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Introduction

Context

» Phd started in october in partnership between CEA and Paris VII
university.

» CEA supervisor : Jean Marc Martinez.
» Paris VII supervisor : Josselin Garnier.

Subject
» Very general context of the probabilistic modelling of uncertainties in the
industry (ex : French research group Mascot Num).

» For us : probabilistic modelling of the error between a computation code
(or numerical model) and the real system.

» Goals : To calibrate the computation code and to improve its predictions.

» Scientific keywords : numerical simulation, gaussian processes,
estimation, prediction, bayesian framework, model error.
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Computation code and reality
A computation code, or parametric numerical model, is represented by a

function f :
f :RFxR™ —R

The numerical phenomenon is represented by a function Y,e.

Yeas R —R

X — Yreal(X)

» The inputs x are the experimental conditions (ex : geometric factors,
limit conditions).

» The inputs 3 are the calibration parameters of the computation code
(eg : physical laws parameters).

» The output f(x, B)/Yrea/(X) is a quantity of interest (eg : a produced
energy).

A computation code modelizes (gives an approximation of) a physical
phenomenon.
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Model error
Statistical modelling : The physical phenomenon is random and centered
around the correctly parameterized computation code.

Equation of the statistical model
Yieal(w, X) = f(X, B(w)) + Z(w, X)

» Equation that holds for a specific parameters vector 3. Called "the"
parameter of the computation code.
> No prior information case : 3 constant and unknown.
> Prior information case (bayesian case) : 8 ~ N (B pior, Qprior)
» Zis a centered, stationnary, gaussian process. We denote by Cp,o4 the
covariance function of Z.

> Cmog belongs to a parametric set :

Why a stationnary gaussian process ?

» Gaussian variables : most commonly used to represent errors, conserve
themselves through conditional expectations and linear operations.

» Stationnarity : restrict the number of possible gaussian processes
(statistical bias-variance trade-off). In statistical inference : replace
sample repetition (iid case) by spatial repetition.
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(&) Measure error

» We also take possible measure errors into account.

» The different measure errors are represented by iid centered gaussian
variables.

» The gaussian process for the measured, or observed, physical
phenomenon is therefore :

Yobs(w, X) = Yiea(w, X) + €(w, X)

» We denote by omes the standard deviation of the measure error.

» For simplicity here, we suppose that we do not do more than one
measure for the same vector of experimental conditions.
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Goals associated to the modelling

Kinds of work to do :

1. The covariance function of the model error is known : Calibration and
Prediction.

2. A covariance function is proposed : Model test.
3. The covariance function is unknown : Model selection.

Outline of studies using the modelling

» Step 1 : Estimation of the hyper-parameters of the covariance function.

» Step 2 : Plug-in of the estimated hyper-parameters to perform
calibration and prediction.
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Linear code and observations : notations (1/3)

Linear code w.r.t the parameters

m

vx: f(x,8) =D hi(x)B;

i=1

Observations

» We observe the physical phenomenon Y5 (x) for n (different) inputs
x(M ..., x("). Associated random vectors :

Yobs(x(1)) Yrea/(x(1))

Yobs = : s Yreal =

Yobs(x(n)) Yreal(x(n))

» We want to predict the value of the phenomenon Y,z (x) for a new
input x(©). Associated random variable :

Yo= Yreal(x(o))
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Linear code and observations : notations (2/3)

Matrix associated to the code and the observations
We define the n x m matrix H by :

Hij=hi(xD) i=1,..,nj=1,..

The vector of outputs of the code, parameterized by 3 for x(1), ...,

f(x), B)
SR
f(x(", B)

Vector associated to the code and x(©)
We define the m size vector, h(®) by :

hO = p(x©) i=1,..m
The output of the code, parameterized by 3, for x(® :

f(x©,8) = ()7
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(&) Linear code and observations : notations (3/3)

Model error vector
Vectors of the model and measure error for the observations :

Z(x(M) e(x(M)
zZ= . ,E= .
Z(x(n) e(x()
Model error at x(0) :
2o = Z(x9)

Covariance matrix
R : Covariance matrix of z + € :

Rij = Cmog(x) —xV) 4021, i=1,.,nj=1,..n
r(9) : Covariance vector between z + e and z; :

ri(O) — Cmod(x(i) — X(O)) i=1,..,n
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Matrix equation of the statistical model

The statistical model becomes, for the inputs x(1), ..., x(7 :
Yoos =HB+z+ €

With z + € ~ A(0,R).
» No prior information case
> When R = &I, (nugget covariance function) : Linear regression model.
» Prior information case

Yobs ~ N (HBpor, R + HopriorHT)

» Main interest of the correlation : Efficient prediction of the phenomenon
when it does not have the same shape as the computation code.
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Calibration and prediction
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Calibration (1/2)

Calibration problem = Statistical estimation problem

Estimation of 3

» An estimator of 3 is a function 3 : R" — R™,
> B(yps) is the estimation of 3 according to the vector of observations

Y obs-
> Quality measure of an estimator : Mean square error :

Ey e 118 = B¥ots) 2]
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(&) Calibration (2/2)

No prior information case
The maximum likelihood estimator 3 of 3, according to the vector of
observations y s at (x(V, ..., x(MY is :

IB = (HTR_1H)_1HTR_1.Vobs

» Unbiased estimator (E(3) = 8)
> Ifyons = HB, Ié(yobs) =p

Prior information case
In the prior information case, the conditional law of 3, according to the
observations y 4 is gaussian with mean 3,,s;, where

Bpost = IBprior + (Q';r;or + HTR_1 H)_1HTR_1 (yobs - Hﬁprior)-

» Best predictor according to the mean square error.

» When Q;,,.‘or — 0 (Uninformative prior) we find the prediction of the no

prior information case.
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Prediction (1/2)

Prediction of y,

» A predictor of yq is a function (yp) : R" — R.

> (¥o0)(¥ops) is the prediction of y; according to the vector of observations
Yobs-

» Quality measure of a predicor : Mean square error :
E.Vobs,}’o [|YO - <y0>(yobs)|2]'
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Prediction (2/2)

No prior information case

The unbiased predictor of yy at x(9), linear with respect to the vector of
observations y ;¢ at (x| ..., x(M), which minimizes the mean square error
is :
(¥o) = (hO)T B+ () TR (y ops — HB)
with 3 the maximum likelihood estimator of 3.
» We do not have access to the best predictor, because its expression
makes use of the unknown parameter 3.

» The prediction expression is decomposed into a calibration term and a
gaussian inference term of the model error.

Prior information case
The conditional law of y, according to the observations y s is gaussian with
mean (yp), with :

<,Vo> = (h(o))Tﬁpost + (r(o))TR71 (yobs - HBpost)

> Best predictor.
» When Q;ﬂ.‘w — 0 (uninformative prior) we find the predictor of the no
prior information case.
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lllustration of calibration (1/3)

» Physical phenomenon : Y(x) = x2.
» Computation code : f(x,3) = By + B1X.
» Covariance function of the model error :

— )= o2 _ley) _
Crmod(Xx — y) = o= exp .0 =0.3, I = 0.5 (known).

i
» Measure error : omes = 0.1.
» Bayesian case with :

0.2 0.09 0
ﬁprior = ( 1 ) :Qprior = ( 0 0.09 )

» Observations : x; = 0.2, x» = 0.4, x3 = 0.6 and x4, = 0.8.
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lllustration of calibration (2/3) (unnoised case)

—

F1G.: Up-left : Prior distribution of the parameter 3. Down-left : Posterior distribution of
the parameter 3. Right : plot of the code response corresponding to prior and posterior
mean of the code parameter.
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lllustration of calibration (3/3) (noised case)

Fi1G.: Up-left : Prior distribution of the parameter 3. Down-left : Posterior distribution of
the parameter 3. Right : plot of the code response corresponding to prior and posterior
mean of the code parameter.
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lllustration of prediction (1/3)

» Physical phenomenon : Y(x) = —sin(%*).
» Computation code : f(x, B) = By + B1X + Box® + Bax3.
» Covariance function of the model error :

) 2 _lx=y? _ _
Crmod(X — y) = o°exp 7 .0 =0.3, lc = 0.5 (known).

» Measure error : omes = 0.1.
» No prior information case.
» 6 Observations regularly sampled between —0.8 and 1.7.
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Illustrat

ion of prediction (2/3) (unnoised case)

» The use of the model error improves the prediction given by the
computation code.
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lllustration of prediction (3/3) (noised case)

Ed

» The measure error deteriorates the quality of the predictions
» The confidence bands are however still reliable.
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Model selection
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(&) Framework

» The calibration and prediction methods presented above give good
results because we used a reasonnable covariance function.

» The model selection is a statistical parameter estimation problem.

Variance and correlation component

We suppose that the model error covariance is
Crmod(X,y) = o,iodCorrmod,a(x — ¥). Then the covariance function C of
Z + € takes the form :

o2 o2
C(x,y) = (0r2n0d+‘7!2nes) %Corrmod,a(x -y)+0- %)11{2}’
Tmod  Tmes Ornod T Omes

Therefore we can reparameterize with a variance parameter and a
correlation parameter.

So, in the sequel, we suppose that the covariance of Z + ¢ has the form :
C(x —y) = o?Corrg(x — y).

We present 2 methods for model selection : Maximum likelihood and cross
validation.
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(&) Maximum likelihood (No prior information case)

We denote by Rcor, ¢ the correlation matrix of the observations.
The log-likelihood of the observations y s is :

n 1 1 _
LB, 0,0) x D) IOQ(UZ)—E |09(|Rcorr,9‘)—ﬁ(yobS_Hﬁ)T(Rcon,e) 1(yobs—H,3)
We denote :

B©O) = (H"(Reorr,0) ™ "H) " "HT (Reorr,0) ™" Vb

and ’
&2(9) = B(.Vobs - |'|:é(9))7—(|:‘corr,0)71 (Yobs — HE)(O))

The maximum likelihood estimator of 4, 5 and B of 6, o and 3 are :

# € argmin \Rcorr,a|%5(9)2
0

B =B(0),
and

Q>
I
QP
—~
D>
~—~
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(&)  Maximum likelihood (Bayesian case)

Recall that in the bayesian case :

Yobs ~ N (HBpior, 7Reorr,0 + HQprigrHT)

» The log-likelihood is not anymore a function of 3.

» The gaussian process Yps is not anymore stationnary — No
separation of o2 and 6 in the maximisation of the likelihood.

By denoting :
Qg,e = O'ZRcorr,G + HQpriorHT

we have the log-likelihood :
1 1 _
£(0,0) o< ) log(det(Qs,0)) — E(yobs - H:Bprior)T(Qa,G) 1(.Vobs - Hﬁprior)

and :

(6,0) € argmax £(c, 0)
o,0
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(&) Cross validation (1/3)

The prediction procedure (Bayesian or non-bayesian framework) leads to a
parametric metamodel : x(©) — (y5)5.4.

» It is a function that approximates the physical phenomenon.
» It is built according to the observations (x learning set).

Cross validation (LOO)

» Given a vector of hyper-parameters (o, 0).
» For i from 1 to n we learn x(©) — (), ¢ with the reduced observations
vector {(X1, Yobs,1)s -+ (Xi=1, Yobs,i—1), (Xi+1, Yobs,i+1)s -+-» (Xn, Yobs,n) }
» we compute the LOO errors by :
€100,i(7,0) = Yobs,i — (Vi)o,6 (Y obs,—i)-

Then, the LOO estimator of o and 6 is :

(6,0) € argmin ||e,00(a, 0)][?
o,0
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(&) Cross validation (2/3) Non-bayesian framework

We have a closed formula for the LOO errors vector :
With :

;
Q*(a,e):;(w1 —RZ! HMH'R.! H)"'H'R )

corr,0 corr,0 corr,0 corr,0

We have :
(0,0) = (diag(Q™))~'Q~

e actually does not depends on o.
Therefore we have : ~
RS argemin llecoo(0)I?

and we keep the estimator for o :

52 =~ Vobs — HB) (Rony 3) ™ (Voos — HB(E)
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(&) Cross validation (3/3) Bayesian framework

We also have a closed formula for the LOO errors vector :
Recall :
00,9 = UZRcorr,G + HQpriorHT

We have :
€(0,0) = (diag(@™"))~'Q""

This time, e depends on both ¢ ans 6.
We do the optimization w.r.t o and 6.
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Conclusion and prospects

Conclusion
» For prediction, expert knowledge is taken into account via the bayesian
framework.
» The predictions are similar than the ones given by non-probabilistic
kernels methods.
» The statistical model gives confidence bands for predictions and
calibration.

» The hyper-parameter estimation step is crucial.

Prospects of the Phd

» Model selection procedure : asymptotic study of the maximum likelihood
and LOO.

» Non linear codes.
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Thank you for your attention.
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Model error illustration
» Exemples of covariance functions
"Nugget" model Cmog(X — ¥) = 020x—y

Gaussian model Cpog(X — ¥) = a2 exp —”"7%”2)
c

Generelized exponential model Cpoq(X — ¥) = o2 exp (—(%)ﬂ

» All 3 are stationnary and parametric. We call hyper-parameters the
parameters of the covariance functions. Here hyper-parameters are o,
(o, 1) and (o, Ic, p).

» Exemples of realizations with gaussian covariance function.

Fic.: Left: 0 = 0.2, I = 0.01 Right: 0 = 0.2, | = 0.05
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