ

−→
Wvertex(p)

∣

∣

∣

∣

b λ a
µ c η

∣

∣

∣

∣

Theorem 6.2 (Face model for ⟨Γ, col⟩Nil
r , [14]). It holds: ⟨Γ, col⟩Nil

r = d(col(e1)) Za0,a1(TΓ).

2. Asymptotical behavior of nilpotent spin-networks

The invariant provided in Theorem 6.1 depends continuously on the colors of the graph;
moreover in [14] (Remark 3.7) we proved that the invariant is still defined for a link L
whose colors are 0 and in that case it coincides with the Kashaev invariant. Thus one can
hope to attack the volume conjecture for a hyperbolic knot K by studying ⟨K⟩Nil

r .
Indeed the computation of the Kashaev invariant is in general not easy: the colored

Jones polynomials may be computed either through the R-matrix approach or through the
so-called shadow-state sums but only in their unnormalized form (i.e. Jr( ) = (−1)r[r])
and the Kashaev invariant is the evaluation at q = exp( iπr ) of Jr(K)

Jr( ) . Typically shadow-

state sums provide much simpler models, but standard quantum 6j-symbols involved in
these sums may have poles at the roots of unity at which the volume conjecture is stated;
clearly these poles cancel out at the level of the whole state-sum (because the colored
Jones polynomials are polynomials!) but not at a term-by-term level in the sum. Thus
it may turn out to be useful to have shadow state-sums for the Kashaev invariants whose
summands are all regular at the root of unity.

It seems to be the case if one uses the model provided in Subsection 1.1. Indeed it

was proved in [14] that the nilpotent 6j-symbols:

∣

∣

∣

∣

a b e
d c f

∣

∣

∣

∣

, which a-priori are defined
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only for colors in C \Xr, are actually Laurent polynomials in qa, . . . , qf and thus can be
continuously extended on all C. Moreover the study of the asymptotical behavior (when
r → ∞) of these symbols was studied and proved to be related to hyperbolic geometry,
consistently with the expectations of the Volume Conjecture:

Theorem 6.3 (Asymptotics of nilpotent 6j-symbols, [14], Theorem 2.2). Let T be the
hyperbolic truncated tetrahedron with oriented labeled edges as in Figure 1, and let 0 < θa,
θb, θc, θd, θe, θf < π be the internal dihedral angles at the edges. Let ar, br, cr, dr, er, fr
be sequences of integers such that limr→∞

πar
r = θa, . . . , limr→∞

πfr
r = θf . Put ar = −ar,

· · · , fr = −fr. Using these parameters, the volume of T is given as follows:

Vol(T ) = lim
r→∞

π

2 r
log

(∣

∣

∣

∣

ar br er
dr cr fr

∣

∣

∣

∣

∣

∣

∣

∣

ar br er
dr cr fr

∣

∣

∣

∣

)

.

θa θeθb
θc

θf θd

Figure 1. A truncated hyperbolic tetrahedron T .

The above result is a first evidence showing that the volume conjecture may be attacked
through the study of nilpotent spin networks, and that hyperbolic geometry actually shows
up when considering asymptotical limits of quantum invariants at roots of unity. We will
not provide the proof of the theorem but we will bound ourselves to remark that the proof
exploits the peculiar behavior of 6j-symbols outlined in Lemma 1.15 of [14]: they are
finite sums positive real numbers each of which is growing exponentially fast. To compute
the overall exponential growth of the sum is therefore sufficient to identify the summands
with maximal growth rate. This key point is what makes relatively easy to compute the
asymptotical behavior in our case: in general one has to deal with oscillating complex
valued sums whose behavior is quite complicated. This property is similar to that we
used in [11] for 6j-symbols associated to the representation theory of Uq(sl2) for generic
q to prove an analogue of the generalized volume conjecture for tetrahedra. The rest of
the proof shows that the maximal growth rate, expressed in terms of the angles of the
tetrahedron, satisfies the same Schläfli differential equation as the volume function, thus
they differ by a constant and finally that in a special case (the case of an ideal tetrahedron)
the two functions are equal.

3. Nilpotent Reshetikhin-Turaev invariants

In a joint work with Nathan Geer and Bertrand Patureau-Mirand we used nilpotent
invariants of links to define invariants of 3-manifolds obtained by surgery on framed links
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in S3, and possibly containing an additional framed oriented graph Γ. It turns out that
the colorings on the surgery links induce a cohomology class on the surgered manifold
ω ∈ H1(M \ Γ,C/2Z) and that the invariants we define are actually invariants of such
three-uples (M3,Γ,ω). Our invariant are defined “à la Reshetikhin-Turaev” and are the
surgery counterpart of the Turaev-Viro like invariants defined by N. Geer, B. Patureau-
Mirand and V. Turaev in [26].

In the rest of this section we let G = C/2Z (as an additive group), X = Z/2Z ⊂ G,
and ∆+ be the scalar defined by the following equality:

⟨ σ

α

⟩Nil
r = ∆+⟨α ⟩Nil

r

let also ∆− = ∆+. It turns out that if r /∈ 4Z then ∆± ̸= 0, thus we suppose r /∈ 4Z from
now on.

LetM be a compact oriented 3-manifold M and Γ ⊂M be a framed, oriented, trivalent
graph whose edges are colored by elements of C \Xr. Let also ω ∈ H1(M \ Γ;G).

If M is presented as integral surgery over a link L in S3, then we can see Γ as a subset
of S3 \L and ω induces a G-coloring gω on L∪Γ defined as gω(ei) = ω(mi), for each edge
ei of L ∪ Γ where mi is the meridian of ei oriented to have positive linking with ei (here
we are implicitly using the fact that mi induces a well-defined class in H1(M ;Z) because
it is contained in S3 \ L).

Definition 6.4. We say that (M,Γ,ω) is a compatible triple if for each edge e of Γ the
image in G of the C-color of Γ associated to e is gω(e). We say that a surgery presentation
via L ⊂ S3 for a compatible 3-uple (M,Γ,ω) is computable if gω(e) ∈ C/2Z \ X for all
edges e of L.

Let Vα be the nilpotent r-dimensional simple representation of Uq(sl2) whose highest

weight is α+ r− 1 and on which the twist acts as q
α2−(r−1)2

2 Id. If ᾱ ∈ G then we say that
Ωᾱ =

∑

k∈Hr
d(α + k)Vα+k is a Kirby color of degree α if α ∈ C is such that the image

of α in C/2Z is α. We can “color” a knot K with a Kirby color Ωᾱ: let K(Ωᾱ) be the
formal linear combination

∑

k∈Hr
d(α+ k)K(α+ k) where K(α+ k) is the knot K colored

by α+ k. One acts similarly on a link L. We extend by linearity the definition of ⟨⟩Nil
r to

links whose components are colored with some Kirby color Ωᾱ. The following is proved in
[12]:

Theorem 6.5. If L is a colored link which gives rise to a computable surgery presen-
tation of a compatible triple (M,Γ,ω), then

N(M,Γ,ω) =
⟨L ∪ Γ⟩Nil

r

∆p
+ ∆s

−

is a well defined topological invariant (i.e. depends only of the homeomorphism class of
the triple (M,Γ,ω)), where (p, s) is the signature of the linking matrix of the surgery link
L and each component Li is colored by a Kirby color Ωgω(Li).
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The computability hypothesis is just a technical one: every compatible triple either has
a computable surgery presentation or is closely related to a triple which has a computable
surgery presentation. The following result takes care of this technical point allowing to
extend the definition of the invariant to almost any three-uple (M,Γ,ω).

Proposition 6.6. Let (M,Γ,ω) be a compatible triple and L be a link which gives
rise to a surgery presentation of M . If L ∪ Γ has an edge e such that gω(e) ∈ (C \ Z)/2Z
then there exists a surgery presentation of (M,Γ,ω) which is computable. In particular,
the triple (M,Γ,ω) has computable surgery presentation if Γ ̸= ∅ and Γ has an edge whose
color is in C \ Z.

In [12] we also showed how to extend the definition of the invariant when Γ ̸= ∅ but
all the edges of Γ are colored by integers: we do not detail this extension here because its
importance is mainly technical. On contrast, it is worth mentioning what happens in the
case when Γ = ∅ and all the edges of L are colored by an integer:

Theorem 6.7. Let (M,Γ,ω) be compatible triple. For α ∈ C \ Z let Γ ' uα be the
disjoint union of Γ with the unknot uα colored with α. Let ω ' ωα be the unique element
of H1(M \ (Γ ' uα),C/2Z) such that ω ' ωα restricts to ω and (M,ω ' ωα,Γ ' uα) is a
compatible triple. Define

N
0(M,ω,Γ) =

N(M,ω ' ωα,Γ ' uα)

d(α)
.

Then N0(M,ω,Γ) is a well defined topological invariant (i.e. depends only of the homeo-
morphism class of the compatible triple (M,Γ,ω)). Moreover, if (M,Γ,ω) has a computable
surgery presentation (i.e. if N is defined) then N0(M,Γ,ω) = 0.

Notice that the above theorems can be used to define an invariant for every compatible
triple (M,Γ,ω). In particular, if the invariant N is well defined then also N0 is but it is
zero, otherwise (for instance when Γ = ∅ and ω is the reduction of an integer class) N is
not defined but N0 is (and it is not necessarily 0: it is non-trivial for the Poincaré sphere).
In Subsection 3.2 we give examples to show that N and N0 are computable and non-trivial.

3.1. Key points about the above invariant. The construction of N(M,Γ,ω) mim-
icks that of Reshetikhin-Turaev invariants, so let us spell which are the main differences
and difficulties. First of all the underlying theory of representations has an infinite number
of simple modules Vα, all of dimension r and indexed by α ∈ C \ Z, where α + r − 1 is
the highest weight of Vα; in the case of standard Reshetikhin-Turaev invariant the simple
modules are only V1, . . . , Vr with dim(Vi) = i. The modules Vα and Vα+2r are isomorphic
as Uq(sl2)-modules but distinguished as objects in the braided category of such modules:

indeed the twist acts by exp(2πi(α
2−(r−1)2)
2r ) Id on each of them and these scalars are differ-

ent. The fact that the number of simple modules is not finite, makes the definition of the
“Kirby color” (used to perform surgery) more delicate: for each α ∈ G one choses α ∈ C

representing α and defines ωα =
∑

k∈Hr
d(α + k)Vα+k. It turns out that if a coloring of

the union of a link L ⊂ S3 and a KTG Γ ⊂ S3 \ L is compatible (and this condition is
crucial) then the choices of the α′s to represent α′s on each component of L is irrelevant.
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The role of the coloring is clarified once one introduces a cohomology class on the manifold
obtained by surgery on L: the compatibility condition is equivalent to stating that there
exists a cohomology class ω ∈ H1(M \ Γ;G) such that for each edge e of Γ ∪ L it holds
ω(m) = col(e) where m is the positive meridian of the edge.

A second delicate point is the computability of the colors: if some color is in Z then
the invariant ⟨L ∪ Γ, col⟩Nil

r is not defined; thus, making sure that one can actually find a
presentation of (M,Γ,ω) whose coloring is computable and showing that two such presen-
tations are related by Kirby moves through computable presentations is technically more
complicated than in the standard case.

3.2. Examples and applications.

Example 6.8 (Distinguishing lens spaces). In [29], Remark 3.9, it was observed that
the standard Uq(sl2) Reshetikhin-Turaev invariants cannot distinguish the lens spaces
L(65, 8) and L(65, 18): it turns out that the invariants N(M,Γ,ω) can and, as a conse-
quence, are independent on the standard Reshetikhin-Turaev invariants. Indeed one can
present L(65, 8) and L(65, 18) as surgeries over chain links and, using computer algebra
software, compute numerically Sr(L(p, q)) =

∑

ω∈H1(L(p,q);G),ω ̸=0N(L(p, q), ∅,ω). It turns
out that S3(L(65, 8)) ̸= S3(L(65, 18)).

Example 6.9 (Studying self-diffeomorphisms of a rational homology sphere). Let M
be an oriented rational homology sphere, c1, . . . cn and d1, . . . dn be two distinct minimal
sets of generators of H1(M ;Z) such that the order of ci and of di are the same for each i.
Let ω ∈ H1(M ;G) and let ω′ ∈ H1(M ;G) be defined by ω′(ci) = ω(di). If N(M, ∅,ω′) ̸=
N(M, ∅,ω) then there exists no positive self-diffeomorphism φ : M →M such that φ∗(ci) =
di. In particular one can apply this argument to distinguish, for instance, the following
two generators of H1(L(5, 1);Z): present L(5, 1) as the surgery over a 5-framed unknot in
S3; one generator c1 is represented by the meridian of the unknot, and another, d1, by its
double.

4. Open questions and perspectives.

In this section we discuss the many questions which are still open about the nilpotent
Reshetikhin-Turaev invariant defined above. As stated above, N(M,Γ,ω) is independent
on the standard Reshetikhin-Turaev invariants so a natural general question is:

Question 6.10. What are the relations between N(M,Γ,ω) and the other known quan-
tum and classical invariants of the three-uple? And in particular with the Turaev-Viro type
invariants introduced in [26]?

Motivated by Example 6.8 for L(65, 8) and L(65, 18) one may ask:

Question 6.11. Does N distinguish all the lens spaces for r big enough? Does the
whole set of N (for all r)?

A particular case which can always be studied is when Γ = ∅ and ω = 0:

Question 6.12. What are the relations between N0(M, ∅, 0) and the other known quan-
tum and classical invariants of the three-uple?
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Although at the moment there are no experimental evidences, motivated by the re-
lations of ⟨L, 0⟩Nil

r with the rth Kashaev invariant of L, one may try and ask whether a
general version of the Volume Conjecture may be formulated for three manifolds (instead
than for knots in S3):

Question 6.13. What is the asymptotical behavior (if any) of N0(M, ∅, 0) as r →∞?
More in general what is (if any) the asymptotical of N(M,Γ, rω) as r →∞?

Theorem 6.3 may be considered as a first positive evidence for the second question
in the case when M = S3, Γ is the tetrahedral graph and ω is the unique element of
H1(S3 \ Γ;G) such that for each edge e of Γ, the value of ω on the meridian of the edge
is ω(m) = col(e).

The main interest of the above question is that the only extension of the Volume
Conjecture for manifolds is due to Benedetti and Baseilhac and it involves the Quan-
tum Hyperbolic Invariants which often may be complicated to compute. On contrast
the invariants N and N0 are defined through surgery presentations and thus effectively
computable.

Even without studying the asymptotical behavior of nilpotent invariants, one may ask
what is the functor (if any) underlying these invariants:

Question 6.14. What is the TQFT (or its generalization) underlying the construction
of N(M,Γ,ω)?

Preliminary observations seem to show that a HQFT structure underlies the invariants:
we are planning to work on the preceding questions in future work joint with Nathan Geer
and Bertrand Patureau-Mirand.

Nilpotent representations are not the most general ones when q is a root of unity:
there are cyclic ones (on which Er and F r do not act as 0).

Question 6.15. Can one build link invariants and 3-manifold invariants using general
(cyclic) modules of Uq(sl2) when q is a root of unity?

There are first positive evidences to the above question due to Kashaev and Reshetikhin,
but at present no 3-manifold invariant is known based on surgery presentations and cyclic
modules.
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• “Generating series of classical spin networks‘”, with J. Marché, arXiv:1103:5644,
44 pages (2011).

• “On SL(2,C) quantum 6j-symbol and its relation to the hyperbolic volume”,
with Jun Murakami, to appear in Quantum Topology (2011).

• “Integrality of Kauffman brackets of trivalent graphs”, arxiv:0908.0542, 25 pages
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249.
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• “Shadows and branched shadows of 3 and 4-manifolds”, Ph.D. Thesis, published
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Nous passons en revue plusieurs aspects et résultats connus sur les réseaux de spin
classiques et quantiques. Nous commençons par l’étude des séries génératrices de
ces objets dans le cas classique, et puis nous discutons les problèmes d’intégralité
dans le cas quantique. Puis nous passons à l’étude du comportement asymptotique des
réseaux de spin, d’abord dans le cas classique et puis dans le cas quantique, en reliant
ce comportement à la géométrie des polyèdres. Nous terminons par une exposition des
résultats connus à présent sur les réseaux de spin nilpotents et sur leur utilisation pour
la définition d’invariants de variétés de dimension 3 “à la Reshetikhin-Turaev".
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