

## Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation

#### François Bachoc Josselin Garnier Jean-Marc Martinez

CEA-Saclay, DEN, DM2S, STMF, LGLS, F-91191 Gif-Sur-Yvette, France LPMA, Université Paris 7

July 2013

Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation



Introduction to Kriging and covariance function estimation

Finite sample analysis of ML and CV under model misspecification

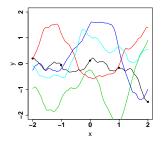
Asymptotic analysis of ML and CV in the well-specified case

Conclusion

Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation

## Kriging model with Gaussian process

Basic idea : representing a deterministic and unknown function as the realization of a Gaussian process



### Notation

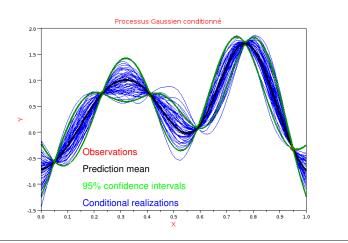
cea

Gaussian process Y defined on the set  $\mathcal{X}$ .

Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation



## When the distribution of the Gaussian process is known



All this from explicit matrix vector formula

Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation

3

イロト イヨト イヨト イヨト

# 

## Covariance function estimation

#### Parameterization

Covariance function model  $\{\sigma^2 K_{\theta}, \sigma^2 \ge 0, \theta \in \Theta\}$  for the Gaussian Process Y.

- $\sigma^2$  is the variance hyper-parameter
- $\theta$  is the multidimensional correlation hyper-parameter.  $K_{\theta}$  is a stationary correlation function.

### Estimation

*Y* is observed at  $x_1, ..., x_n \in \mathcal{X}$ , yielding the Gaussian vector  $y = (Y(x_1), ..., Y(x_n))$ . Estimators  $\hat{\sigma}^2(y)$  and  $\hat{\theta}(y)$ 

## "Plug-in" Kriging prediction

- 1 Estimate the covariance function
- 2 Assume that the covariance function is fixed and carry out the explicit Kriging equations



## Maximum Likelihood for estimation

Explicit Gaussian likelihood function for the observation vector y

#### Maximum Likelihood

Define  $\mathbf{R}_{\theta}$  as the correlation matrix of  $y = (Y(x_1), ..., Y(x_n))$  under correlation function  $K_{\theta}$ .

The Maximum Likelihood estimator of  $(\sigma^2, \theta)$  is

$$(\hat{\sigma}_{ML}^2, \hat{\theta}_{ML}) \in \operatorname*{argmin}_{\sigma^2 \ge 0, \theta \in \Theta} \frac{1}{n} \left( \ln \left( |\sigma^2 \mathbf{R}_{\theta}| \right) + \frac{1}{\sigma^2} y^t \mathbf{R}_{\theta}^{-1} y \right)$$

イロト 不得 とくきとくきとうき



## Cross Validation for estimation

Leave-One-Out criteria we study

$$\hat{\theta}_{CV} \in \operatorname*{argmin}_{\theta \in \Theta} \sum_{i=1}^{n} (y_i - \hat{y}_{\theta,i,-i})^2$$

and

$$\frac{1}{n}\sum_{i=1}^{n}\frac{(y_i-\hat{y}_{\hat{\theta}_{CV},i,-i})^2}{\hat{\sigma}_{CV}^2c_{\hat{\theta}_{CV},i,-i}^2} = 1 \Leftrightarrow \hat{\sigma}_{CV}^2 = \frac{1}{n}\sum_{i=1}^{n}\frac{(y_i-\hat{y}_{\hat{\theta}_{CV},i,-i})^2}{c_{\hat{\theta}_{CV},i,-i}^2}$$

Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation

▲□▶▲□▶▲≡▶▲≡▶ = つへで

## Virtual Leave One Out formula

Let  $\mathbf{R}_{\theta}$  be the correlation matrix of  $y = (y_1, ..., y_n)$  with correlation function  $K_{\theta}$ 

Virtual Leave-One-Out

$$\mathbf{y}_i - \hat{\mathbf{y}}_{\theta,i,-i} = \frac{\left(\mathbf{R}_{\theta}^{-1}\mathbf{y}\right)_i}{\left(\mathbf{R}_{\theta}^{-1}\right)_{i,i}} \quad \text{and} \quad \mathbf{c}_{i,-i}^2 = \frac{1}{\left(\mathbf{R}_{\theta}^{-1}\right)_{i,i}}$$



602

O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, Mathematical Geology, 1983.

Using the virtual Cross Validation formula :

$$\hat{\theta}_{CV} \in \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{n} y^{t} \mathbf{R}_{\theta}^{-1} \operatorname{diag} \left( \mathbf{R}_{\theta}^{-1} \right)^{-2} \mathbf{R}_{\theta}^{-1} y$$

and

$$\hat{\sigma}_{CV}^2 = \frac{1}{n} y^t \mathbf{R}_{\hat{\theta}_{CV}}^{-1} \operatorname{diag} \left( \mathbf{R}_{\hat{\theta}_{CV}}^{-1} \right)^{-1} \mathbf{R}_{\hat{\theta}_{CV}}^{-1} y$$

イロト イポト イヨト イヨト 二日



Introduction to Kriging and covariance function estimation

#### Finite sample analysis of ML and CV under model misspecification

Asymptotic analysis of ML and CV in the well-specified case

Conclusion

▲□▶▲□▶▲≣▶▲≣▶ ■ のへの



We want to study the cases of model misspecification, that is to say the cases when the true covariance function  $K_1$  of Y is far from  $\mathcal{K} = \{\sigma^2 K_\theta, \sigma^2 \ge 0, \theta \in \Theta\}$ 

In this context we want to compare Leave-One-Out and Maximum Likelihood estimators from the point of view of prediction mean square error and point-wise estimation of the prediction mean square error

We proceed in two steps

- When K = {σ<sup>2</sup>K<sub>2</sub>, σ<sup>2</sup> ≥ 0}, with K<sub>2</sub> a correlation function, and K<sub>1</sub> the true unit-variance covariance function : theoretical formula and numerical tests
- In the general case : numerical studies

Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト … 臣

## Case of variance hyper-parameter estimation

- $\hat{y}_0$ : Kriging prediction of  $y_0 := Y(x_0)$  with fixed misspecified correlation function  $K_2$
- ▶  $\mathbb{E} \left[ (\hat{y}_0 y_0)^2 | y \right]$ : conditional mean square error of the non-optimal prediction
- One estimates  $\sigma^2$  by  $\hat{\sigma}^2$ .
- ► Conditional mean square error of ŷ<sub>0</sub> estimated by ô<sup>2</sup>c<sup>2</sup><sub>x0</sub> with c<sup>2</sup><sub>x0</sub> fixed by K<sub>2</sub>

#### The Risk

cea

We study the Risk criterion for an estimator  $\hat{\sigma}^2$  of  $\sigma^2$ 

$$\mathcal{R}_{\hat{\sigma}^{2}, x_{0}} = \mathbb{E}\left[\left.\left(\mathbb{E}\left[\left.\left(\hat{y}_{0} - y_{0}\right)^{2}\right| y\right] - \hat{\sigma}^{2} c_{x_{0}}^{2}\right)^{2}\right]\right.\right]$$

 $\longrightarrow$  Explicit formula for estimators of  $\sigma^2$  that are quadratic forms of the observation vector

## Results for the variance hyper-parameter estimation

#### Procedure

~07

- > Designs of experiments studied : SRS, LHS-Maximin and regular grid
- We make the distance between  $K_1$  and  $K_2$  vary, starting from 0.
  - ▶ For sample  $K_1$  and  $K_2$  are Matérn, with  $\ell_1 = \ell_2 = 1.2$ ,  $\nu_1 = 1.5$ , and  $\nu_2 \in [0.5, 2.5]$
- We calculate and study the Risk criterion

#### Results

- For not too regular design of experiments : CV is more robust than ML to misspecification
  - Larger variance but smaller bias for CV
  - The bias term becomes dominating when  $K_1 \neq K_2$
- For regular design of experiments, CV is less robust to model misspecification

イロト イボト イヨト イヨト 二日

# Case of variance and correlation hyper-parameter estimation

#### For variance and correlation hyper-parameter estimation

- Numerical study on analytical functions
  - Ishigami function (d = 3)
  - Morris function (d = 10)
- Confirmation of the results of the variance estimation case

#### For more details



Bachoc F, Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification, *Computational Statistics and Data Analysis 66 (2013) 55-69,* http://dx.doi.org/10.1016/j.csda.2013.03.016.



Introduction to Kriging and covariance function estimation

Finite sample analysis of ML and CV under model misspecification

#### Asymptotic analysis of ML and CV in the well-specified case

Conclusion

▲□▶▲□▶▲≣▶▲≣▶ ▲■ ● ●



## Framework and objectives

#### Estimation

We do not make use of the distinction  $\sigma^2$ ,  $\theta$ . Hence we use the set  $\{K_{\theta}, \theta \in \Theta\}$  of stationary covariance functions for the estimation.

#### Well-specified model

The true covariance function *K* of the Gaussian Process belongs to the set  $\{K_{\theta}, \theta \in \Theta\}$ . Hence

$$K = K_{\theta_0}, \theta_0 \in \Theta$$

#### Objectives

- Study the consistency and asymptotic distribution of the Cross Validation estimator
- Confirm that Maximum Likelihood is asymptotically more efficient
- Study the influence of the spatial sampling on the estimation

イロト イボト イヨト イヨト 二日

## Spatial sampling for hyper-parameter estimation

<u>-07</u>

- Spatial sampling : Initial design of experiment for Kriging
- It has been shown that irregular spatial sampling is often an advantage for hyper-parameter estimation
  - Stein M, Interpolation of Spatial Data : Some Theory for Kriging, *Springer, New York, 1999. Ch.6.9.*
  - Zhu Z, Zhang H, Spatial sampling design under the infill asymptotics framework, *Environmetrics* 17 (2006) 323-337.
- Our question : Is irregular sampling always better than regular sampling for hyper-parameter estimation ?

イロト イボト イヨト イヨト 二日

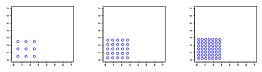
## Two asymptotic frameworks for hyper-parameter estimation

Asymptotics (number of observations  $n \to +\infty$ ) is an area of active research (Maximum-Likelihood estimator)

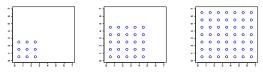
#### Two main asymptotic frameworks

<u>-07</u>

 fixed-domain asymptotics : The observations are dense in a bounded domain



 increasing-domain asymptotics : A minimum spacing exists between the observation points —> infinite observation domain.



Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation

3

# cea

## Choice of the asymptotic framework

Comments on the two asymptotic frameworks

fixed-domain asymptotics

From 80'-90' and onwards. Fruitful theory

Stein, M., Interpolation of Spatial Data Some Theory for Kriging, *Springer, New York, 1999.* 

However, when convergence in distribution is proved, the asymptotic distribution does not depend on the spatial sampling  $\longrightarrow$  Impossible to compare sampling techniques for estimation in this context

increasing-domain asymptotics :

Asymptotic normality proved for Maximum-Likelihood under general conditions

- Sweeting, T., Uniform asymptotic normality of the maximum likelihood estimator, *Annals of Statistics 8 (1980) 1375-1381*.
- Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance in spatial regression, *Biometrika 71 (1984)* 135-146.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ト … ヨ



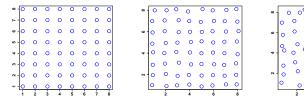
## Randomly perturbed regular grid (1/2)

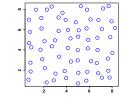
Observation point i :

$$v_i + \epsilon X_i$$

- (v<sub>i</sub>)<sub>i∈ℕ\*</sub> : regular square grid of step one in dimension d
- $(X_i)_{i \in \mathbb{N}^*}$ : *iid* with uniform distribution on  $[-1, 1]^d$
- $\epsilon \in ]-\frac{1}{2}, \frac{1}{2}[$  is the regularity parameter.
  - $\epsilon = 0 \longrightarrow \text{regular grid.}$
  - $|\epsilon|$  close to  $\frac{1}{2} \longrightarrow$  irregularity is maximal

Illustration with  $\epsilon = 0, \frac{1}{8}, \frac{3}{8}$ 



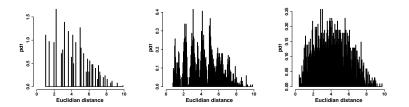


・ロト・日本・ヨト・ヨー りゅつ

Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation

# Randomly perturbed regular grid (2/2)

Histograms of the interpoint distances with  $\epsilon = 0, \frac{1}{8}, \frac{3}{8}$ 



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣



## Consistency and asymptotic normality

Under general conditions

## For ML

► a.s convergence of the random Fisher information : The random trace

$$\frac{1}{n} \operatorname{Tr} \left( \mathbf{R}_{\theta_0}^{-1} \frac{\partial \mathbf{R}_{\theta_0}}{\partial \theta_i} \mathbf{R}_{\theta_0}^{-1} \frac{\partial \mathbf{R}_{\theta_0}}{\partial \theta_j} \right)$$

converges a.s to the element  $(I_{ML})_{i,j}$  of a  $p \times p$  deterministic matrix  $I_{ML}$  as  $n \to +\infty$ 

• asymptotic normality : With  $\Sigma_{ML} = 2I_{ML}^{-1}$ 

$$\sqrt{n}\left(\hat{\theta}_{ML}-\theta_{0}
ight)
ightarrow\mathcal{N}\left(0,\mathbf{\Sigma}_{ML}
ight)$$

For CV

Same result with more complex random traces for asymptotic covariance matrix  $\pmb{\Sigma}_{CV}$ 

#### $\longrightarrow$ consistency and same rate of convergence for CV

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ の へ ()

## Objectives for the analysis of the spatial sampling impact

The asymptotic covariance matrices  $\pmb{\Sigma}_{\textit{ML},\textit{CV}}$  depend only on the regularity parameter  $\epsilon.$ 

 $\longrightarrow$  in the sequel, we study the functions  $\epsilon \rightarrow \mathbf{\Sigma}_{ML,CV}$ 

Small random perturbations of the regular grid

We study  $\left(\frac{\partial^2}{\partial \epsilon^2} \boldsymbol{\Sigma}_{ML,CV}\right)_{\epsilon=0}$ 

<u>202</u>

- Closed form expression for ML for d = 1 using Toeplitz matrix sequence theory
- Otherwise, it is calculated by exchanging limit in n and derivatives in  $\epsilon$

## Large random perturbations of the regular grid

We study  $\epsilon \rightarrow \mathbf{\Sigma}_{ML,CV}$ 

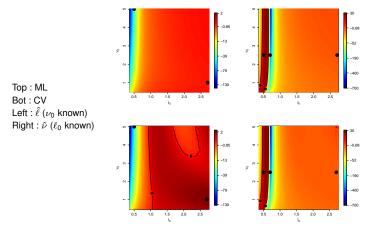
- Closed form expression for ML and CV for d = 1 and  $\epsilon = 0$  using Toeplitz matrix sequence theory
- Otherwise, it is calculated by taking n large enough

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ・ - ヨ ・

## Small random perturbations of the regular grid

~07

Matèrn model. Dimension one. One estimated hyper-parameter. Levels plot of  $(\partial_{\epsilon}^2 \Sigma_{ML,CV}) / \Sigma_{ML,CV}$  in  $\ell_0 \times \nu_0$ 



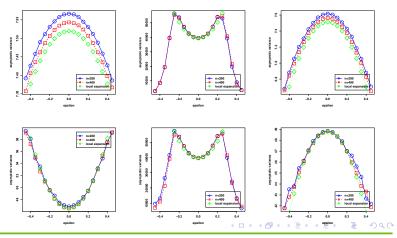
There exist cases of degradation of the estimation for small perturbation for ML and CV. Not easy to interpret

Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation

## Large random perturbations of the regular grid

cea

Plot of  $\Sigma_{ML,CV}$ . Top : ML. Bot : CV. From left to right : ( $\hat{\ell}, \ell_0 = 2.7, \nu_0 = 1$ ), ( $\hat{\nu}, \ell_0 = 0.5, \nu_0 = 2.5$ ), ( $\hat{\nu}, \ell_0 = 2.7, \nu_0 = 2.5$ )



Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation



## Conclusion on the well-specified case

- CV is consistent and has the same rate of convergence than ML
- We confirm that ML is more efficient
- Irregularity in the sampling is generally an advantage for the estimation, but not necessarily
  - With ML, irregular sampling is more often an advantage than with CV
  - Large perturbations of the regular grid are often better than small ones for estimation
  - Keep in mind that hyper-parameter estimation and Kriging prediction are strongly different criteria for a spatial sampling

For further details :



Bachoc F, Asymptotic analysis of the role of spatial sampling for hyper-parameter estimation of Gaussian processes, *Submitted, available at http://arxiv.org/abs/1301.4321.* 

イロト イボト イヨト イヨト 二日



#### General conclusion

- ML preferable to CV in the well-specified case
- In the misspecified-case, with not too regular design of experiments : CV preferable because of its smaller bias
- In both misspecified and well-specified cases : the estimation benefits from an irregular sampling
- > The variance of CV is larger than that of ML in all the cases studied.

#### Perspectives

- Designing other CV procedures (LOO error ponderation, decorrelation and penalty term) to reduce the variance
- Expansion-domain asymptotic analysis of the misspecified case

Thank you for your attention !

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ