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Numerical code and physical system

A numerical code, or parametric numerical model, is represented by a function f :

f : Rd × Rm → R
(x ,β) → f (x ,β)

Observations can be made of a physical system Yreal

x i → Yreal → yobs,i

The inputs x are the experimental conditions

The inputs β are the calibration parameters of the numerical code

The outputs f (x i ,β) and yobs,i are the variable of interest

A numerical code modelizes (gives an approximation of) a physical system
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Statistical model

Models for the observations and the physical system

yobs,i = Yreal (x i )︸ ︷︷ ︸
physical system

+ εi︸︷︷︸
measure error

Yreal (x) = f (x ,β)︸ ︷︷ ︸
parameterized code

+ Z (x)︸ ︷︷ ︸
model error

Unknown parameter β : frequentist or Bayesian framework

Model error function Z modeled as the realization of a centered Gaussian process
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Objectives and treatment

Objectives
Calibration : estimation of β

Prediction : prediction of Yreal (xnew ) for a new experimental condition xnew

Treatment
Linear approximation of the code w.r.t β
=⇒ Universal Kriging model

yobs,i =
m∑

j=1

hj (x i )βj + Z (x i ) + εi

Classical linear Gaussian framework =⇒ classical conditioning formula =⇒ conditional distribution
of Yreal (xnew ) conditionally to yobs,1, ..., yobs,n is Gaussian with explicit mean and variance

François Bachoc PhD thesis defense October 3 2013 5 / 47



1 Kriging for calibration, improved prediction and metamodeling of computer models
Statistical model and method for calibration and improved prediction of computer models
Application to the FLICA 4 thermal-hydraulic code

2 Maximum Likelihood and Cross Validation for parametric covariance function estimation

3 Finite sample analysis of ML and CV under model misspecification

4 Asymptotic analysis of ML and CV in the well-specified case
Asymptotic framework
Consistency and asymptotic normality
Analysis of the asymptotic variance matrices

5 Conclusion and perspectives

François Bachoc PhD thesis defense October 3 2013 6 / 47



Settings for the thermal-hydraulic code Flica 4

The experiment
Pressurized and possibly heated water flowing through a cylinder

We measure the pressure drop between the two ends of the cylinder

Variable of interest : The part of the pressure drop due to friction : ∆Pfri

Two kinds of experimental conditions
System parameters : Hydraulic diameter Dh, Friction height Hf , Channel width e

Environment variables : Output pressure Po , Flowrate Ge, Wall heat flux Φw , Liquid enthalpy
hl

e, Thermodynamic title X e
th, Input temperature Ti

Experimental results
We dispose of 253 experimental results
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Results with the thermal-hydraulic code Flica 4

Prediction results with 10-fold cross validation of the 253 experimental results :

RMSE 90% Confidence Intervals
Calibrated code 567Pa 241/253 ≈ 0.95

Gaussian Processes 196Pa 241/253 ≈ 0.95
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Influence of the linear approximation

The Gaussian process model of the model error is also tractable in the non-linear case

M. J. Bayarri, J.O. Berger, R. Paulo, J. Sacks, J.A. Cafeo, J. Cavendish, C.H. Lin and J.
Tu A framework for validation of computer models, Technometrics, 49 (2), 138-154.

On the FLICA 4 data, we compare the linear approximation we use with the Bayes formula in
the non-linear case for calibration and prediction.

Integrals are evaluated on a 5× 5 grid in the calibration parameter space
The same grid is used for the linear-case

We obtain
a 10% difference for calibration
a 1% difference for prediction

=⇒ In this case, we have shown that the model error compensates for the linearization error
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Conclusion on calibration and improved prediction of computer
models

We propose to improve the prediction capability of the computer model by completing it with a
statistical model

Number of experimental results needs to be sufficient. In extrapolation (far from the
experimental data) the prediction is simply given by the computer model

For more details

Bachoc F, Bois G, Garnier J and Martinez J.M, Calibration and improved prediction of
computer models by universal Kriging, Accepted in Nuclear Science and Engineering,
http ://arxiv.org/abs/1301.4114v2
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Parametric covariance function estimation

Parameterization
Covariance function model

{
σ2Kθ , σ

2 ≥ 0,θ ∈ Θ
}

for the Gaussian Process Y .

σ2 is the variance hyper-parameter

θ is the multidimensional correlation hyper-parameter. Kθ is a stationary correlation function.

Exemple : the Matérn 3
2 covariance function on R, parameterized by σ2 and `

σ2K`(x1, x2) = σ2
(

1 +
√

6
|x1 − x2|

`

)
e−
√

6
|x1−x2|

`

Estimation
Y is observed at x1, ..., xn ∈ X , yielding the Gaussian vector y = (Y (x1), ...,Y (xn)).
Estimators σ̂2(y) and θ̂(y) for the covariance hyper-parameters

"Plug-in" Kriging prediction
1 Estimate the covariance function

2 Assume that the covariance function is fixed and carry out the explicit Kriging equations
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Maximum Likelihood and Cross Validation for estimation

Maximum Likelihood
The most classical estimator for the covariance function : Maximum Likelihood (ML)

Numerical optimization of an explicit matricial criterion

Cross Validation (Leave-One-Out)
Based on the Leave-One-Out prediction and predictive variances :

ŷθ,i,−i = Eσ2,θ(Y (x i )|y1, ..., yi−1, yi+1, ..., yn)

σ2c2
θ,i,−i = varσ2,θ(Y (x i )|y1, ..., yi−1, yi+1, ..., yn)

Leave-One-Out estimation procedure we study :

θ̂CV ∈ argmin
θ∈Θ

n∑
i=1

(yi − ŷθ,i,−i )
2

and

σ̂2
CV =

1
n

n∑
i=1

(yi − ŷθ̂CV ,i,−i )
2

c2
θ̂CV ,i,−i
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Virtual Leave One Out formula

Let Rθ be the covariance matrix of y = (y1, ..., yn) with correlation function Kθ and σ2 = 1

Virtual Leave-One-Out

yi − ŷθ,i,−i =

(
R−1
θ y

)
i(

R−1
θ

)
i,i

and c2
θ,i,−i =

1

(R−1
θ )i,i

O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, Mathematical Geology,
1983.

Explicit matricial criteria for CV estimation
Using the virtual Cross Validation formula :

θ̂CV ∈ argmin
θ∈Θ

1
n

y t R−1
θ diag(R−1

θ )−2R−1
θ y

and
σ̂2

CV =
1
n

y t R−1
θ̂CV

diag(R−1
θ̂CV

)−1R−1
θ̂CV

y
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Objectives

We want to study the cases of model misspecification, that is to say the cases when the true
covariance function K1 of Y is not in K =

{
σ2Kθ , σ

2 ≥ 0,θ ∈ Θ
}

In this context we want to compare Leave-One-Out and Maximum Likelihood estimators from the
point of view of prediction mean square error and point-wise estimation of the prediction mean
square error

We proceed in two steps

When K =
{
σ2K2, σ

2 ≥ 0
}

, with K2 a correlation function, and K1 the true unit-variance
covariance function : theoretical formula and numerical tests

In the general case : numerical studies

Bachoc F, Cross Validation and Maximum Likelihood estimations of hyper-parameters of
Gaussian processes with model misspecification, Computational Statistics and Data Analysis
66 (2013) 55-69, http ://dx.doi.org/10.1016/j.csda.2013.03.016.
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Case of variance hyper-parameter estimation

Ŷnew : prediction of Ynew := Y (xnew ) with fixed misspecified correlation function K2

E
[

(Ŷnew − Ynew )2
∣∣∣ y] : conditional mean square error of the prediction Ŷnew

One estimates σ2 by σ̂2. σ̂2 may be σ̂2
ML or σ̂2

CV

Conditional mean square error of Ŷnew predicted by σ̂2c2
xnew with c2

xnew fixed by K2

Definition : the Risk
We study the Risk criterion for an estimator σ̂2 of σ2

Rσ̂2,xnew
= E

[(
E
[

(Ŷnew − Ynew )2
∣∣∣ y]− σ̂2c2

xnew

)2
]
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Explicit expression of the Risk

Let, for i = 1, 2 :

r i be the covariance vector of Y between x1, ..., xn and xnew with covariance function Ki

Ri be the covariance matrix of Y at x1, ..., xn with covariance function Ki

Proposition : formula for quadratic estimators

When σ̂2 = y t My , we have

Rσ̂2,xnew
= f (M0,M0) + 2c1tr(M0)− 2c2f (M0,M1)

+c2
1 − 2c1c2tr(M1) + c2

2 f (M1,M1)

with

f (A,B) = tr(A)tr(B) + 2tr(AB)

M0 = (R−1
2 r2 − R−1

1 r1)(r t
2R−1

2 − r t
1R−1

1 )R1

M1 = MR1

ci = 1− r t
i R
−1
i r i , i = 1, 2

Corollary : ML and CV are quadratic estimators =⇒ we can carry out an exhaustive numerical
study of the Risk criterion
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Two criteria for the numerical study

Definition : Risk on Target Ratio (RTR)

RTR(xnew ) =

√
Rσ̂2,xnew

E
[
(Ŷnew − Ynew )2

] =

√√√√E

[(
E
[(

Ŷnew − Ynew

)2
∣∣∣∣ y]− σ̂2c2

xnew

)2
]

E
[
(Ŷnew − Ynew )2

]

Definition : Bias on Target Ratio (BTR)

BTR(xnew ) =

∣∣∣E [(Ŷnew − Ynew )2
]
− E

(
σ̂2c2

xnew

)∣∣∣
E
[
(Ŷnew − Ynew )2

]
Integrated versions over the prediction domain X

IRTR =

√∫
X

RTR2(xnew )dµ(xnew )

and

IBTR =

√∫
X

BTR2(xnew )dµ(xnew )
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CV more robust than ML to covariance model misspecification (1/6)

70 observation points on [0, 1]5. Mean over LHS-Maximin samplings.
K1 and K2 are power-exponential covariance functions,

Ki (x , y) = exp

− 5∑
j=1

( |xj − yj |
`i

)pi

,
with `1 = `2 = 1.2, p1 = 1.5, and p2 varying.
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CV more robust than ML to covariance model misspecification (2/6)

70 observations on [0, 1]5. Mean over LHS-Maximin samplings.
K1 and K2 are power-exponential covariance functions,

Ki (x , y) = exp

− 5∑
j=1

( |xj − yj |
`i

)pi

,
with `1 = `2 = 1.2, p1 = 1.5, and p2 varying.
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CV more robust than ML to covariance model misspecification (3/6)

70 observations on [0, 1]5. Mean over LHS-Maximin samplings.
K1 and K2 are Matérn covariance functions,

Ki (x , y) =
1

Γ(νi )2νi−1

(
2
√
νi
||x − y ||2

`i

)νi
Kνi

(
2
√
νi
||x − y ||2

`i

)
,

with Γ the Gamma function and Kνi the modified Bessel function of second order.
We use `1 = `2 = 1.2, ν1 = 1.5, and ν2 varying.
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CV more robust than ML to covariance model misspecification (4/6)

70 observations on [0, 1]5. Mean over LHS-Maximin samplings.
K1 and K2 are Matérn covariance functions,

Ki (x , y) =
1

Γ(νi )2νi−1

(
2
√
νi
||x − y ||2

`i

)νi
Kνi

(
2
√
νi
||x − y ||2

`i

)
,

with Γ the Gamma function and Kνi the modified Bessel function of second order.
We use `1 = `2 = 1.2, ν1 = 1.5, and ν2 varying.
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CV more robust than ML to covariance model misspecification (5/6)

70 observations on [0, 1]5. Mean over LHS-Maximin samplings.
K1 and K2 are Matérn covariance functions,

Ki (x , y) =
1

Γ(νi )2νi−1

(
2
√
νi
||x − y ||2

`i

)νi
Kνi

(
2
√
νi
||x − y ||2

`i

)
,

with Γ the Gamma function and Kνi the modified Bessel function of second order.
We use ν1 = ν2 = 3

2 , `1 = 1.2 and `2 varying.
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CV more robust than ML to covariance model misspecification (6/6)

70 observations on [0, 1]5. Mean over LHS-Maximin samplings.
K1 and K2 are Matérn covariance functions,

Ki (x , y) =
1

Γ(νi )2νi−1

(
2
√
νi
||x − y ||2

`i

)νi
Kνi

(
2
√
νi
||x − y ||2

`i

)
,

with Γ the Gamma function and Kνi the modified Bessel function of second order.
We use ν1 = ν2 = 3

2 , `1 = 1.2 and `2 varying.
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Summary of numerical results

For variance hyper-parameter estimation
For not too regular design of experiments : CV is more robust than ML to misspecification

Larger variance but smaller bias for CV
The bias term becomes dominant in the model misspecification case

For regular design of experiments, CV is less robust to model misspecification

For variance and correlation hyper-parameter estimation
Numerical study on analytical functions

Confirmation of the results of the variance estimation case

For more details :

Bachoc F, Cross Validation and Maximum Likelihood estimations of hyper-parameters of
Gaussian processes with model misspecification, Computational Statistics and Data Analysis
66 (2013) 55-69, http ://dx.doi.org/10.1016/j.csda.2013.03.016.
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Framework and objectives

Estimation
We do not make use of the distinction σ2,θ. Hence we use the set {Kθ ,θ ∈ Θ} of stationary
covariance functions for the estimation.

Well-specified model
The true covariance function K of the Gaussian Process belongs to the set {Kθ ,θ ∈ Θ}. Hence

K = Kθ0 ,θ0 ∈ Θ

Objectives
Study the consistency and asymptotic distribution of the Cross Validation estimator

Confirm that, asymptotically, Maximum Likelihood is more efficient

Study the influence of the spatial sampling on the estimation
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Spatial sampling for hyper-parameter estimation

Spatial sampling : Initial design of experiment for Kriging

It has been shown that irregular spatial sampling is often an advantage for hyper-parameter
estimation

Stein M, Interpolation of Spatial Data : Some Theory for Kriging, Springer, New York,
1999. Ch.6.9.

Zhu Z, Zhang H, Spatial sampling design under the infill asymptotics framework,
Environmetrics 17 (2006) 323-337.

Our question : Is irregular sampling always better than regular sampling for hyper-parameter
estimation ?
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Two asymptotic frameworks for hyper-parameter estimation

Asymptotics (number of observations n→ +∞) is an area of active research
(Maximum-Likelihood estimator)

Two main asymptotic frameworks
fixed-domain asymptotics : The observations are dense in a bounded domain
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increasing-domain asymptotics : A minimum spacing exists between the observation points
−→ infinite observation domain.
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Choice of the asymptotic framework

Comments on the two asymptotic frameworks
fixed-domain asymptotics
From 80’-90’ and onwards. Fruitful theory

Stein, M., Interpolation of Spatial Data Some Theory for Kriging, Springer, New York,
1999.

However, when convergence in distribution is proved, the asymptotic distribution does not
depend on the spatial sampling −→ Impossible to compare sampling techniques for
estimation in this context

increasing-domain asymptotics :
Asymptotic normality proved for Maximum-Likelihood under restricted conditions

Sweeting, T., Uniform asymptotic normality of the maximum likelihood estimator, Annals
of Statistics 8 (1980) 1375-1381.

Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance
in spatial regression, Biometrika 71 (1984) 135-146.

(no results for CV)

We study increasing-domain asymptotics for ML and CV under irregular sampling

Bachoc F, Asymptotic analysis of the role of spatial sampling for hyper-parameter estimation
of Gaussian processes, Submitted to Journal of Multivariate Analysis, available at
http ://arxiv.org/abs/1301.4321.
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The randomly perturbed regular grid that we study

Observation point i :
v i + εXi

(v i )i∈N∗ : regular square grid of step one in dimension d
(Xi )i∈N∗ : iid with symmetric distribution on [−1, 1]d

ε ∈ (− 1
2 ,

1
2 ) is the regularity parameter of the grid.

ε = 0 −→ regular grid.
|ε| close to 1

2 −→ irregularity is maximal

Illustration with ε = 0, 1
8 ,

3
8
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Consistency and asymptotic normality

Under general summability, regularity and identifiability conditions, we show

Proposition : for ML
a.s convergence of the random Fisher information : The random trace
1
n Tr

(
R−1
θ0

∂Rθ0
∂θi

R−1
θ0

∂Rθ0
∂θj

)
converges a.s to the element (IML)i,j of a p × p deterministic

matrix IML as n→ +∞
asymptotic normality : With ΣML = 2I−1

ML

√
n
(
θ̂ML − θ0

)
→ N (0,ΣML)

Proposition : for CV
Same result with more complex formulas for asymptotic covariance matrix ΣCV

ΣML,CV depends only on the regularity parameter ε.
−→ in the sequel, we study the functions ε→ ΣML,CV
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Main ideas for the proof

A central tool : because of the minimum distance between observation points : the
eigenvalues of the random matrices involved are uniformly lower and upper bounded

For consistency : bounding from below the difference of M-estimator criteria between θ and
θ0 by the integrated square difference between Kθ and Kθ0

For almost-sure convergence of random traces : block-diagonal approximation of the random
matrices involved and Cauchy criterion

For asymptotic normality of criterion gradient : almost-sure (with respect to the random
perturbations) Lindeberg-Feller Central Limit Theorem

Conclude with classical M-estimator method
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Objectives

The asymptotic covariance matrix ΣML,CV depend only on the regularity parameter ε.
−→ in the sequel, we study the functions ε→ ΣML,CV

Small random perturbations of the regular grid

We study
(
∂2

∂ε2 ΣML,CV

)
ε=0

Closed form expression for ML for d = 1 using Toeplitz matrix sequence theory

Large random perturbations of the regular grid
We study ε→ ΣML,CV
Closed form expression for ML and CV for d = 1 and ε = 0 using Toeplitz matrix sequence theory
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Study of the Matérn model in dimension 1

Matèrn model in dimension one

K`,ν(x , y) =
1

Γ(ν)2ν−1

(
2
√
ν
|x − y |
`

)ν
Kν
(

2
√
ν
|x − y |
`

)
,

with Γ the Gamma function and Kν the modified Bessel function of second order

We consider

The estimation of ` when ν0 is known

The estimation of ν when `0 is known

=⇒We study scalar asymptotic variances
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Small random perturbations of the regular grid (1/2)

Estimation of ` when ν0 is known.
Level plot of (∂2

εΣML,CV )/ΣML,CV in `0 × ν0 for ML (left) and CV (right)
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Small perturbations are always beneficial for ML. They can however deteriorate the CV estimation
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Small random perturbations of the regular grid (2/2)

Estimation of ν when `0 is known.
Level plot of (∂2

εΣML,CV )/ΣML,CV in `0 × ν0 for ML (left) and CV (right)
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There exist cases of degradation of the estimation for small perturbations for ML around `0 ≈ 0.5.
Because the Matérn correlation function at t = 0.7 is almost independent of ν for `0 ≈ 0.5.
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Large random perturbations of the regular grid (1/2)

Estimation of ` when ν0 is known.
Level plot of

[
ΣML,CV (ε = 0)

]
/
[
ΣML,CV (ε = 0.45)

]
in `0 × ν0 for ML (left) and CV (right)
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Strong perturbations are always beneficial for ML
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Large random perturbations of the regular grid (2/2)

Estimation of ν when `0 is known.
Level plot of

[
ΣML,CV (ε = 0)

]
/
[
ΣML,CV (ε = 0.45)

]
in `0 × ν0 for ML (left) and CV (right)
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Strong perturbations are always beneficial for ML and CV
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Some particular functions ε → ΣML,CV (1/3)

Estimation of ` when ν0 is known, for `0 = 2.7, ν0 = 1.
Plot of ε→ ΣML,CV for ML (left) and CV (right)
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The asymptotic variance of CV is significantly larger than that of ML
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Some particular functions ε → ΣML,CV (2/3)

Estimation of ν when `0 is known, for `0 = 0.5, ν0 = 2.5.
Plot of ε→ ΣML,CV for ML (left) and CV (right)
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The asymptotic variances are increasing with |ε| for |ε| < 0.2 (particularity of the Matérn model).
For |ε| > 0.2 the asymptotic variances are strongly decreasing functions of |ε|
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Some particular functions ε → ΣML,CV (3/3)

Estimation of ν when `0 is known, for `0 = 2.7, ν0 = 2.5.
Plot of ε→ ΣML,CV for ML (left) and CV (right)
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The asymptotic variance of CV is significantly larger than that of ML
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Conclusion on the well-specified case

CV is consistent and has the same rate of convergence than ML

We confirm that ML is more efficient
Strong irregularity in the sampling is an advantage for covariance function estimation
estimation

With ML, irregular sampling is more often an advantage than with CV
We show that, however, regular sampling is better for prediction with known covariance function =⇒
motivation for using space-filling samplings augmented with some clustered observation points

Z. Zhu and H. Zhang, Spatial Sampling Design Under the Infill Asymptotics Framework,
Environmetrics 17 (2006) 323-337.

L. Pronzato and W. G. Müller, Design of computer experiments : space filling and beyond,
Statistics and Computing 22 (2012) 681-701.

For further details :

Bachoc F, Asymptotic analysis of the role of spatial sampling for hyper-parameter estimation
of Gaussian processes, Submitted to Journal of Multivariate Analysis, available at
http ://arxiv.org/abs/1301.4321.
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Conclusion and perspectives on covariance function estimation

General conclusion
ML preferable to CV in the well-specified case

In the misspecified-case, with not too regular design of experiments : CV is preferable
because of its smaller bias

In both misspecified and well-specified cases : the estimation benefits from an irregular
sampling

The variance of CV is larger than that of ML in all the cases studied.

Perspectives
Designing other CV procedures (LOO error weighting, decorrelation and penalty term) to
reduce the variance

Expansion-domain asymptotic analysis of the misspecified case

Start studying the fixed-domain asymptotics of CV, in the particular cases where it is done for
ML

Thank you for your attention !
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