Supplementary material for
 Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes

François Bachoc ${ }^{\text {a,b,* }}$
${ }^{a}$ CEA-Saclay, DEN, DM2S, STMF, LGLS, F-91191 Gif-Sur-Yvette, France
${ }^{b}$ Laboratoire de Probabilités et Modèles Aléatoires, Université Paris Diderot, 75205 Paris cedex 13

Abstract

In this supplementary material, we address the one-dimensional case with $p=1$. We provide the exact expression of the asymptotic variances of ML and CV, for $\epsilon=0$, and of the second derivative w.r.t. ϵ, at $\epsilon=0$ for ML. We recall the notations, restate the exact expressions in proposition 2, and give the proof.

We recall the expression of $\Sigma_{M L}, \Sigma_{C V, 1}$ and $\Sigma_{C V, 2}$:

$$
\begin{equation*}
\frac{1}{2 n} \operatorname{Tr}\left(\mathrm{R}^{-1} \frac{\partial \mathrm{R}}{\partial \theta} \mathrm{R}^{-1} \frac{\partial \mathrm{R}}{\partial \theta}\right) \underset{\mathrm{n} \rightarrow+\infty}{\rightarrow} \Sigma_{\mathrm{ML}} \tag{1}
\end{equation*}
$$

with

$$
\begin{align*}
M_{\theta}= & R_{\theta}^{-1} \operatorname{diag}\left(R_{\theta}^{-1}\right)^{-2}\left\{\operatorname{diag}\left(R_{\theta}^{-1} \frac{\partial R_{\theta}}{\partial \theta} R_{\theta}^{-1}\right) \operatorname{diag}\left(R_{\theta}^{-1}\right)^{-1}-R_{\theta}^{-1} \frac{\partial R_{\theta}}{\partial \theta}\right\} R_{\theta}^{-1}, \\
& 2 \frac{1}{n} \operatorname{Tr}\left[\left\{M_{\theta_{0}}+\left(M_{\theta_{0}}\right)^{t}\right\} R_{\theta_{0}}\left\{M_{\theta_{0}}+\left(M_{\theta_{0}}\right)^{t}\right\} R_{\theta_{0}}\right] \underset{n \rightarrow+\infty}{\rightarrow} \Sigma_{C V, 1} \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
& -8 \frac{1}{n} \operatorname{Tr}\left\{\operatorname{diag}\left(R_{\theta_{0}}^{-1}\right)^{-3} \operatorname{diag}\left(R_{\theta_{0}}^{-1} \frac{\partial R_{\theta_{0}}}{\partial \theta} R_{\theta_{0}}^{-1}\right) R_{\theta_{0}}^{-1} \frac{\partial R_{\theta_{0}}}{\partial \theta} R_{\theta_{0}}^{-1}\right\} \tag{3}\\
& +2 \frac{1}{n} \operatorname{Tr}\left\{\operatorname{diag}\left(R_{\theta_{0}}^{-1}\right)^{-2} R_{\theta_{0}}^{-1} \frac{\partial R_{\theta_{0}}}{\partial \theta} R_{\theta_{0}}^{-1} \frac{\partial R_{\theta_{0}}}{\partial \theta} R_{\theta_{0}}^{-1}\right\} \\
& +6 \frac{1}{n} \operatorname{Tr}\left\{\operatorname{diag}\left(R_{\theta_{0}}^{-1}\right)^{-4} \operatorname{diag}\left(R_{\theta_{0}}^{-1} \frac{\partial R_{\theta_{0}}}{\partial \theta} R_{\theta_{0}}^{-1}\right) \operatorname{diag}\left(R_{\theta_{0}}^{-1} \frac{\partial R_{\theta_{0}}}{\partial \theta} R_{\theta_{0}}^{-1}\right) R_{\theta_{0}}^{-1}\right\}
\end{align*}
$$

$$
\underset{n \rightarrow+\infty}{\rightarrow} \quad \Sigma_{C V, 2}
$$

The observation points $v_{i}+\epsilon X_{i}, 1 \leq i \leq n, n \in \mathbb{N}^{*}$, are $i+\epsilon X_{i}$, where X_{i} is uniform on $[-1,1]$, and $\Theta=\left[\theta_{\text {inf }}, \theta_{\text {sup }}\right]$.

All the covariance matrices are considered at θ_{0} and so we do not write explicitly this dependence. We denote $\partial_{\theta} R=\frac{\partial}{\partial \theta} R, \partial_{\epsilon} R=\frac{\partial}{\partial \epsilon} R, \partial_{\epsilon, \theta} R=\frac{\partial}{\partial \epsilon} \frac{\partial}{\partial \theta} R, \partial_{\epsilon, \epsilon} R=\frac{\partial^{2}}{\partial \epsilon^{2}} R$ and $\partial_{\epsilon, \epsilon, \theta} R=$ $\frac{\partial^{2}}{\partial \epsilon^{2}} \frac{\partial}{\partial \theta} R$.

We define the Fourier transform function $\hat{z}($.$) of a sequence s_{n}$ of \mathbb{Z} by $\hat{z}(f)=\sum_{n \in \mathbb{Z}} s_{n} e^{\mathrm{i} s_{n} f}$ as in [1]. This function is 2π periodic on $[-\pi, \pi]$. Then

[^0]- The sequence of the $K_{\theta_{0}}(i), i \in \mathbb{Z}$, has Fourier transform f which is even and non negative on $[-\pi, \pi]$.
- The sequence of the $\frac{\partial}{\partial \theta} K_{\theta_{0}}(i), i \in \mathbb{Z}$, has Fourier transform f_{θ} which is even on $[-\pi, \pi]$.
- The sequence of the $\frac{\partial}{\partial t} K_{\theta_{0}}(i) \mathbf{1}_{i \neq 0}, i \in \mathbb{Z}$, has Fourier transform i f_{t} which is odd and imaginary on $[-\pi, \pi]$.
- The sequence of the $\frac{\partial}{\partial t} \frac{\partial}{\partial \theta} K_{\theta_{0}}(i) \mathbf{1}_{i \neq 0}, i \in \mathbb{Z}$, has Fourier transform i $f_{t, \theta}$ which is odd and imaginary on $[-\pi, \pi]$.
- The sequence of the $\frac{\partial^{2}}{\partial t^{2}} K_{\theta_{0}}(i) \mathbf{1}_{i \neq 0}, i \in \mathbb{Z}$, has Fourier transform $f_{t, t}$ which is even on $[-\pi, \pi]$.
- The sequence of the $\frac{\partial^{2}}{\partial t^{2}} \frac{\partial}{\partial \theta} K_{\theta_{0}}(i) \mathbf{1}_{i \neq 0}, i \in \mathbb{Z}$, has Fourier transform $f_{t, t, \theta}$ which is even on $[-\pi, \pi]$.

We recall the condition on the sequences above in condition 1.
Condition 1. There exist $C<\infty$ and $a>0$ so that the sequences of general terms $K_{\theta_{0}}(i)$, $\frac{\partial}{\partial \theta} K_{\theta_{0}}(i), \frac{\partial}{\partial t} K_{\theta_{0}}(i) \mathbf{1}_{i \neq 0}, \frac{\partial}{\partial t} \frac{\partial}{\partial \theta} K_{\theta_{0}}(i) \mathbf{1}_{i \neq 0}, \frac{\partial^{2}}{\partial t^{2}} K_{\theta_{0}}(i) \mathbf{1}_{i \neq 0}, \frac{\partial^{2}}{\partial t^{2}} \frac{\partial}{\partial \theta} K_{\theta_{0}}(i) \mathbf{1}_{i \neq 0}, i \in \mathbb{Z}$, are bounded by $C e^{-a|i|}$.

For a sequence $\left(z_{i}\right)_{i \in \mathbb{Z}}$ on \mathbb{Z}, or equivalently its 2π-périodic Fourier transform function f on $[-\pi, \pi]$, we denote by $T(f)$ the associated Toeplitz matrix sequence, where we do not write explicitly the dependence on n. The Toeplitz matrix sequence is defined by $T(f)_{i, j}:=z_{i-j}=$ $\int_{-\pi}^{\pi} f(t) e^{-(i-j) t} d t$. We denote by $M(f)$ the mean value of f on $[-\pi, \pi]$. Notice that $M(f)=$ $T(f)_{0,0}$.

Then, proposition 2 gives the closed form expressions of $\Sigma_{M L}, \Sigma_{C V, 1}, \Sigma_{C V, 2}$ and $\left.\frac{\partial^{2}}{\partial \epsilon^{2}} \Sigma_{M L}\right|_{\epsilon=0}$.
Proposition 2. Assume that f is positive on $[-\pi, \pi]$ and that condition 1 is verified.
For $\epsilon=0$,

$$
\begin{gathered}
\Sigma_{M L}=\frac{1}{2} M\left(\frac{f_{\theta}^{2}}{f^{2}}\right) \\
\Sigma_{C V, 1}= \\
8 M\left(\frac{1}{f}\right)^{-6} M\left(\frac{f_{\theta}}{f^{2}}\right)^{2} M\left(\frac{1}{f^{2}}\right) \\
+8 M\left(\frac{1}{f}\right)^{-4} M\left(\frac{f_{\theta}^{2}}{f^{4}}\right) \\
-16 M\left(\frac{1}{f}\right)^{-5} M\left(\frac{f_{\theta}}{f^{2}}\right) M\left(\frac{f_{\theta}}{f^{3}}\right) \\
\Sigma_{C V, 2}=2 M\left(\frac{1}{f}\right)^{-3}\left\{M\left(\frac{f_{\theta}^{2}}{f^{3}}\right) M\left(\frac{1}{f}\right)-M\left(\frac{f_{\theta}}{f^{2}}\right)^{2}\right\}
\end{gathered}
$$

and

$$
\begin{aligned}
\left.\frac{\partial^{2}}{\partial \epsilon^{2}} \Sigma_{M L}\right|_{\epsilon=0} & =\frac{2}{3} M\left(\frac{f_{\theta}}{f^{2}}\right) M\left(\frac{f_{t}^{2} f_{\theta}}{f^{2}}\right) \\
& -\frac{4}{3} M\left(\frac{1}{f}\right) M\left(\frac{f_{t, \theta} f_{t} f_{\theta}}{f^{2}}\right)-\frac{4}{3} M\left(\frac{f_{\theta}}{f^{2}}\right) M\left(\frac{f_{t, \theta} f_{t}}{f}\right) \\
& +\frac{2}{3} M\left(\frac{1}{f}\right) M\left(\frac{f_{t}^{2} f_{\theta}^{2}}{f^{3}}\right)+\frac{2}{3} M\left(\frac{f_{\theta}^{2}}{f^{3}}\right) M\left(\frac{f_{t}^{2}}{f}\right) \\
& -\frac{2}{3} M\left(\frac{f_{t, t} f_{\theta}^{2}}{f^{3}}\right) \\
& +\frac{2}{3} M\left(\frac{1}{f}\right) M\left(\frac{f_{t, \theta}^{2}}{f}\right) \\
& +\frac{2}{3} M\left(\frac{f_{t, t, \theta} f_{\theta}}{f^{2}}\right) .
\end{aligned}
$$

Proof. We only give the proof of the expression of $\left.\frac{\partial^{2}}{\partial \epsilon^{2}} \Sigma_{M L}\right|_{\epsilon=0}$, since the proofs of the expressions of $\Sigma_{M L}, \Sigma_{C V, 1}$ and $\Sigma_{C V, 2}$ are simpler and essentially follow from the results in [1].

Using proposition 3 ,

$$
\begin{align*}
& \frac{1}{n}\left\{\frac{\partial^{2}}{\partial \epsilon^{2}} \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\theta} R\right)\right\} \tag{4}\\
= & 2 \frac{1}{n} \operatorname{Tr}\left(R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)-4 \frac{1}{n} \operatorname{Tr}\left(R^{-1} \partial_{\epsilon, \theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right) \\
& +4 \frac{1}{n} \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)-2 \frac{1}{n} \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \epsilon} R R^{-1} \partial_{\theta} R\right) \\
& +2 \frac{1}{n} \operatorname{Tr}\left(R^{-1} \partial_{\epsilon, \theta} R R^{-1} \partial_{\epsilon, \theta} R\right) \\
& -4 \frac{1}{n} \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon, \theta} R\right)+2 \frac{1}{n} \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \epsilon, \theta} R\right), \\
= & 2 \frac{1}{n} \operatorname{Tr}\left(\partial_{\epsilon} \mathrm{R} \mathrm{R}^{-1} \partial_{\theta} \mathrm{R} \mathrm{R}^{-1} \partial_{\epsilon} \mathrm{R} \mathrm{R}^{-1} \partial_{\theta} \mathrm{R} \mathrm{R}^{-1}\right)-4 \frac{1}{\mathrm{n}} \operatorname{Tr}\left(\partial_{\epsilon, \theta} \mathrm{R} \mathrm{R}^{-1} \partial_{\epsilon} \mathrm{R} \mathrm{R}^{-1} \partial_{\theta} \mathrm{R} \mathrm{R}^{-1}\right) \\
& +4 \frac{1}{n} \operatorname{Tr}\left(\partial_{\epsilon} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R R^{-1} \partial_{\theta} R R^{-1}\right)-2 \frac{1}{n} \operatorname{Tr}\left(\partial_{\epsilon, \epsilon} R R^{-1} \partial_{\theta} R R^{-1} \partial_{\theta} R R^{-1}\right) \\
& +2 \frac{1}{n} \operatorname{Tr}\left(\partial_{\epsilon, \theta} R R^{-1} \partial_{\epsilon, \theta} R R^{-1}\right) \\
& -4 \frac{1}{n} \operatorname{Tr}\left(\partial_{\epsilon} R R^{-1} \partial_{\epsilon, \theta} R R^{-1} \partial_{\theta} R R^{-1}\right)+2 \frac{1}{n} \operatorname{Tr}\left(\partial_{\epsilon, \epsilon, \theta} R R^{-1} \partial_{\theta} R R^{-1}\right) .
\end{align*}
$$

We denote as in [1], for a real $n \times n$ matrix $A,|A|^{2}=\frac{1}{n} \sum_{i j,=1}^{n} A_{i, j}^{2}$ and $\|A\|$ the largest singular value of A. |.| and ||.|| are norms and ||.|| is a matrix norm. We denote, for two sequences of square matrices A and B, indexed by $n \in \mathbb{N}^{*}, A \sim B$ if $|A-B| \rightarrow_{n \rightarrow+\infty} 0$ and $\|A\|$ and $\|B\|$ are bounded with respect to n.

Using [1], theorems 11 and 12, we have $R^{-1} \partial_{\theta} R R^{-1}=T(f)^{-1} T\left(f_{\theta}\right) T(f)^{-1} \sim_{n \rightarrow \infty}$ $T\left(\frac{f_{\theta}}{f^{2}}\right)$ because f and ${ }_{\theta} f$ are C^{∞} and f is positive. Hence, as the eigenvalues of $\partial_{\epsilon} R$ are uniformly bounded, we obtain, using [1] theorem 1

$$
\partial_{\epsilon} R R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R R^{-1} \sim_{n \rightarrow \infty} \partial_{\epsilon} R T\left(\frac{f_{\theta}}{f^{2}}\right) \partial_{\epsilon} R T\left(\frac{f_{\theta}}{f^{2}}\right),
$$

and hence

$$
\frac{1}{n} \operatorname{Tr}\left(\partial_{\epsilon} R R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R R^{-1}\right)=\frac{1}{n} \operatorname{Tr}\left\{\partial_{\epsilon} R T\left(\frac{f_{\theta}}{f^{2}}\right) \partial_{\epsilon} R T\left(\frac{f_{\theta}}{f^{2}}\right)\right\}+o(1) .
$$

The equivalence is uniform in $x=\left(x_{1}, \ldots, x_{n}\right)^{t} \in[-1,1]^{n}$. Applying this method for all the terms of (4), we obtain

$$
\begin{aligned}
& \frac{1}{n}\left\{\frac{\partial^{2}}{\partial \epsilon^{2}} \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\theta} R\right)\right\}+o(1) \\
= & 2 \frac{1}{n} \operatorname{Tr}\left\{\partial_{\epsilon} R T\left(\frac{f_{\theta}}{f^{2}}\right) \partial_{\epsilon} R T\left(\frac{f_{\theta}}{f^{2}}\right)\right\}-4 \frac{1}{n} \operatorname{Tr}\left\{\partial_{\epsilon, \theta} R T\left(\frac{1}{f}\right) \partial_{\epsilon} R T\left(\frac{f_{\theta}}{f^{2}}\right)\right\} \\
& +4 \frac{1}{n} \operatorname{Tr}\left\{\partial_{\epsilon} R T\left(\frac{1}{f}\right) \partial_{\epsilon} R T\left(\frac{f_{\theta}^{2}}{f^{3}}\right)\right\}-2 \frac{1}{n} \operatorname{Tr}\left\{\partial_{\epsilon, \epsilon} R T\left(\frac{f_{\theta}^{2}}{f^{3}}\right)\right\} \\
& +2 \frac{1}{n} \operatorname{Tr}\left\{\partial_{\epsilon, \theta} R T\left(\frac{1}{f}\right) \partial_{\epsilon, \theta} R T\left(\frac{1}{f}\right)\right\} \\
& -4 \frac{1}{n} \operatorname{Tr}\left\{\partial_{\epsilon} R T\left(\frac{1}{f}\right) \partial_{\epsilon, \theta} R T\left(\frac{f_{\theta}}{f^{2}}\right)\right\}+2 \frac{1}{n} \operatorname{Tr}\left\{\partial_{\epsilon, \epsilon, \theta} R T\left(\frac{f_{\theta}}{f^{2}}\right)\right\}+o(1) .
\end{aligned}
$$

For a matrix A, we define A_{x} by $\left(A_{x}\right)_{i, j}=A_{i, j}\left(X_{i}-X_{j}\right)$ and $A_{x, x}$ by $\left(A_{x, x}\right)_{i, j}=A_{i, j}\left(X_{i}-X_{j}\right)^{2}$, where the X_{i} 's are the random perturbations.

We then have, since $\epsilon=0$,

$$
\begin{aligned}
R & =T(f), \\
\partial_{\theta} R & =T\left(f_{\theta}\right), \\
\partial_{\epsilon} R & =T_{x}\left(\mathrm{i} f_{t}\right), \\
\partial_{\epsilon, \theta} R & =T_{x}\left(\mathrm{i} f_{t, \theta}\right), \\
\partial_{\epsilon, \epsilon} R & =T_{x, x}\left(f_{t, t}\right)
\end{aligned}
$$

and

$$
\partial_{\epsilon, \epsilon, \theta} R=T_{x, x}\left(f_{t, t, \theta}\right)
$$

With these notations,

$$
\begin{aligned}
& \frac{1}{n}\left\{\frac{\partial^{2}}{\partial \epsilon^{2}} \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\theta} R\right)\right\} \\
= & 2 \frac{1}{n} \operatorname{Tr}\left\{T_{x}\left(f_{t}\right) T\left(\frac{f_{\theta}}{f^{2}}\right) T_{x}\left(f_{t}\right) T\left(\frac{f_{\theta}}{f^{2}}\right)\right\}-4 \frac{1}{n} \operatorname{Tr}\left\{T_{x}\left(f_{t, \theta}\right) T\left(\frac{1}{f}\right) T_{x}\left(f_{t}\right) T\left(\frac{f_{\theta}}{f^{2}}\right)\right\} \\
& +4 \frac{1}{n} \operatorname{Tr}\left\{T_{x}\left(f_{t}\right) T\left(\frac{1}{f}\right) T_{x}\left(f_{t}\right) T\left(\frac{f_{\theta}^{2}}{f^{3}}\right)\right\}-2 \frac{1}{n} \operatorname{Tr}\left\{T_{x, x}\left(f_{t, t}\right) T\left(\frac{f_{\theta}^{2}}{f^{3}}\right)\right\} \\
& +2 \frac{1}{n} \operatorname{Tr}\left\{T_{x}\left(f_{t, \theta}\right) T\left(\frac{1}{f}\right) T_{x}\left(f_{t, \theta}\right) T\left(\frac{1}{f}\right)\right\} \\
& -4 \frac{1}{n} \operatorname{Tr}\left\{T_{x}\left(f_{t}\right) T\left(\frac{1}{f}\right) T_{x}\left(f_{t, \theta}\right) T\left(\frac{f_{\theta}}{f^{2}}\right)\right\}+2 \frac{1}{n} \operatorname{Tr}\left\{T_{x, x}\left(f_{t, t, \theta}\right) T\left(\frac{f_{\theta}}{f^{2}}\right)\right\}+o(1) .
\end{aligned}
$$

Hence, using propositions 4 and 6 , we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \mathbb{E}\left[\frac{1}{n}\left\{\frac{\partial^{2}}{\partial \epsilon^{2}} \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\theta} R\right)\right\}\right] \\
= & 2\left\{\frac{1}{3} M\left(\frac{f_{\theta}}{f^{2}}\right) M\left(\frac{f_{t} f_{t} f_{\theta}}{f^{2}}\right)+\frac{1}{3} M\left(\frac{f_{\theta}}{f^{2}}\right) M\left(\frac{f_{t} f_{t} f_{\theta}}{f^{2}}\right)\right\} \\
& -4\left\{\frac{1}{3} M\left(\frac{1}{f}\right) M\left(\frac{f_{t, \theta} f_{t} f_{\theta}}{f^{2}}\right)+\frac{1}{3} M\left(\frac{f_{\theta}}{f^{2}}\right) M\left(\frac{f_{t, \theta} f_{t}}{f}\right)\right\} \\
& +4\left\{\frac{1}{3} M\left(\frac{1}{f}\right) M\left(\frac{f_{t} f_{t} f_{\theta}^{2}}{f^{3}}\right)+\frac{1}{3} M\left(\frac{f_{\theta}^{2}}{f^{3}}\right) M\left(\frac{f_{t} f_{t}}{f}\right)\right\} \\
& -2 \frac{2}{3} M\left(\frac{f_{t, t} f_{\theta}^{2}}{f^{3}}\right) \\
& +2\left\{\frac{1}{3} M\left(\frac{1}{f}\right) M\left(\frac{f_{t, \theta} f_{t, \theta}}{f}\right)+\frac{1}{3} M\left(\frac{1}{f}\right) M\left(\frac{f_{t, \theta} f_{t, \theta}}{f}\right)\right\} \\
& -4\left\{\frac{1}{3} M\left(\frac{1}{f}\right) M\left(\frac{f_{t} f_{t, \theta} f_{\theta}}{f^{2}}\right)+\frac{1}{3} M\left(\frac{f_{\theta}}{f^{2}}\right) M\left(\frac{f_{t} f_{t, \theta}}{f}\right)\right\} \\
& +2 \frac{2}{3} M\left(\frac{f_{t, t, \theta} f_{\theta}}{f^{2}}\right), \\
= & \frac{4}{3} M\left(\frac{f_{\theta}}{f^{2}}\right) M\left(\frac{f_{t}^{2} f_{\theta}}{f^{2}}\right) \\
& -\frac{8}{3} M\left(\frac{1}{f}\right) M\left(\frac{f_{t, \theta} f_{t} f_{\theta}}{f^{2}}\right)-\frac{8}{3} M\left(\frac{f_{\theta}}{f^{2}}\right) M\left(\frac{f_{t, \theta} f_{t}}{f}\right) \\
& +\frac{4}{3} M\left(\frac{1}{f}\right) M\left(\frac{f_{t}^{2} f_{\theta}^{2}}{f^{3}}\right)+\frac{4}{3} M\left(\frac{f_{\theta}^{2}}{f^{3}}\right) M\left(\frac{f_{t}^{2}}{f}\right) \\
& -\frac{4}{3} M\left(\frac{f_{t, t} f_{\theta}^{2}}{f^{3}}\right) \\
& +\frac{4}{3} M\left(\frac{1}{f}\right) M\left(\frac{f_{t, \theta}^{2}}{f}\right) \\
& +\frac{4}{3} M\left(\frac{f_{t, t, \theta} f_{\theta}}{f^{2}}\right) .
\end{aligned}
$$

Proposition 3.

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial \epsilon^{2}} \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\theta} R\right) \\
= & 2 \operatorname{Tr}\left(R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)-4 \operatorname{Tr}\left(R^{-1} \partial_{\epsilon, \theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right) \\
& +4 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)-2 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \epsilon} R R^{-1} \partial_{\theta} R\right) \\
& +2 \operatorname{Tr}\left(R^{-1} \partial_{\epsilon, \theta} R R^{-1} \partial_{\epsilon, \theta} R\right) \\
& -4 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon, \theta} R\right)+2 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \epsilon, \theta} R\right) .
\end{aligned}
$$

Proof. We use $\frac{\partial}{\partial \epsilon} \operatorname{Tr}\left(M^{2}\right)=2 \operatorname{Tr}\left(M \frac{\partial}{\partial \epsilon} M\right)$. Then:

$$
\begin{align*}
\frac{\partial}{\partial \epsilon} \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\theta} R\right) & =2 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R\left(-R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R+R^{-1} \partial_{\epsilon, \theta} R\right)\right) \tag{5}\\
& =-2 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)+2 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \theta} R\right)
\end{align*}
$$

We use $\frac{\partial}{\partial \epsilon} \operatorname{Tr}(A B C D E F)=\operatorname{Tr}\left(\frac{\partial}{\partial \epsilon} A B C D E F+\ldots+A B C D E \frac{\partial}{\partial \epsilon} F\right)$. Then

$$
\begin{aligned}
& \frac{\partial}{\partial \epsilon} \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right) \\
= & -\operatorname{Tr}\left(R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)+\operatorname{Tr}\left(R^{-1} \partial_{\epsilon, \theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right) \\
& -\operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)+\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \epsilon} R R^{-1} \partial_{\theta} R\right) \\
& -\operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)+\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon, \theta} R\right), \\
= & -\operatorname{Tr}\left(R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)+\operatorname{Tr}\left(R^{-1} \partial_{\epsilon, \theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right) \\
& -2 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)+\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \epsilon} R R^{-1} \partial_{\theta} R\right) \\
& +\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon, \theta} R\right)
\end{aligned}
$$

and

$$
\begin{align*}
& \frac{\partial}{\partial \epsilon} \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \theta} R\right) \tag{7}\\
= & -\operatorname{Tr}\left(R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \theta} R\right)+\operatorname{Tr}\left(R^{-1} \partial_{\epsilon, \theta} R R^{-1} \partial_{\epsilon, \theta} R\right) \\
& -\operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon, \theta} R\right)+\operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \epsilon, \theta} R\right) .
\end{align*}
$$

Using (5), (6) and (7), and using $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ we obtain

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial \epsilon^{2}} \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\theta} R\right) \\
= & 2 \operatorname{Tr}\left(R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)-2 \operatorname{Tr}\left(R^{-1} \partial_{\epsilon, \theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right) \\
& +4 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)-2 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \epsilon} R R^{-1} \partial_{\theta} R\right) \\
& -2\left\{R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon, \theta} R\right\} \\
& -2 \operatorname{Tr}\left(R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \theta} R\right)+2 \operatorname{Tr}\left(R^{-1} \partial_{\epsilon, \theta} R R^{-1} \partial_{\epsilon, \theta} R\right) \\
& -2 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon, \theta} R\right)+2 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \epsilon, \theta} R\right), \\
= & 2 \operatorname{Tr}\left(R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)-4 \operatorname{Tr}\left(R^{-1} \partial_{\epsilon, \theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right) \\
& +4 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\theta} R\right)-2 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \epsilon} R R^{-1} \partial_{\theta} R\right) \\
& +2 \operatorname{Tr}\left(R^{-1} \partial_{\epsilon, \theta} R R^{-1} \partial_{\epsilon, \theta} R\right) \\
& -4 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon} R R^{-1} \partial_{\epsilon, \theta} R\right)+2 \operatorname{Tr}\left(R^{-1} \partial_{\theta} R R^{-1} \partial_{\epsilon, \epsilon, \theta} R\right) .
\end{aligned}
$$

Proposition 4. Let f_{1}, f_{2}, f_{3} and f_{4} some 2π-périodic and C^{∞} functions on $[-\pi, \pi]$. Furthermore we suppose that f_{1} and f_{3} are odd and that f_{2} and f_{4} are even. Then

$$
\mathbb{E}\left[\frac{1}{n} \operatorname{Tr}\left\{T_{x}\left(\mathrm{i} f_{1}\right) T\left(f_{2}\right) T_{x}\left(\mathrm{i} f_{3}\right) T\left(f_{4}\right)\right\}\right] \rightarrow_{n \rightarrow \infty} \frac{1}{3} M\left(f_{2}\right) M\left(f_{1} f_{3} f_{4}\right)+\frac{1}{3} M\left(f_{4}\right) M\left(f_{1} f_{2} f_{3}\right) .
$$

Proof. We calculate

$$
\begin{aligned}
\operatorname{Tr}(A B C D) & =\sum_{i, j=1}^{n}(A B)_{i, j}(C D)_{j, i}, \\
& =\sum_{i, j=1}^{n}\left(\sum_{k=1}^{n} A_{i, k} B_{k, i}\right)\left(\sum_{l=1}^{n} C_{j, l} D_{l, i}\right), \\
& =\sum_{i, j, k, l=1}^{n} A_{i, k} B_{k, j} C_{j, l} D_{l, i} .
\end{aligned}
$$

Then

$$
\begin{align*}
& \frac{1}{n} \mathbb{E}\left[\operatorname{Tr}\left\{T_{x}\left(\mathrm{i} f_{1}\right) T\left(f_{2}\right) T_{x}\left(\mathrm{i} f_{3}\right) T\left(f_{4}\right)\right\}\right] \tag{8}\\
= & \frac{1}{n} \mathbb{E}\left\{\sum_{i, j, k, l=1}^{n}\left(X_{i}-X_{k}\right) T\left(\mathrm{i} f_{1}\right)_{i, k} T\left(f_{2}\right)_{k, j}\left(X_{j}-X_{l}\right) T\left(\mathrm{i} f_{3}\right)_{j, l} T\left(f_{4}\right)_{l, i}\right\} \\
= & \frac{1}{n} \mathbb{E}\left\{\sum_{i, j, k, l=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, k} T\left(f_{2}\right)_{k, j} T\left(\mathrm{i} f_{3}\right)_{j, l} T\left(f_{4}\right)_{l, i}\left(X_{i} X_{j}-X_{k} X_{j}-X_{i} X_{l}+X_{k} X_{l}\right)\right\} \\
= & \frac{1}{3} \frac{1}{n} \sum_{i, k, l=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, k} T\left(f_{2}\right)_{k, i} T\left(\mathrm{i} f_{3}\right)_{i, l} T\left(f_{4}\right)_{l, i}-\frac{1}{3} \frac{1}{n} \sum_{i, j, l=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, j} T\left(f_{2}\right)_{j, j} T\left(\mathrm{i} f_{3}\right)_{j, l} T\left(f_{4}\right)_{l, i} \\
& -\frac{1}{3} \frac{1}{n} \sum_{i, j, k=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, k} T\left(f_{2}\right)_{k, j} T\left(\mathrm{i} f_{3}\right)_{i, j} T\left(f_{4}\right)_{i, i}+\frac{1}{3} \frac{1}{n} \sum_{i, j, k=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, k} T\left(f_{2}\right)_{k, j} T\left(\mathrm{i} f_{3}\right)_{j, k} T\left(f_{4}\right)_{k, i} .
\end{align*}
$$

Then

$$
\begin{aligned}
\frac{1}{n} \sum_{i, k, l=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, k} T\left(f_{2}\right)_{k, i} T\left(\mathrm{i} f_{3}\right)_{i, l} T\left(f_{4}\right)_{l, i} & =\frac{1}{n} \sum_{i, k=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, k} T\left(f_{2}\right)_{k, i}\left\{\sum_{l=1}^{n} T\left(\mathrm{i} f_{3}\right)_{i, l} T\left(f_{4}\right)_{l, i}\right\} \\
& =\frac{1}{n} \sum_{i, k=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, k} T\left(f_{2}\right)_{k, i}\left(T\left(\mathrm{i} f_{3}\right) T\left(f_{4}\right)\right)_{i, i} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\{T\left(\mathrm{i} f_{3}\right) T\left(f_{4}\right)\right\}_{i, i}\left\{\sum_{k=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, k} T\left(f_{2}\right)_{k, i}\right\} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\{T\left(\mathrm{i} f_{3}\right) T\left(f_{4}\right)\right\}_{i, i}\left\{T\left(\mathrm{i} f_{1}\right) T\left(f_{2}\right)\right\}_{i, i}
\end{aligned}
$$

Lemma 5. For $\left|A_{n}^{\prime}-A_{n}\right| \rightarrow 0,\left|B_{n}^{\prime}-B_{n}\right| \rightarrow 0, \sup _{i, j, n}\left|\left(A_{n}\right)_{i, j}\right|<\infty \operatorname{and} \sup _{i, j, n}\left|\left(B_{n}^{\prime}\right)_{i, j}\right|<\infty$, $\left|\frac{1}{n} \sum_{i=1}^{n}\left(A_{n}^{\prime}\right)_{i, i}\left(B_{n}^{\prime}\right)_{i, i}-\frac{1}{n} \sum_{i=1}^{n}\left(A_{n}\right)_{i, i}\left(B_{n}\right)_{i, i}\right| \rightarrow 0$.

Proof.

$$
\begin{aligned}
& \left|\frac{1}{n} \sum_{i=1}^{n}\left(A_{n}^{\prime}\right)_{i, i}\left(B_{n}^{\prime}\right)_{i, i}-\frac{1}{n} \sum_{i=1}^{n}\left(A_{n}\right)_{i, i}\left(B_{n}\right)_{i, i}\right|^{2} \\
\leq & \frac{1}{n^{2}} n \sum_{i=1}^{n}\left\{\left(A_{n}^{\prime}\right)_{i, i}\left(B_{n}^{\prime}\right)_{i, i}-\left(A_{n}\right)_{i, i}\left(B_{n}\right)_{i, i}\right\}^{2}, \quad \text { by Cauchy-Schwartz, } \\
\leq & \frac{1}{n} \sum_{i, j=1}^{n}\left\{\left(A_{n}^{\prime}\right)_{i, j}\left(B_{n}^{\prime}\right)_{i, j}-\left(A_{n}\right)_{i, j}\left(B_{n}\right)_{i, j}\right\}^{2}, \\
\leq & 2 \frac{1}{n} \sum_{i, j=1}^{n}\left\{\left(A_{n}^{\prime}\right)_{i, j}\left(B_{n}^{\prime}\right)_{i, j}-\left(A_{n}\right)_{i, j}\left(B_{n}^{\prime}\right)_{i, j}\right\}^{2}+2 \frac{1}{n} \sum_{i, j=1}^{n}\left\{\left(A_{n}\right)_{i, j}\left(B_{n}^{\prime}\right)_{i, j}-\left(A_{n}\right)_{i, j}\left(B_{n}\right)_{i, j}\right\}^{2}, \\
\leq & 2 \sup _{i, j, n}\left|\left(B_{n}^{\prime}\right)_{i, j}\right| \frac{1}{n} \sum_{i, j=1}^{n}\left\{\left(A_{n}^{\prime}\right)_{i, j}-\left(A_{n}\right)_{i, j}\right\}^{2}+2 \sup _{i, j, n}\left|\left(A_{n}\right)_{i, j}\right| \frac{1}{n} \sum_{i, j=1}^{n}\left\{\left(B_{n}^{\prime}\right)_{i, j}-\left(B_{n}\right)_{i, j}\right\}^{2}, \\
\leq & 2 \sup _{i, j, n}\left|\left(B_{n}^{\prime}\right)_{i, j}\right| \cdot\left|A_{n}^{\prime}-A_{n}\right|+2 \sup _{i, j, n}\left|\left(A_{n}\right)_{i, j}\right| \cdot\left|B_{n}^{\prime}-B_{n}\right| .
\end{aligned}
$$

We use lemma 5 with $A_{n}^{\prime}=T\left(\mathrm{i} f_{1}\right) T\left(f_{2}\right), A_{n}=T\left(\mathrm{i} f_{1} f_{2}\right), B_{n}^{\prime}=T\left(\mathrm{i} f_{3}\right) T\left(f_{4}\right)$ and $B_{n}=$ $T\left(\mathrm{i} f_{3} f_{4}\right)$. It is shown in [1] theorem 12 that $\left|A_{n}^{\prime}-A_{n}\right| \rightarrow 0$ and $\left|B_{n}^{\prime}-B_{n}\right| \rightarrow 0$. As i $f_{1} f_{2}$ is C^{∞}, the coefficients of $T\left(\mathrm{i} f_{1} f_{2}\right)$ are uniformly bounded. Finally $\left\{T\left(\mathrm{i} f_{1}\right) T\left(f_{2}\right)\right\}_{i, j} \leq$ $\sup _{i, j, n}\left|T\left(\mathrm{i} f_{1}\right)_{i, j}\right| \sum_{k \in \mathbb{Z}}\left|T\left(f_{2}\right)_{k, j}\right|$ which is uniformly bounded because $\mathrm{i} f_{1}$ and f_{2} are C^{∞}.

Hence

$$
\begin{align*}
& \frac{1}{n} \sum_{i, k, l=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, k} T\left(f_{2}\right)_{k, i} T\left(\mathrm{i} f_{3}\right)_{i, l} T\left(f_{4}\right)_{l, i} \tag{9}\\
= & \frac{1}{n} \sum_{i=1}^{n}\left\{T\left(\mathrm{i} f_{3}\right) T\left(f_{4}\right)\right\}_{i, i}\left\{T\left(\mathrm{i} f_{1}\right) T\left(f_{2}\right)\right\}_{i, i}, \\
= & \frac{1}{n} \sum_{i=1}^{n}\left\{T\left(\mathrm{i} f_{3} f_{4}\right)\right\}_{i, i}\left\{T\left(\mathrm{i} f_{1} f_{2}\right)\right\}_{i, i}+o(1), \\
\underset{n \rightarrow+\infty}{\rightarrow} & M\left(\mathrm{i} f_{3} f_{4}\right) M\left(\mathrm{i} f_{1} f_{2}\right), \\
= & 0, \quad \text { because } f_{3} f_{4} \text { is odd. }
\end{align*}
$$

We show similarly

$$
\begin{equation*}
\frac{1}{n} \sum_{i, j, k=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, k} T\left(f_{2}\right)_{k, j} T\left(\mathrm{i} f_{3}\right)_{j, k} T\left(f_{4}\right)_{k, i} \rightarrow 0 \tag{10}
\end{equation*}
$$

Then

$$
\begin{align*}
& \frac{1}{n} \sum_{i, j, l=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, j} T\left(f_{2}\right)_{j, j} T\left(\mathrm{i} f_{3}\right)_{j, l} T\left(f_{4}\right)_{l, i} \tag{11}\\
= & M\left(f_{2}\right) \frac{1}{n} \sum_{i, j, l=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, j} T\left(\mathrm{i} f_{3}\right)_{j, l} T\left(f_{4}\right)_{l, i} \\
= & M\left(f_{2}\right) \frac{1}{n} \sum_{i, j=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, j}\left\{\sum_{l=1}^{n} T\left(\mathrm{i} f_{3}\right)_{j, l} T\left(f_{4}\right)_{l, i}\right\}, \\
= & M\left(f_{2}\right) \frac{1}{n} \sum_{i, j=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, j}\left\{T\left(\mathrm{i} f_{3}\right) T\left(f_{4}\right)\right\}_{j, i} \\
= & M\left(f_{2}\right) \frac{1}{n} \operatorname{Tr}\left\{T\left(\mathrm{i} f_{1}\right) T\left(\mathrm{i} f_{3}\right) T\left(f_{4}\right)\right\}, \\
\rightarrow & M\left(f_{2}\right) M\left(\mathrm{i} f_{1} \mathrm{i} f_{3} f_{4}\right), \quad \text { using }[1] \text { theorem 12, } \\
= & -M\left(f_{2}\right) M\left(f_{1} f_{3} f_{4}\right) .
\end{align*}
$$

We show similarly

$$
\begin{equation*}
\frac{1}{n} \sum_{i, j, k=1}^{n} T\left(\mathrm{i} f_{1}\right)_{i, k} T\left(f_{2}\right)_{k, j} T\left(\mathrm{i} f_{3}\right)_{i, j} T\left(f_{4}\right)_{i, i} \rightarrow-M\left(f_{4}\right) M\left(f_{1} f_{2} f_{3}\right) \tag{12}
\end{equation*}
$$

We conclude with (8), (9), (10), (11) and (12).

Proposition 6. Let f_{1} and f_{2} be 2π-périodic, C^{∞}, functions on $[-\pi, \pi]$, with f_{1} odd. Then

$$
\mathbb{E}\left[\frac{1}{n} \operatorname{Tr}\left\{T_{x, x}\left(f_{1}\right) T\left(f_{2}\right)\right\}\right] \rightarrow \frac{2}{3} M\left(f_{1} f_{2}\right)
$$

Proof.

$$
\begin{aligned}
& \mathbb{E}\left[\frac{1}{n} \operatorname{Tr}\left\{T_{x, x}\left(f_{1}\right) T\left(f_{2}\right)\right\}\right] \\
= & \mathbb{E}\left\{\frac{1}{n} \sum_{i, j=1}^{n} T\left(f_{1}\right)_{i, j}\left(X_{i}-X_{j}\right)^{2} T\left(f_{2}\right)_{j, i}\right\}, \\
= & \frac{1}{n} \frac{2}{3} \sum_{i, j=1}^{n} T\left(f_{1}\right)_{i, j} T\left(f_{2}\right)_{j, i}, \quad \text { because } T\left(f_{1}\right)_{i, i}=M\left(f_{1}\right)=0, \\
= & \frac{2}{3} \frac{1}{n} \operatorname{Tr}\left\{T\left(f_{1}\right) T\left(f_{2}\right)\right\}, \\
\rightarrow & \frac{2}{3} M\left(f_{1} f_{2}\right), \text { using }[1] \text { theorem } 12 .
\end{aligned}
$$

References

[1] R.M. Gray, Toeplitz and circulant matrices: A review, Foundations and Trends® in Communications and Information Theory 2 (2006) 155-239.

[^0]: * Corresponding author: François Bachoc

 CEA-Saclay, DEN, DM2S, STMF, LGLS, F-91191 Gif-Sur-Yvette, France
 Phone: +33 (0) 169089791
 Email: francois.bachoc@cea.fr

