The Sample Complexity of Level Set Approximation

François Bachoc ${ }^{1,2}$ Tom Cesari ${ }^{3,4}$ Sébastien Gerchinovitz ${ }^{5,2}$
${ }^{1}$ UT3 ${ }^{2}$ IMT ${ }^{3}$ TSE ${ }^{4}$ ANITI ${ }^{5}$ IRT

EUROPT 2021

Problem, motivations, related work
Problem
Approximating $\{\boldsymbol{x}: f(\boldsymbol{x})=a\} \subset[0,1]^{d}$

- $f:[0,1]^{d} \rightarrow \mathbb{R}$ unknown in some known smoothness class
- $a \in \mathbb{R}$ a fixed known threshold

Problem, motivations, related work
Problem
Approximating $\{\boldsymbol{x}: f(\boldsymbol{x})=a\} \subset[0,1]^{d}$

- $f:[0,1]^{d} \rightarrow \mathbb{R}$ unknown in some known smoothness class
- $a \in \mathbb{R}$ a fixed known threshold

Motivation

Determining parameters that result in a given outcome (computer experiments, uncertainty quantification, nuclear engineering, coastal flooding, etc.)

Problem, motivations, related work
Problem
Approximating $\{\boldsymbol{x}: f(\boldsymbol{x})=a\} \subset[0,1]^{d}$

- $f:[0,1]^{d} \rightarrow \mathbb{R}$ unknown in some known smoothness class
- $a \in \mathbb{R}$ a fixed known threshold

Motivation

Determining parameters that result in a given outcome (computer experiments, uncertainty quantification, nuclear engineering, coastal flooding, etc.)

Related work

- Gaussian process models: Chevalier et al. 2014 Technometrics, Azzimonti et al. 2020 Technometrics, Gotovos et al. 2013 IJCAI
- Global optimization algorithms: DOO, Munos 2011 NIPS, HOO, Bubeck et al. 2011 JMLR

Protocol and Objective

Online Protocol
For $n=1,2, \ldots$

1. pick the next query point x_{n}
2. observe the value $f\left(\boldsymbol{x}_{n}\right)$
3. output an approximating set S_{n}

Protocol and Objective

Online Protocol
For $n=1,2, \ldots$

1. pick the next query point x_{n}
2. observe the value $f\left(\boldsymbol{x}_{n}\right)$
3. output an approximating set S_{n}

Our Goal
Quantifying the sample complexity, i.e., smallest number of evaluations of f needed to

$$
\{\boldsymbol{x}: f(\boldsymbol{x})=a\} \subset S_{n} \subset\{\boldsymbol{x}:|f(\boldsymbol{x})-a| \leq \varepsilon\}
$$

for some error level $\varepsilon>0$

A Hard Problem

Definition
The packing number of a non-empty set E is

$$
\mathcal{N}(E, \varepsilon):=\sup \left\{k \in \mathbb{N}: \exists \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k} \in E, \min _{i \neq j}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{\infty}>\varepsilon\right\}
$$

A Hard Problem

Definition
The packing number of a non-empty set E is

$$
\mathcal{N}(E, \varepsilon):=\sup \left\{k \in \mathbb{N}: \exists \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k} \in E, \min _{i \neq j}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{\infty}>\varepsilon\right\}
$$

Theorem
If f is a non-constant continuous function, for any $\min (f)<a<\max (f)$,

$$
\mathcal{N}(\{f=a\}, \varepsilon) \gtrsim \frac{1}{\varepsilon^{d-1}}
$$

A Hard Problem

Definition

The packing number of a non-empty set E is

$$
\mathcal{N}(E, \varepsilon):=\sup \left\{k \in \mathbb{N}: \exists \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k} \in E, \min _{i \neq j}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{\infty}>\varepsilon\right\}
$$

Theorem
If f is a non-constant continuous function, for any $\min (f)<a<\max (f)$,

$$
\mathcal{N}(\{f=a\}, \varepsilon) \gtrsim \frac{1}{\varepsilon^{d-1}}
$$

Not surprising, the level set is defined by a single equation in d unknowns

A General Solution

Bisect and Approximate (BA)

A General Solution

Bisect and Approximate (BA)

1. Bisect the current family of cells

A General Solution

Bisect and Approximate (BA)

1. Bisect the current family of cells
2. Query f at some point(s) in each new cell

\times	\times
\times	\times

A General Solution

Bisect and Approximate (BA)

1. Bisect the current family of cells
2. Query f at some point(s) in each new cell
3. Compute a local approximator g_{C} of f on each cell C

\times	\times
\times	\times

A General Solution

Bisect and Approximate (BA)

1. Bisect the current family of cells
2. Query f at some point(s) in each new cell
3. Compute a local approximator g_{C} of f on each cell C

\times	\times
\times	

4. Remove a cell C if $\left|g_{C}(\boldsymbol{x})-a\right|$ is large for all $\boldsymbol{x} \in C$

A General Solution

Bisect and Approximate (BA)

1. Bisect the current family of cells
2. Query f at some point(s) in each new cell
3. Compute a local approximator g_{C} of f on each cell C

\times	\times
\times	

4. Remove a cell C if $\left|g_{C}(\boldsymbol{x})-a\right|$ is large for all $\boldsymbol{x} \in C$

Theorem
If the g_{C} 's are "accurate approximations" of f on the C 's,

$$
\text { sample complexity of } \mathrm{BA} \lesssim \sum_{i=1}^{i(\varepsilon)} \mathcal{N}\left(\left\{|f-a| \leq c_{i}\right\}, d_{i}\right)
$$

where $i(\varepsilon) \approx \log (1 / \varepsilon), c_{1}>c_{2}>\ldots, d_{1}>d_{2}>\ldots$ depend on the g_{C} 's and their error bounds

Consequence for γ-Hölder functions
γ-Hölder functions
f is γ-Hölder $\left(|f(\boldsymbol{x})-f(\boldsymbol{y})| \leq c\|\boldsymbol{x}-\boldsymbol{y}\|^{\gamma}\right.$, with $\left.\gamma \in(0,1]\right)$

Consequence for γ-Hölder functions
γ-Hölder functions
f is γ-Hölder $\left(|f(\boldsymbol{x})-f(\boldsymbol{y})| \leq c\|\boldsymbol{x}-\boldsymbol{y}\|^{\gamma}\right.$, with $\left.\gamma \in(0,1]\right)$
Local approximator for BAH

- For a cell C (hypercube), we query the center and take the local approximator g_{C} as constant
- The error of g_{C} on C is $\lesssim \operatorname{Diam}(C)^{\gamma}$

Consequence for γ-Hölder functions
γ-Hölder functions
f is γ-Hölder $\left(|f(\boldsymbol{x})-f(\boldsymbol{y})| \leq c\|\boldsymbol{x}-\boldsymbol{y}\|^{\gamma}\right.$, with $\left.\gamma \in(0,1]\right)$
Local approximator for BAH

- For a cell C (hypercube), we query the center and take the local approximator g_{C} as constant
- The error of g_{C} on C is $\lesssim \operatorname{Diam}(C)^{\gamma}$

Theorem (upper and lower bound)
The worst-case optimal sample complexity is attained by BAH and

$$
\text { sample complexity of } \mathrm{BAH} \lesssim \frac{1}{\varepsilon^{d / \gamma}}
$$

For lower bound counter example functions are "flat + local bump" (classical)

Consequence for functions with γ_{1}-Hölder gradients
Functions with γ_{1}-Hölder gradients
∇f is γ_{1}-Hölder

Consequence for functions with γ_{1}-Hölder gradients
Functions with γ_{1}-Hölder gradients
∇f is γ_{1}-Hölder
Local approximator for BAG

- For a cell C (hypercube), we query the 2^{d} vertices and take the local approximator g_{C} as multilinear interpolating
- The error of g_{C} on C is $\lesssim \operatorname{Diam}(C)^{1+\gamma_{1}}$

Consequence for functions with γ_{1}-Hölder gradients
Functions with γ_{1}-Hölder gradients
∇f is γ_{1}-Hölder
Local approximator for BAG

- For a cell C (hypercube), we query the 2^{d} vertices and take the local approximator g_{C} as multilinear interpolating
- The error of g_{C} on C is $\lesssim \operatorname{Diam}(C)^{1+\gamma_{1}}$

Theorem (upper and lower bound)
The worst-case optimal sample complexity is attained by BAG and

$$
\text { sample complexity of } \mathrm{BAG} \lesssim \frac{1}{\varepsilon^{d /\left(1+\gamma_{1}\right)}}
$$

For lower bound counter example functions are "flat + local bump" (classical)

Convexity helps a little: $d \mapsto d-1$
Theorem
When f has γ_{1}-Hölder gradient and is convex (+ quantitative conditions), then the worst-case optimal sample complexity is attained by BAG and

$$
\text { sample complexity of BAG } \lesssim \frac{1}{\varepsilon^{(d-1) /\left(1+\gamma_{1}\right)}}
$$

Convexity helps a little: $d \mapsto d-1$
Theorem
When f has γ_{1}-Hölder gradient and is convex (+ quantitative conditions), then the worst-case optimal sample complexity is attained by BAG and

$$
\text { sample complexity of BAG } \lesssim \frac{1}{\varepsilon^{(d-1) /\left(1+\gamma_{1}\right)}}
$$

Follows from geometric arguments on level sets of convex functions:
Theorem
If f is convex (+ quantitative conditions), there exists a constant $C^{*}>0$ such that

$$
\forall r \in(0,1), \mathcal{N}(\{|f-a| \leq r\}, r) \leq C^{*}\left(\frac{1}{r}\right)^{d-1}
$$

Open Problems

Open Problems

- $f \gamma$-Hölder $\Rightarrow 1 / \varepsilon^{d / \gamma}$,

Open Problems

- $f \gamma$-Hölder $\Rightarrow 1 / \varepsilon^{d / \gamma}, \partial^{(1)} f \gamma_{1}$-Hölder $\Rightarrow 1 / \varepsilon^{d /\left(1+\gamma_{1}\right)}$,

Open Problems

$-f \gamma$-Hölder $\Rightarrow 1 / \varepsilon^{d / \gamma}, \partial^{(1)} f \gamma_{1}$-Hölder $\Rightarrow 1 / \varepsilon^{d /\left(1+\gamma_{1}\right)}, \partial^{(k)} f \gamma_{k}$-Hölder $\Rightarrow 1 / \varepsilon^{d /\left(k+\gamma_{k}\right)}$ (similar results in nonparametric statistics theory)

Open Problems

- $f \gamma$-Hölder $\Rightarrow 1 / \varepsilon^{d / \gamma}, \partial^{(1)} f \gamma_{1}$-Hölder $\Rightarrow 1 / \varepsilon^{d /\left(1+\gamma_{1}\right)}, \partial^{(k)} f \gamma_{k}$-Hölder $\Rightarrow 1 / \varepsilon^{d /\left(k+\gamma_{k}\right)}$ (similar results in nonparametric statistics theory)
- Adaptivity to smoothness

Open Problems

- $f \gamma$-Hölder $\Rightarrow 1 / \varepsilon^{d / \gamma}, \partial^{(1)} f \gamma_{1}$-Hölder $\Rightarrow 1 / \varepsilon^{d /\left(1+\gamma_{1}\right)}, \partial^{(k)} f \gamma_{k}$-Hölder $\Rightarrow 1 / \varepsilon^{d /\left(k+\gamma_{k}\right)}$ (similar results in nonparametric statistics theory)
- Adaptivity to smoothness

The paper:

- F. Bachoc, T. Cesari and S. Gerchinovitz, "The sample complexity of level set approximation" AISTATS 2021 - oral presentation

Open Problems

- $f \gamma$-Hölder $\Rightarrow 1 / \varepsilon^{d / \gamma}, \partial^{(1)} f \gamma_{1}$-Hölder $\Rightarrow 1 / \varepsilon^{d /\left(1+\gamma_{1}\right)}, \partial^{(k)} f \gamma_{k}$-Hölder $\Rightarrow 1 / \varepsilon^{d /\left(k+\gamma_{k}\right)}$ (similar results in nonparametric statistics theory)
- Adaptivity to smoothness

The paper:

: F. Bachoc, T. Cesari and S. Gerchinovitz, "The sample complexity of level set approximation" AISTATS 2021 - oral presentation

