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.
Introduction

Context

I Phd started in october in partnership between CEA and Paris VII
university.

I CEA supervisor : Jean Marc Martinez.
I Paris VII supervisor : Josselin Garnier.

Subject

I Very general context of the probabilistic modelling of uncertainties in the
industry (ex : French research group Mascot Num).

I For us : probabilistic modelling of the error between a computation code
(or numerical model) and the real system.

I Goals : To calibrate the computation code and to improve its predictions.
I Scientific keywords : numerical simulation, gaussian processes,

estimation, prediction, bayesian framework, model error.
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.
Computation code and reality

A computation code, or parametric numerical model, is represented by a
function f :

f : Rr × Rm → R
(x ,β) → f (x ,β)

The numerical phenomenon is represented by a function Yreal .

Yreal : Rr → R
x → Yreal (x)

I The inputs x are the experimental conditions (ex : geometric factors,
limit conditions).

I The inputs β are the calibration parameters of the computation code
(eg : physical laws parameters).

I The output f (x ,β)/Yreal (x) is a quantity of interest (eg : a produced
energy).

A computation code modelizes (gives an approximation of) a physical
phenomenon.
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.
Model error

Statistical modelling : The physical phenomenon is random and centered
around the correctly parameterized computation code.

Equation of the statistical model

Yreal (ω, x) = f (x ,β(ω)) + Z (ω, x)

I Equation that holds for a specific parameters vector β. Called "the"
parameter of the computation code.

I No prior information case : β constant and unknown.
I Prior information case (bayesian case) : β ∼ N (βprior ,Qprior )

I Z is a centered, stationnary, gaussian process. We denote by Cmod the
covariance function of Z .

I Cmod belongs to a parametric set : Illustration

Why a stationnary gaussian process ?

I Gaussian variables : most commonly used to represent errors, conserve
themselves through conditional expectations and linear operations.

I Stationnarity : restrict the number of possible gaussian processes
(statistical bias-variance trade-off). In statistical inference : replace
sample repetition (iid case) by spatial repetition.
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.
Measure error

I We also take possible measure errors into account.
I The different measure errors are represented by iid centered gaussian

variables.
I The gaussian process for the measured, or observed, physical

phenomenon is therefore :

Yobs(ω, x) = Yreal (ω, x) + ε(ω, x)

I We denote by σmes the standard deviation of the measure error.
I For simplicity here, we suppose that we do not do more than one

measure for the same vector of experimental conditions.

. Nurisp SP4 Meeting , Bayesian calibration methods 6/32 .



.
Goals associated to the modelling

Kinds of work to do :

1. The covariance function of the model error is known : Calibration and
Prediction.

2. A covariance function is proposed : Model test.

3. The covariance function is unknown : Model selection.

Outline of studies using the modelling

I Step 1 : Estimation of the hyper-parameters of the covariance function.
I Step 2 : Plug-in of the estimated hyper-parameters to perform

calibration and prediction.
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.
Linear code and observations : notations (1/3)

Linear code w.r.t the parameters

∀x : f (x ,β) =
mX

i=1

hi (x)βi

Observations

I We observe the physical phenomenon Yreal (x) for n (different) inputs
x(1), ..., x(n). Associated random vectors :

yobs =

0BB@
Yobs(x(1))

...
Yobs(x(n))

1CCA , y real =

0BB@
Yreal (x(1))

...
Yreal (x(n))

1CCA
I We want to predict the value of the phenomenon Yreal (x) for a new

input x(0). Associated random variable :

y0 = Yreal (x(0))
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.
Linear code and observations : notations (2/3)

Matrix associated to the code and the observations
We define the n ×m matrix H by :

Hi,j = hj (x(i)) i = 1, ..., n j = 1, ...,m

The vector of outputs of the code, parameterized by β for x(1), ..., x(n) :0BB@
f (x(1),β)

...
f (x(n),β)

1CCA = Hβ

Vector associated to the code and x(0)

We define the m size vector, h(0) by :

h(0)
i = hi (x(0)) i = 1, ...,m

The output of the code, parameterized by β, for x(0) :

f (x(0),β) = (h(0))T β
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.
Linear code and observations : notations (3/3)

Model error vector
Vectors of the model and measure error for the observations :

z =

0BB@
Z (x(1))

...
Z (x(n))

1CCA , ε =

0BB@
ε(x(1))

...
ε(x(n))

1CCA
Model error at x(0) :

z0 = Z (x(0))

Covariance matrix
R : Covariance matrix of z + ε :

Ri,j = Cmod (x(i) − x(j)) + σ2
mes1i=j i = 1, ..., n j = 1, ..., n

r (0) : Covariance vector between z + ε and z0 :

r (0)
i = Cmod (x(i) − x(0)) i = 1, ..., n
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.
Matrix equation of the statistical model

The statistical model becomes, for the inputs x(1), ..., x(n) :

yobs = Hβ + z + ε

With z + ε ∼ N (0,R).
I No prior information case

I When R = σ2In (nugget covariance function) : Linear regression model.

I Prior information case

yobs ∼ N (Hβprior ,R + HQprior HT )

I Main interest of the correlation : Efficient prediction of the phenomenon
when it does not have the same shape as the computation code.
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.
Calibration (1/2)

Calibration problem = Statistical estimation problem

Estimation of β

I An estimator of β is a function β̂ : Rn → Rm.
I β̂(yobs) is the estimation of β according to the vector of observations

yobs .
I Quality measure of an estimator : Mean square error :

Eyobs,β

h
||β − β̂(yobs)||2

i
.
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.
Calibration (2/2)

No prior information case
The maximum likelihood estimator β̂ of β, according to the vector of
observations yobs at (x(1), ..., x(n)) is :

β̂ = (HT R−1H)−1HT R−1yobs

I Unbiased estimator (E(β̂) = β)
I If yobs = Hβ, β̂(yobs) = β

Prior information case
In the prior information case, the conditional law of β, according to the
observations yobs is gaussian with mean βpost , where

βpost = βprior + (Q−1
prior + HT R−1H)−1HT R−1(yobs − Hβprior ).

I Best predictor according to the mean square error.

I When Q−1
prior → 0 (Uninformative prior) we find the prediction of the no

prior information case.

. Nurisp SP4 Meeting , Bayesian calibration methods 14/32 .



.
Prediction (1/2)

Prediction of y0

I A predictor of y0 is a function 〈y0〉 : Rn → R.
I 〈y0〉(yobs) is the prediction of y0 according to the vector of observations

yobs .
I Quality measure of a predicor : Mean square error :

Eyobs,y0

ˆ
|y0 − 〈y0〉(yobs)|2

˜
.
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.
Prediction (2/2)

No prior information case
The unbiased predictor of y0 at x(0), linear with respect to the vector of
observations yobs at (x(1), ..., x(n)), which minimizes the mean square error
is :

〈y0〉 = (h(0))T β̂ + (r (0))T R−1(yobs − Hβ̂)

with β̂ the maximum likelihood estimator of β.

I We do not have access to the best predictor, because its expression
makes use of the unknown parameter β.

I The prediction expression is decomposed into a calibration term and a
gaussian inference term of the model error.

Prior information case
The conditional law of y0 according to the observations yobs is gaussian with
mean 〈y0〉, with :

〈y0〉 = (h(0))T βpost + (r (0))T R−1(yobs − Hβpost )

I Best predictor.
I When Q−1

prior → 0 (uninformative prior) we find the predictor of the no
prior information case.

. Nurisp SP4 Meeting , Bayesian calibration methods 16/32 .



.
Illustration of calibration (1/3)

I Physical phenomenon : Y (x) = x2.
I Computation code : f (x ,β) = β0 + β1x .
I Covariance function of the model error :

Cmod (x − y) = σ2 exp
„
− |x−y|2

l2c

«
. σ = 0.3, lc = 0.5 (known).

I Measure error : σmes = 0.1.
I Bayesian case with :

βprior =

„
0.2
1

«
,Qprior =

„
0.09 0

0 0.09

«
I Observations : x1 = 0.2, x2 = 0.4, x3 = 0.6 and x4 = 0.8.
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.
Illustration of calibration (2/3) (unnoised case)

FIG.: Up-left : Prior distribution of the parameter β. Down-left : Posterior distribution of
the parameter β. Right : plot of the code response corresponding to prior and posterior
mean of the code parameter.
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.
Illustration of calibration (3/3) (noised case)

FIG.: Up-left : Prior distribution of the parameter β. Down-left : Posterior distribution of
the parameter β. Right : plot of the code response corresponding to prior and posterior
mean of the code parameter.
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.
Illustration of prediction (1/3)

I Physical phenomenon : Y (x) = −sin(πx
2 ).

I Computation code : f (x ,β) = β0 + β1x + β2x2 + β3x3.
I Covariance function of the model error :

Cmod (x − y) = σ2 exp
„
− |x−y|2

l2c

«
. σ = 0.3, lc = 0.5 (known).

I Measure error : σmes = 0.1.
I No prior information case.
I 6 Observations regularly sampled between −0.8 and 1.7.
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.
Illustration of prediction (2/3) (unnoised case)

I The use of the model error improves the prediction given by the
computation code.
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.
Illustration of prediction (3/3) (noised case)

I The measure error deteriorates the quality of the predictions.
I The confidence bands are however still reliable.
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.
Framework

I The calibration and prediction methods presented above give good
results because we used a reasonnable covariance function.

I The model selection is a statistical parameter estimation problem.

Variance and correlation component
We suppose that the model error covariance is
Cmod (x , y) = σ2

mod Corrmod,α(x − y). Then the covariance function C of
Z + ε takes the form :

C(x , y) = (σ2
mod+σ2

mes)

 
σ2

mod

σ2
mod + σ2

mes
Corrmod,α(x − y) + (1−

σ2
mod

σ2
mod + σ2

mes
)1x=y

!

Therefore we can reparameterize with a variance parameter and a
correlation parameter.

So, in the sequel, we suppose that the covariance of Z + ε has the form :

C(x − y) = σ2Corrθ(x − y).

We present 2 methods for model selection : Maximum likelihood and cross
validation.
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.
Maximum likelihood (No prior information case)

We denote by Rcorr,θ the correlation matrix of the observations.
The log-likelihood of the observations yobs is :

`(β, σ, θ) ∝ −
n
2

log(σ2)−
1
2

log(|Rcorr,θ|)−
1

2σ2
(yobs−Hβ)T (Rcorr,θ)

−1(yobs−Hβ)

We denote :

β̂(θ) = (HT (Rcorr,θ)
−1H)−1HT (Rcorr,θ)

−1yobs

and
σ̂2(θ) =

1
n

(yobs − Hβ̂(θ))T (Rcorr,θ)
−1(yobs − Hβ̂(θ)).

The maximum likelihood estimator of θ̂, σ̂ and β̂ of θ, σ and β are :

θ̂ ∈ arg min
θ
|Rcorr,θ|

1
n σ̂(θ)2

β̂ = β̂(θ̂),

and
σ̂ = σ̂(θ̂).

. Nurisp SP4 Meeting , Bayesian calibration methods 25/32 .



.
Maximum likelihood (Bayesian case)

Recall that in the bayesian case :

yobs ∼ N (Hβprior , σ
2Rcorr,θ + HQprior HT )

I The log-likelihood is not anymore a function of β.
I The gaussian process Yobs is not anymore stationnary→ No

separation of σ2 and θ in the maximisation of the likelihood.

By denoting :
Qσ,θ = σ2Rcorr,θ + HQprior HT

we have the log-likelihood :

`(σ, θ) ∝ −
1
2

log(det(Qσ,θ))−
1
2
(yobs − Hβprior )

T (Qσ,θ)−1(yobs − Hβprior )

and :
(σ̂, θ̂) ∈ arg max

σ,θ
`(σ, θ)
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.
Cross validation (1/3)

The prediction procedure (Bayesian or non-bayesian framework) leads to a
parametric metamodel : x(0) → 〈y0〉σ,θ .

I It is a function that approximates the physical phenomenon.
I It is built according to the observations (≈ learning set).

Cross validation (LOO)

I Given a vector of hyper-parameters (σ, θ).
I For i from 1 to n we learn x(0) → 〈y0〉σ,θ with the reduced observations

vector {(x1, yobs,1), ..., (xi−1, yobs,i−1), (xi+1, yobs,i+1), ..., (xn, yobs,n)}
I we compute the LOO errors by :

εLOO,i (σ, θ) = yobs,i − 〈yi 〉σ,θ(yobs,−i ).

Then, the LOO estimator of σ and θ is :

(σ̂, θ̂) ∈ arg min
σ,θ

||εLOO(σ, θ)||2
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.
Cross validation (2/3) Non-bayesian framework

We have a closed formula for the LOO errors vector :
With :

Q−(σ, θ) =
1
σ2

“
R−1

corr,θ − R−1
corr,θH(HT R−1

corr,θH)−1HT R−1
corr,θ

”
We have :

ε(σ, θ) = (diag(Q−))−1Q−

ε actually does not depends on σ.
Therefore we have :

θ̂ ∈ arg min
θ
||εLOO(θ)||2

and we keep the estimator for σ :

σ̂2 =
1
n

(yobs − Hβ̂(θ̂))T (Rcorr,θ̂)
−1(yobs − Hβ̂(θ̂))
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.
Cross validation (3/3) Bayesian framework

We also have a closed formula for the LOO errors vector :
Recall :

Qσ,θ = σ2Rcorr,θ + HQprior HT

We have :
ε(σ, θ) = (diag(Q−1))−1Q−1

This time, ε depends on both σ ans θ.
We do the optimization w.r.t σ and θ.
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.
Conclusion and prospects

Conclusion

I For prediction, expert knowledge is taken into account via the bayesian
framework.

I The predictions are similar than the ones given by non-probabilistic
kernels methods.

I The statistical model gives confidence bands for predictions and
calibration.

I The hyper-parameter estimation step is crucial.

Prospects of the Phd

I Model selection procedure : asymptotic study of the maximum likelihood
and LOO.

I Non linear codes.
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Thank you for your attention.
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.
Model error illustration
I Exemples of covariance functions

"Nugget" model Cmod (x − y) = σ2δx−y

Gaussian model Cmod (x − y) = σ2 exp
„
− ||x−y||2

l2c

«
Generelized exponential model Cmod (x − y) = σ2 exp

“
−( |x−y|1

lc
)p
”

I All 3 are stationnary and parametric. We call hyper-parameters the
parameters of the covariance functions. Here hyper-parameters are σ,
(σ, lc) and (σ, lc , p).

I Exemples of realizations with gaussian covariance function.
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FIG.: Left : σ = 0.2, lc = 0.01 Right : σ = 0.2, lc = 0.05

Back
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