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Abstract

In parametric estimation of covariance function of Gaussian processes, it is often the case that the true
covariance function does not belong to the parametric set used for estimation. This situation is called
the misspecified case. In this case, it has been shown that, for irregular spatial sampling of observation
points, Cross Validation can yield smaller prediction errors than Maximum Likelihood. Motivated by this
observation, we provide a general asymptotic analysis of the misspecified case, for independent and uniformly
distributed observation points. We prove that the Maximum Likelihood estimator asymptotically minimizes
a Kullback-Leibler divergence, within the misspecified parametric set, while Cross Validation asymptotically
minimizes the integrated square prediction error. In a Monte Carlo simulation, we show that the covariance
parameters estimated by Maximum Likelihood and Cross Validation, and the corresponding Kullback-Leibler
divergences and integrated square prediction errors, can be strongly contrasting. On a more technical level,
we provide new increasing-domain asymptotic results for independent and uniformly distributed observation
points.

Keywords: covariance parameter estimation; cross validation; Gaussian processes; increasing-domain asymp-
totics; integrated square prediction error; Kullback-Leibler divergence; maximum Likelihood
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1 Introduction

Kriging models (Stein, 1999; Rasmussen and Williams, 2006) consist in inferring the values of a Gaussian random
field given observations at a finite set of observation points. They have become a popular method for a large range
of applications, such as numerical code approximation (Sacks et al., 1989; Santner et al., 2003) and calibration
(Paulo et al., 2012) or global optimization (Jones et al., 1998).

One of the main issues regarding Kriging is the choice of the covariance function for the Gaussian process.
Indeed, a Kriging model yields an unbiased predictor with minimal variance and a correct predictive variance only
if the correct covariance function is used. The most common practice is to statistically estimate the covariance
function, from a set of observations of the Gaussian process, and to plug (Stein, 1999, Ch.6.8) the estimate in
the Kriging equations. Usually, it is assumed that the covariance function belongs to a given parametric family
(see Abrahamsen (1997) for a review of classical families). In this case, the estimation boils down to estimating
the corresponding covariance parameters. For covariance parameter estimation, Maximum Likelihood (ML) is
the most studied and used method, while Cross Validation (CV) (Sundararajan and Keerthi, 2001; Zhang and
Wang, 2010) is an alternative technique.

Consider first the case where the true covariance function of the Gaussian process belongs to the parametric
family of covariance functions used for estimation, which we call the well-specified case. Then, it is shown in
several references that ML should be preferred over CV. It is proved in Stein (1990b) that for the estimation
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of a signal-to-noise ratio parameter of a Brownian motion, CV has twice the asymptotic variance of ML. In
the situations treated by Bachoc (2014), the asymptotic variance is also larger for CV than for ML. Several
numerical results, showing an advantage for ML over CV as well, are available, coming either from Monte Carlo
studies as in (Santner et al., 2003, Ch.3) or deterministic studies as in Martin and Simpson (2004). The settings
of both the above studies can arguably be classified in the well-specified case, since the interpolated functions are
smooth, and the covariance structures are adapted, being Gaussian in Martin and Simpson (2004) and having
a free smoothness parameter in Santner et al. (2003). Finally, in situations similar to the well-specified case,
ML-type methods have been shown to be preferable over CV-type methods in Stein (1993) for estimation and
prediction.

Consider now the case where the true covariance function of the Gaussian process does not belong to the
parametric family of covariance functions used for estimation, which we call the misspecified case. This can
occur in many situations, given for example that it is frequent to enforce the smoothness parameter in the
Matérn model to an arbitrary value (e.g. 3/2 in Chevalier et al. (2014)), which de facto makes the covariance
model misspecified if the Gaussian process has a different order of smoothness. In the misspecified case, Bachoc
(2013) shows that, provided the spatial sampling of observation points is not too regular, CV can yield a smaller
integrated square prediction error than ML. In a context of spline approximation methods, Stein (1993) and
Kou (2003) also suggest that CV-type methods can provide smaller prediction errors than ML-type methods
under misspecification.

In this paper, we primarily aim at showing, in agreement with the preceding discussion, that CV can provide
asymptotically optimal integrated square prediction errors under misspecification. In this regard, the two most
studied asymptotic frameworks in the Kriging literature are the increasing-domain and fixed-domain asymptotics
(Stein, 1999, p.62). In increasing-domain asymptotics, the average density of observation points is bounded, so
that the infinite sequence of observation points is unbounded. In fixed-domain asymptotics, this sequence is
dense in a bounded domain.

In fixed-domain asymptotics, significant results are available concerning the estimation of the covariance
function, and its influence on Kriging predictions and confidence intervals. In this asymptotic framework, two
types of covariance parameters can be distinguished: microergodic and non-microergodic covariance parameters.
Following the definition in Stein (1999), a covariance parameter is microergodic if two covariance functions are
orthogonal whenever they differ for it (as in Stein (1999), we say that two covariance functions are orthogonal
if the two underlying Gaussian measures are orthogonal). Non-microergodic covariance parameters cannot be
consistently estimated, but have no asymptotic influence on Kriging predictions and confidence intervals (Stein,
1988, 1990a,c; Zhang, 2004). On the contrary, there is a fair amount of literature on consistent estimation of
microergodic covariance parameters (Ying, 1991, 1993; Zhang, 2004; Loh, 2005; Anderes, 2010). Consistent
estimation of microergodic parameters is shown, in some cases, to entail asymptotically optimal predictions and
confidence intervals (Putter and Young, 2001).

Nevertheless, a downside of fixed-domain asymptotics is that the results currently under reach, despite their
significant insights, are restricted in terms of covariance model. For example, Ying (1993) addresses ML for the
tensorized exponential model only and Loh (2005) addresses ML for the Matérn 3/2 covariance model only.

Hence, in this paper, we work under increasing-domain asymptotics, in which case results can be proved
for fairly general covariance models (Mardia and Marshall, 1984; Cressie and Lahiri, 1993, 1996; Bachoc, 2014).
In fact, generally speaking, under increasing-domain asymptotics, all (identifiable) covariance parameters have
a strong asymptotic influence on predictions (Bachoc, 2014) and can be consistently estimated with asymp-
totic normality (Mardia and Marshall, 1984; Bachoc, 2014). This is because increasing-domain asymptotics
is characterized by a vanishing dependence between observations from distant observation points, so that a
large sample size gives more and more information about the covariance structure. Note that, beside Kriging,
increasing-domain asymptotics is largely considered in spatial statistics (Lahiri and Robinson, 2016; Hallin et al.,
2009)

The increasing-domain asymptotic setting we consider in this paper consists of n independent observation
points with uniform distribution on [0, n1/d]d, for d ∈ N∗. In Theorem 3.4, we prove that CV asymptotically
minimizes the integrated square prediction error, within the misspecified set of covariance functions used for
estimation. On the other hand, we prove in Theorem 3.3 that ML asymptotically minimizes, the Kullback-Leibler
divergence from the true covariance function, defined at the observation vector. This latter finding does not
provide information on the prediction errors of the Gaussian process at new points, stemming from ML. Thus,
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an asymptotic confirmation is given to the empirical finding of Bachoc (2013), that when the spatial sampling
is not too regular, CV can provide smaller integrated square prediction errors than ML in the misspecified case.

On a more technical level, we provide increasing-domain asymptotic results for matrix-form estimation criteria
with independent and uniformly distributed observation points. To the best of our knowledge, this type of
situation has not been addressed in the existing literature.

We conclude this paper by a Monte Carlo simulation, illustrating Theorems 3.3 and 3.4. The simulation
highlights that the ML and CV estimators can estimate radically different covariance parameters, and that their
subsequent performances for the Kullback-Leibler divergence and the integrated square prediction error can be
strongly contrasting.

The rest of the paper is organized as follows. We present the context on parametric covariance function
estimation in the misspecified case and on the spatial sampling in Section 2. We give the asymptotic optimality
results for ML and CV in Section 3. We discuss the simulation results in Section 4. All the proofs are given in
the appendix.

Finally, note that one should be cautious about inferring from this paper that CV is preferable over ML in
the misspecified case. Indeed, there exist other prediction scores than the integrated square prediction error
(see Gneiting and Raftery (2007); Gneiting (2011)) some of them also assessing the coverage of the confidence
intervals obtained from the Kriging model. The main contribution of this paper is to provide rigorous results for
CV, relatively to the integrated square prediction error only, which is nonetheless a largely considered criterion
for comparing predictors.

2 Context

2.1 Presentation and notation for the covariance model

We consider a stationary Gaussian process Y on Rd with zero mean function and covariance function K0. Noisy
observations of Y are obtained at the random points X1, ..., Xn ∈ Rd, for n ∈ N∗. That is, for i = 1, ..., n, we
observe yi = Y (Xi) + εi, where ε = (ε1, ..., εn)t, Y and (X1, ..., Xn) are mutually independent and ε follows a
N (0, δ0In) distribution, with δ0 ≥ 0 and In the identity matrix of size n. The distribution of (X1, ..., Xn) is
specified and discussed in Condition 2.3 below.

The case where Y is observed exactly is treated by this framework by letting δ0 = 0. Otherwise, letting δ0 > 0
can correspond for instance to measure errors (Bachoc et al., 2014) or to Monte Carlo computer experiments
(Le Gratiet and Garnier, 2014). Note also that the case of a Gaussian process with discontinuous covariance
function at 0 (nugget effect) is mathematically equivalent to this framework if the observation points X1, ..., Xn

are two by two distinct. [This is the case in this paper, in an almost sure sense, see Condition 2.3.]
Let p ∈ N∗ and let Θ be the compact subset [θinf , θsup]

p with −∞ < θinf < θsup < +∞. We consider a
parametric model attempting to approximate the covariance function K0 and the noise variance δ0, {(Kθ, δθ), θ ∈
Θ}, with Kθ a stationary covariance function and δθ > 0. We call the case where there exists θ0 ∈ Θ so that
(K0, δ0) = (Kθ0 , δθ0) the well-specified case. The converse case, where (K0, δ0) 6= (Kθ, δθ) for all θ ∈ Θ is called
the misspecified case.

The well-specified case has been extensively studied in the Gaussian process literature, see the references
given in Section 1. Nevertheless, the misspecified case can occur in many practical applications. Indeed, even if
we assume δθ = δ0 for all θ, the standard covariance models {Kθ, θ ∈ Θ} are often driven by a limited number
of parameters and thus restricted in some ways. For instance, an existing practice (e.g. Martin and Simpson
(2004); Conti and O’Hagan (2010)) is to use the Gaussian covariance model, where p = d + 1, Θ ⊂ (0,∞)p,

θ = (σ2, `1, ..., `d) and Kθ(t) = σ2 exp(−
∑d
i=1 t

2
i /`

2
i ). With the Gaussian covariance model, all the covariance

functions Kθ generate Gaussian process realizations that are almost surely infinitely differentiable. Thus, the
Gaussian model is de facto misspecified if the realizations of Y have only a finite order of differentiability. [Note
that the use of the Gaussian covariance model is dis-advised in several references, see Stein (1999).] In theory, the
Matérn model considered in Section 4 provides more flexibility by incorporating a tunable smoothness parameter
ν > 0. However, it is also common practice to enforce a priori this parameter ν to a fixed value (e.g. 3/2 in
Chevalier et al. (2014)).

In this paper, we are primarily interested in analyzing the misspecified case although the asymptotic results
that are given in Section 3 are valid for both the well-specified and misspecified cases.
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We let X = (X1, ..., Xn) be the random n-tuple of the n observation points. For θ ∈ Θ, we define the
n × n random matrix Rθ by (Rθ)i,j = Kθ (Xi −Xj) + δθ1i=j . We define the n × n random matrix R0 by

(R0)i,j = K0 (Xi −Xj) + δ01i=j . We define the random vector y = (y1, ..., yn)t of size n by yi = Y (Xi) + εi.
Then, conditionally to X, y follows a N (0, R0) distribution and is assumed to follow a N (0, Rθ) distribution
under the covariance parameter θ.

2.2 Maximum Likelihood and Cross Validation estimators

The Maximum Likelihood (ML) estimator is defined by θ̂ML ∈ argminθ Lθ, where

Lθ :=
1

n
log (det (Rθ)) +

1

n
ytR−1

θ y (1)

is the modified opposite log-likelihood.

Remark 2.1. For concision, we do not write explicitly the dependence of Rθ, R0, y and Lθ on X, n, Y and ε.
We make the same remark for the CV criterion in (2) and (3).

Remark 2.2. In this paper, we allow the criterion (1) to have more than one global minimizer, in which case,

the asymptotic results of Section 3 hold for any sequence of random variables θ̂ML minimizing it. The same
remark can be made for the CV criterion (2). We refer to Remark 2.1 in Bachoc (2014) for the existence of
measurable minimizers of the ML and CV criteria.

Under several increasing-domain asymptotics settings, ML is consistent and asymptotically normal, with
mean vector 0 and covariance matrix the inverse of the Fisher information matrix. This is shown in Mardia and
Marshall (1984), assuming either some convergence conditions on the covariance matrices and their derivatives
or gridded observation points. Similar results are provided for Restricted Maximum Likelihood in Cressie and
Lahiri (1993, 1996). In Bachoc (2014) asymptotic normality is also shown for Maximum Likelihood, using only
simple conditions on the covariance model and for observation points that constitute a randomly perturbed
regular grid.

The Cross Validation (CV) estimator, minimizing the Leave One Out (LOO) mean square error is defined

by θ̂CV ∈ argminθ CVθ, with

CVθ :=
1

n

n∑
i=1

(yi − ŷi,θ)2
, (2)

where ŷi,θ := Eθ|X(yi|y1, ..., yi−1, yi+1, ..., yn) is the LOO prediction of yi with parameter θ. The conditional
mean value Eθ|X denotes the expectation with respect to the distribution of Y and ε with the covariance function
Kθ and the variance δθ, given X, so that Eθ|X(yi|y1, ..., yi−1, yi+1, ..., yn) = Eθ(yi|X, y1, ..., yi−1, yi+1, ..., yn).

Let ri,θ = (Kθ(Xi, X1), ...,Kθ(Xi, Xi−1),Kθ(Xi, Xi+1), ...,Kθ(Xi, Xn))
t
. Define ri,0 similarly with K0. De-

fine the (n− 1)× (n− 1) covariance matrix Ri,θ as the matrix extracted from Rθ by deleting its line and column
i. Define Ri,0 similarly with R0. Then, with y−i = (y1, ..., yi−1, yi+1, ..., yn)t, we have ŷi,θ = rti,θR

−1
i,θ y−i.

Note that ŷi,θ is invariant if Kθ and δθ are multiplied by a common positive constant. Thus, the CV criterion
(2) is designed to select only a correlation function Kθ/Kθ(0) and a corresponding relative noise variance
δθ/Kθ(0). In particular, the CV criterion (2) does not assess the validity of quantities like varθ|X(Y (t)|y),
where varθ|X denotes the variance under parameter θ given X. Hence, the Kriging predictive confidence intervals
obtained by CV can be unreliable.

There exist extensions of the CV criterion (2) taking into account varθ|X(yi|y1, ..., yi−1, yi+1, ..., yn), and
aiming in particular at selecting values for Kθ(0) and δθ (Bachoc, 2013). There also exist alternative CV
criteria, different from (2), like the log predictive probability (Rasmussen and Williams (2006), chapter 5, Zhang
and Wang (2010), Sundararajan and Keerthi (2001)). Nevertheless, these extensions and alternatives shall not
be investigated in this paper. We focus on the criterion (2), for which only the predictors Eθ|X(Y (t)|y) of the
values of Y at new points t are relevant. These predictors alone provide the same applicability as many regression
techniques like kernel regression or neural network methods and can be used in a wide range of applications.

The criterion (2) can be computed with a single matrix inversion, by means of virtual LOO formulas (see
e.g Ripley (1981); Dubrule (1983)). These virtual LOO formulas yield, when writing diag (A) for the matrix
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obtained by setting to 0 all the off diagonal elements of a square matrix A,

CVθ :=
1

n
ytR−1

θ

(
diag

(
R−1
θ

))−2
R−1
θ y, (3)

which is useful both in practice (to compute the CV criterion quickly) and in the proofs for CV.
Finally, in Bachoc (2014) it is shown that, in the well-specified case, the CV estimator is consistent and

asymptotically normal for estimating correlation parameters, under increasing-domain asymptotics with a ran-
domly perturbed grid of observation points.

2.3 Random spatial sampling

We consider an increasing-domain asymptotic framework where the observation points are independent and
uniformly distributed, which constitutes the archetype of an irregular spatial sampling.

Condition 2.3. For all n ∈ N∗, the observation points X1, ..., Xn are random and follow independently the
uniform distribution on [0, n1/d]d. The variables Y , (X1, ..., Xn) and ε are mutually independent.

Condition 2.3 constitutes an increasing-domain asymptotic framework in the sense that the volume of the
observation domain is n and the average density of observation points is constant. Some authors define increasing-
domain asymptotics by the condition that the minimum distance between two different observation points is
bounded away from zero (e.g. Zhang and Zimmerman (2005)), which is not the case here. In Lahiri (2003) and
Lahiri and Mukherjee (2004), the term increasing-domain is also used, when points are sampled randomly on a
domain with volume proportional to n.

3 Asymptotic optimality results

3.1 Technical assumptions

We shall assume the following condition for the covariance function K0, which is satisfied in all the most classical
cases, and especially for the Matérn covariance function. Let |t| = maxi=1,...,d |ti|.

Condition 3.1. The covariance function K0 is stationary and continuous on Rd. There exists C0 < +∞ so
that for t ∈ Rd,

|K0 (t)| ≤ C0

1 + |t|d+1
.

Next, the following condition for the parametric set of covariance functions and noise variances is slightly
non-standard but not restrictive. We discuss it below.

Condition 3.2. For all θ ∈ Θ, the covariance function Kθ is stationary. For all fixed t ∈ Rd, Kθ(t) is p + 1
times continuously differentiable with respect to θ. For all i1, ..., ip ∈ N so that i1 + ...+ ip ≤ p+ 1, there exists
Ai1,...,ip < +∞ so that for all t ∈ Rd, θ ∈ Θ,∣∣∣∣∣ ∂i1∂θi11

...
∂ip

∂θ
ip
p

Kθ (t)

∣∣∣∣∣ ≤ Ai1,...,ip
1 + |t|d+1

.

There exists a constant Cinf > 0 so that, for any θ ∈ Θ, δθ ≥ Cinf . Furthermore, δθ is p+ 1 times continuously
differentiable with respect to θ. For all i1, ..., ip ∈ N so that i1 + ...+ ip ≤ p+ 1, there exists Bi1,...,ip < +∞ so
that for all θ ∈ Θ, ∣∣∣∣∣ ∂i1∂θi11

...
∂ip

∂θ
ip
p

δθ

∣∣∣∣∣ ≤ Bi1,...,ip .
In Condition 3.2, we require a differentiability order of p+ 1 for Kθ and δθ with respect to θ. In the related

context of Bachoc (2014), where a well-specified covariance model is studied, consistency of ML and CV can
be proved with a differentiability order of 1 only. [One can check that the proofs of Propositions 3.1 and 3.4
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in Bachoc (2014) require only the first order partial derivatives of the Likelihood function.] The reason for this
difference is that, as discussed after Theorem 3.4, an additional technical difficulty is present here, compared
to Bachoc (2014). The specific approach we use requires the condition of differentiability order of p + 1 and
we leave open the question of relaxing it. Note, anyway, that many parametric covariance models are infinitely
differentiable with respect to the covariance parameters, especially the Matérn model. In Condition 3.2, assuming
that the covariance function and its derivatives vanish with distance with a polynomial rate of order d+ 1 is not
restrictive. Indeed, many covariance functions vanish at least exponentially fast with distance.

Finally, the condition that the noise variance δθ is lower bounded uniformly in θ is crucial for our proof
methods. Since we address here noisy observations of Gaussian processes, this condition is reasonable so that
the results of Section 4 can cover a large variety of practical situations, some of which are listed in Section 2. Note
that even when the Gaussian process under consideration is observed exactly, it can be desirable to incorporate an
instrumental positive term δθ in the parametric model, for numerical reasons or for not interpolating exactly the
observed values (Andrianakis and Challenor, 2012). Thus, Condition 3.2 could also be considered for Gaussian
processes that are observed without noise.

3.2 Maximum Likelihood

In this paper, the analysis of the ML estimator in the misspecified case is based on the Kullback-Leibler divergence
of the distribution of y assumed under (Kθ, δθ), for θ ∈ Θ, from the true distribution of y. More precisely,
conditionally to X, y has aN (0, R0) distribution and is assumed to have aN (0, Rθ) distribution. The conditional
Kullback-Leibler divergence of the latter distribution from the former is, after multiplication by 2/n,

Dn,θ :=
1

n

{
log
(
det
(
RθR

−1
0

))
+ Tr

(
R0R

−1
θ

)}
− 1. (4)

The normalized Kullback-Leibler divergence in (4) is equal to 0 if and only if Rθ = R0 and is strictly positive
otherwise. It is interpreted as an error criterion for using (Kθ, δθ) instead of (K0, δ0), when making inference on
the Gaussian process Y .

Note that Dn,θ is here appropriately scaled so that, if for a fixed θ (Kθ, δθ) 6= (K0, δ0), Dn,θ should generally
not vanish, nor diverge to infinity under increasing-domain asymptotics. This can be shown for instance in
the framework of Bachoc (2014), by using the methods employed there. It is also well-known that, in the case
of a regular grid of observation points for d = 1, Dn,θ converges to a finite limit as n → +∞ (Azencott and
Dacunha-Castelle, 1986). This limit is twice the asymptotic Kullback information in Azencott and Dacunha-
Castelle (1986) and is positive if (Kθ(t), δθ) differs from (K0(t), δ0) for at least one point t in the regular
grid of observation points. Similarly, in the spatial sampling framework of Condition 2.3, we observe in the
Monte Carlo simulations of Section 4 that the order of magnitude of (4) does not change when n increases, for
(Kθ, δθ) 6= (K0, δ0).

The following theorem shows that the ML estimator asymptotically minimizes the normalized Kullback-
Leibler divergence.

Theorem 3.3. Under Conditions 2.3, 3.1 and 3.2, we have, as n→∞,

Dn,θ̂ML
= inf
θ∈Θ

Dn,θ + op(1),

where the op(1) in the above display is a function of X and y only that goes to 0 in probability as n→∞.

Theorem 3.3 is in line with the well-known fact that, in the i.i.d. setting, ML asymptotically minimizes
the Kullback-Leibler divergence (which does not depend on sample size) from the true distribution, within a
misspecified parametric model (White, 1982). Theorem 3.3 conveys a similar message, with the normalized
Kullback-Leibler divergence that depends on the spatial sampling. As discussed above, the infimum in Theorem
3.3 is typically lower bounded as n→∞ in the misspecified case.

Note that Theorem 3.3 can be shown, in increasing-domain asymptotics, under other spatial samplings than
that of Condition 2.3 (e.g. for the randomly perturbed regular grid of Bachoc (2014)). Nevertheless, to the
best of our knowledge, in the context of Condition 2.3, Theorem 3.3 is not a simple consequence of the existing
literature, and an original proof is provided in Section A.2.
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The Kullback-Leibler divergence is of course a central quality criterion for covariance parameters. Neverthe-
less, in the misspecified-case, Theorem 3.3 does not imply that ML is optimal for other common quality criteria,
such as the integrated square prediction error introduced below. In addition, note that the Kullback-Leibler
divergence addresses the distribution of the Gaussian process only at the observation points, thus providing no
information on the inference of the values of Y at new points, obtained from (Kθ, δθ).

3.3 Cross Validation

Let us recall the notation Eθ|X(Y (t)|y) = Eθ(Y (t)|y,X) and let ŷθ(t) = Eθ|X(Y (t)|y). With the n × 1 vector

rθ(t) so that (rθ(t))j = Kθ(t−Xj), we have ŷθ(t) = rtθ(t)R
−1
θ y. Then, define the family of random variables

En,θ =
1

n

∫
[0,n1/d]d

(ŷθ(t)− Y (t))
2
dt, (5)

where the integral is defined in the L2 sense since K0 is continuous. We call the criterion (5) the integrated
square prediction error. This criterion (or evaluations of it) is very commonly used, in particular for Gaussian
process surrogate models of computer experiments (see e.g. Marrel et al. (2008); Gramacy and Apley (2015)).
More generally, the square prediction error is largely considered to evaluate predictors, see Gneiting (2011).

It is natural to consider that the first objective of the CV estimator θ̂CV is to yield a small En,θ̂CV
. If the

observation points X1, ..., Xn are regularly spaced, then this objective might however not be fulfilled. Indeed, the
principle of CV does not really have grounds in this case, since the LOO prediction errors are not representative
of actual prediction errors for new points. This fact is only natural and has been noted in e.g. Iooss et al. (2010)
and Bachoc (2013). If however the observation points X1, ..., Xn are not regularly spaced, then it is shown

numerically in Bachoc (2013) that the CV estimator θ̂CV can yield a small En,θ̂CV
and, especially, smaller than

En,θ̂ML
. The following theorem, which is the main contribution of this paper, supports this conclusion under

increasing-domain asymptotics.

Theorem 3.4. Under Conditions 2.3, 3.1 and 3.2, we have, as n→∞,

En,θ̂CV
= inf
θ∈Θ

En,θ + op(1),

where the op(1) in the above display is a function of X, y and Y only that goes to 0 in probability as n→∞.

In (5), we stress that En,θ and the observation vector y are defined with respect to the same Gaussian process

Y . Thus, Theorem 3.4 gives a guarantee for the estimator θ̂CV relatively to the predictions it yields for the
actual Gaussian process at hand. Theorem 3.4 not only confirm that CV will not provide asymptotically larger
integrated square prediction errors than ML, with independent and uniformly distributed observation points,
it also show that these integrated square prediction errors will be asymptotically minimal, over all possible
estimators.

The setting of the proof of Theorem 3.4 combines independent and uniformly distributed observation points
with the matrix-form estimation criteria (1) and (3). These criteria and their derivatives involve imbrications of
covariance matrix derivatives and inverse covariance matrices, which can generally not be put in explicit matrix-
free forms. To the best of our knowledge, this specific combination has not been addressed in the previous
literature.

Indeed, on the one hand, when matrix-form criteria like (1) and (3) are treated, it is assumed, implicitly or
explicitly that there exists a positive minimal distance between two different observation points. This is the case
in Bachoc (2014). Also, Mardia and Marshall (1984) and Cressie and Lahiri (1993, 1996) work under non-trivial
assumptions on the covariance matrices involved, and show that these assumptions are fulfilled for examples of
spatial samplings for which the minimal distance between two different observation points is bounded away from
zero. This minimal distance assumption does not hold with independent observation points. Instead clusters of
closely spaced observation points may appear. As a consequence, the maximum eigenvalues of the covariance
matrices and their derivatives are not upper bounded, even in probability, which brings new obstacles for the
analysis of criteria like (1) and (3). In addition, considering random observation points with no underlying grid
structure makes it more challenging to control the fluctuations of functions of (random) covariance matrices,
compared to Proposition D.7 of Bachoc (2014) for instance.
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On the other hand, when independent and uniformly distributed observation points are considered (see e.g.
Lahiri (2003); Lahiri and Mukherjee (2004); Lahiri and Zhu (2006)), the quantities of interest do not involve
derivatives and inverse of n× n covariance matrices.

As a consequence, the proof we propose for Theorem 3.4 is original and we do not address the asymptotic
distribution of the ML and CV estimators. We leave this problem open to further research. Note nevertheless
that, in the misspecified case addressed here, the fact that the ML and CV estimators minimize two different
criteria and are thus typically asymptotically different is, in our opinion, at least as important as their asymptotic
distributions.

Remark 3.5. An important element in the proof of Theorem 3.4 is that the variable t in the expression of the
integrated square prediction error En,θ in (5) plays the same role as a new point Xn+1, uniformly distributed
on [0, n1/d]d and independent of (X1, ..., Xn). Hence, using the symmetry of X1, ..., Xn+1, for fixed θ, the mean
value of En,θ is equal to the mean value of a modification of the CV criterion CVθ in (2), where there are
n+ 1 observation points instead of n. Thus, one can indeed expect that the CV estimator minimizing CVθ also
asymptotically minimizes En,θ. [The challenging part for proving Theorem 3.4 is to control the deviations of
the criteria En,θ and CVθ from their mean values, uniformly in θ.] This discussion is exactly the paradigm
of CV, that uses the LOO errors as empirical versions of the actual prediction errors. On the other hand, if
the observation points constitute for instance a regular grid, then the variable t in En,θ has close to nothing
in common with them, so that Theorem 3.4 would generally not hold. This stresses that CV is generally not
efficient for regular sampling of observation points, as discussed above.

4 Monte Carlo simulation

We illustrate Theorems 3.3 and 3.4 in a Monte Carlo simulation. We consider the Matérn covariance model in
dimension d = 1. A covariance function on R is Matérn (σ2, `, ν) when it is written

Kσ2,`,ν (t) =
σ2

Γ (ν) 2ν−1

(
2
√
ν
|t|
`

)ν
Kν

(
2
√
ν
|t|
`

)
,

with Γ the Gamma function and Kν the modified Bessel function of second order. The parameters σ2, ` and ν
are respectively the variance, correlation length and smoothness parameters. We refer to e.g Stein (1999) for a
presentation of the Matérn covariance function.

In the simulation, the true covariance function of Y is Matérn (σ2
0 , `0, ν0) with σ2

0 = 1, `0 = 3 and ν0 = 10.
This choice of ν0 corresponds to a smooth Gaussian process and enables, as we see below, to illustrate Theorems
3.3 and 3.4 in a more striking manner. The true noise variance is δ0 = 0.252.

For the covariance and noise variance model, it is considered that the smoothness parameter ν0 is known, that
the noise variance δ1 is fixed, and that the parameter θ = (σ2, `) is estimated by ML or CV. For both ML and
CV, the optimization is restricted to the domain Θ = [0.12, 102]× [0.2, 10]. [We experience that the conclusions
of the Monte Carlo simulation are the same if a larger optimization domain is considered.] The well-specified
case corresponds to δ1 = δ0 and the misspecified case corresponds to δ1 = 0.12 6= δ0. This covariance model is
representative of practical applications. Indeed, first it is common practice to fix the value of the smoothness
parameter in the Matérn model, as is discussed in Section 2. Second, when using Gaussian process models on
experimental or natural data, it can often occur that field experts provide an a priori value for the noise variance
(see e.g. Bachoc et al. (2014)). The misspecified case we address corresponds to an underestimation of the noise
variance, possibly because some sources of measurement errors have been neglected.

The Monte Carlo simulation is carried out as follows. For n = 100 and N = 1000 or n = 500 and N = 200
we repeat N data generations, estimations and quality criterion computations and average the results. More
specifically, we simulate N independent realizations of the observation points, of the observation vector and
of the Gaussian process on [0, n], under the true covariance function and noise variance. For each of these N
realizations, we compute the ML and CV estimates under the well-specified and misspecified models. For each
of these estimates of the form θ̂ = (σ̂2, ˆ̀), we compute the corresponding criteria Dn,σ̂2,ˆ̀ and En,σ̂2,ˆ̀.

In Figure 1 we report, for n = 100, for the well-specified and misspecified cases and for ML and CV, the
histograms of the estimates ˆ̀, and of the values of the error criteria Dn,σ̂2,ˆ̀ and En,σ̂2,ˆ̀. In the well-specified
case, the conclusions are in agreement with the main message of previous literature: Both estimators estimate
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the true `0 = 3 with reasonable accuracy and have error criteria that are relatively small. By also considering
Table 1, where the averages and standard deviations corresponding to Figures 1 and 2 are reported, we observe
that ML performs better than CV in all aspects. The estimation error for ` and the normalized Kullback-Leibler
divergence are significantly smaller for ML, while the integrated square prediction error is similar under ML and
CV estimation, but nonetheless smaller for ML.

The conclusions are however radically different in the misspecified case, as is implied by Theorems 3.3 and
3.4. First, the ML estimates of ` are significantly smaller than in the well-specified case, and can even be equal
to the lower-bound 0.2. The ML estimates of σ2 are not reported in Figure 1 to save space and are close to 1,
so that, approximately, the variance of the observations, as estimated by ML, is close to the true variance of
the observations. The reason for these small estimates of ` by ML is the underestimation of the noise variance
δ0, coupled with the large smoothness parameter ν0. Indeed, there exist pairs of closely spaced observation
points for which the corresponding differences of observed values are large compared to δ1, so that for values of
` that are larger than those computed by ML, the criterion (1) blows up, for all values of σ2. [Using a value of
σ2 smaller or approximately equal to 1 does not counterbalance the damaging impact on (1) of these pairs of
closely spaced observation points with large observed value differences. Increasing σ2 over 1 is also not optimal
for (1), since on a large scale, the observations do have variances close to 1.] This phenomenon for ML is all
the more important when the smoothness parameter ν0 is large, which is why we choose here the value ν0 = 10
to illustrate it. To summarize, ML gives an important weight to pairs of closely spaced observation points with
large observation differences and consequently estimates small correlation lengths to explain, so to speak, these
observation differences.

On the contrary for CV, if we consider only the predictions ŷσ2,`(t) at new points t and the LOO predictions
ŷi,σ2,`, with (`, σ2) ∈ Θ, then the situation is virtually the same as if the model was well-specified. Indeed, the
covariance matrices and vectors obtained from σ2, ` and δ0 are equal to δ0/δ1 time those obtained from σ2δ1/δ0,
` and δ1, so that the corresponding predictions are identical. Hence, in Figure 1, the empirical distribution of
ˆ̀
CV is approximately the same between the well-specified and misspecified cases. In the misspecified case, we

find that the empirical distribution of σ̂2
CV (not reported in Figure 1 to save space) is δ1/δ0 time that of the

well-specified case. Of course, although the CV predictions are not damaged by the misspecified δ1, the CV
estimations of other characteristics of the conditional distribution of Y given the observed data are damaged.
[For example the confidence intervals for Y (t) obtained from the CV estimates are significantly too small.]

The histograms of En,σ̂2,ˆ̀ and Dn,σ̂2,ˆ̀ for ML and CV in Figure 1 confirm the discussion on the estimated
parameters. For ML which estimates small correlation lengths, the error criteria En,σ̂2

ML,
ˆ̀
ML

are significantly

larger than in the well-specified case (by an approximate factor of 3 on average as seen in Table 1). The error
criteria Dn,σ̂2

ML,
ˆ̀
ML

also increase and become larger than these of both ML and CV in the well-specified case.

For CV, the error criteria En,σ̂2
CV ,

ˆ̀
CV

are, as discussed, as small as in the well-specified case and approximately

3 times smaller on average than for ML, illustrating Theorem 3.4. However, the error criteria Dn,σ̂2
CV ,

ˆ̀
CV

are 3

times larger for CV than for ML, in the misspecified case, illustrating Theorem 3.3.
Finally, in Figure 2, the settings are the same as for Figure 1 but for n = 500. The relative differences

between ML and CV are the same as for n = 100. The estimates of ` under ML and CV have less variance than
for n = 100, and their histograms are approximately unimodal and symmetric. Finally, for ML and CV in the
misspecified case, En,σ̂2,ˆ̀ and Dn,σ̂2,ˆ̀ keep the same averages between n = 100 and n = 500. In the well-specified
case, En,σ̂2,ˆ̀ also keeps the same average, while Dn,σ̂2,ˆ̀ becomes very small. This is because Dn,σ2

0 ,`0
= 0 in

the well-specified case, while En,σ2
0 ,`0

is non-zero and should not vanish to 0 as n → ∞, since the density of
observation points in the prediction domain is constant with n.

5 Discussion

Theorems 3.3 and 3.4, together with the results of the simulation study and the existing literature, draw the
following conclusion.

In the well-specified case, any covariance parameter estimator can be evaluated relatively to the estimation
error criterion. The ML estimator is thus generally optimal in the well-specified case. In the simulation study,
ML performs better than CV for the estimation error, the conditional Kullback-Leibler divergence and the
integrated square prediction error.
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Figure 1: Simulation of N = 1000 independent realizations of n = 100 i.i.d. observation points with uniform
distribution on [0, n], of the Gaussian process Y on [0, n] with Matérn (σ2

0 = 1, `0 = 3, ν0 = 10) covariance
function, and of the corresponding observation vector with noise variance δ0 = 0.252. For each simulation, ν0

is known, the noise variance is fixed to δ1 = δ0 (well-specified case) or δ1 = 0.12 6= δ0 (misspecified case), σ2

and ` are estimated by ML and CV and the corresponding error criteria Dn,σ̂2,ˆ̀ (normalized Kullback-Leibler

divergence) and En,σ̂2,ˆ̀ (integrated square prediction error) are computed. The histograms of the N estimates
of ` and of the N corresponding values of the error criteria are reported for ML and CV and in the well-specified
and misspecified cases. In the well-specified case, the estimates are on average reasonably close to the true values,
the error criteria are reasonably small and ML performs better than CV in all aspects. In the misspecified case,
the ML and CV estimates of the correlation lengths are significantly different, ML performs better than CV for
Dn,σ̂2,ˆ̀ and CV performs better than ML for En,σ̂2,ˆ̀.
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Figure 2: Same settings as for Figure 1 but with N = 200 and n = 500. The relative differences between ML
and CV are the same as for Figure 1. The variances of the estimates ˆ̀ and of the error criteria are smaller than
in Figure 1 and the histograms of the estimates are approximately symmetric and unimodal. Between Figure 1
and Figure 2, all error criteria keep the same order of magnitude except Dn,σ̂2,ˆ̀ in the well-specified case which

decreases and becomes very small for ML and CV (see also Table 1). This is because in the well-specified case
Dn,σ2

0 ,`0
= 0.
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n Specification Estimation Average Standard deviation Average Average

of ˆ̀ of ˆ̀ of En,σ̂2,ˆ̀ of Dn,σ̂2,ˆ̀

100

Well-specified ML 3.031 0.370 0.073 0.023
Well-specified CV 3.447 1.159 0.085 0.222
Misspecified ML 1.090 0.553 0.255 1.025
Misspecified CV 3.525 1.324 0.087 3.563

500

Well-specified ML 3.003 0.177 0.070 0.005
Well-specified CV 3.084 0.399 0.071 0.037
Misspecified ML 0.975 0.269 0.247 0.972
Misspecified CV 3.089 0.437 0.071 3.442

Table 1: For the settings of Figures 1 and 2, the averages and standard-deviations of ˆ̀, Dn,σ̂2,ˆ̀ and En,σ̂2,ˆ̀ are
reported.

On the other hand, in the misspecified case, there is not a unique quality criterion for covariance parameter
estimation. Different criteria are optimized by different covariance parameters and estimators. We prove that ML
asymptotically minimizes the conditional Kullback-Leibler divergence. In the case of independent and uniformly
distributed observation points, we prove that CV asymptotically minimizes the integrated square prediction
error. Thus, CV is asymptotically optimal for the criterion it is designed for, provided the spatial sampling is in
agreement with the CV principle. As shown in the simulation study, the estimated covariance parameters and
quality criterion values differ radically between ML and CV in the misspecified case. In this regard, we point
out that ML is not optimal relatively to all the common quality criteria, contrarily to the well-specified case.
Note finally that our aim is not to provide a hierarchy between ML and CV in the misspecified case.

The fact that ML and CV typically optimize different criteria in the misspecified case can serve as a practical
guideline. That is, one can compute the estimated covariance parameters with both methods and compare the
two estimates and the corresponding log-likelihood and LOO mean square error values. If the differences between
ML and CV are large, then it could be a warning that the covariance model at hand can be inappropriate.

We would like to mention two avenues for future research. First, the results of the Monte Carlo simulation
make it conceivable that, for independent and uniform observation points, the ML and CV estimators converge
to optimal parameters, for respectively the Kullback-Leibler divergence and the integrated square prediction
error, and are asymptotically normal. [These optimal parameters would be equal to the true ones in the well-
specified case.] Considering asymptotic normality might require new techniques to account for independent and
uniformly distributed observation points.

Second, consider the alternative CV estimator, maximizing the log predictive probability criterion (Ras-
mussen and Williams (2006), chapter 5, Zhang and Wang (2010), Sundararajan and Keerthi (2001)). It would
be interesting to see whether this estimator can be shown to minimize with respect to θ the quality criterion∫

[0,n1/d]d
dθ(t)dt, where dθ(t) is the conditional Kullback-Leibler divergence of the conditional distribution of

Y (t), given y and X, assumed under (Kθ, δθ), from the corresponding true conditional distribution obtained
from (K0, δ0).

A Proofs

A.1 Notation

In all the appendix, we consider that Conditions 2.3, 3.1 and 3.2 hold. For a column vector v of size m,
we let ||v||2 =

∑m
i=1 v

2
i and |v| = maxi=1,...,m |vi|. For a real m × m matrix A, we write as in Gray (2006),

|A|2 = 1
m

∑m
i,j=1A

2
i,j and ||A|| for the largest singular value of A. Both |.| and ||.|| are norms and ||.|| is also a

matrix norm.
For a sequence of real random variables zn, we write zn →p 0 and zn = op (1) when zn converges to zero in

probability. For a random variable A and a deterministic function f(A), we may write EA(f(A)) for E(f(A)).
For two random variables A and B and a deterministic function f(A,B) we may write EA|B(f(A,B)) for
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E(f(A,B)|B).
For a finite set E, we write |E| for its cardinality. For a continuous set E ⊂ Rd, we write |E| for its Lebesgue

measure. For two sets A, B in Rd, we write d(A,B) = infa∈A,b∈B |a− b|.
We write Csup a generic non-negative finite constant (not depending on n, X, Y , ε and θ). The actual value

of Csup is of no interest and can change in the same sequence of equations. For instance, instead of writing, say,
a ≤ 2b ≤ 4c, we shall write a ≤ Csupb ≤ Csupc. Similarly, we write Cinf a generic strictly positive constant (not
depending on n, X, Y , ε and θ).

A.2 Proofs for Maximum Likelihood

Lemma A.1. For i = 1, ..., p,

E
(

sup
θ∈Θ

∣∣∣∣ ∂∂θiLθ
∣∣∣∣)

is bounded w.r.t n.

Proof of Lemma A.1.

E
(

sup
θ∈Θ

∣∣∣∣ ∂∂θiLθ
∣∣∣∣) = E

(
sup
θ∈Θ

∣∣∣∣ 1n Tr

(
R−1
θ

∂

∂θi
Rθ

)
− 1

n
ytR−1

θ

(
∂

∂θi
Rθ

)
R−1
θ y

∣∣∣∣)

(Cauchy-Schwarz:) ≤ E

sup
θ∈Θ

√∣∣R−1
θ

∣∣2√∣∣∣∣ ∂∂θiRθ
∣∣∣∣2
 (6)

+

√
1

n
E
(

sup
θ∈Θ

∣∣∣∣R−1
θ y

∣∣∣∣2)√√√√ 1

n
E

(
sup
θ∈Θ

∣∣∣∣∣∣∣∣( ∂

∂θi
Rθ

)
R−1
θ y

∣∣∣∣∣∣∣∣2
)

(7)

Now,
∣∣R−1

θ

∣∣2 ≤ ∣∣∣∣R−1
θ

∣∣∣∣2 because of (2.19) in Gray (2006) and
∣∣∣∣R−1

θ

∣∣∣∣2 is bounded uniformly in θ because of

Lemma A.18. Also, E
(

supθ∈Θ |[∂/∂θi]Rθ|
2
)

is bounded because of Condition 3.2 and of a simple case of Lemma

A.17. So the right-hand side of (6) is bounded because of Jensen inequality. It remains to show that the term
(7) is bounded. To show this, note first that

1

n
E
(

sup
θ∈Θ

∣∣∣∣R−1
θ y

∣∣∣∣2) ≤ 1

n
E
(

sup
θ∈Θ
||y||2

∣∣∣∣R−1
θ

∣∣∣∣2)
(Lemma A.18:)

Csup
n

E
(
||y||2

)
= Csup(K0(0) + δ0),

is bounded. Thus, it remains to show that 1
nE
(

supθ∈Θ

∣∣∣∣([∂/∂θi]Rθ)R−1
θ y

∣∣∣∣2) is bounded. For this, we have

1

n
E

(
sup
θ∈Θ

∣∣∣∣∣∣∣∣( ∂

∂θi
Rθ

)
R−1
θ y

∣∣∣∣∣∣∣∣2
)

=
1

n
E

(
sup
θ∈Θ

ytR−1
θ

(
∂

∂θi
Rθ

)2

R−1
θ y

)

≤ Csup
∑

i1+...+ip≤p

∫
Θ

1

n
E

(∣∣∣∣∣ ∂i1∂θi11
...
∂ip

∂θ
ip
p

[
ytR−1

θ

(
∂

∂θi
Rθ

)2

R−1
θ y

]∣∣∣∣∣
)
dθ (Lemma A.15).

Thus, it suffices to show that, for fixed i1, ..., ip ∈ N so that i1 + ...+ ip ≤ p,

1

n
sup
θ∈Θ

E

(∣∣∣∣∣ ∂i1∂θi11
...
∂ip

∂θ
ip
p

[
ytR−1

θ

(
∂

∂θi
Rθ

)2

R−1
θ y

]∣∣∣∣∣
)
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is bounded. The above display is smaller than a fixed sum of terms of the form (1/n) supθ∈Θ E (|ytMθy|),
where the number of terms is independent of n and Mθ is of the form N1,θM1,θ...Mk,θNk+1,θ with Ni,θ = In
or Ni,θ = R−1

θ and with Mi,θ of the form [∂c1/∂θc11 ]...[∂cp/∂θ
cp
p ]Rθ with c1, ..., cp ∈ N and c1 + ... + cp ≤ p + 1.

Hence, it is enough to show that any term of the form supθ∈Θ(1/n)E (|ytMθy|) above is bounded. We have

sup
θ∈Θ

1

n
E
(
|ytMθy|

)
≤ sup
θ∈Θ

1

n
E
(∣∣ytMθy − E

(
ytMθy

∣∣X)∣∣)+ sup
θ∈Θ

1

n
E
(∣∣E (ytMθy

∣∣X)∣∣)
≤ sup
θ∈Θ

√
E
(

var

[
1

n
ytMθy

∣∣∣∣X])+ sup
θ∈Θ

1

n
E
(∣∣E (ytMθy

∣∣X)∣∣) (Jensen inequality)

= sup
θ∈Θ

√
E
(

1

2n2
Tr [R0 {Mθ +M t

θ}R0 {Mθ +M t
θ}]
)

+ sup
θ∈Θ

1

n
E (|Tr [R0Mθ]|)

≤ sup
θ∈Θ

√
1

2n
E
(
|R0 {Mθ +M t

θ}|
2
)

+ sup
θ∈Θ

√
E (|R0|2)E (|Mθ|2) (Cauchy-Schwarz).

≤ sup
θ∈Θ

√
1

n
E
(
|R0Mθ|2 + |R0M t

θ|
2
)

+ sup
θ∈Θ

√
E (|R0|2)E (|Mθ|2)

In the display above, the first term goes to 0 because of Conditions 3.1 and 3.2 and Lemmas A.17 and A.18.
The second term is bounded because of Lemmas A.17, A.18 and A.21. This completes the proof.

Corollary A.2. For any i = 1, ..., p,

E
(

sup
θ∈Θ

∣∣∣∣ ∂∂θiE (Lθ|X)

∣∣∣∣) and sup
θ∈Θ

∣∣∣∣ ∂∂θiDn,θ

∣∣∣∣
are bounded w.r.t n.

Proof of corollary A.2. Note first that [∂/∂θi]E (Lθ|X) = [∂/∂θi]Dn,θ. The corollary is then a consequence of
the fact that, for fixed n, we have (∂/∂θi)E (Lθ|X) = E ( (∂/∂θi)Lθ|X) and of supθ |E(.)| ≤ E(supθ |.|).

Lemma A.3. Consider a fixed θ ∈ Θ. Then

E (|Lθ − E(Lθ|X)|)→n→∞ 0.

Proof of Lemma A.3. We have, applying Jensen inequality twice

E (|Lθ − E(Lθ|X)|) ≤ E
(√

var(Lθ|X)
)
≤
√
E (var(Lθ|X)) =

√
E
(

2

n2
Tr
[
R0R

−1
θ R0R

−1
θ

])
.

The eigenvalues of R−1
θ are smaller than a finite constant Csup for any n,X, θ from Lemma A.18. Thus, by

applying Cauchy schwarz inequality and Lemmas A.17 and A.21,

E (|Lθ − E(Lθ|X)|) ≤
√

2

n

√
E
(
|R0R

−1
θ |2

)
≤ Csup√

n
.

Proof of Theorem 3.3. We have

sup
θ∈Θ
|Lθ − log(det(R0))− 1−Dn,θ|

≤ sup
θ∈Θ
|Lθ − E(Lθ|X)|+ sup

θ∈Θ
|E(Lθ|X)− log(det(R0))− 1−Dn,θ|

= sup
θ∈Θ
|Lθ − E(Lθ|X)| .
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The term in the above display goes to 0 in probability. Indeed, for fixed θ, the function of θ goes to 0 in
probability because of Lemma A.3. The convergence of the supremum over θ to 0 is then a consequence of the
fact that Θ is compact and of Lemma A.1 and corollary A.2.

Finally, since θ̂ML minimizes Lθ and so also Lθ − log(det(R0))− 1, we conclude with, for any θ ∈ Θ,

Dn,θ̂ML
−Dn,θ ≤ Lθ̂ML

− Lθ + 2 sup
θ∈Θ
|Lθ − log(det(R0))− 1−Dn,θ|

≤ 2 sup
θ∈Θ
|Lθ − log(det(R0))− 1−Dn,θ| .

Hence supθ∈Θ

(
Dn,θ̂ML

−Dn,θ

)
= op(1).

A.3 Proofs for Cross Validation

Lemma A.4. For i = 1, ..., p,

E
(

sup
θ∈Θ

∣∣∣∣ ∂∂θiCVθ
∣∣∣∣)

is bounded w.r.t n.

Proof of Lemma A.4. We have

E
(

sup
θ∈Θ

∣∣∣∣ ∂∂θiCVθ
∣∣∣∣) ≤ E

(
1

n

n∑
k=1

sup
θ∈Θ

∣∣∣∣ ∂∂θi (yk − ŷk,θ)2

∣∣∣∣
)

(symmetry of X1, ..., Xn:) = E
(

sup
θ∈Θ

∣∣∣∣ ∂∂θi (y1 − ŷ1,θ)
2

∣∣∣∣)
(Lemma A.15:) ≤ Csup

∑
i1+...+ip≤p

∫
Θ

E

(∣∣∣∣∣ ∂i1∂θi11
...
∂ip

∂θ
ip
p

∂

∂θi
(y1 − ŷ1,θ)

2

∣∣∣∣∣
)
dθ.

Let us consider a specific i1, ..., ip. Then [∂i1/∂θi11 ]...[∂ip/∂θ
ip
p ][∂/∂θi](y1− ŷ1,θ)

2 is a weighted sum (weights and
number of terms depending only on i1, ..., ip), so that the terms are of the two following forms:

(y1 − ŷ1,θ)

(
∂k1

∂θk11

...
∂kp

∂θ
kp
p

∂

∂θi
ŷ1,θ

)
or

(
∂k1

∂θk11

...
∂kp

∂θ
kp
p

∂

∂θi
ŷ1,θ

)(
∂l1

∂θl11
...
∂lp

∂θ
lp
p

∂

∂θi
ŷ1,θ

)
.

Thus, we just have to show that the mean values of the absolute values of the terms of the form above (for
k1 + ... + kp ≤ p and l1 + ... + lp ≤ p) are bounded uniformly in θ ∈ Θ. By using Cauchy-Schwarz inequality,
these means of absolute values are smaller than either

√
E ((y1 − ŷ1,θ)2)

√√√√√E

( ∂k1

∂θk11

...
∂kp

∂θ
kp
p

∂

∂θi
ŷ1,θ

)2


or √√√√√E

( ∂k1

∂θk11

...
∂kp

∂θ
kp
p

∂

∂θi
ŷ1,θ

)2

√√√√√E

( ∂l1

∂θl11
...
∂lp

∂θ
lp
p

∂

∂θi
ŷ1,θ

)2
.

Now, E
(
(y1 − ŷ1,θ)

2
)
≤ 2E(y2

1) + 2E(ŷ2
1,θ). The term E(y2

1) is bounded uniformly in θ. Thus, finally, it re-

mains to show that for any a1 + ... + ap ≤ p + 1, supθ∈Θ E
((

[∂a1/∂θa11 ]...[∂ap/∂θ
ap
p ]ŷ1,θ

)2)
is bounded. For

that, we have ŷ1,θ = rt1,θR
−1
1,θy−1. Thus, [∂a1/∂θa11 ]...[∂ap/∂θ

ap
p ]ŷ1,θ is a fixed sum of weighted terms of the
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form wtθMθy−1, where wθ is of the form [∂b1/∂θb11 ]...[∂bp/∂θ
bp
p ]r1,θ (b1 + ... + bp ≤ p + 1) and Mθ is of the

form R−1
1,θM1,θ...R

−1
1,θMk,θR

−1
1,θ. Finally, k is smaller than a finite constant Csup (function of p) and Mi,θ is of

the form [∂c1/∂θc11 ]...[∂cp/∂θ
cp
p ]R1,θ, with c1 + ... + cp ≤ p + 1. Thus, it is sufficient to show that a generic

supθ∈Θ E
(

(wtθMθy−1)
2
)

, as previously defined, is bounded.

Then,

sup
θ∈Θ

E
((
wtθMθy−1

)2)
= sup

θ∈Θ
EXEy|X

(
yt−1M

t
θwθw

t
θMθy−1

)
= sup

θ∈Θ
EX Tr

(
R1,0M

t
θwθw

t
θMθ

)
≤ sup

θ∈Θ
EX

 n∑
i,j=2

∣∣∣(MθR1,0M
t
θ

)
i,j

∣∣∣ ∣∣∣(wθwtθ)i,j∣∣∣
 (8)

= sup
θ∈Θ

 n∑
i,j=2

EX2,...,Xn

(∣∣∣(MθR1,0M
t
θ

)
i,j

∣∣∣EX1|X2,...,Xn

∣∣∣(wθwtθ)i,j∣∣∣)
 .

Now, because of Conditions 2.3 and 3.2,

EX1|X2,...,Xn

∣∣∣(wθwtθ)i,j∣∣∣ ≤ Csup
n

∫
[0,n1/d]d

1

1 + |Xi − x1|d+1

1

1 + |Xj − x1|d+1
dx1

(Lemma A.16:) ≤ 1

n

Csup
1 + |Xi −Xj |d+1

.

So,

sup
θ∈Θ

E
((
wtθMθy−1

)2) ≤ Csup
1

n
sup
θ∈Θ

 n∑
i,j=2

EX2,...,Xn

(∣∣∣(MθR1,0M
t
θ

)
i,j

∣∣∣ 1

1 + |Xi −Xj |d+1

)
(Cauchy-Schwarz:) ≤ sup

θ∈Θ

√E
{
|MθR1,0M t

θ|
2
}√√√√√E

 1

n

n∑
i,j=2

(
1

1 + |Xi −Xj |d+1

)2

 .

The supremum over θ of the second term above is bounded because of Lemma A.17. The supremum over θ of
the first term above is bounded because of Lemmas A.17, A.18 and A.21.

Corollary A.5. For any i = 1, ..., p,

E
(

sup
θ∈Θ

∣∣∣∣ ∂∂θiE (CVθ|X)

∣∣∣∣) and sup
θ∈Θ

∣∣∣∣ ∂∂θiE (CVθ)

∣∣∣∣
are bounded w.r.t n.

Proof of corollary A.5. The corollary is a consequence of Lemma A.4, supθ |E(.)| ≤ E(supθ |.|) and of the fact
that, for fixed n, we have (∂/∂θi)E (CVθ|X) = E ( (∂/∂θi)CVθ|X) and (∂/∂θi)E(CVθ) = E((∂/∂θi)CVθ).

Lemma A.6. For any fixed θ ∈ Θ we have

E (|CVθ − E(CVθ|X)|)→n→∞ 0.

Proof of Lemma A.6. From (3), we have CVθ = ytMθy, with Mθ = (1/n)R−1
θ diag(R−1

θ )−2R−1
θ . Because of

Lemma A.18, the eigenvalues of Mθ are bounded uniformly in n,X, θ by a finite constant Csup. Thus, the proof
of the lemma is exactly the same as that of Lemma A.3, with R−1

θ replaced by Mθ.
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Definition A.7. Consider a fixed θ ∈ Θ. Consider two functions of n: n2(n) ∈ N∗ and ∆(n) ≥ 0, that we
write n2 and ∆ for simplicity, so that, for any n ∈ N∗, n2 can be written n2 = Nd

2 , with N2 ∈ N∗, and so that
n = n2∆. Let, for i = 1, ..., N2 − 1, ci = [((i − 1)/N2)n1/d, (i/N2)n1/d). Let cN2

= [((N2 − 1)/N2)n1/d, n1/d].
Let, for x ∈ [0, n1/d], i(x) be the unique i ∈ {1, ..., N2} so that x ∈ ci. Let, for t = (t1, ..., td)

t ∈ [0, n1/d]d,

C(t) =
∏d
j=1 ci(tj). Define the non-stationary covariance function K̃θ(t1, t2) = Kθ(t1, t2)1C(t1)=C(t2). Define

R̃θ, R̃i,θ, r̃i,θ, ˜̂yi,θ, C̃V θ similarly to Rθ, Ri,θ, ri,θ, ŷi,θ, CVθ but with Kθ replaced by K̃θ. Furthermore, let us

write the n2 aforementioned sets of the form
∏d
j=1 cij , for i1, ..., id ∈ {1, ..., N2}, as the sets C1, ..., Cn2

. [The

specific one-to-one correspondence we use between {1, ..., N2}d and {1, ..., n2} is of no interest. Note that this
one-to-one correspondence depends on n. The sets C1, ..., Cn2

also depend of n, but we drop this dependence in
the notation for simplicity.]

Let Ni be the random number of observation points in Ci and let Xi be the random Ni-tuple obtained from
X by keeping only the observation points that are in Ci and by preserving the order of the indices in X. Let yi

be the column vector of size Ni, composed by the components yj of y for which Xj is in Ci (preserving the order
of indexes). Let R̄i,θ and R̄i,0 be the covariance matrices, under (Kθ, δθ) and (K0, δ0), of yi, given X.

Finally, for 1 ≤ i, j ≤ n2, let vi and wj be two Ni×1 and Nj×1 vectors and M ij be a Ni×Nj matrix. Then
we use the convention that, when Ni = 0, |M ij | = ||M ij || = 0, ||vi|| = |vi| = 0 and vtiM

ijwj = 0. Furthermore,
if i = j and M ii is invertible when Ni ≥ 1, we use the convention that vti(M

ii)−1wi = 0 when Ni = 0. [These
conventions enable to write equalities or inequalities involving matrices and vectors of size Ni, Nj or Ni ×Nj,
that hold regardless of whether Ni or Nj are zero or not. As can be checked along the proofs involving Definition
A.7, these relations boil down to trivial relations (e.g. 0 = 0) when Ni = 0 or Nj = 0. This way of proceeding
considerably simplifies the exposition in these proofs.]

Lemma A.8. Consider a fixed θ ∈ Θ. In the context of Definition A.7, if n2 = o(n),

E
(∣∣∣CVθ − C̃V θ∣∣∣)→n→∞ 0.

Proof of Lemma A.8. Assume that n2 = o(n), or equivalently that ∆→n→∞ ∞. We have

E
(∣∣∣CVθ − C̃V θ∣∣∣) ≤ 1

n

n∑
i=1

E
(∣∣∣(yi − ŷi,θ)2 − (yi − ˜̂yi,θ)

2
∣∣∣)

(symmetry:) = E
(∣∣∣(y1 − ŷ1,θ)

2 − (y1 − ˜̂y1,θ)
2
∣∣∣)

= E
(∣∣∣(y1 − rt1,θR−1

1,θy−1)2 − (y1 − r̃t1,θR̃−1
1,θy−1)2

∣∣∣)
= E

(∣∣∣r̃t1,θR̃−1
1,θy−1 − rt1,θR−1

1,θy−1

∣∣∣ ∣∣∣2y1 − rt1,θR−1
1,θy−1 − r̃t1,θR̃−1

1,θy−1

∣∣∣)
(Cauchy-Schwarz:) ≤

√
E
((

r̃t1,θR̃
−1
1,θy−1 − rt1,θR

−1
1,θy−1

)2
)

√
E
((

2y1 − rt1,θR
−1
1,θy−1 − r̃t1,θR̃

−1
1,θy−1

)2
)

Now, the second square root in the above display is bounded, because of (a+ b+ c)2 ≤ 3
(
a2 + b2 + c2

)
and

of arguments similar to but simpler than those given in the proof of Lemma A.4. Thus it only remains to show
that

E
((

r̃t1,θR̃
−1
1,θy−1 − rt1,θR−1

1,θy−1

)2
)
→n→∞ 0.

For this,

E
((

r̃t1,θR̃
−1
1,θy−1 − rt1,θR−1

1,θy−1

)2
)
≤ 2E

((
r̃t1,θ(R̃

−1
1,θ −R

−1
1,θ)y−1

)2
)

(9)

+2E
((

(r̃1,θ − r1,θ)
tR−1

1,θy−1

)2
)
.
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We show separately that both terms in the right-hand side of (9) converge to 0. For the first term,

E
((

r̃t1,θ(R̃
−1
1,θ −R

−1
1,θ)y−1

)2
)

= E
(

Tr
[
R1,0(R̃−1

1,θ −R
−1
1,θ)r̃1,θ r̃

t
1,θ(R̃

−1
1,θ −R

−1
1,θ)
])

≤
n∑

i,j=2

E
(
|(R̃−1

1,θ −R
−1
1,θ)R1,0(R̃−1

1,θ −R
−1
1,θ)|i,j |r̃1,θ r̃

t
1,θ|i,j

)
.

Hence, by the same arguments as after (8) in the proof of Lemma A.4, we obtain[
E
((

r̃t1,θ(R̃
−1
1,θ −R

−1
1,θ)y−1

)2
)]2

≤ CsupE
(
|(R̃−1

1,θ −R
−1
1,θ)R1,0(R̃−1

1,θ −R
−1
1,θ)|

2
)

≤ CsupE
({
||R̃−1

1,θ||+ ||R
−1
1,θ||

}
|R1,0(R̃−1

1,θ −R
−1
1,θ)|

2
)

(Lemmas A.18 and A.19:) ≤ Csup
n

E
(

Tr
[
(R̃−1

1,θ −R
−1
1,θ)R

2
1,0(R̃−1

1,θ −R
−1
1,θ)
])

(Cauchy-Schwarz:) ≤ Csup

√
E
(
|(R̃−1

1,θ −R
−1
1,θ)

2|2
)√

E
(
|R2

1,0|2
)
.

From Lemma A.17, E
(
|R2

1,0|2
)

is bounded, so it remains to show that E
(
|(R̃−1

1,θ −R
−1
1,θ)

2|2
)

converges to 0.

For this,

E
(
|(R̃−1

1,θ −R
−1
1,θ)

2|2
)

= E
(
|(R̃−1

1,θ(R1,θ − R̃1,θ)R
−1
1,θ)

2|2
)

(Lemma A.18:) ≤ CsupE
(
|(R1,θ − R̃1,θ)R

−1
1,θR̃

−1
1,θ(R1,θ − R̃1,θ)|2

)
= Csup

1

n
E
(

Tr
[
(R1,θ − R̃1,θ)

2R−1
1,θR̃

−1
1,θ(R1,θ − R̃1,θ)

2R̃−1
1,θR

−1
1,θ

])
(Cauchy-Schwarz:) ≤ Csup

√
E
(
|(R1,θ − R̃1,θ)2R−1

1,θR̃
−1
1,θ|2

)√
E
(
|(R1,θ − R̃1,θ)2R̃−1

1,θR
−1
1,θ|2

)
.

Hence, with Lemmas A.18, A.19 and A.22, we conclude that the first term of the right hand side of (9) goes to
0. Let us now show that the second term of the right hand side of (9) goes to 0. We have,

E
((

(r̃1,θ − r1,θ)
tR−1

1,θy−1

)2
)

= E
(

Tr
(
R−1

1,θR1,0R
−1
1,θ(r̃1,θ − r1,θ)(r̃1,θ − r1,θ)

t
))

≤
n∑

i,j=2

E

(∣∣∣[R−1
1,θR1,0R

−1
1,θ]i,j

∣∣∣ 1

n

∫
[0,n1/d]d

1

1 + |Xi − x1|d+1

1

1 + |Xj − x1|d+1
1C(Xi) 6=C(x1)1C(Xj)6=C(x1)dx1

)
,

where the last line is obtained similarly to after (8) in the proof of Lemma A.4. Thus we have, with the notation
and result of Lemma A.23,

E
((

(r̃1,θ − r1,θ)
tR−1

1,θy−1

)2
)
≤ Csup

1

n

n∑
i,j=2

E
(∣∣∣[R−1

1,θR1,0R
−1
1,θ]i,j

∣∣∣ 1

1 + |Xi −Xj |d+1
f(D∆(Xi, Xj))

)

(Cauchy-Schwarz:) ≤
√

E
(
|R−1

1,θR1,0R
−1
1,θ|2

)
√√√√ 1

n

n∑
i,j=2

E

[(
1

1 + |Xi −Xj |d+1

)2

f2(D∆(Xi, Xj))

]
.
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From Lemmas A.17, A.18 and A.21, the first
√
. in the above display is bounded. Thus it remains to show that

the second
√
. goes to 0. For this, noting that f2(t) ≤ Csupf(t) and distinguishing the case i = j from the case

i 6= j,

1

n

n∑
i,j=2

E

[(
1

1 + |Xi −Xj |d+1

)2

f(D∆(X1, Xj))

]

≤ Csup
n

∫
[0,n1/d]d

f(D∆(x))dx+
Csup
n

∫
[0,n1/d]d

dx1

∫
[0,n1/d]d

dx2
1

1 + |x1 − x2|d+1
f(D∆(x1, x2))

=
Csup
n

∫
[0,n1/d]d

f(D∆(x))dx+ o(1) (Lemma A.24). (10)

Now, for any ε > 0, there is a finite T so that f(T ) ≤ ε, and by defining En = {x ∈ [0, n1/d]d;D∆(x) ≤ T}, we
have |En| = o(n), as can be seen easily, and

1

n

∫
[0,n1/d]d

f(D∆(x))dx ≤ f(0)
|En|
n

+ ε.

This finally shows that the second term of the right hand side of (9) goes to 0 which finishes the proof.

Lemma A.9. For any fixed θ ∈ Θ,
E (|E (CVθ)− E [CVθ|X]|)

goes to 0 as n→∞.

Proof of Lemma A.9. Fix θ ∈ Θ. Because of Lemma A.8 and of |E(.)| ≤ E(|.|), it is sufficient to show that
there exists a sequence ∆ → +∞ so that the lemma holds with CVθ replaced by C̃V θ. Then, because of

(E(.))
2 ≤ E

(
(.)2
)
, it is sufficient to show var

(
E
[
C̃V θ

∣∣∣X])→n→∞ 0.

Let C1, ..., Cn2
be as in Definition A.7. Define, for k = 1, ..., n2,

fk(X) =
1

∆

∑
Xi∈Ck

E
([

yi − ˜̂yi,θ

]2∣∣∣∣X) .
[Note that, following the discussion in Definition A.7, we have fk(X) = 0 if Nk = 0 and fk(X) = K0(0) + δ0 if

Nk = 1.] Then E
(
C̃V θ|X

)
= (1/n2)

∑n2

k=1 fk(X). Let R̄k,θ and R̄k,0 be as in Definition A.7. Because of the

definition of K̃ and by (3), we have

fk(X) =
1

∆
Tr
(
R̄k,0R̄

−1
k,θdiag(R̄−1

k,θ)
−2R̄−1

k,θ

)
.

The functions fk(X) satisfy the conditions of Lemma A.25. Furthermore, by using the notation Nk of Lemma
A.25, we have

E
(
f2
k (X)

∣∣Nk = N
)

=
1

∆2
E
([

Tr
(
R̄k,0R̄

−1
k,θdiag(R̄−1

k,θ)
−2R̄−1

k,θ

)]2∣∣∣∣Nk = N

)
(Cauchy-Schwarz:) ≤ 1

∆2
E
(
N2|R̄k,0|2|R̄−1

k,θdiag(R̄−1
k,θ)
−2R̄−1

k,θ|
2
∣∣∣Nk = N

)
(Lemma A.20:) ≤ Csup

N2

∆2
E
(
|R̄k,0|2

∣∣Nk = N
)

(Condition 3.1 and Lemma A.25:) ≤ Csup
N2

∆2

(
1 +

N

∆2

∫
[0,∆1/d]d

∫
[0,∆1/d]d

1

1 + |x1 − x2|d+1
dx1dx2

)

≤ Csup

(
N2

∆2
+
N3

∆3

)
≤ Csup

(
1 +

N4

∆4

)
.
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Thus, because of Lemma A.26, there exists a sequence ∆→n→∞ ∞ so that var
(
E
[
C̃V θ

∣∣∣X])→n→∞ 0, which

completes the proof.

Lemma A.10. Let, with the notation of Definition A.7, Ẽn,θ be defined as En,θ, with Kθ replaced by K̃θ. Fix
θ ∈ Θ. Then, if n2 = o(n),

E
(∣∣∣En,θ − Ẽn,θ∣∣∣)→n→∞ 0.

Proof of Lemma A.10. We have, by letting ˜̂yθ(t) be as ŷθ(t), with Kθ replaced by K̃θ.

E
(∣∣∣En,θ − Ẽn,θ∣∣∣) = E

(∣∣∣∣∣ 1n
∫

[0,n1/d]d
[Y (t)− ŷθ(t)]2 dt−

1

n

∫
[0,n1/d]d

[
Y (t)− ˜̂yθ(t)

]2
dt

∣∣∣∣∣
)

≤ E

(
1

n

∫
[0,n1/d]d

∣∣∣∣[Y (t)− ŷθ(t)]2 −
[
Y (t)− ˜̂yθ(t)

]2∣∣∣∣ dt
)

The variable t in the integral above is formally equivalent to a new observation point Xn+1, so that
X1, ..., Xn+1 are independent and uniformly distributed on [0, n1/d]d. Thus,

E
(∣∣∣En,θ − Ẽn,θ∣∣∣) ≤ E

(∣∣∣∣(Y (Xn+1)− ŷθ(Xn+1))
2 −

(
Y (Xn+1)− ˜̂yθ(Xn+1)

)2
∣∣∣∣) .

The rest of the proof is carried out as in Lemma A.8, the only difference being that there are n+ 1 observation
points instead of n.

Lemma A.11. For any fixed θ ∈ Θ we have

E (|En,θ − E(En,θ|X)|)→n→∞ 0.

Proof of Lemma A.11. Because of Lemma A.10 and using |E(.)| ≤ E(|.|) and E2(.) ≤ E((.)2), it is sufficient to
show that there exists a sequence ∆→n→∞ so that

E
(
var

(
Ẽn,θ

∣∣∣X))
goes to 0 as n→∞.

Let us use the notation C1, ..., Cn2
of Definition A.7. Let, for t ∈ Rd and v = (v1, ..., vm) ∈ (Rd)m, rθ(t, v) =

(Kθ(t, v1), ...,Kθ(t, vm))t. We define r0(t, v) similarly. Let yi, R̄i,θ and R̄i,0 be as in Definition A.7. Let for i 6= j,
R0(Xi, Xj) =

[
K0((Xi)k, (X

j)l)
]
k=1,...,Ni;l=1,...,Nj

. Let R0(Xi, Xi) =
[
K0((Xi)k, (X

i)l)
]
k,l=1,...,Ni

+ δ0INi
.

Then,

Ẽn,θ =
1

n2

n2∑
i=1

1

∆

∫
Ci

dti

[
Y (ti)− rtθ(ti, Xi)R̄−1

i,θ y
i
]2

Hence, using the relation cov
(
A2, B2

)
= 2 (cov(A,B))

2
, for two centered Gaussian variables A and B, we obtain

var
(
Ẽn,θ

∣∣∣X)
=

2

n2

n2∑
i=1

1

n2

n2∑
j=1

1

∆2

∫
Ci

dti

∫
Cj

dtjcov
2
([
Y (ti)− rtθ(ti, Xi)R̄−1

i,θ y
i
]
,
[
Y (tj)− rtθ(tj , Xj)R̄−1

j,θy
j
]∣∣∣X)

=
1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

∆2

∫
Ci

dti

∫
Cj

dtj

{
K0(ti, tj)− rtθ(ti, Xi)R̄−1

i,θ r0(tj , X
i)− rtθ(tj , Xj)R̄−1

j,θr0(ti, X
j)

+rtθ(ti, X
i)R̄−1

i,θR0(Xi, Xj)R̄−1
j,θrθ(tj , X

j)
}2

.
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Now, we use (a1 + a2 + a3 + a4)2 ≤ 4(a2
1 + a2

2 + a2
3 + a2

4). Hence we obtain

E
(
var

(
Ẽn,θ

∣∣∣X)) ≤ Csup (T1 + T2 + T3 + T4) , (11)

where T1, T2, T3, T4 are defined and treated below, and with T2 = T3 by symmetry.
For T1,

T1 =
1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

∆2

∫
Ci

dti

∫
Cj

dtjK
2
0 (ti, tj)

(Condition 3.1:) ≤ Csup
n2

n2∑
i=1

1

n2

1

∆2

∫
Ci

dti

∫
Rd

dt

(
1

1 + |ti − t|d+1

)2

≤ Csup
1

n2∆
. (12)

For T2, using Cauchy-Schwarz and Lemma A.20,

T2

=
1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

∆2

∫
Ci

dti

∫
Cj

dtjE
[(
rtθ(ti, X

i)R̄−1
i,θ r0(tj , X

i)
)2
]

≤ Csup
1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

∆2

∫
Ci

dti

∫
Cj

dtjE
[
||rθ(ti, Xi)||2||r0(tj , X

i)||2
]
.

Now, using the notation Ni of Lemma A.25 and Conditions 3.1 and 3.2,

T2

≤ Csup
1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

∆2

∫
Ci

dti

∫
Cj

dtjE

[
N2
i

{
1

1 + d(Ci, Cj)d+1

}4
]

≤ Csup
1

n2

n2∑
i=1

1

n2

n2∑
j=1

∆2

{
1

1 + d(Ci, Cj)d+1

}
(Lemma A.27)

≤ Csup
∆2

n2
max

i=1,...,n2

n2∑
j=1

{
1

1 + d(Ci, Cj)d+1

}

≤ Csup
∆2

n2
(Lemma A.28, and because we will set ∆→n→∞ ∞). (13)

For T4 in (11), using Cauchy-Schwarz and Lemma A.20,

T4

=
1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

∆2

∫
Ci

dti

∫
Cj

dtjE
[(
rtθ(ti, X

i)R̄−1
i,θR0(Xi, Xj)R̄−1

j,θrθ(tj , X
j)
)2
]

≤ Csup
1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

∆2

∫
Ci

dti

∫
Cj

dtj

√
E [||rtθ(ti, Xi)||4]

√
E
[
||R0(Xi, Xj)R̄−1

j,θrθ(tj , X
j)||4

]
. (14)

Using Condition 3.1, Lemma A.20 and Lemma A.29, we obtain

||R0(Xi, Xj)R̄−1
j,θrθ(tj , X

j)||2 ≤ CsupNiNj

{
1

1 + d(Ci, Cj)d+1

}2

||R̄−1
j,θrθ(tj , X

j)||2

≤ CsupNiN
2
j

{
1

1 + d(Ci, Cj)d+1

}2

.

21



Hence, going back to (14),

T4

≤ Csup
1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

∆2

∫
Ci

dti

∫
Cj

dtj

√
E [N2

i ]

{
1

1 + d(Ci, Cj)d+1

}2√
E
[
N2
i N

4
j

]
≤ Csup

1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

∆2

∫
Ci

dti

∫
Cj

dtj

{
1

1 + d(Ci, Cj)d+1

}2√
E [N2

i ]

√√
E [N4

i ]
√
E
[
N8
j

]
≤ Csup

∆4

n2
(Lemmas A.27 and A.28). (15)

Hence, from (12), (13) and (15), we can set ∆ = n1/6 to complete the proof.

Lemma A.12. For any fixed θ ∈ Θ,
E (|E (En,θ)− E [En,θ|X]|)

goes to 0 as n→∞.

Proof of Lemma A.12. Fix θ ∈ Θ. Because of Lemma A.10 and of |E(.)| ≤ E(|.|), it is sufficient to show that
there exists a sequence ∆ → +∞ so that the lemma holds with En,θ replaced by Ẽn,θ. Then, because of

(E(.))
2 ≤ E

(
(.)2
)
, it is sufficient to show var

(
E
[
Ẽn,θ

∣∣∣X])→n→∞ 0.

Let C1, ..., Cn2
be as in Definition A.7 and let ˜̂yθ(t) be as in the proof of Lemma A.10. Define, for k = 1, ..., n2,

gk(X) =
1

∆

∫
Ck

dtkE
([

Y (tk)− ˜̂yθ(tk)
]2∣∣∣∣X) .

[Note that, following the discussion in Definition A.7, we have gk(x) = K0(0) if Nk = 0.] Then E
(
Ẽn,θ|X

)
=

(1/n2)
∑n2

k=1 gk(X). Following the notation of Lemma A.11 we have,

gk(X) =

1

∆

∫
Ck

dtkE
([

Y (tk)− rtθ(tk, Xk)R̄−1
k,θy

k
]2∣∣∣∣X)

≤ 2
1

∆

∫
Ck

dtk

(
K0(0) + rtθ(tk, X

k)R̄−1
k,θR̄k,0R̄

−1
k,θrθ(tk, X

k)
)

≤ Csup + 2
1

∆

∫
Ck

dtk||rtθ(tk, Xk)||||R̄k,0R̄−1
k,θrθ(tk, X

k)|| (Lemma A.20)

≤ Csup + Csup
1

∆

∫
Ck

dtk
√
NkNk||R̄−1

k,θrθ(tk, X
k)|| (Conditions 3.1 and 3.2 and Lemma A.29)

≤ Csup
(
1 +N2

k

)
(Lemma A.20).

Hence E
(
g2
k(X)

∣∣Nk = N
)
≤ Csup(1 +N4), so that we can complete the proof with Lemma A.26.

Lemma A.13. Consider a fixed θ ∈ Θ. Then

E(CVθ)− E(En,θ)− δ0

goes to 0 as n→∞.
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Proof of Lemma A.13. Let us consider a random observation point Xn+1 with uniform distribution on [0, n1/d]d.
Let us also consider a Gaussian variable εn+1 with mean 0 and variance δ0. Consider that Xn+1 and εn+1 are
independent and independent of X, Y and ε. With the same argument as in the proof of Lemma A.10, we have

E (En,θ) = E
(

[Y (Xn+1)− ŷθ(Xn+1)]
2
)
,

where we remind that ŷθ(Xn+1) = rtθ(Xn+1)R−1
θ y, with rθ(Xn+1) = (K(X1, Xn+1), ...,K(Xn, Xn+1))t. Now,

by symmetry of the roles of X1, ..., Xn+1 and ε1, ...εn+1, we have

E (CVθ) = E
(

[Y (Xn+1)− ŷn−1,θ(Xn+1)]
2
)

+ δ0,

with ŷn−1,θ(Xn+1) = rtn−1,θR̃
−1
n−1,θy, with rn−1,θ = (K(X1, Xn+1), ...,K(Xn−1, Xn+1), 0)t and

R̃n−1,θ =

(
(Kθ(Xi, Xj))i,j=1,...,(n−1) + δθIn−1 0

0 1

)
.

Hence, using Cauchy-Schwarz

|E(CVθ)− E(En,θ)− δ0|

≤

√
E
([
rtθ(Xn+1)R−1

θ y − rtn−1,θR̃
−1
n−1,θy

]2)√
E
([
rtθ(Xn+1)R−1

θ y + rtn−1,θR̃
−1
n−1,θy − 2Y (Xn+1)

]2)
. (16)

The second term in (16) is shown to be bounded with techniques similar to but simpler than in the proof of
Lemma A.4. The first term in (16) is shown to go to zero with techniques similar to but simpler than in the
proof of Lemma A.8.

Corollary A.14. For any i = 1, ..., p,

E
(

sup
θ∈Θ

∣∣∣∣ ∂∂θiEn,θ
∣∣∣∣) , E

(
sup
θ∈Θ

∣∣∣∣ ∂∂θiE (En,θ|X)

∣∣∣∣) and sup
θ∈Θ

∣∣∣∣ ∂∂θiE (En,θ)

∣∣∣∣
are bounded w.r.t n.

Proof of corollary A.14. We have

E
(

sup
θ∈Θ

∣∣∣∣ ∂∂θiEn,θ
∣∣∣∣) = E

(
sup
θ∈Θ

∣∣∣∣∣ ∂∂θi 1

n

∫
[0,n1/d]d

[Y (t)− ŷθ(t)]2 dt

∣∣∣∣∣
)
.

For fixed n we can exchange derivative and integration, so we obtain

E
(

sup
θ∈Θ

∣∣∣∣ ∂∂θiEn,θ
∣∣∣∣) = E

(
sup
θ∈Θ

∣∣∣∣∣ 1n
∫

[0,n1/d]d

∂

∂θi
[Y (t)− ŷθ(t)]2 dt

∣∣∣∣∣
)

≤ E

(
1

n

∫
[0,n1/d]d

sup
θ∈Θ

∣∣∣∣ ∂∂θi [Y (t)− ŷθ(t)]2
∣∣∣∣ dt
)
.

Hence, by considering t as a new random observation point Xn+1 as in the proof of Lemma A.10, we show the
first bound of the lemma as in the proof of Lemma A.4, the only difference being that there are n+1 observation
points instead of n. The second and third bounds are proved as in the proof of corollary A.5.
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Proof of Theorem 3.4. We have

sup
θ∈Θ
|CVθ − δ0 − En,θ|

≤ sup
θ∈Θ
|CVθ − E(CVθ|X)|+ sup

θ∈Θ
|E(CVθ|X)− E(CVθ)|+ sup

θ∈Θ
|E(CVθ)− δ0 − E(En,θ)|

+ sup
θ∈Θ
|E(En,θ)− E(En,θ|X)|+ sup

θ∈Θ
|E(En,θ|X)− En,θ| .

The five terms in the right-hand size of the above equation go to 0 in probability. Indeed, for fixed θ, the
functions of θ go to 0 in probability because of Lemmas A.6, A.9, A.11, A.12 and A.13. The convergence of the
supremums over θ to 0 is then a consequence of the fact that Θ is compact and of Lemma A.4 and corollaries
A.5 and A.14. Finally, since θ̂CV minimizes CVθ + δ0, we conclude with, for any θ ∈ Θ

En,θ̂CV
− En,θ ≤ CVθ̂CV

− CVθ + 2 sup
θ∈Θ
|CVθ − δ0 − En,θ|

≤ 2 sup
θ∈Θ
|CVθ − δ0 − En,θ| .

Hence
sup
θ∈Θ

(
En,θ̂CV

− En,θ
)

= op(1).

A.4 Technical results

The following technical results are proved in the supplementary material.

Lemma A.15. Consider a fixed number n of observation points. Consider a function fθ(X, y) that is p times
continuously differentiable w.r.t θ for any X, y and so that, for i1 + ...+ ip ≤ p,

sup
θ

∣∣(∂i1/∂θi11 )...(∂ip/∂θipp )fθ(X, y)
∣∣

has finite mean value w.r.t X and y. Then, there exists a constant Csup (depending only of Θ) so that

E
(

sup
θ∈Θ
|fθ(X, y)|

)
≤ Csup

∑
i1+...+ip≤p

∫
Θ

E

(∣∣∣∣∣ ∂i1∂θi11
...
∂ip

∂θ
ip
p

fθ(X, y)

∣∣∣∣∣
)
dθ.

Lemma A.16. There exists a finite constant Csup so that, for any a, b ∈ Rd,∫
Rd

1

1 + |a− c|d+1

1

1 + |b− c|d+1
dc ≤ Csup

1

1 + |a− b|d+1
.

Lemma A.17. Let 0 < Cinf ≤ Csup <∞ be fixed independently of n. Let sn be a function of n so that sn ∈ N∗
and Cinfn ≤ sn ≤ Csupn. Consider sn observation points X̄1, ..., X̄sn , independent and uniformly distributed on
[0, n1/d]d. Let A1, ..., Ak be k sequences of sn × sn random matrices so that, for l = 1, ..., k, (Al)i,j depends only
on X̄i and X̄j and satisfies |(Al)i,j | ≤ 1/(1 + |X̄i − X̄j |d+1). Then EX

(
|A1...Ak|2

)
is bounded w.r.t. n.

Lemma A.18. The supremum over n, θ and X of the eigenvalues of R−1
θ , R−1

1,θ, diag(R−1
θ ), diag(R−1

1,θ),

diag(R−1
θ )−1 and diag(R−1

1,θ)
−1 is smaller than a constant Csup < +∞.

Lemma A.19. Lemma A.18 also holds when Kθ is replaced by K̃θ of Definition A.7.

Lemma A.20. Lemma A.18 also holds when Rθ is replaced by R̄k,θ of Definition A.7.
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Lemma A.21. Let k ∈ N. Let A1,θ, ..., Ak,θ be k sequences of symmetric random matrices (functions of X

and θ) so that, for any m ∈ N, a1, ..., am ∈ {1, ..., k}, supθ∈Θ EX |Aa1,θ...Aam,θ|
2

is bounded (w.r.t n). Let
B1,θ, ..., Bk+1,θ be k + 1 sequences of random symmetric non-negative matrices (functions of X and θ) so that
supθ ||B1,θ||, ..., supθ ||Bk+1,θ|| are bounded (w.r.t n and X). Then

sup
θ∈Θ

EX |B1,θA1,θB2,θ...Bk,θAk,θBk+1,θ|2

is bounded w.r.t n.

Lemma A.22. Consider a fixed θ ∈ Θ. With the notation of Definition A.7, we have, when n2 = o(n),

E
(∣∣∣(R1,θ − R̃1,θ)

2
∣∣∣2)→n→∞ 0.

Lemma A.23. Let C(t) be as in Definition A.7. Define, for T ≥ 0, f(T ) =
∫
Rd\[−T,T ]d

1/(1+ |t|d+1)dt. Define,

for x ∈ [0, n1/d]d, D∆(x) = inft∈Rd\C(x) |x− t|. Define D∆(x1, ..., xm) = mini=1,...,mD∆(xi). Then, there exists

a finite constant Csup so that, for any n, for any x1, x2 ∈ [0, n1/d]d,∫
Rd

1

1 + |x1 − x|d+1

1

1 + |x2 − x|d+1
1C(x)6=C(x1)1C(x)6=C(x2)dx ≤ Csupf(D∆(x1, x2))

1

1 + |x1 − x2|d+1
.

Lemma A.24. Use the notation n2,∆, C(t), f(T ) and D∆(x1, x2) of Definition A.7 and Lemma A.23. Then,
when n2 = o(n),

1

n

∫
[0,n1/d]d

dx1

∫
[0,n1/d]d

dx2
1

1 + |x1 − x2|d+1
f(D∆(x1, x2))→n→+∞ 0.

Lemma A.25. Use the notation n2, ∆ and C1, ..., Cn2
of Definition A.7. Let, for i = 1, ..., n2, Xi

1, ..., X
i
Ni

be
the Ni components of X that are in Ci (so that the order of their indexes in X is preserved). Then

i) For i = 1, ..., n2, Ni follows a binomial B(n, 1/n2) distribution. For any i, j = 1, ..., n2; i 6= j, conditionally
to Ni = ki, Nj follows a binomial B(n− ki, 1/(n2 − 1)) distribution.

ii) Conditionally to Ni = ki, X
i
1, ..., X

i
ki

are independent and uniformly distributed on Ci.

iii) For 1 ≤ i 6= j ≤ n2, conditionally to Ni = ki, Nj = kj, the sets of random variables (Xi
1, ..., X

i
ki

) and

(Xj
1 , ..., X

j
kj

) are independent, and their components are independent and uniformly distributed on Ci and
Cj respectively.

Consider n2 real-valued functions f1, ..., fn2
of X that can be written fi(X) = f̄(Ni, X

i
1, ..., X

i
Ni

), and so that,

for any t ∈ Rd, x1, ..., xN ∈ Rd, f̄(N, x1 + t, ..., xN + t) = f̄(N, x1, ..., xN ). Then

iv) The variables f1(X), ..., fn2(X) have the same distribution. The couples (fi(X), fj(X)), for 1 ≤ i 6= j ≤ n2,
have the same distribution.

Lemma A.26. Use the notation of Lemma A.25, and consider n2 functions f1, ..., fn2 that satisfy the conditions
of Lemma A.25. Assume that there exist fixed even natural numbers q, l and a finite constant Csup (independent
of n and X) so that E

(
f2
i (X)|Ni = k

)
≤ Csup(1+kq+kq+l/∆l). Then, if ∆→n→∞ +∞ and ∆ = O(n1/(2q+5)),

var

(
1

n2

n2∑
i=1

fi(X)

)
→n→∞ 0.

Lemma A.27. Let N follow the binomial distribution B(n, 1/n2), with n/n2 = ∆→n→∞ +∞. Then, for any
k ∈ N, there exists a finite constant Csup, independent of n, so that

E
(
Nk
)
≤ Csup∆k.
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Lemma A.28. Let n2, ∆ and C1, ..., Cn2 be as in Definition A.7. Assume that ∆ is lower bounded, as a function
of n. Then, there exists a finite constant Csup so that for any n, i ∈ {1, ..., n2},

n2∑
j=1

1

1 + d(Ci, Cj)d+1
≤ Csup.

Lemma A.29. Let A be a real m1 ×m2 matrix and b be a m2-dimensional real column vector. Then

||Ab||2 ≤ m1m2

(
max
i,j

A2
i,j

)
||b||2.
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Supplementary material

In the supplementary material, we give the proof of the lemmas stated in Section A.4.
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