Selected topics in statistics
 Spatial Statistics
 Mid-term exam

Lecturer: François Bachoc, PhD

Specifications

- No documents, no calculators.
- You can use the results of the lectures without reproving them.
- You must prove your answers
- Clarity and readability will be taken into account in the final mark
- Tentative notation: $10 / 20 / 10$.

Exercise 1

Let A be a uniform random variable on $[-1,1]$ and B be a standard Gaussian random variable. Assume that A and B are independent. Let, for $t \in \mathbb{R}, Y(t)=t^{2} A+t B$.
a) Show that Y is a stochastic process with domain $\mathcal{D}=\mathbb{R}$.
b) Calculate the mean and covariance functions of Y. Indication: You can use, without proof, that $\operatorname{Var}(A)=$ $1 / 3$.
c) Is Y a stationary process?

Exercise 2

Let Y be a Gaussian process on \mathbb{R}, with zero mean function and with covariance function $K(x, y)=e^{-|x-y|}$.
a) Prove that Y is stationary
b) Prove that Y is mean square continuous on \mathbb{R}.

Let U a random variable, independent of Y^{1}, so that $P(U=-1)=P(U=1)=1 / 2$. Let $Z(t)=U Y(t)$. Then Z is a stochastic process (you do not need to prove it).
c) Prove that Z is a Gaussian process, with same mean and covariance function as Y. Indication: you can use the following fact without proving it: If V is a Gaussian vector with zero mean vector, then $-V$ and V follow the same distribution.

Let now

$$
W(t)= \begin{cases}Y(t) & \text { if } t \leq 0 \\ Z(t) & \text { if } t>0\end{cases}
$$

d) Prove that W is not mean square continuous. [Hint: you can consider $\left.\lim _{t \rightarrow 0 ; t>0} \mathbb{E}\left[(W(t)-W(0))^{2}\right]\right]$.
e) Prove that W is not a Gaussian process. [Hint: you can show that $(W(1), W(0))$ is not a Gaussian vector.] Indication: The characteristic function of a $k \times 1$ Gaussian vector V with mean vector m and covariance matrix Σ is $\mathbb{E}\left(e^{i u^{\prime} V}\right)=e^{i u^{\prime} m-(1 / 2) u^{\prime} \Sigma u}$, where $i^{2}=-1$ and where u is a $k \times 1$ deterministic vector.

[^0]
Exercise 3

Let Z be a stationary stochastic process on $[0,1]$, with (stationary) covariance function K satisfying $\mid K(t)-$ $K(0)|\leq(1 / 2)| t \mid$, for all $t \in[0,1]$. Let, for $n \in \mathbb{N}^{*}$

$$
W_{n}=\frac{1}{2^{n}} \sum_{k=0}^{2^{n}-1} Z\left(\frac{k}{2^{n}}\right)
$$

a) [Difficult, you can consider doing b) first.] Prove that, for any $n, p \in \mathbb{N}^{*}$

$$
\mathbb{E}\left[\left(W_{n}-W_{n+p}\right)^{2}\right]=\frac{1}{\left(2^{n+p}\right)^{2}} \mathbb{E}\left(\left[\sum_{k=0}^{2^{n}-1} \sum_{l=0}^{2^{p}-1}\left\{Z\left(\frac{k}{2^{n}}\right)-Z\left(\frac{k}{2^{n}}+\frac{l}{2^{n+p}}\right)\right\}\right]^{2}\right)
$$

b) Prove that, for any $n, p \in \mathbb{N}^{*}$

$$
\mathbb{E}\left[\left(W_{n}-W_{n+p}\right)^{2}\right] \leq \frac{1}{2^{n}}
$$

Indication (1): You can use the result of question a) even if you did not prove it.
Indication (2): You can use the following Cauchy-Schwarz inequality without proving it: For any $n, p \in \mathbb{N}^{*}$, for any finite set of real numbers of the form $\left(t_{k, l}\right)_{k=0, \ldots, 2^{n}-1 ; l=0, \ldots, 2^{p}-1}:\left(\sum_{k=0}^{2^{n}-1} \sum_{l=0}^{2^{p}-1} t_{k, l}\right)^{2} \leq 2^{n+p}\left(\sum_{k=0}^{2^{n}-1} \sum_{l=0}^{2^{p}-1} t_{k, l}^{2}\right)$.

[^0]: ${ }^{1}$ That is, for any $n \in \mathbb{N}^{*}$, for any $x_{1}, \ldots, x_{n} \in \mathbb{R}$, the random vector $\left(Y\left(x_{1}\right), \ldots, Y\left(x_{n}\right)\right)$ is independent of U.

