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Related work

» Gaussian process models: Chevalier et al. 2014 Technometrics, Azzimonti et al. 2020
Technometrics, Gotovos et al. 2013 [JCAI

» Global optimization algorithms: DOQO, Munos 2011 NIPS, HOO, Bubeck et al. 2011
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Online Protocol

Forn=1,2,...
1. pick the next query point x,,
2. observe the value f(x,)

3. output an approximating set .S,

Our Goal

Quantifying the sample complexity, i.e., smallest number of evaluations of f needed to

{x: f(x)=a}C S, C{z:|f(x)—a| <&}

for some error level € > 0
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Definition
The packing number of a non-empty set E is

N(E,¢e) := sup{keN:Hacl,...,wk. € F, IZI;IJDHCUI—QZJHOO >€}

Theorem
If f is a non-constant continuous function, for any min(f) < a < max(f),
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Not surprising, the level set is defined by a single equation in d unknowns
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Bisect and Approximate (BA)
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3
4

. Bisect the current family of cells
. Query f at some point(s) in each new cell
. Compute a local approximator g¢ of f on each cell C

. Remove a cell C'if |go(x) — a is large for all x € C
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A General Solution

Bisect and Approximate (BA)

1. Bisect the current family of cells X X

2. Query f at some point(s) in each new cell

3. Compute a local approximator go of f on each cell C

4. Remove a cell C'if |go(x) — a is large for all x € C'

Theorem
If the go's are “accurate approximations” of f on the C's,

i(e)
sample complexity of BA < ZN({\f —al| < ci},di)
i=1

where i(e) ~ log(1/e), c1 > ca > ..., d; > d2 > ... depend on the g¢'s and their error

bounds
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~v-Holder functions

f is v-Holder (|f(z) — f(y)| < clle —y||”, with v € (0,1])
Local approximator for BAH

» For a cell C' (hypercube), we query the center and take the local approximator g as
constant

» The error of go on C' is < Diam(C')?

Theorem (upper and lower bound)

The worst-case optimal sample complexity is attained by BAH and

sample complexity of BAH < iy

For lower bound counter example functions are “flat + local bump” (classical)
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Convexity helps a little: d — d — 1

Theorem

When f has ~,-Holder gradient and is convex (+ quantitative conditions), then the worst-case
optimal sample complexity is attained by BAG and

1

sample complexity of BAG < @D/

Follows from geometric arguments on level sets of convex functions:
Theorem
If f is convex (4 quantitative conditions), there exists a constant C* > 0 such that

r

vr e (0,1), N({If—a\ <r}, 7‘) < C* (1>d_1
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