Selected topics in statistics Spatial Statistics Homework 1

Lecturer: François Bachoc, PhD

Exercise 1

Let $(X_i)_{i \in \mathbb{N}}$ be a sequence of *iid* random variables with standard Gaussian distributions. Let $Y(i) = X_i$ for $i \in \mathbb{N}$. Then Y is a stochastic process on $\mathcal{D} = \mathbb{N}$. Let Z(k) be defined by $Z(k) = \max_{i=0...k} Y(i)$.

- Show briefly that Z is a stochastic process.
- Draw a typical trajectory of Y on $\{1, ..., 10\}$ for an element w of the probability space. Draw the corresponding trajectory for Z.
- Is Y stationary? Is Z stationary? Explain your answer.

Exercise 2

Let $T \in \mathbb{R}$ and U be a random variable with uniform distribution on [0, T]. Let Y be the stochastic process on $\mathcal{D} = \mathbb{R}$ defined by $Y(x) = \cos(U + x)$. Show that Y is stationary if and only if T can be written $T = 2k\pi$ with $k \in \mathbb{Z}$.

Exercise 3

Let Y be a stationary stochastic process on \mathbb{R} for which all the trajectories are non-decreasing and for all $x \in \mathbb{R}$, Y(x) has a Bernouilli distribution on $\{0,1\}$. Show that, for any $x_1 < x_2 \in \mathbb{R}$, $P(Y(x_1) = Y(x_2)) = 1$.