Selected topics in statistics
 Spatial Statistics
 Homework 2

Lecturer: François Bachoc, PhD

Exercise 1

Let A, and B be two random variables with means m_{A} and m_{B}, variances v_{A} and v_{B} and covariance $c_{A, B}$. Consider the stochastic process Y, defined on $\mathcal{D}=\mathbb{R}$ by $Y(t)=A t+B$. Calculate the mean and covariance functions of Y. What are the conditions on $m_{A}, m_{B}, v_{A}, v_{B}, c_{A, B}$ for the covariance function of Y to be stationary?

Exercise 2

Let B_{1} and B_{2} be two Brownian motions on \mathbb{R}^{+}. Assume that for any $t_{1}, t_{2}, B\left(t_{1}\right)$ and $B\left(t_{2}\right)$ are independent. Let Y be the stochastic process on $\mathcal{D}=[0,1]$ defined $Y(t)=B_{1}(t)+B_{2}(1-t)$. Show that Y is stationary (hint: a multidimensional Gaussian distribution is characterized by its mean vector and its covariance matrix).

Exercise 3

Let U be a uniform random variable on $[0,1]$. Let Y be the stochastic process on $\mathcal{D}=[0,1]$ defined by $Y(t)=\mathbf{1}_{U \leq t}$. Calculate the mean and covariance functions of Y. Is Y mean square continuous on $[0,1]$? Is Y almost-surely continuous on $[0,1]$?

Exercise 4

Let $\mathcal{D}=l^{1}$, be the space of all the real sequences $\left(s_{i}\right)_{i \in \mathbb{N}^{*}}$, indexed by \mathbb{N}^{*}, verifying $\sum_{i=1}^{+\infty}\left|s_{i}\right|<+\infty$. Notice that, as a consequence, $\sum_{i=1}^{+\infty} s_{i}^{2}<+\infty$. Let $\left(U_{i}\right)_{i \in \mathbb{N}^{*}}$ be a sequence of iid random variables with uniform distribution on $[0,1]$.

1) Show that there exists a measurable subset $\tilde{\Omega}$ of the probability space Ω of the $\left(U_{i}\right)_{i \in \mathbb{N}^{*}}$, with $P(\tilde{\Omega})=1$, so that for any $\omega \in \tilde{\Omega}$: for any $s \in \mathcal{D}$, the formula $Y(\omega, s)=\sum_{i=1}^{+\infty} s_{i} U_{i}(\omega)$ is valid. Then (do not show it), $Y(\omega, s)$ can be extended to a real random variable defined on Ω and hence, we have just defined a stochastic process Y on \mathcal{D}.
2) Show that, for any $s \in \mathcal{D}$, the sequence of random variables $Y_{n}(s)=\sum_{i=1}^{n} s_{i} U_{i}$ is a Cauchy sequence with the norm $\left\|X-X^{\prime}\right\|_{2}^{2}=\mathbb{E}\left(\left(\underset{\tilde{Y}}{ }\left(\underline{X}-X^{\prime}\right)^{2}\right)\right.$. We admit that, as a consequence, there exists a random variable $\tilde{Y}(s)$ so that $\mathbb{E}\left(\left(Y_{n}(s)-\tilde{Y}(s)\right)^{2}\right) \rightarrow_{n \rightarrow+\infty} 0$ and $\mathbb{E}\left(\tilde{Y}^{2}(s)\right)<+\infty$ (notice that as a consequence, $\mathbb{E}(|\tilde{Y}(s)|)<+\infty)$.
3) Show that, for any $s \in \mathcal{D}, Y(s)=\tilde{Y}(s)$ almost surely.
4) Show that $\mathbb{E}(Y(s))=\lim _{n \rightarrow+\infty} \mathbb{E}\left(Y_{n}(s)\right)$ and $\operatorname{cov}\left(Y(s), Y\left(s^{\prime}\right)\right)=\lim _{n \rightarrow+\infty} \operatorname{cov}\left(Y_{n}(s), Y_{n}\left(s^{\prime}\right)\right)$.
5) Show that the mean function of Y is $m(s)=\frac{1}{2} \sum_{i=1}^{+\infty} s_{i}$ and that the covariance function of Y is $K\left(s, s^{\prime}\right)=$ $\frac{1}{12} \sum_{i=1}^{+\infty} s_{i} s_{i}^{\prime}$.
