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Motivation : computer models

Computer models have become essential in science and industry !

For clear reasons : cost reduction, possibility to explore hazardous or extreme scenarios...

François Bachoc Gaussian processes Lyon - 2019 3 / 44



Computer models as expensive functions

A computer model can be seen as a deterministic function

f : X ⊂ Rd → R
x 7→ f (x)

x : tunable simulation parameter (e.g. geometry)

f (x) : scalar quantity of interest (e.g. energetic efficiency)

The function f is usually

continuous (at least)

non-linear

only available through evaluations x 7→ f (x)

=⇒ black box model
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Gaussian process

Gaussian processes (Kriging model)
Modeling the black box function as a single realization of a Gaussian process x → ξ(x) on the
domain X ⊂ Rd
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Usefulness
Predicting the continuous realization function, from a finite number of observation points
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Gaussian processes

Definition
A stochastic process ξ : X→ R is Gaussian if for any x1, ..., xn ∈ X, the vector (ξ(x1), ..., ξ(xn)) is
a Gaussian vector

Mean and covariance functions
The distribution of a Gaussian process is characterized by

Its mean function : x 7→ m(x) = E(ξ(x)) Can be any function X→ R
Its covariance function (x1, x2) 7→ k(x1, x2) = Cov(ξ(x1), ξ(x2))

The covariance function
The function k : X2 → R, defined by k(x1, x2) = cov(ξ(x1), ξ(x2))

In most classical cases :

Stationarity : k(x1, x2) = k(x1 − x2)

Continuity : k(x) is continuous ‘⇒′ Gaussian process realizations are continuous

Decrease : k(x) decreases with ||x || and lim||x||→+∞ k(x) = 0
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The covariance function

The covariance function

k : (x1, x2)→ k(x1, x2) = cov(ξ(x1), ξ(x2))

k must me symmetric non-negative definite

∀n ∈ N, ∀x1, ..., xn ∈ Rd , ∀λ1, ..., λn ∈ R :
n∑

i,j=1

λiλj k(xi , xj ) ≥ 0

=⇒ the covariance matrix [k(xi , xj )]i,j=1,...,n must be non-negative definite
=⇒ Many possibilities on Rd
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Example of the Matérn 3
2 covariance function on R

The Matérn 3
2 covariance function, for a Gaussian

process on R is parameterized by

A variance parameter σ2 > 0

A correlation length parameter ` > 0

It is defined as

kσ2,`(x1, x2) = σ2
(
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Interpretation
Stationarity, continuity, decrease

σ2 corresponds to the order of magnitude of the functions that are realizations of the
Gaussian process

` corresponds to the speed of variation of the functions that are realizations of the Gaussian
process

⇒ Natural generalization on Rd
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Conditional distribution

Gaussian process ξ observed at x1, ..., xn

Notation
y = (ξ(x1), ..., ξ(xn))>

R is the n × n matrix [k(xi , xj )]

r(x) = (k(x , x1), ..., k(x , xn))>

m = (m(x1), ...,m(xn))>

Conditional mean
The conditional mean is mn(x) := E(ξ(x)|ξ(x1), ..., ξ(xn)) = m(x) + r(x)>R−1(y −m).

Conditional variance
The conditional variance is
kn(x , x) = var(ξ(x)|ξ(x1), ..., ξ(xn)) = E

[
(ξ(x)−mn(x))2] = k(x , x)− r(x)>R−1r(x).

Conditional distribution
Conditionally to ξ(x1), ..., ξ(xn), ξ is a Gaussian process with (conditional) mean function mn and
(conditional) covariance function (x , y)→ kn(x , y) = k(x , y)− r(x)>R−1r(y)
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Illustration of conditional mean and variance

- 1.0

- 0.5

0.0

0.5

1.0

- 1.0 - 0.5 0.0 0.5 1.0 1.5 2.0
x

y
Gaussian process realizat ion

predict ion
95 % confidence interval
observat ions

François Bachoc Gaussian processes Lyon - 2019 10 / 44



Illustration of the conditional distribution
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Application to computer experiments

Gaussian process model for computer experiments

Basic idea : representing the code function X ⊂ Rd → R by a realization of a Gaussian process

Bayesian framework on a fixed function

What we obtain
Metamodel of the code : the Gaussian process conditional mean function approximates the
code function, and its evaluation cost is negligible

Error indicator with the conditional variance

Full conditional Gaussian process⇒ possible goal-oriented iterative strategies for
optimization, failure domain estimation, probability estimation, code calibration...
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Covariance function estimation

Assume in the rest of the talk that the mean function of ξ is zero

One needs to select (estimate) a covariance function in order to apply the prediction formulas

Classically, it is assumed that the covariance function k belongs to a parametric set

Parameterization
Covariance function model {kθ, θ ∈ Θ} for the Gaussian process ξ

θ is the multidimensional covariance parameter. kθ is a covariance function

Observations
ξ is observed at x1, ..., xn ∈ X, yielding the Gaussian vector y = (ξ(x1), ..., ξ(xn))>

Estimation

Objective : build estimator θ̂(y)
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Maximum likelihood (ML) for estimation

Explicit Gaussian likelihood function for the observation vector y

Maximum likelihood
Define Rθ as the covariance matrix of y = (ξ(x1), ..., ξ(xn))> with covariance function kθ :
Rθ = [kθ(xi , xj )]i,j=1,...,n.
The maximum likelihood estimator of θ is

θ̂ML ∈ argmax
θ∈Θ

Ln(θ)

with

Ln(θ) = log(pθ(y)) = log
(

1
(2π)n/2|Rθ|

e−
1
2 y>R−1

θ
y
)

⇒ Numerical optimization with O(n3) criterion
⇒ Most standard estimation method
⇒ Other estimation methods exits : empirical variogram (Book, Cressie), Cross validation (Zhang
and Wang 10, Bachoc 13)
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A side remark : other applications of Gaussian processes

In this talk : the Gaussian process ξ is directly observed
Main example of application in this talk : computer models

B. J. Williams, T. J. Santner, and W. I. Notz, The design and analysis of computer experiments,
Springer (2003)

Other applications : machine learning

C. E. rasmussen and C. K. I. Williams, Gaussian processes for machine learning, The MIT
press (2006)

In other strands of research, the Gaussian process ξ is a Bayesian prior over an indirectly
observed latent function

Gaussian process classification,

P(y = 1|x) = eξ(x)
/(1 + eξ(x)),

Book, Rasmussen & Williams 2006
Deep Gaussian processes, e.g. ξ2(ξ1(x))

A. Damianou and N. Lawrence, Deep gaussian processes, AISTATS, Artificial Intelligence and
Statistics (2013)

Point processes, eξ is the spatial intensity function (e.g. epidemiology)

J. Møller, A. R. Syversveen and R. P. Waagepeterse, Log gaussian cox processes,
Scandinavian journal of statistics, 25(3) 451-482 (1998)
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1 Gaussian processes

2 Inequality constraints

3 Covariance parameter estimation under inequality constraints
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Inequality constraints

We consider a Gaussian process ξ on X = [0, 1]d for which we assume that additional information
is available :

ξ(x) belongs to [`, u] for x ∈ [0, 1]d (boundedness constraints)

∂/∂xiξ(x) ≥ 0 for x ∈ [0, 1]d and i = 1, . . . , d (monotonicity constraints)

ξ is convex on [0, 1]d (convexity constraints)

Modifications and/or combinations of the above constraints

Application cases :

Computer model output belongs to R+ (energy) or [0, 1] (concentration, energetic efficiency)

Inputs are known to have positive effects (more input power→ more output energy)
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Impact of the constraints

Generic form of the constraints :
ξ ∈ E

where E is a set of functions from [0, 1]d → R so that P(ξ ∈ E) > 0

Impact :

New stochastic model : The law of the realization function is P(ξ ∈ .|ξ ∈ E)

New conditional distribution : Conditional distribution of ξ given ξ ∈ E and
ξ(x1) = y1, . . . , ξ(xn) = yn

New estimation of the covariance parameters θ in the covariance model {kθ; θ ∈ Θ}
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Illustration of constraint benefits

Target function : bounded and monotonic.
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Unconstrained Gaussian process. Constrained Gaussian process.

� true function • training points
� predictive mean � confidence intervals
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Existing work

For boundedness constraints, it is possible to consider models of the form yi = T (ξ(xi )) with
T bijective from R to [`, u] and ξ a Gaussian process

For monotonicity and convexity constraints, the approach P(ξ ∈ .|ξ ∈ E) has become
standard

=⇒ but the constraint ξ ∈ E needs to be approximated

ξ ∈ E is replaced by a finite number of constraints on inducing points in

S. Da Veiga and A. Marrel, Gaussian process modeling with inequality constraints,
Annales de la faculté des sciences de Toulouse Mathématiques 21 (2012) 529-555.

S. Golchi, D. Bingham, H. Chipman and D.A. Campbell, Monotone emulation of
computer experiments, SIAM/ASA Journal on Uncertainty Quantification 3 (2015)
370-392.

ξ is replaced by a finite-dimensional approximation ξm in

H. Maatouk and X. Bay, Gaussian process emulators for computer experiments with
inequality constraints, Mathematical Geosciences 49(5) (2017) 557-582.

(we follow this latter approach)
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The finite dimensional approximation

Maatouk and Bay 2017 suggest to consider, in dimension d = 1,

ξm(t) =
m∑

j=1

εjφj (t),

where

εj = ξ(tj )

t1 = 0, t2 = 1/(m − 1), . . . , tm = 1

the φj are hat functions, φj (t) = (1− (m − 1)|t − tj |)+ for j = 1, . . . ,m
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The finite dimensional approximation

Computational benefit (Maatouk and Bay 2017) :

` ≤ ξm ≤ u ⇐⇒ ` ≤ ε1, . . . , εm ≤ u

ξm is a non-decreasing function⇐⇒ ε1 ≤ . . . ≤ εm
ξm is a convex function⇐⇒ ε2 − ε1 ≤ . . . ≤ εm − εm−1

=⇒ Only a finite number of inequalities =⇒ guarantee to satisfy the constraints everywhere on
[0, 1]

Extension to dimension 2

ξm(t1, t2) =
m∑

j1,j2=1

εj1εj2φj1 (t1)φj2 (t2)

Becomes problematic in higher dimension

We are developing other approaches (cf later)
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General framework

With the finite-dimensional approximation

ξm(t) =
m∑

j=1

εjφj (t),

we study linear constraints of the form
` ≤ Λε ≤ u

where

ε = (ε1, . . . , εm)>

Λ is a q ×m matrix

` and u are q × 1 vectors

boundedness, monotonicity, convexity constraints can be enforced, as well as combinations

=⇒ After observed values, the conditional distribution is

L ( Λε|Φε = y , ` ≤ Λε ≤ u) ,

where Φ = [φj (xi )]i=1,...,n,j=1,...,m is n ×m
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Sampling problem

Let M be the covariance matrix of ε = (ε1, . . . , εm)> = (ξ(t1), . . . , ξ(tm))>

We have

L (Λε|Φε = y) =N
(

ΛMΦ>(ΦMΦ>)−1y ,ΛMΛ> − ΛMΦ>(ΦMΦ>)−1ΦMΛ>
)

:=N (Λµ,ΛΣΛ>)

Hence the sampling problem is to sample

v ∼ N (Λµ,ΛΣΛ>),

conditionally to ` ≤ v ≤ u

We take Λ injective so that v =⇒ ε =⇒ ξm

Computing argmaxṽ pv (ṽ |` ≤ v ≤ u) provides the mode

Computing E(v |` ≤ v ≤ u) provides the conditional mean

Sampling v given ` ≤ v ≤ u provides conditional samples
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Illustration

FIGURE: (from Maatouk and Bay 2017) Illustration of conditional samples with constraints (monotone GP sample
paths), conditional mean without constraints (unconstrained Kriging mean), conditional mean with monotonicity
constraints (increasing Kriging mean) and mode with monotonicity constraints (inequality mode)
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Algorithms

The mode is obtained by solving

v̂ ∈ argmin
v∈Rq

`≤v≤u

(v − Λµ)>(ΛΣΛ>)−1(v − Λµ)

quadratic function optimization subject to linear inequality constraints

quite fast algorithms

corresponds to the (unconstrained) conditional mean Λµ if it satisfies the inequality
constraints

Sampling v ∼ N (Λµ,ΛΣΛ>) subject to ` ≤ v ≤ u :

rejection sampling from the mode Maatouk and Bay 2017 (low acceptance rate for q large)

We investigate

Hastings metropolis

Gibbs sampling (never rejects) Taylor and Benjamini 2017

Minimax tilting Botev 2017 JRSSB

Hamiltonian Monte Carlo Pakman and Paninski 2014 JCGS

and conclude that Hamiltonian Monte Carlo is an efficient sampler in our framework
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An application to nuclear engineering
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FIGURE: Two dimensional nuclear engineering example. radius and density of uranium sphere =⇒ criticality
coefficient. Monononicity constraints. Left : unconstrained Gaussian process models. Right : constrained
Gaussian process models. The Q2 measures the prediction quality and should be close to 1.
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The paper

A. F. López-Lopera, F. Bachoc, N. Durrande and O. Roustant, Finite-dimensional Gaussian
approximation with linear inequality constraints, SIAM/ASA Journal on Uncertainty
Quantification, forthcoming.
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Adaptation to higher dimension

In dimension d ≥ 5, say, we can not use the full grid approach

We aim for a representation
ξm = function(ε1, . . . , εm)

so that we keep
ξm ∈ E⇐⇒(ε1, . . . , εm) ∈ C

Approach 1 : additive Gaussian processes

ξm(x1, . . . , xd ) =
d∑

i=1

ξm,i (xi ) +
∑

i,j=1,...,d
i 6=j

ξm,i,j (xi , xj )

with grids in dimensions 1 and 2.

Approach 2 : Tensorized grid with less grid points for less important variables
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1 Gaussian processes

2 Inequality constraints

3 Covariance parameter estimation under inequality constraints
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Setting

For simplicity, let us forget about the finite-dimensional approximation ξm (but see the papers)

We observe the Gaussian process ξ at x1, . . . , xn ∈ [0, 1]d and let y = (ξ(x1), . . . , ξ(xn))>

We assume that ξ has covariance function k

We consider the model of covariance functions {kθ; θ ∈ Θ}
The inequality constraints are ξ ∈ E

The maximum likelihood estimator of θ is

θ̂ML ∈ argmax
θ∈Θ

Ln(θ)

with

Ln(θ) = log(pθ(y)) = log
(

1
(2π)n/2|Rθ|

e−
1
2 y>R−1

θ
y
)

(it ignores the information ξ ∈ E)

explicit expression of Ln with O(n3) cost
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Constrained maximum likelihood estimator

The constrained maximum likelihood estimator of θ is

θ̂cML ∈ argmax
θ∈Θ

LC,n(θ)

with
LC,n(θ) = log(pθ(y))− log(pθ(ξ ∈ E)) + log(pθ(ξ ∈ E|y))

The additional terms log(pθ(ξ ∈ E)) and log(pθ(ξ ∈ E|y)) have no explicit expressions

They need to be approximated by numerical integration or Monte Carlo : Genz 1992 JCGS,
Botev 2017 JRSSB

=⇒We aim at comparing θ̂ML and θ̂cML asymptotically
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Two asymptotic frameworks for covariance parameter estimation

Asymptotics (number of observations n→ +∞) is an active area of research
(case without constraints so far)
There are several asymptotic frameworks because there are several possible location
patterns for the observation points

Two main asymptotic frameworks
fixed-domain asymptotics : The observation points are dense in a bounded domain
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increasing-domain asymptotics : number of observation points is proportional to domain
volume −→ unbounded observation domain.
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Existing increasing-domain asymptotic results

Consistent estimation is possible for all covariance parameters (that are identifiable in
finite-sample). [asymptotic independence between observations]

Asymptotic normality proved for maximum likelihood

Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance
in spatial regression, Biometrika 71 (1984) 135-146.

N. Cressie and S.N Lahiri, The asymptotic distribution of REML estimators, Journal of
Multivariate Analysis 45 (1993) 217-233.

N. Cressie and S.N Lahiri, Asymptotics for REML estimation of spatial covariance
parameters, Journal of Statistical Planning and Inference 50 (1996) 327-341.

F. Bachoc, Asymptotic analysis of the role of spatial sampling for covariance parameter
estimation of Gaussian processes, Journal of Multivariate Analysis 125 (2014) 1-35.
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Existing fixed-domain asymptotic results

Consistent estimation is impossible for some covariance parameters (identifiable in
finite-sample), see e.g.

Zhang, H., Inconsistent Estimation and Asymptotically Equivalent Interpolations in
Model-Based Geostatistics, Journal of the American Statistical Association (99),
250-261, 2004.

Stein M, Interpolation of Spatial Data : Some Theory for Kriging, Springer, New York,
1999.
covariance parameters that can not be estimated consistently are called non-microergodic
covariance parameters that can be estimated consistently are called microergodic

For instance, consider the set of covariance functions {kθ, θ ∈ (0,∞)2} on [0, 1] given by
θ = (σ2, α) and kθ(t1, t2) = σ2e−α|t1−t2|

σ2 is non-microergodic
α is non-microergodic
σ2α is microergodic

=⇒We address fixed-domain asymptotics here
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Preservation of consistency

Setting :

ξ is a Gaussian process on [0, 1]d , d ∈ N, with mean zero and covariance function k

θ = (σ2, α1, . . . , αd )

kθ is the covariance function of the Gaussian process (x1, . . . , xd )→ σ2ξ(α1x1, . . . , αd xd )

=⇒ k = kθ0 with θ0 = (1, . . . , 1)

The constraints are given by the set E and are boundedness, monotonicity or convexity
(xi )i∈N is dense in [0, 1]d

Proposition : preservation of consistency for ML (López-Lopera, Bachoc, Durrande,
Roustant 2018)

Assume that the covariance function k satisfy technical conditions (see papers). Assume ∀ε > 0,

P(‖θ̂ML − θ0‖ ≥ ε) −−−−→
n→∞

0 (unconditional consistency of ML)

Then, we have P(ξ ∈ E) > 0, and thus

P(‖θ̂ − θ0‖ ≥ ε | ξ ∈ E) −−−−→
n→∞

0 (conditional consistency of ML)
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Preservation of consistency

Proposition : preservation of consistency for cML (López-Lopera, Bachoc, Durrande,
Roustant 2018)

Assume that the covariance function k satisfy technical conditions (see papers). Assume that
∀ε > 0 and ∀M <∞, (sufficient condition for unconditional consistency of ML)

P
(

sup
‖θ−θ0‖≥ε

(Ln(θ)− Ln(θ0)) ≥ −M
)
−−−−→
n→∞

0

Then, (sufficient condition for conditional consistency of cML)

P
(

sup
‖θ−θ0‖≥ε

(LC,n(θ)− LC,n(θ0)) ≥ −M
∣∣∣∣ ξ ∈ E) −−−−→n→∞

0

Consequently (conditional consistency of ML and cML)

θ̂ML
P|ξ∈E−−−−→
n→∞

θ0 and θ̂cML
P|ξ∈E−−−−→
n→∞

θ0
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Asymptotic normality result 1 : variance estimation

Setting :

Gaussian process ξ on [0, 1]d , d ∈ N, with zero mean function and covariance function k

Monotonicity, boundedness or convexity constraints (as before)

(xi )i∈N is dense in [0, 1]d

θ = σ2 and kθ(u1, u2) = σ2k(u1, u2)

Known results

It is well-known that in this case
√

n
(
σ̂2

ML − σ
2
0

)
→Ln→∞ N(0, 2σ4

0)
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Asymptotic normality result 1 : variance estimation

Notation : we write Xn →L|ξ∈En→∞ L when for all bounded measurable function f :

E(f (Xn)|ξ ∈ E)→n→∞

∫
f (x)dL(x)

Theorem (Bachoc, Lagnoux, López-Lopera 2018)

Under technical conditions on k and the sequence (xi )i∈N (see papers), we have

√
n
(
σ̂2

ML − σ
2
0

)
→L|ξ∈En→∞ N(0, 2σ4

0)

and √
n
(
σ̂2

cML − σ
2
0

)
→L|ξ∈En→∞ N(0, 2σ4

0)

Same asymptotic distribution as the (unconstrained) maximum likelihood estimator, in the
unconstrained case

No asymptotic impact of the constraints
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Asymptotic normality result 2 : Matérn model

Setting :
Gaussian process ξ on [0, 1]d , d = 1, 2, 3, with zero mean function and covariance function k
Monotonicity, boundedness or convexity constraints (as before)
(xi )i∈N is dense in [0, 1]d

θ = (σ2, ρ) ∈ (0,∞)2 and

kθ,ν(x , x ′) = σ2Kν
(
||x − x ′||

ρ

)
=

σ2

Γ(ν)2ν−1

(
||x − x ′||

ρ

)ν
κν

(
||x − x ′||

ρ

)
.

Γ is the Gamma function
κν is the modified Bessel function of the second kind
ν > 0 (assumed known) is the smoothness parameter : ν > r ⇐⇒ corresponding Gaussian process
if r times differentiable

In this case :
σ2 is non-microergodic
ρ is non-microergodic
σ2/ρ2ν is microergodic and

√
n
(
σ̂2

ML

ρ̂2ν
ML
−

σ2
0

ρ2ν
0

)
L−−−−−→

n→+∞
N
(

0, 2
(
σ2

0

ρ2ν
0

)2)
.

C. G. Kaufman and B. A. Shaby, The Role of the Range Parameter for Estimation and
Prediction in Geostatistics, Biometrika 100 (2013) 473–484.
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Asymptotic normality result 2 : Matérn model

We show

Theorem (Bachoc, Lagnoux, López-Lopera 2018)

Under technical conditions on ν and the sequence (xi )i∈N (see papers), we have

√
n
(
σ̂2

ML

ρ̂2ν
ML
−

σ2
0

ρ2ν
0

)
L|ξ∈E−−−−−→
n→+∞

N
(

0, 2
(
σ2

0

ρ2ν
0

)2)
and

√
n
(
σ̂2

cML

ρ̂2ν
cML
−

σ2
0

ρ2ν
0

)
L|ξ∈E−−−−−→
n→+∞

N
(

0, 2
(
σ2

0

ρ2ν
0

)2)

Same conclusions as for the estimation of a variance parameter
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An illustration
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FIGURE: An example with the estimation of σ2 with boundedness constraints. Distribution of n1/2(σ̂2 − σ2
0).

n = 20 (top left), n = 50 (top right) and n = 80 (bottom). Green : ML. Blue : cML. Red : Gaussian limit
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The papers
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Quantification, forthcoming.

For asymptotic normality :

F. Bachoc, Agnès Lagnoux and A. F. López-Lopera, Maximum likelihood estimation for
Gaussian processes under inequality constraints, arxiv.org/abs/1804.03378.

François Bachoc Gaussian processes Lyon - 2019 43 / 44

arxiv.org/abs/1804.03378


Conclusion

Summary

Gaussian processes provide a Bayesian framework on deterministic functions (e.g. computer
models)

Inequality constraints correspond to additional information (e. g. physical knowledge)

Taking them into account can significantly improve the predictions

with a computational cost (explicit =⇒ Monte Carlo)

The constrained maximum likelihood estimator (cML) has similar consistency guarantees as
maximum likelihood (ML)

Asymptotically, we do not see an impact of the constraints and ML ≈ cML

For small sample size, cML appears to be beneficial

Ongoing work

The finite-dimensional approach in higher dimension

Thank you for your attention !
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