Selected topics in statistics
 Spatial Statistics
 Final exam

Lecturer: François Bachoc, PhD

Specifications

- No documents, no calculators.
- You can use the results of the lectures without reproving them.
- Tentative notation: 8/6/6.

Reminder of the Gaussian conditioning theorem

We write $\mathcal{N}(m, S)$ as a shorthand for the multidimensional Gaussian distribution with mean vector m and covariance matrix S.

Let

$$
\binom{Y_{1}}{Y_{2}} \sim \mathcal{N}\left(\binom{m_{1}}{m_{2}},\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)\right)
$$

where Y_{1} and m_{1} are of size $n_{1} \times 1, Y_{2}$ and m_{2} are of size $n_{2} \times 1, \Sigma_{11}$ is of size $n_{1} \times n_{1}, \Sigma_{12}$ is of size $n_{1} \times n_{2}$, $\Sigma_{21}=\Sigma_{12}^{t}$ and Σ_{22} is of size $n_{2} \times n_{2}$. Then, conditionally to $Y_{1}=y_{1}$, we have

$$
\mathcal{L}\left(Y_{2} \mid Y_{1}=y_{1}\right)=\mathcal{N}\left(m_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(y_{1}-m_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right) .
$$

Exercise 1

a) Let

$$
\binom{Y_{1}}{Y_{2}}
$$

be a 2-dimensional Gaussian vector, with mean vector
and covariance matrix

$$
\left(\begin{array}{ll}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right) .
$$

What is the distribution of the Gaussian variable Y_{2}, conditionally to $Y_{1}=3$? Indication: Let A be a 1×1 matrix with $A_{11} \neq 0$. Then A^{-1} is the 1×1 matrix so that $\left(A^{-1}\right)_{11}=\frac{1}{A_{11}}$.
b) Prove that

$$
\left(\begin{array}{c}
Y_{1}+Y_{2} \\
Y_{1} \\
Y_{2}
\end{array}\right)
$$

is a Gaussian vector and give its mean vector and its covariance matrix.
c) What it the distribution of the Gaussian vector

$$
\binom{Y_{1}}{Y_{2}}
$$

conditionally to $Y_{1}+Y_{2}=0$?

Exercise 2

Are the following functions, $\mathbb{R}^{2} \rightarrow \mathbb{R}$, symmetric non-negative definite? Prove your answers.
a) $(x, y) \rightarrow 1+(x-y)^{2}$.
b) $(x, y) \rightarrow\left(1+x^{2}\right)\left(1+y^{2}\right)$.

Exercise 3

Let $\left(X_{i}\right)_{i \in \mathbb{Z}}$ be a sequence of iid random variables, with mean 0 and variance 1 . For $i \in \mathbb{Z}$, let

$$
Z(i)=X_{i}-X_{i-1}
$$

a) Show that Z is a stochastic process on $\mathcal{D}=\mathbb{Z}$.
b) Calculate the mean function m and the covariance function K of Z. Suggestion: you can write the covariance function in the following form:

$$
K(i, j)=\mathbf{1}_{j=i} f_{1}(i)+\mathbf{1}_{j=i+1} f_{2}(i)+\mathbf{1}_{j=i-1} f_{3}(i)+\mathbf{1}_{|i-j| \geq 2} f_{4}(i)
$$

