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Problem, motivations, related work
Problem
Approximating {x : f(x) = a} µ [0, 1]d
I f : [0, 1]d æ R unknown in some known smoothness class
I a œ R a fixed known threshold

Motivation
Determining parameters that result in a given outcome (computer experiments, uncertainty
quantification, nuclear engineering, coastal flooding, etc.)

Related work
I Gaussian process models: Chevalier et al. 2014 Technometrics, Azzimonti et al. 2020

Technometrics, Gotovos et al. 2013 IJCAI
I Global optimization algorithms: DOO, Munos 2011 NIPS, HOO, Bubeck et al. 2011
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Protocol and Objective
Online Protocol
For n = 1, 2, . . .

1. pick the next query point xn

2. observe the value f(xn)
3. output an approximating set Sn

Our Goal
Quantifying the sample complexity, i.e., smallest number of evaluations of f needed to

{x : f(x) = a} µ Sn µ
)
x : |f(x) ≠ a| Æ Á

*

for some error level Á > 0
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A Hard Problem

Definition
The packing number of a non-empty set E is

N (E, Á) := sup
Ó

k œ N : ÷ x1, . . . , xk œ E, min
i”=j

Îxi ≠ xjÎŒ > Á
Ô

Theorem
If f is a non-constant continuous function, for any min(f) < a < max(f),

N
1
{f = a}, Á

2
& 1

Ád≠1

Not surprising, the level set is defined by a single equation in d unknowns
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A General Solution
Bisect and Approximate (BA)

1. Bisect the current family of cells
2. Query f at some point(s) in each new cell
3. Compute a local approximator gC of f on each cell C

4. Remove a cell C if |gC(x) ≠ a| is large for all x œ C

◊ ◊

◊ ◊

Theorem
If the gC ’s are “accurate approximations” of f on the C’s,

sample complexity of BA .
i(Á)ÿ

i=1
N

1)
|f ≠ a| Æ ci

*
, di

2

where i(Á) ¥ log(1/Á), c1 > c2 > . . . , d1 > d2 > . . . depend on the gC ’s and their error
bounds
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Consequence for “-Hölder functions
“-Hölder functions
f is “-Hölder (

--f(x) ≠ f(y)
-- Æ c Îx ≠ yÎ“ , with “ œ (0, 1])

Local approximator for BAH
I For a cell C (hypercube), we query the center and take the local approximator gC as

constant
I The error of gC on C is . Diam(C)“

Theorem (upper and lower bound)
The worst-case optimal sample complexity is attained by BAH and

sample complexity of BAH . 1
Ád/“

For lower bound counter example functions are “flat + local bump” (classical)
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Consequence for functions with “1-Hölder gradients
Functions with “1-Hölder gradients
Òf is “1-Hölder

Local approximator for BAG
I For a cell C (hypercube), we query the 2d vertices and take the local approximator gC as

multilinear interpolating
I The error of gC on C is . Diam(C)1+“1

Theorem (upper and lower bound)
The worst-case optimal sample complexity is attained by BAG and

sample complexity of BAG . 1
Ád/(1+“1)

For lower bound counter example functions are “flat + local bump” (classical)
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Convexity helps a little: d ‘æ d ≠ 1
Theorem
When f has “1-Hölder gradient and is convex (+ quantitative conditions), then the worst-case
optimal sample complexity is attained by BAG and

sample complexity of BAG . 1
Á(d≠1)/(1+“1)

Follows from geometric arguments on level sets of convex functions:
Theorem
If f is convex (+ quantitative conditions), there exists a constant Cú > 0 such that

’r œ (0, 1) , N
1)

|f ≠ a| Æ r
*
, r

2
Æ Cú

31
r

4d≠1
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Open Problems

I f “-Hölder ∆ 1/Ád/“ , ˆ(1)f “1-Hölder ∆ 1/Ád/(1+“1), ˆ(k)f “k-Hölder ∆ 1/Ád/(k+“k)

(similar results in nonparametric statistics theory)
I Adaptivity to smoothness

The paper:

F. Bachoc, T. Cesari and S. Gerchinovitz, “The sample complexity of level set
approximation” AISTATS 2021 - oral presentation

8 / 8



Open Problems
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I f “-Hölder ∆ 1/Ád/“ , ˆ(1)f “1-Hölder ∆ 1/Ád/(1+“1),
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