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Data generating process

Location model
Y = µ + U

Y of size n × 1 : observation vector

µ of size n × 1 : unknown mean vector

U ∼ N (0, σ2In)

σ2 unknown

=⇒Working distribution Pn,µ,σ

François Bachoc (University Paul Sabatier, Toulouse) Valid confidence intervals



Introduction and overview
Confidence intervals for the design-dependent target

Confidence intervals for the design-independent target
Simulation study

Linear submodels

Consider a design matrix X of size n × p

p < n or p ≥ n

Linear submodels

Subsets M ⊂ {1, ..., p} of the columns of X . Approximating µ by

X [M]v

M of cardinality m ≤ n

X [M] of size n ×m : only the columns of X that are in M

X [M] full rank

v of size m × 1 : needs to be selected/estimated

Restricted least square estimator

β̂M =
(
X ′[M]X [M]

)−1 X ′[M]Y
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Regression coefficients of interest

Two main classes of regression coefficients

The ’standard’ target Assume here that

µ = X [M∗]β0

with M∗ of size m∗ ≤ n and β0 of size m∗

Then β0 and µ are targets of inference

The ’projection-based’ target No assumption of µ
Let for M of size m ≤ n

β
(n)
M = argmin

v
||µ− X [M]v ||

β
(n)
M =

(
X ′[M]X [M]

)−1 X ′[M]µ

Then β
(n)
M is a target of inference
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Model selection

Model selection procedure

Data-driven selection of the model with M̂(Y ) = M̂
M̂ ∈M withM the universe of possible models (fixed and known)

Ex. : sequential testing, AIC, BIC, LASSO

The presence of model selection makes it more difficult to make inference on
β

(n)

M̂
or β0 based on β̂M̂

See e.g. Leeb and Poëtscher 05, 06, 12
This is what we call the post-model-selection inference problem
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Post-model-selection in the literature

In Van der Geer et al. 2014, confidence intervals for β0 are constructed
based on the LASSO estimator

In Lee et al. 2016, confidence intervals for β(n)

M̂
are constructed when M̂

is the LASSO model selector
In Berk et al 2013, annals of statistics, the target for inference is β

(n)

M̂
and

M̂ can be any model selection procedure
Model selector M̂ is "imposed"
Objective : best coefficients in this imposed model
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Overview of our contributions

In this paper

0 F. Bachoc, H. Leeb, B.M. Pötscher. Valid confidence intervals for
post-model-selection predictors,
http://arxiv.org/abs/1412.4605

we extend the work of Berk et al. 2013 to predictors

that is, the target is x0[M̂]′β
(n)

M̂
instead of β(n)

M̂

(x0[M̂] is obtained from x0 by keeping components in M̂)

Two main contributions

When p > n is allowed, extension of the procedure of Berk et al. to
prediction and large p analysis of the confidence intervals
(design-dependent target)

When p ≤ n, definition of a more beneficial target x0[M̂]′β
(∗)

M̂
(design-independent target) and large n analysis
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Predictors

Let
y0 = µ0 + u0

u0 ∼ N (0, σ2)

Let x0 be a p × 1 vector
We consider the design-dependent non-standard target

x ′0[M̂]β
(n)

M̂

Then, we have when x0 follows the empirical distribution given by the lines of
X ,

E
([

y0 − x′0[M̂]β
(n)

M̂

]2
)
≤ E

([
y0 − x′0[M̂]v(Y )

]2
)
,

for any function v(Y ) ∈ R|M̂|
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Estimation of σ

Let PX denote the orthogonal projection on the column space of X

Assumption

We have available an (observable) random variable σ̂2 that is independent of
PX Y and that is distributed as σ2/r times a chi-square distributed random
variable with r degrees of freedom (1 ≤ r ≤ ∞)

Same assumption as in Berk et al. 2013

Satisfied if p ≤ n and µ ∈ span(X )

Otherwise not innocuous !

Worthy of further research
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Confidence intervals

Let a nominal level 1− α ∈ (0, 1) be fixed

We consider confidence intervals for x′0[M̂]β
(n)

M̂
of the form

CI = x′0[M̂]β̂M̂ ± K ||sM̂ ||σ̂,

with
s′M = x′0[M]

(
X ′[M]X [M]

)−1 X ′[M]

Interpretation
"Constant" K does not depend on Y (but on X , x0, M̂)
For fixed M,

x′0[M]β̂M − x′0[M]β
(n)
M ∼ N (0, ||sM ||2σ2)

Thus, Knaive = qS,r,1−α/2 (Student quantile) is valid when M is
deterministic
When M̂ is random, K needs to be larger (e.g. Leeb et al. 2015,
Statistical Science)

=⇒ Main issue : choosing K
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The construction of Berk et al.

Observe that
x′0[M̂]β̂M̂ − x′0[M̂]β

(n)

M̂
= s′M̂ (Y − µ)

Then, we have∣∣∣∣ s′M̂
||sM̂ ||σ̂

(Y − µ)

∣∣∣∣ ≤ max
M⊆{1,...,p}

∣∣∣∣ s′M
||sM ||σ̂

(Y − µ)

∣∣∣∣
Distribution of the upper-bound independent of µ, σ =⇒ let K1 be its (1− α)
quantile

The CI given by K1 satisfies

inf
µ∈Rn,σ>0

Pn,µ,σ

(
x′0[M̂]β

(n)

M̂
∈ CI

)
≥ 1− α

=⇒ Uniformly valid confidence interval
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Computing K1

Let s̄M = sM/||sM ||
Since s̄M belongs to the column space of X for every M ∈M, we have

Pn,µ,σ

(
max
M∈M

∣∣s̄′M (Y − µ)
∣∣ /σ̂ > t

)
= Pn,µ,σ

(
max
M∈M

∣∣s̄′MPX (Y − µ) / ‖PX (Y − µ)‖
∣∣ > (σ̂/ ‖PX (Y − µ)‖) t

)
= Pr

(
max
M∈M

∣∣s̄′MV
∣∣ > t/G

)
where

d = rank(X )

V is uniformly distributed on the unit sphere of the column space of X
G2/d follows an F-distribution with (d- r )-degrees of freedom
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Computing K1 : algorithm

We need to compute the K so that

α = Pr
(

max
M∈M

∣∣s̄′MV
∣∣ > K/G

)
= EV

(
1− Fd,r

(
K 2/

{
max
M∈M

∣∣s̄′MV
∣∣2 d
}))

with Fd,r the c.d.f. of the Fisher (d , r ) distribution

Algorithm

Choose I ∈ N and generate independent identically distributed random
vectors V 1, . . . ,V I , where each V i is uniformly distributed on the unit sphere
of the column space of X . Calculate the quantities ci = maxM∈M |s̄′MV i |
A numerical approximation to K1 is then obtained by searching for that value
of K that solves

1
I

I∑
i=1

Fd,r

(
K 2

c2
i d

)
= 1− α.

Complexity in 2p ifM consists in all subsets of {1, ..., p}
In practice, one hour for p = 20
For larger p, one should use upper-bounds of K1, cf below
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Issues when x0 is partially observed

The constant K1 depends on all the components of x0

It can happen that only x0[M̂] is observed

model selection for cost reason

We hence construct other constants so that

K1 ≤ K2 ≤ K3 ≤ K4

(The CIs given by K2,K3,K4 are hence universally valid)
K2,K3,K4 depend only on x0[M̂]

Remark : K4 is introduced by Berk et al.
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K2

Let
K2(x0[M̂], M̂) = sup

{
K1(x) : x[M̂] =x0[M̂]

}
,

Maximizing K1 over the unobserved components of x0 (those which are
not in the submodel M̂)

Optimally small

(too) costly to compute (stochastic optimization of K1)
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K3 and K4

Recall that K1(x0) is the K so that

Pr
(

max
M∈M

∣∣s̄′MV
∣∣ > K/G

)
= α

and that the problem is that s̄M is not observed when M is not included in M̂
Union bound :

Pr
(

max
M∈M

∣∣s̄′MV
∣∣ > K/G

)
= EG

{
Pr
(

max
M∈M

∣∣s̄′MV
∣∣ > K/G

)}
≤ EG

{
Pr
(

max
M∈M,M⊆M̂

∣∣s̄′MV
∣∣ > K

G

)
+ c(M̂,M)

{
1− Fbeta,1/2,(d−1)/2(K 2/G2)

}}
(1)

≤ EG

{
|M|

{
1− Fbeta,1/2,(d−1)/2(K 2/G2)

}}
(2)

Pr
(
|s̄′MV | > K

G

)
= 1− Fbeta,1/2,(d−1)/2(K 2/G2)

c(M̂,M) is the number of models M ∈M so that M 6⊆ M̂
K3(x0[M̂], M̂) and K4 are the values of K so that (1) and (2) equal α
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K3 and K4

K3 has the same computational cost as K1

K4 is cheap to compute

K4 was proposed in Berk et al. 2013
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Large p analysis of K1

K1 depends on x0 and X , and it does not seem easy to provide a
systematic large p analysis, for any X , x0
When x0 = ei (base vector), Berk et al. 2013 show that

When X has orthogonal columns, K1 has rate
√

log(p)
There exists sequences of X so that K1 has rate

√
p

We show

Proposition

LetM be the power set of {1, ..., p}. Let α, 0 < α < 1, be given
(a) Let X have orthogonal columns. There exist a sequence of vectors x0

such that K1 satisfies

lim inf
p→∞

K1(x0)/
√

p ≥ 0.6363

(b) Let γ ∈ [0, 1) be given. Then K2(x0[M],M) satisfies

lim inf
p→∞

inf
x0∈Rp

inf
X∈X(p)

inf
M∈M,|M|≤γp

K2(x0[M],M)/
√

p ≥ 0.6363
√

1− γ,

where X(p) =
⋃

n≥p {X : X is n × p with non-zero orthogonal columns}
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Large p analysis of K3 and K4

Using results from Berk et al. 2013, Zhang 2015, we show

Proposition

Assume thatM =Mp satisfies

(i)
⋃
{M : M ∈M} = {1, ..., p}

(ii) c (M,M) ≥ τ |M| for every M ∈M with M 6= {1, . . . , p}
Let Xn,p(M) denote the set of all n × p matrices of rank min(n, p) with the
property that X [M] has full column-rank for every ∅ 6= M ∈M
Then we have

lim
p→∞

sup
M∈M,M 6={1,...,p}

sup
x0∈Rp

sup
X∈Xn(p),p(M)

|1− (K3(x0[M],M)/K4)| = 0

Furthermore

K4/

√
min(n(p), p)

(
1− |M|−2/(min(n(p),p)−1)

)
→ 1

as p →∞
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Large p analysis of K3 and K4

K4 gets smaller whenM gets smaller :

K4 always asymptotically no larger than
√

min(n, p)

When p > n andM = {M ⊆ {1, ..., p}; |M| ≤ anb} with fixed a and
0 ≤ b < 1, we have

K4 = O(nb/2
√

log(n))
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Settings for this section

Well-specified linear model
Y = Xβ + U

Y of size n × 1
X of size n × p
β of size p × 1 : fixed and unknown
U ∼ N (0, σ2In)

0 < σ <∞ fixed and unknown
p fixed, n→∞

=⇒Working distribution Pn,β,σ

Least square estimator :
β̂ = (X ′X )−1X ′Y

Standard variance estimator :

σ̂2 =
1

n − p
||Y − X β̂||2
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Design-independent non-standard target

Issue : The target x′0[M̂]β
(n)

M̂
depends on X but is a predictor of y0 from x0

Issue is solved when lines of X and x′0 are realizations from the same
distribution L

Let, for x′ ∼ L, Σ = E(xx′). Then, define the design-independent
non-standard target by

x0[M̂]′β
(?)

M̂
= x0[M̂]′β[M̂] + x0[M̂]′

(
Σ[M̂, M̂]

)−1
Σ[M̂, M̂c ]β[M̂c ],

Then, we have for x0 ∼ L,

E
([

y0 − x′0[M̂]β
(?)

M̂

]2
)
≤ E

([
y0 − x′0[M̂]v(Y )

]2
)
,

for any function v(Y ) ∈ R|M̂|
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Asymptotic coverage when p is fixed and n → ∞

Theorem

Assume that

√
n
[(

X ′X/n
)
−Σ

]
= Op(1)

and that for any M with |M| < p and for any δ > 0,

sup
{

Pn,β,σ(M̂ = M|X ) : β ∈ Rp, σ > 0,
∥∥β[Mc ]

∥∥ /σ ≥ δ} = op(1)

Then, for CI obtained by K1,K2,K3,K4,

inf
β∈Rp,σ>0

Pn,β,σ

(
x′0[M̂]β

(?)

M̂
∈ CI

∣∣∣X) ≥ (1− α) + op(1)
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Lengths of the confidence intervals

An illustration with the Watershed data set (p = 9, n = 30)
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FIGURE: Standardized lengths of the confidence intervals as function of model size.
The model of size k is {1, ..., k}. K5 =

√
p and Knaive = qS,n−p,1−α/2 (Student

quantile)
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Comparison with the confidence intervals of Lee et al. 2016

The confidence intervals of Lee et al. 2016

are dedicated to the case where M̂ is the LASSO

are conditionally valid (stronger guarantee)

Length comparison between our CIs and those of Lee et al. 2016, on
randomly simulated X (with independent or correlated columns) and Y

Setting Lengths Confidence interval
K1 K3 K4 Lee et al.

‘Independent’ Median 0.46 0.78 0.78 0.43
90%-quantile 0.51 0.85 0.85 1.06

‘Correlated’ Median 0.56 0.81 0.81 1.42
90%-quantile 0.90 1.30 1.30 14.3

TABLE: Medians and empirical quantiles of the lengths of the confidence intervals C̄I of
Lee et al. 2016 and of those obtained from K1, K3, and K4. The nominal coverage
probability is 1− α = 0.95, n = 100, and p = 10.
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Minimal coverage probabilities

For α = 0.05 and p = 10 we evaluate

inf
β∈Rp,σ>0

Pn,β,σ

(
x′0[M̂]β

(n,?)

M̂
∈ CI

∣∣∣X) ,
for one realization of X

Results :

n model target
selector design-dependent design-independent

x0[M̂]′β
(n)

M̂
x0[M̂]′β

(?)

M̂
Knaive K1 K3 K4 Knaive K1 K3 K4

20 AIC 0.84 0.99 1.00 1.00 0.79 0.97 0.99 0.99
20 BIC 0.84 0.99 1.00 1.00 0.74 0.96 0.98 0.98
20 LASSO 0.90 1.00 1.00 1.00 0.18 0.48 0.61 0.61

100 AIC 0.87 0.99 1.00 1.00 0.88 0.99 1.00 1.00
100 BIC 0.88 0.99 1.00 1.00 0.87 0.99 1.00 1.00
100 LASSO 0.88 0.99 1.00 1.00 0.87 0.99 1.00 1.00
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Conclusion

It is known that it is difficult to construct valid post-model-selection
confidence intervals
Recently, Berk et al. 2013 have proposed confidence intervals for
projection-based coefficients
. no assumption of correct linear model
. valid for all model selection procedure
. based on a ’worst-case projection’ approach

We extend the confidence intervals to prediction
. exact coverage of the design-dependent target
. large p analysis of the length : smaller when small submodels are selected
. asymptotic coverage of the design-independent target

The paper :
0 F. Bachoc, H. Leeb, B.M. Pötscher. Valid confidence intervals for

post-model-selection predictors,
http://arxiv.org/abs/1412.4605

Thank you for your attention !
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