The Sample Complexity of Level Set Approximation

François Bachoc^{1,2}Tom Cesari^{3,4}Sébastien Gerchinovitz^{5,2}¹UT3²IMT³TSE⁴ANITI⁵IRT

EUROPT 2021

Problem, motivations, related work

Problem

Approximating $\{oldsymbol{x}: f(oldsymbol{x}) = a\} \subset [0,1]^d$

- ▶ $f: [0,1]^d \rightarrow \mathbb{R}$ unknown in some known smoothness class
- $a \in \mathbb{R}$ a fixed known threshold

Problem, motivations, related work

Problem

Approximating $\{ {m x}: f({m x}) = a \} \subset [0,1]^d$

- $f: [0,1]^d \to \mathbb{R}$ unknown in some known smoothness class
- $a \in \mathbb{R}$ a fixed known threshold

Motivation

Determining parameters that result in a given outcome (computer experiments, uncertainty quantification, nuclear engineering, coastal flooding, etc.)

Problem, motivations, related work

Problem

Approximating $\{ \boldsymbol{x} : f(\boldsymbol{x}) = a \} \subset [0, 1]^d$

- $f: [0,1]^d \to \mathbb{R}$ unknown in some known smoothness class
- ▶ $a \in \mathbb{R}$ a fixed known threshold

Motivation

Determining parameters that result in a given outcome (computer experiments, uncertainty quantification, nuclear engineering, coastal flooding, etc.)

Related work

- Gaussian process models: Chevalier et al. 2014 Technometrics, Azzimonti et al. 2020 Technometrics, Gotovos et al. 2013 IJCAI
- Global optimization algorithms: DOO, Munos 2011 NIPS, HOO, Bubeck et al. 2011 JMLR

Protocol and Objective

Online Protocol For $n = 1, 2, \ldots$

- 1. pick the next query point \boldsymbol{x}_n
- 2. observe the value $f(\boldsymbol{x}_n)$
- 3. output an approximating set S_n

Protocol and Objective

Online Protocol For $n = 1, 2, \ldots$

- 1. pick the next query point \boldsymbol{x}_n
- 2. observe the value $f(\boldsymbol{x}_n)$
- 3. output an approximating set S_n

Our Goal

Quantifying the sample complexity, i.e., smallest number of evaluations of f needed to

$$\{\boldsymbol{x}: f(\boldsymbol{x}) = a\} \subset S_n \subset \{\boldsymbol{x}: |f(\boldsymbol{x}) - a| \leq \varepsilon\}$$

for some error level $\varepsilon > 0$

A Hard Problem

Definition

The packing number of a non-empty set E is

$$\mathcal{N}(E,\varepsilon) := \sup \left\{ k \in \mathbb{N} : \exists \boldsymbol{x}_1, \dots, \boldsymbol{x}_k \in E, \min_{i \neq j} \left\| \boldsymbol{x}_i - \boldsymbol{x}_j \right\|_{\infty} > \varepsilon \right\}$$

A Hard Problem

Definition

The packing number of a non-empty set ${\boldsymbol{E}}$ is

$$\mathcal{N}(E,\varepsilon) := \sup \Big\{ k \in \mathbb{N} : \exists \, \boldsymbol{x}_1, \dots, \boldsymbol{x}_k \in E, \min_{i \neq j} \| \boldsymbol{x}_i - \boldsymbol{x}_j \|_{\infty} > \varepsilon \Big\}$$

Theorem

If f is a non-constant continuous function, for any $\min(f) < a < \max(f)$,

$$\mathcal{N}(\{f=a\},\varepsilon)\gtrsim rac{1}{\varepsilon^{d-1}}$$

A Hard Problem

Definition

The packing number of a non-empty set E is

$$\mathcal{N}(E,\varepsilon) := \sup \Big\{ k \in \mathbb{N} : \exists \, \boldsymbol{x}_1, \dots, \boldsymbol{x}_k \in E, \min_{i \neq j} \| \boldsymbol{x}_i - \boldsymbol{x}_j \|_{\infty} > \varepsilon \Big\}$$

Theorem

If f is a non-constant continuous function, for any $\min(f) < a < \max(f)$,

$$\mathcal{N}(\{f=a\},\varepsilon)\gtrsim \frac{1}{\varepsilon^{d-1}}$$

Not surprising, the level set is defined by a single equation in d unknowns

Bisect and Approximate (BA)

Bisect and Approximate (BA)

1. Bisect the current family of cells

Bisect and Approximate (BA)

- 1. Bisect the current family of cells
- 2. Query f at some point(s) in each new cell

×	×
×	×

Bisect and Approximate (BA)

- 1. Bisect the current family of cells
- 2. Query f at some point(s) in each new cell
- 3. Compute a local approximator g_C of f on each cell C

×	×
×	×

Bisect and Approximate (BA)

- 1. Bisect the current family of cells
- 2. Query f at some point(s) in each new cell
- 3. Compute a local approximator g_C of f on each cell C
- 4. Remove a cell C if $|g_C(\boldsymbol{x}) a|$ is large for all $\boldsymbol{x} \in C$

×	×
×	

Bisect and Approximate (BA)

- 1. Bisect the current family of cells
- 2. Query f at some point(s) in each new cell
- 3. Compute a local approximator g_C of f on each cell C
- 4. Remove a cell C if $|g_C(\boldsymbol{x}) a|$ is large for all $\boldsymbol{x} \in C$

× × ×

Theorem

If the g_C 's are "accurate approximations" of f on the C's,

sample complexity of
$$\mathsf{BA}\lesssim \sum_{i=1}^{i(arepsilon)}\mathcal{N}ig(\{|f-a|\leq c_i\},d_iig)$$

where $i(\varepsilon) \approx \log(1/\varepsilon)$, $c_1 > c_2 > \ldots$, $d_1 > d_2 > \ldots$ depend on the g_C 's and their error bounds

Consequence for $\gamma\text{-H\"older}$ functions

 $\gamma\text{-H\"older}$ functions

f is γ -Hölder $(|f(\boldsymbol{x}) - f(\boldsymbol{y})| \leq c \, \|\boldsymbol{x} - \boldsymbol{y}\|^{\gamma}$, with $\gamma \in (0, 1]$)

Consequence for γ -Hölder functions

 $\gamma\text{-H\"older}$ functions

f is γ -Hölder $(|f(\boldsymbol{x}) - f(\boldsymbol{y})| \leq c \, \|\boldsymbol{x} - \boldsymbol{y}\|^{\gamma}$, with $\gamma \in (0, 1]$)

Local approximator for BAH

- ► For a cell C (hypercube), we query the center and take the local approximator g_C as constant
- ▶ The error of g_C on C is $\leq \operatorname{Diam}(C)^{\gamma}$

Consequence for γ -Hölder functions

 γ -Hölder functions

f is γ -Hölder $(|f(\boldsymbol{x}) - f(\boldsymbol{y})| \le c \|\boldsymbol{x} - \boldsymbol{y}\|^{\gamma}$, with $\gamma \in (0, 1])$

Local approximator for BAH

- For a cell C (hypercube), we query the center and take the local approximator g_C as constant
- The error of g_C on C is $\leq \operatorname{Diam}(C)^{\gamma}$

Theorem (upper and lower bound)

The worst-case optimal sample complexity is attained by BAH and

sample complexity of $\mathsf{BAH} \lesssim rac{1}{arsigma^{d/\gamma}}$

For lower bound counter example functions are "flat + local bump" (classical)

Consequence for functions with γ_1 -Hölder gradients Functions with γ_1 -Hölder gradients ∇f is γ_1 -Hölder

Consequence for functions with γ_1 -Hölder gradients Functions with γ_1 -Hölder gradients ∇f is γ_1 -Hölder

Local approximator for BAG

- For a cell C (hypercube), we query the 2^d vertices and take the local approximator g_C as multilinear interpolating
- ► The error of g_C on C is $\leq \text{Diam}(C)^{1+\gamma_1}$

Consequence for functions with γ_1 -Hölder gradients Functions with γ_1 -Hölder gradients ∇f is γ_1 -Hölder

Local approximator for BAG

- For a cell C (hypercube), we query the 2^d vertices and take the local approximator g_C as multilinear interpolating
- ► The error of g_C on C is $\lesssim \text{Diam}(C)^{1+\gamma_1}$

Theorem (upper and lower bound)

The worst-case optimal sample complexity is attained by BAG and

sample complexity of BAG $\lesssim rac{1}{arepsilon^{d/(1+\gamma_1)}}$

For lower bound counter example functions are "flat + local bump" (classical)

Convexity helps a little: $d \mapsto d-1$

Theorem

When f has γ_1 -Hölder gradient and is convex (+ quantitative conditions), then the worst-case optimal sample complexity is attained by BAG and

sample complexity of $\mathsf{BAG}\lesssim \frac{1}{\varepsilon^{(d-1)/(1+\gamma_1)}}$

Convexity helps a little: $d \mapsto d-1$

Theorem

When f has γ_1 -Hölder gradient and is convex (+ quantitative conditions), then the worst-case optimal sample complexity is attained by BAG and

sample complexity of
$$\mathsf{BAG} \lesssim rac{1}{arepsilon (d-1)/(1+\gamma_1)}$$

Follows from geometric arguments on level sets of convex functions:

Theorem

If f is convex (+ quantitative conditions), there exists a constant $C^* > 0$ such that

$$\forall r \in (0,1) \;, \; \mathcal{N}\Big(\{|f-a| \le r\}, \; r\Big) \le C^* \left(\frac{1}{r}\right)^{d-1}$$

• $f \gamma$ -Hölder $\Rightarrow 1/\varepsilon^{d/\gamma}$,

 $\blacktriangleright \ f \ \gamma \text{-H\"older} \Rightarrow 1/\varepsilon^{d/\gamma} \text{, } \partial^{(1)}f \ \gamma_1 \text{-H\"older} \Rightarrow 1/\varepsilon^{d/(1+\gamma_1)} \text{,}$

• $f \gamma$ -Hölder $\Rightarrow 1/\varepsilon^{d/\gamma}$, $\partial^{(1)} f \gamma_1$ -Hölder $\Rightarrow 1/\varepsilon^{d/(1+\gamma_1)}$, $\partial^{(k)} f \gamma_k$ -Hölder $\Rightarrow 1/\varepsilon^{d/(k+\gamma_k)}$ (similar results in nonparametric statistics theory)

- ► $f \gamma$ -Hölder $\Rightarrow 1/\varepsilon^{d/\gamma}$, $\partial^{(1)} f \gamma_1$ -Hölder $\Rightarrow 1/\varepsilon^{d/(1+\gamma_1)}$, $\partial^{(k)} f \gamma_k$ -Hölder $\Rightarrow 1/\varepsilon^{d/(k+\gamma_k)}$ (similar results in nonparametric statistics theory)
- Adaptivity to smoothness

- $f \gamma$ -Hölder $\Rightarrow 1/\varepsilon^{d/\gamma}$, $\partial^{(1)} f \gamma_1$ -Hölder $\Rightarrow 1/\varepsilon^{d/(1+\gamma_1)}$, $\partial^{(k)} f \gamma_k$ -Hölder $\Rightarrow 1/\varepsilon^{d/(k+\gamma_k)}$ (similar results in nonparametric statistics theory)
- Adaptivity to smoothness

The paper:

F. Bachoc, T. Cesari and S. Gerchinovitz, "The sample complexity of level set approximation" AISTATS 2021 - oral presentation

- $f \gamma$ -Hölder $\Rightarrow 1/\varepsilon^{d/\gamma}$, $\partial^{(1)} f \gamma_1$ -Hölder $\Rightarrow 1/\varepsilon^{d/(1+\gamma_1)}$, $\partial^{(k)} f \gamma_k$ -Hölder $\Rightarrow 1/\varepsilon^{d/(k+\gamma_k)}$ (similar results in nonparametric statistics theory)
- Adaptivity to smoothness

The paper:

F. Bachoc, T. Cesari and S. Gerchinovitz, "The sample complexity of level set approximation" AISTATS 2021 - oral presentation

