Selected topics in statistics
 Spatial Statistics
 Homework 4

Lecturer: François Bachoc, PhD

Exercice 1

Are the following functions, defined on \mathcal{D}, symmetric non-negative definite (SNND)? Prove your answer.
a) $\mathcal{D}=\mathbb{R}$ and $K(x, y)=|x-y|$.
b) $\mathcal{D}=(0,1)$ and $K(x, y)=\frac{1}{1-x y}$. Hint: $\frac{1}{1-x y}=\sum_{k=0}^{+\infty}(x y)^{k}$.
b) $\mathcal{D}=\mathbb{R}^{+}$and $K(x, y)=\min (x, y)$. Hint: you can associate, to each $x \in \mathbb{R}^{+}$, the function $f_{x}: \mathbb{R}^{+} \rightarrow \mathbb{R}$, defined by $f_{x}(t)=\mathbf{1}_{t \leq x}$. Then, you can use the fact that $(f \mid g)=\int_{\mathbb{R}^{+}} f(t) g(t) d t$ is a scalar product on the space of functions from \mathbb{R}^{+}to \mathbb{R} (where a zero function is, by convention a function that is almost surely zero on \mathbb{R}^{+}). Finally, you can use the fact that $\min (x, y)=\left(f_{x} \mid f_{y}\right)$.

Exercice 2

Let $n, \sigma^{2}>0, y_{1}, \ldots, y_{n} \in \mathbb{R}$ and $x_{1}, \ldots, x_{n}, x_{n e w} \in \mathbb{R}$ be fixed and assume that $x_{1}, \ldots, x_{n}, x_{\text {new }}$ are two by two distinct. Consider a Gaussian process Y on \mathbb{R}, with mean function 0 and with Matérn $\frac{3}{2}$ covariance function $K_{\sigma^{2}, \ell}$, with σ^{2} fixed as above and varying $\ell>0$. Consider $n+1$ different observation points $x_{1}, \ldots, x_{n}, x_{n e w}$, fixed as above. For each ℓ, we have by the prediction formula of the lecture that, conditionally to $Y\left(x_{1}\right)=$ $y_{1}, \ldots, Y\left(x_{n}\right)=y_{n}, Y\left(x_{n e w}\right)$ is Gaussian with mean m_{ℓ} and variance σ_{ℓ}^{2}. Show that

$$
m_{\ell} \rightarrow_{\substack{\ell \rightarrow 0 \\ \ell>0}} 0
$$

and

$$
\sigma_{\ell}^{2} \rightarrow_{\substack{\ell \rightarrow 0 \\ \ell>0}} \sigma^{2}
$$

