Name:

Matricule number:

```
Alternative mid-term test
Business Mathematics 1
    Groups 6 and 7
        Spring 2014
\begin{tabular}{|c|c|c|} 
example & max.pts. & pts. \\
1 & 3 & \(\cdots\) \\
2 & 3 & \(\cdots\) \\
3 & 4 & \(\cdots\) \\
4 & 2 & \(\cdots\) \\
total \(:\) & 12 & \(\ldots\)
\end{tabular}
```


Instructions:

- No documents, no calculators
- Write your answers to an example in the corresponding indicated blank spaces
- All the answers must be justified
- The clarity and readability of the copy will be taken into account in the final mark

1) a) Calculate the limit as $n \rightarrow+\infty$ of

$$
a_{n}=\frac{2 n^{2}+1}{(n-1)(n+1)}
$$

b) Give an example of a sequence that is both arithmetic and geometric.
2) a) Calculate

$$
\sum_{k=3}^{+\infty} \frac{2}{3^{k}}
$$

b) Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be an arithmetic sequence so that

$$
\sum_{k=1}^{6} a_{k}=\sum_{k=3}^{6} a_{k}+6
$$

and

$$
\sum_{k=1}^{3} a_{k}=18
$$

Calculate a_{k} for $k \in \mathbb{N}$.
3) a) Sketch the graph of the function

$$
f(x)=2|x+1|-|x|
$$

b) Sketch the graph of the function

$$
g(x)=x^{2}-4 x+3
$$

Deduce from this graph the definition domain of the function

$$
h(x)=\frac{1}{\sqrt{g(x)}}
$$

4) a) calculate

$$
\log _{4}\left(\frac{1}{4}\right)
$$

b) Prove that there does not exist a $a \in \mathbb{R}$ so that the following function f is continuous

$$
f(x)= \begin{cases}1+x & \text { if } x \leq 1 \\ 3+|a x| & \text { if } x>1\end{cases}
$$

Answer to 1) a):

Answer to 1) b):

Answer to 2) a):

Answer to 2) b):

Answer to 3) a):

Answer to 3) b):

Answer to 4) a):

Answer to 4) b):

