Selected topics in statistics Spatial Statistics Homework 3

Lecturer: François Bachoc, PhD

Exercice 1

Let $y_1, ..., y_n$ be *n* iid standard Gaussian variables.

a) Prove that the random vector $y = (y_1, ..., y_n)$ is a Gaussian vector, and give its mean vector and its covariance function.

b) Let A be a matrix so that $AA^t = I_n$. Prove that z = Ay is a Gaussian vector, and give its mean vector and covariance matrix.

Exercise 2

Let Y be a Gaussian process on \mathbb{R} , with mean function 0 and with covariance function $K(x, y) = e^{-(x-y)^2}$. Let Z be the stochastic process on \mathbb{R} defined by Z(x) = 1 + x + Y(2x).

a) Prove than Z is a Gaussian process.

b) Calculate the mean function and the covariance function of Z.

c) Prove that Z is mean square differentiable on \mathbb{R} .