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Introduction

Context

Phd started in October 2010 in partnership between CEA and Paris VII university.

CEA supervisor: Jean-Marc Martinez.

Paris VII supervisor: Josselin Garnier.

Subject

Probabilistic modelling of the error between a numerical code (or numerical
model) and the physical system.

Goals: To calibrate the numerical code and to improve its predictions.



Bayesian
calibration

of
numerical

models
using

Gaussian
processes

François
Bachoc

Deterministic
calibration

Statistical
model

Calibration
and
prediction

Model
selection

Application
to the
isotherm
friction
model

Conclusion

1 Deterministic calibration

2 Statistical model

3 Calibration and prediction

4 Model selection

5 Application to the isotherm friction model

6 Conclusion



Bayesian
calibration

of
numerical

models
using

Gaussian
processes

François
Bachoc

Deterministic
calibration

Statistical
model

Calibration
and
prediction

Model
selection

Application
to the
isotherm
friction
model

Conclusion

Numerical code and reality

A numerical code, or parametric numerical model, is represented by a function f :

f : Rd × Rm → R
(x , β) → f (x , β)

The physical phenomenon is represented by a function Yreal .

Yreal : Rd → R
x → Yreal (x)

The inputs x are the experimental conditions.

The inputs β are the calibration parameters of the numerical code.

The output f (x , β)-Yreal (x) is a quantity of interest.

A numerical code modelizes (gives an approximation of) a physical phenomenon.
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Least square calibration

We dispose of a set of experimental results: x1,Yobs(x1), ..., xn,Yobs(xn).

Least Square calibration:

Compute:

β̂LS ∈ arg min
β

nX
i=1

(f (xi , β)− Yobs(xi ))2

For new experimental condition xnew we predict the quantity of interest by:
f (xnew , β̂LS).



Bayesian
calibration

of
numerical

models
using

Gaussian
processes

François
Bachoc

Deterministic
calibration

Statistical
model

Calibration
and
prediction

Model
selection

Application
to the
isotherm
friction
model

Conclusion

Least Square calibration: Case of insufficiency

In general:
nX

i=1

“
f (xi , β̂LS)− Yobs(xi )

”2
6= 0

First justification: Yobs(xi ) = Yreal (xi ) + ε, ε ∼ N (0, σ2
mes).

Problem when σmes (or an upper-bound) is known and when the errors
f (xi , β̂LS)− Yobs(xi ) are still too large. (Statistical tests available to detect).

In these cases: a model error needs to be taken into account.
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Gaussian processes (1/3)

Random processes

A real random process Z on Rd is an application Z : Ω× Rd → R, with Ω a probability
space, so that for all fixed x ∈ Rd , ω → Z (ω, x) is a random variable.

Notion of "random function".

Finite dimensional distributions of a random process

Let us consider n points of Rd : x1, ..., xn. By definition, the vector (Z (x1), ...,Z (xn)) is
a random vector of Rn. Its distribution is said to be a finite dimensional distribution of Z .
The finite dimensional distributions of Z are the set of these distributions with n et
x1, ..., xn varying.

In the sequel, we only consider finite dimensional distributions: Classical
probabilities on Rn.
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Gaussian processes (2/3)

Processus gaussien

A real random process Z on Rd is Gaussian when its finite dimensional distributions
are Gaussian.

In the sequel, we only consider Gaussian processes.

Mean and covariance functions
Mean function M: x → M(x) = E(Z (x))
Covariance function C: (x1, x2)→ C(x1, x2) = cov(Z (x1),Z (x2))

Finite dimensional distributions of a Gaussian process are caracterized by its
mean and covariance functions.

Stationary Gaussian process

A Gaussian process Z is said to be stationary when its mean function M is constant
and when ∀x1x2: C(x1, x2) = C(x1 − x2).
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Gaussian processes (3/3)

Examples of covariance functions

Nugget model C(x − y) = σ2δx−y

Gaussian covariance model C(x − y) = σ2 exp
„
− ||x−y||2

l2c

«

Examples of realizations with Gaussian covariance function
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Figure: Left: σ = 0.2, lc = 0.01. Right: σ = 0.2, lc = 0.05
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Model error

Statistical modelling: The physical phenomenon is one realization among a set of
possible realizations. It is modeled as a realization of a random process.

Equation of the statistical model

Yreal (ω, x) = f (x , β(ω)) + Z (ω, x)

Equation that holds for a specific parameters vector β. Called "the" parameter of
the numerical code.

No prior information case: β constant and unknown.
Prior information case (Bayesian case): β ∼ N (βprior ,Qprior )

Z is (a priori) a centered, stationary, Gaussian process. We denote by Cmod the
covariance function of Z .

Why a stationary Gaussian process?

Gaussian variables: most commonly used to represent errors. Gaussian property
conserved by conditional expectations and linear transforms.

Stationarity: restrict the number of possible Gaussian processes (statistical
bias-variance trade-off). In statistical inference: replace sample repetition (iid
case) by spatial repetition.
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Goals associated to the modelling

Kinds of work to do:

1 The covariance function of the model error is known: Calibration and Prediction.

2 A covariance function is proposed: Model test.

3 The covariance function is unknown: Model selection.

Classical outline of studies using the modelling

Step 1: Estimation of the hyper-parameters of the covariance function.

Step 2: Plug-in of the estimated hyper-parameters to perform calibration and
prediction.
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Linear code and observations: notations

Linearization of the numerical model around the reference parameter:

∀x : f (x , β) =
mX

i=1

hi (x)βi

Observations
We observe the physical phenomenon Yreal (x) for n inputs x1, ..., xn. Define:

n ×m matrix of partial derivatives of the numerical model: H.

Random vector of observations: yobs .

Random vector of measure error: ε.

Random vector of model errors: z.

Covariance matrix of z: Rmod .
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Matrix equation of the statistical model

The statistical model becomes, for the inputs x1, ..., xn:

yobs = Hβ + z + ε

Covariance matrix of z + ε

R := cov(z + ε) = Rmod + K

With K := cov(ε). K is diagonal. Most classical case: K = σ2
mes I.

No prior information case
When R = σ2In: Classical linear regression model.

Prior information case

yobs ∼ N (Hβprior ,R + HQprior HT )

Main interest of the correlation: Efficient prediction of the phenomenon when it
does not have the same shape as the numerical code.
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Calibration (1/2)

Calibration problem = Statistical estimation problem

Estimation of β

An estimator of β is a function β̂: Rn → Rm.

β̂(yobs) is the estimation of β according to the vector of observations yobs .

Quality measure of an estimator: Mean square error: Eyobs,β

h
||β − β̂(yobs)||2

i
.
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Calibration (2/2)

No prior information case

The estimator β̂ of β, linear with respect to the vector of observations yobs , unbiased,
which minimizes the mean square error is:

β̂ = (HT R−1H)−1HT R−1yobs

If yobs = Hβ, β̂(yobs) = β

Prior information case
In the prior information case, the conditional law of β, according to the observations
yobs is Gaussian with mean βpost , where

βpost = βprior + (Q−1
prior + HT R−1H)−1HT R−1(yobs − Hβprior ).

Best predictor according to the mean square error.

When Q−1
prior → 0 (Uninformative prior) we find the prediction of the no prior

information case, even if βprior 6= 0.
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Prediction (1/4)

Goal: to complete the prediction of f (x0, β̂) at a new point x0.

Notations

Physical phenomenon at x0: y0 := Yreal (x0).

(pseudo) new observation at x0: yobs,0.

Column vector of partial derivatives of the code: h0.

Random variable of the model error: z0.

Random variable of the measure error: ε0.

Column covariance vector r0: r0,i := cov((z + ε)i , z0 + ε0).

Prediction of y0

A predictor of y0 is a function 〈y0〉: Rn → R.

〈y0〉(yobs) is the prediction of y0 according to the vector of observations yobs .

Quality measure of a predicor: Mean square error: Eyobs,y0

ˆ
|y0 − 〈y0〉(yobs)|2

˜
.
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Prediction (2/4): No prior information case

Prediction
The unbiased predictor of yobs,0 at x0, linear with respect to the vector of observations
yobs , which minimizes the mean square error (the BLUP) is:

〈yobs,0〉 = (h0)T β̂ + (r0)T R−1(yobs − Hβ̂)

with β̂ the no prior information case estimator of β.

We do not have access to the best predictor, because its expression makes use
of the unknown parameter β.

The prediction expression is decomposed into a calibration term and a Gaussian
inference term of the model error.

Predictive variance
The mean square error of the BLUP is:

σ̂2
x0

= E((z0 + ε0)2)−
„

h0
r0

«t „ 0 H t

H R

«−1 „ h0
r0

«

Confidence intervals available
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Prediction (3/4): Prior information case

Prediction
The conditional law of yobs,0 according to the observations yobs is Gaussian with mean
〈yobs,0〉, with:

〈yobs,0〉 = (h0)Tβpost + (r0)T R−1(yobs − Hβpost )

Best predictor.

Predictive variance
Conditionally to yobs the variance of yobs,0 is :

σ̂2
x0

= E((z0 + ε0)2)−
„

h0
r0

«t
 
−Q−1

prior H t

H R

!−1 „
h0
r0

«

When Q−1
prior → 0 (uninformative prior) we find the no prior information case.
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Prediction (4/4): from yobs,0 to y0

No prior information case

The BLUP of the observation equals the BLUP of the physical phenomenon:

∀λ ∈ Rn : E
“

(λt yobs − yobs,0)2
”

= E
“

(λt yobs − y0)2
”

+ E
“

(ε0)2
”

Prior information case
The conditional mean are the same and the conditional variance are the same up to
the measure error:

E(y0|yobs) = E(yobs,0|yobs)

var(yobs,0|yobs) = var(y0|yobs) + E
`
(ε0)2´

−→ In both cases, we keep the same prediction, and remove E
`
(ε0)2´ to the

predictive variance.
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Illustration of calibration (1/3)

Observation of the physical phenomenon: Yobs(x) = x2 + ε.
ε ∼ N (0, σ2

mes = 0.12)

Numerical code: f (x , β) = β0 + β1x .

Model error as a realization of a Gaussian process with covariance function:

Cmod (x − y) = σ2 exp
„
− |x−y|2

l2c

«
. σ = 0.3, lc = 0.5 (known).

Bayesian case with :

βprior =

„
0.2
1

«
,Qprior =

„
0.09 0

0 0.09

«
Observations: x1 = 0.2, x2 = 0.4, x3 = 0.6 and x4 = 0.8.
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Illustration of calibration (2/3) (unnoised case)

Figure: Up-left: Prior distribution of the parameter β. Down-left: Posterior distribution of the
parameter β. Right: plot of the code response corresponding to prior and posterior mean of the
code parameter.
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Illustration of calibration (3/3) (noised case)

Figure: Up-left: Prior distribution of the parameter β. Down-left: Posterior distribution of the
parameter β. Right: plot of the code response corresponding to prior and posterior mean of the
code parameter.
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Illustration of prediction (1/3)

Observation of the physical phenomenon: Yobs(x) = −sin(πx
2 ) + ε.

ε ∼ N (0, σ2
mes = 0.12)

Numerical code: f (x , β) = β0 + β1x + β2x2 + β3x3.

Model error as a realization of a Gaussian process with covariance function:

Cmod (x − y) = σ2 exp
„
− |x−y|2

l2c

«
. σ = 0.3, lc = 0.5 (known).

No prior information case.

6 observations regularly sampled between −0.8 and 1.7.
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Illustration of prediction (2/3) (unnoised case)

The use of the model error improves the prediction given by the numerical code.
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Illustration of prediction (3/3) (noised case)

The measure error deteriorates the quality of the predictions.

The confidence intervals are however still reliable.
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Framework

The calibration and prediction methods presented above give good results
because we used a reasonable covariance function.

The model selection is a statistical parameter estimation problem.

In our case, the covariance function of the measure error process ε is known for
physical expertise. We want to take Cmod in a parametric set:n

σ2Cmod,θ

o
with Cmod,θ a correlation function.
Hence, with variance matrix Rσ,θ = σ2Rmod,θ + K , we have (z + ε) ∼ N (0,Rσ,θ) and
we want to estimate σ and θ.
We present 2 methods for model selection: Restricted Maximum Likelihood and Leave
One Out.
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Restricted Maximum Likelihood

Principle: Estimate σ and θ independently of β (hence, same method with or without
prior information).
Let C a (n −m × n) matrix of maximal rank such that CH = 0. Then we have:

w := Cyobs ∼ N (0,CRσ,θC′)

We do maximum likelihood on the vector w.
The likelihood writes itself:

`σ,θ(w) ∝
1

det(CRσ,θCt )
1
2

exp
„
−

1
2

w t (CRσ,θCt )−1w
«

We maximize it:
σ̂, θ̂ ∈ arg max

σ,θ
`σ,θ(w).

Hence we estimate σ and θ to make the vector w the most probable.
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Leave One Out (1/4)

We have seen that the prediction procedure (Bayesian or non-Bayesian framework)
leads to a simple stochastic metamodel: x0 → N

“
〈yobs,0〉, σ̂2

x0

”
. This metamodel

depends on σ and θ.

It is built according to the observations (≈ learning set).

Leave One Out

Given a vector of hyper-parameters (σ, θ).

For i from 1 to n we learn x0 → N
“
〈yobs,0〉, σ̂2

x0

”
with the reduced observations

vector {(x1, yobs,1), ..., (xi−1, yobs,i−1), (xi+1, yobs,i+1), ..., (xn, yobs,n)}
we compute the LOO errors by:

εLOO,i (σ, θ) = yobs,i − 〈yobs,i 〉(yobs,−i ).

we compute the LOO predictive variance by:

σ̂2
LOO,i (σ, θ) = σ̂2

xi
(yobs,−i )

General utility of the Leave One Out:

See how large the errors are.

Check that the predictive variance are of the right size.
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Leave One Out (2/4): closed form formulas

No prior information case

With:
Q−(σ, θ) =

“
R−1
σ,θ − R−1

σ,θH(HT R−1
σ,θH)−1HT R−1

σ,θ

”
We have:

εLOO(σ, θ) = (diag(Q−))−1Q−yobs and σ̂2
LOO,i (σ, θ) =

1
(Q−)i,i

Prior information case
With:

Q = Rσ,θ + HQprior H t

We have:

εLOO(σ, θ) = (diag(Q−1))−1Q−1yobs and σ̂2
LOO,i (σ, θ) =

1
(Q−1)i,i
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Leave One Out (3/4): closed form formulas

The no prior information case is the limit of the prior information case when
Q−1

prior → 0.

From a computational point of view: computing the LOO errors and predictive
variance has the same order of complexity than REML and Maximum Likelihood.

−→ Can be use as an alternative of Maximum Likelihood techniques.
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Leave One Out (4/4): A model selection method

General principle, optimize a quality criterion based on εLOO(σ, θ) and the σ̂2
LOO,i . For

instance:

Minimize norm of LOO errors.

Set number of valid LOO p-confidence intervals close to p.

Set 1
n
Pn

i=1
ε2

LOO,i (σ,θ)

σ̂2
LOO,i (σ,θ)

close to 1

When the covariance matrix K of the measure error is null and no prior information
case, we have Rσ,θ = σ2Rmod,θ , hence:

εLOO(σ, θ) independent of σ

σ̂2
LOO(σ, θ) = σ2σ̂2

LOO(θ)

Hence a classical method is:

θ̂ ∈ arg min
θ
||εLOO(θ)||2 and σ̂2 =

1
n

nX
i=1

ε2LOO,i (θ̂)

σ̂2
LOO,i (θ̂)

When K 6= 0 or prior information case: no classical method.
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Experiment and model

The experiment consists in the measure of a pressure drop between the two ends of a
cylinder crossed by pressurized water and possibly heat. (Representation of the heart
of a nuclear reactor).
Quantity of interest: The part of the pressure drop due to friction: ∆Pfro
Experimental conditions we consider:

Hydraulic diameter Dh

Friction height Hf

Density ρ

Viscosity µ

Flow rate G

Reynolds coefficient Re

Model in the isotherm turbulent physical domain is parameterized by at , bt :

with Re =
GDh

µ
, ∆Pmod

fro =
Hf G2

2ρDh
× at R

−bt
e

Previous studies of calibration: at = 0.22, bt = 0.21
We dispose of 85 experimental results in this domain. Hence n = 85, m = 2.
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Need for a model error?

Statistical test
Let C a (83× 85) matrix of full rank such that CH = 0. Recall K is the covariance
matrix of the measure error process and assume there is no model error. Then

ttest := (Cyobs)t (CKCt )−1Cyobs ∼ X 2(83).

Measure error on experimental conditions

We have nominal measure error variance on 3 experimental conditions:

σnom(Hf )

σnom(Dh)

σnom(G)

They can be formally taken into account in the measure error covariance matrix K. The
statistical test is still correct.

Test result:

σmes(Pa) α(Hf )× σnom(Hf ) α(Dh)× σnom(Dh) α(G)× σnom(G) ttest
100. 0× σnom(Hf ) 0× σnom(Dh) 0× σnom(G) 4334.1393
100. 1× σnom(Hf ) 1× σnom(Dh) 1× σnom(G) 489.22775
200. 2× σnom(Hf ) 2× σnom(Dh) 2× σnom(G) 122.30694

−→ Need for a model error (q0.95(X 2(83)) ≈ 105).
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Cross Validation for comparison with Least Square (1/2)

We want to compare the quality of prediction of the LS method and the GP modelling
method.
Idea: They both are metamodels of the physical phenomenon.

metamodel
Let f : X → R. A metamodel is a function f̂Xn,Yn , built from a procedure f̂ :

f̂ : [Xn,Yn] = [x1..., xn, y1, ..., yn] −→ f̂Xn,Yn .

With f̂Xn,Yn : X → R an approximation of f .

Evaluation of a metamodel
Quality criterion:

C =
1

Vol(X )

Z
X

“
f (x)− f̂Xn,Yn (x)

”2
dx ,

Ideal case: estimation of this criterion on a new test sample Xtest ,Ytest :

C ≈
1

ntest

ntestX
i=1

“
f (xtest,i )− f̂Xn,Yn (xtest,i )

”2
.
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Cross Validation for comparison with Least Square (2/2)

Evaluation of a metamodel
More realistic case: split the learning data: Xn = (Xapp,Xtest ) (n = napp + ntest ):

C ≈
1

ntest

ntestX
i=1

“
f (xtest,i )− f̂Xapp,Yapp (xtest,i )

”2
.

K Fold Cross validation is an iteration of this principle. Divide the data:
Xn = (X1,X2, ...,XK ), and use:

C ≈
1
n

KX
k=1

X
xi∈Xk

“
f (xi )− f̂X−k ,Y−k (xi )

”2

Hence, each f (xi ) is predicted one time, with a learning sample that does not contain it.

In our case we will take K = 10, and:

X1 = (x1, x11, x21, x31, x41, x51, x61, x71, x81)

· · ·

As experiments are grouped, we have heterogeneity in each test sample, and
reproducibility of the Cross validation.
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Details of LS and GP (1/2)

We trust that ∆Pfro ∝ Hf . Hence we do both LS and GP on the pseudo-measure ∆Pfro
Hf

.
For evaluation of predictions we go back to the ∆Pfro quantity.

Least Square

Prediction formulas with an iid model error and prior information case.

βprior = (0.22, 0.21)t , Qprior diagonal with standard-deviation at 50% of βprior .

Model error variance estimated by REML.

We are similar to LS in prediction because the prediction only uses the calibrated
code.

We have predictive variance and hence confidence intervals.
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Details of LS and GP (2/2)

Gaussian Process Modelling

Choice of the covariance function:
Use of the Matern stationary covariance function:
Cmod (x) = σ2Qd

i=1 Matern(2
√
ν

xi
lc,i

) with:

Matern(x) =
1

Γ(ν)2ν−1
xνKν(x)

with Kν the modified Bessel function of order ν. Hyper-parameters are: σ
(Variance), lc,1, ..., lc,d (correlation lengths) and ν (regularity). We enforce ν = 3

2 .

Choice of the experimental conditions:
Interest of division by Hf : simplification of the correlation function −→ less
hyper-parameters to estimate. (very few values for Hf )
ρ and µ are physically linked, we merge them into a pseudo-experimental condition
Xρ,µ.
4 hyper-parameters to estimate: σ, lG , lDh , lρ,µ.

Estimation:
REML estimation.
We linearly transform all experimental condition to put them in [0, 1].
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Results

With the Cross Validation we use, each experiment is predicted one time. Hence we
dispose of:

The vector of predictions ˆ∆Pexp
fro of size 85.

The vector of predictive variance σ2
pred of size 85.

2 quantitative criteria:

RMSE:

r
1

85
P85

i=1

“
∆Pexp

fro −
ˆ∆Pexp
fro

”2

Confidence Intervals: 1
85 card

n
i|1 ≤ i ≤ 85, | ˆ∆Pexp

fro,i −∆Pexp
fro,i | ≤ 1.64σpred,i

o
(should be around 0.9)

We do 2 different cases:

Case 1 We do not take measure error on Hf , G and Dh into account. We enforce
σmes = 2002. Hence K = σ2

mes In.

Case 2 We take the measure error on Hf , G and Dh into account (nominal values
of the statistical test part). We enforce σ2

mes = 1002.
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Results: Case 1

RMSE Confidence Intervals
LS 741.72591 0.9176471
GP 289.49389 0.9294118
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Results: Case 2

RMSE Confidence Intervals
LS 581.35775 0.9058824
GP 307.76398 0.8823529

LS is improved because prediction take into account the correlation between measure
errors on geometric conditions.
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Conclusion and prospects

Conclusion

We can improve the prediction capability of the numerical model by completing it
with a statistical model based on the observations.

In the application case: Cross Validation estimation of the ’performances’ (for both
LS and GP) are accurate when we want to predict at an experimented geometry.

The hyper-parameter estimation step is important.

Computationally expensive when the number of experiments is large (But there
exists state of the art methods).

Prospects

Hyper-parameter estimation by Leave One Out or Cross Validation.

Application on the Friction model in more general physical domains −→ more
physical models to calibrate with more experiments
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Thank you for your attention.
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