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Introduction

In these lecture notes we are interested in a function

f : [0, 1]d → R.

This function is unknown (we do not know how f(x) is computed for x ∈ [0, 1]d). We can only observed
some values of f of the form

(x1, f(x1))

. . .

(xn, f(xn)).

Our aim is, essentially, to use these values (our statistical data) to infer the function f , as depicted
in Figure 1.
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Figure 1: Unknown function and observation points.

Application fields: When f represent a computer model or computer experiment, choosing x ∈
[0, 1]d correspond to set the values of d simulation parameters. After a (long and costly) computation,
the computer model provides the simulation result f(x). We do not know how f works, because
f involve, for instance, complex physical models and numerical schemes. Hence there is a limited
number of results

f(x1)

. . .

f(xn).

Examples: Simulation of aeronautic component, car industry, nuclear engineering. The compo-
nents of x can correspond to geometry parameters, material characteristics, physical concentrations,...
This framework is studied in French companies or institutions such as EDF, CEA, ONERA, AIR-
BUS,...

These lecture notes will address the two following questions:

• How can we learn f from (x1, f(x1)), . . . , (xn, f(xn))?

• What is the impact of each of the d components of f on the value of f(x)?

To address these two questions, the lecture notes are organized into the two main sections:

1. Gaussian process metamodels,

2. Sensitivity analysis.

1 Gaussian process metamodels

1.1 Reminders on Gaussian vectors

Proposition 1 Let V be a random vector on Rn. The three following assertions are equivalent.
i) Any linear combination of V follow a Gaussian distribution. That is, for any fixed n× 1 vector

a, there exists µ ∈ R and σ2 > 0 such that

a>V =

n∑
i=1

aiVi ∼ N (0, σ2).
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ii) There exist m ∈ Rn and a n× n symmetric non-negative definite (SNND) matrix Σ such that
for all n× 1 vector u,

φV (u) = exp

(
ıu>m− 1

2
u>Σu

)
,

where φV is the characteristic function of V , with φV (u) = E(eiu
>V ).

iii) There exist a n × 1 vector m′, a n × r matrix K, with r ≤ n and a r × 1 vector W , with
independent components with distribution N (0, 1), such that

V = m′ +KW.

Furthermore, with m,Σ like in ii) and m′,K like in iii), we have

m = m′ = E(V ) (mean vector)

and
Σ = KK> = cov(V ) (covariance matrix).

We say that V is a Gaussian vector when it satisfies the three previous assertions (we just need
to check that one of the three is satisfied to show that V is a Gaussian vector, since the three are
equivalent).

1.2 Gaussian processes: properties

Definition 2 (Gaussian process) Let (Ω,A, P ) be a probability space and

Z : (Ω,A, P )× [0, 1]d → R
(ω, x)→ Z(ω, x).

We say that Z is a Gaussian process on [0, 1]d when for all n ∈ N, for all x1, . . . , xn ∈ [0, 1]d, the
function ω → (Z(ω, x1), . . . , Z(ω, xn)) is a Gaussian (random) vector.

For all ω, x → Z(ω, x) is a function from [0, 1]d to R. Hence, a Gaussian process is a random
function. We call x→ Z(ω, x) a trajectory, or sample path, of Z (see Figure 1.2).

Figure 2: Sample paths of Gaussian processes.

To come back to the topic of the computer model f : [0, 1]d → R, we say that f(x) = Z(ω?, x) for
some probability event ω?. That is, the computer model f is a realization of a random function Z.
Hence, we are applying the Bayesian framework on the function f . This provides many benefits, as
we shall see below. In the sequel, we will often write Z(x) instead of Z(ω, x).

Example:
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Let X1, X2 be two independent random variables with distribution N (0, 1). Let Z(x) = X1 +
cos(x)X2 for x ∈ [0, 1]. Then Z is a Gaussian process. Indeed, for all n ∈ N and x1, . . . , xn,Z(x1)

...
Z(xn)

 =

X1 + cos(x1)X2
...

X1 + cos(xn)X2

 =

1 cos(x1)
...
1 cos(xn)

(X1

X2

)

is a Gaussian vector from iii) of Proposition 1.

Definition 3 (mean function) Let Z be a Gaussian process on [0, 1]d. The function

m : [0, 1]d → R
x→ E(Z(x))

is called the mean function of Z.

Definition 4 (covariance function) Let Z be a Gaussian process on [0, 1]d. The function

K : [0, 1]d × [0, 1]d → R
(x, y)→ cov(Z(x), Z(y))

is called the covariance function of Z.
If the function K only depends on x− y, that is x− y = x′ − y′ =⇒ K(x, y) = K(x′, y′), then we

say that K is stationary. In this case, in abuse of notation, we write K(x, y) = K(x− y).

Proposition 5 Let Z be a Gaussian process on [0, 1]d, with constant mean function and stationary
covariance function. Then Z is a stationary process. That is, for all n ∈ N, for all x1, . . . , xn ∈ [0, 1]d,
for all δ ∈ Rd such that x1 + δ, . . . , xn + δ ∈ [0, 1]d, we distribution ofZ(x1)

...
Z(xn)


is the same as that of Z(x1 + δ)

...
Z(xn + δ)

 .

Stationarity means that the distribution is translation invariant, see Figure 3.

Figure 3: Translation of observation points in the definition of stationarity.
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Proof of Proposition 5 Let n, x1, . . . , xn, δ be as in the statement of the proposition. Since Z is
a Gaussian process, the two random vectors in the statement of the proposition are Gaussian vector.
Hence, their distributions are characterized by their mean vectors and covariance matrices. Let us
show that they are identical between the two Gaussian vectors.

We have, since the mean function is constant, for i = 1, . . . , n,

E(Z(xi)) = m(xi) = m(xi + δ) = E(Z(xi + δ)).

Hence the mean vectors are identical. We have, for i, j = 1, . . . , n,

xi − xj = (xi + δ)− (xj + δ).

hence, since the covariance function is stationary,

K(xi, xj) = K(xi + δ, xj + δ).

Hence we have
Cov(Z(xi), Z(xj)) = Cov(Z(xi + δ), Z(xj + δ)).

Hence the two covariance matrices are identical. �

Definition 6 (mean square continuity) Let Z be a Gaussian process on [0, 1]d. We say that Z is
mean square continuous if, for all x0 ∈ [0, 1]d,

lim
x→x0

E
(

(Z(x)− Z(x0))2
)

= 0.

We remark that the definition naturally extends the notion of continuity for functions. The difference
between Z(x) and Z(x0) (measured by the expectation of the square difference) goes to zero as x goes
to x0.

Proposition 7 Let Z be a Gaussian process on [0, 1]d with mean function m and with covariance
function K. Then Z is mean square continuous if and only if m is continuous and, for all x0 ∈ [0, 1]d,
K is continuous at (x0, x0).

Proof of Proposition 7 We have

E
(

(Z(x)− Z(x0))2
)

= (E (Z(x)− Z(x0)))2 + Var (Z(x)− Z(x0))

= (m(x)−m(x0))2 + (K(x, x) +K(x0, x0)− 2K(x, x0)) . (1)

If m is continuous and if K is continuous at (x0, x0), then the two summands in (1) go to zero as
x→ x0. This shows the implication “⇐=”.

Let us now show the implication “=⇒”. Under the assumption of mean square continuity, (1) goes
to zero as x→ x0, so the two summands (.) in (1) go to zero (they are both non-negative, the second
one being a variance). Hence (m(x)−m(x0))2 goes to zero and so m is continuous. For x, y ∈ [0, 1]d,
we have

|K(x, y)−K(x0, x0)| = |K(x, y)−K(x, x0) +K(x, x0)−K(x0, x0)|
= |Cov (Z(x), Z(y))− Cov (Z(x), Z(x0)) + Cov (Z(x), Z(x0))− Cov (Z(x0), Z(x0))|
= |Cov (Z(x), Z(y)− Z(x0)) + Cov (Z(x)− Z(x0), Z(x0))|
≤ |Cov (Z(x), Z(y)− Z(x0))|+ |Cov (Z(x)− Z(x0), Z(x0))|

≤
√

Var(Z(x))
√

Var(Z(y)− Z(x0)) +
√

Var(Z(x)− Z(x0))
√

Var(Z(x0)),

using the Cauchy-Schwarz inequality. In the above display, the first square root is bounded as x→ x0

because, from the triangle inequality, |
√

Var(Z(x)) −
√

Var(Z(x0))| ≤
√

Var(Z(x)− Z(x0)) that
goes to zero by the mean square continuity assumption. The second square root goes to zero as
(x, y) → (x0, x0) by the mean square continuity assumption. The third square root also goes to zero
by the mean square continuity assumption. The fourth square root is fixed as (x, y)→ (x0, x0). Hence,
|K(x, y)−K(x0, x0)| goes to zero as (x, y)→ (x0, x0) and thus K is continuous at (x0, x0). �
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Definition 8 (mean square differentiability) A Gaussian process Z on [0, 1]d is differentiable in
quadratic mean if there exist d Gaussian processes (defined on the same probability space (Ω,A, P )),

∂Z

∂x1
, . . . ,

∂Z

∂xd

such that for k = 1, . . . , d, for all x0 ∈ [0, 1]d, with ek the k-th base column vector of Rd,

ek =



0
...
0
1
0
...
0


,

where the 1 is at position k, we have

lim
h→0

E

((
Z(x0 + hek)− Z(x0)

h
− ∂Z

∂xk
(x0)

)2
)

= 0.

Definition 9 (mean square differentiability of higher order) The definition is by induction. A
Gaussian process Z on [0, 1]d is k times mean square differentiable if it is mean square differentiable
and if the d Gaussian processes

∂Z

∂x1
, . . . ,

∂Z

∂xd

are k − 1 times mean square differentiable.

Proposition 10 Let Z be a Gaussian process on [0, 1]d with mean function m and with covariance
function K. If m is k times continuously differentiable on [0, 1]d and if K is 2k times continuously
differentiable on [0, 1]d × [0, 1]d, then Z is k times differentiable in quadratic mean.

We do not provide the proof of Proposition 10 in these lecture notes.

1.3 Gaussian processes: prediction

Theorem 11 (Gaussian conditioning theorem (GCT)) We consider a (n1 + n2) × 1 Gaussian
vector (

Y1

Y2

)
where Y1 is of size n1 × 1 and Y2 is of size n2 × 1. We write the mean vector of (Y >1 , Y >2 )> as(

m1

m2

)
where m1 is of size n1 × 1 and m2 is of size n2 × 1. Finally, we write the covariance matrix of
(Y >1 , Y >2 )> as (

Σ1 Σ1,2

Σ>1,2 Σ2

)
where Σ1 is of size n1 × n1, Σ1,2 is of size n1 × n2 and Σ2 is of size n2 × n2. We assume that Σ1

is invertible. Then, conditionally to Y1 = y1, the random vector Y2 is a Gaussian vector with mean
vector

E (Y2|Y1 = y1) = m2 + Σ>1,2Σ−1
1 (y1 −m1)

and covariance matrix
Cov (Y2|Y1 = y1) = Σ2 − Σ>1,2Σ−1

1 Σ1,2.
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Proof of Theorem 11
Let

Λ =

(
A D
B C

)
be such that (

Σ1 Σ1,2

Σ>1,2 Σ2

)
= ΛΛ>.

Then,

ΛΛ> =

(
A D
B C

)(
A> B>

D> C>

)
=

(
AA> +DD> AB> +DC>

BA> + CD> BB> + CC>

)
=

(
Σ1 Σ1,2

Σ>1,2 Σ2

)
.

Then, with

Y =

(
Y1

Y2

)
,

m =

(
m1

m2

)
there exists ε ∼ N (0, In1+n2) such that

Y = m+ Λε,

from Proposition 1. We let

G =

(
A>

D>

)
, H =

(
B>

C>

)
.

Then,

Y = m+

(
G>ε
H>ε

)
.

We let span(G) and be the linear space spanned by the columns of G. We define span(H) similarly
from H. We remark that span(G) and span(H) are linear subspaces of Rn1+n2 .

We will decompose span(H) the as the sum of its projection on span(G) and of its projection on an
orthogonal linear space. This enables to decompose Y2 as the sum of a function of Y1 and of something
independent to Y1. We let

PG = G(G>G)−1G>

be the orthogonal projection matrix onto span(G). We write

P⊥G = In1+n2 − PG

for the orthogonal projection matrix onto the orthogonal space to span(G). Then

ε = PGε+ P⊥G ε

and these two summands are independent because

Cov(PGε, P
⊥
G ) = PGCov(ε, ε)

(
P⊥G

)>
= PG

(
P⊥G

)>
= PGP

⊥
G = 0.

Then,
Y1 = m1 +G>ε

and

Y2 = m2 +H>ε

= m2 +H>PGε+H>P⊥G ε

= m2 +H>G(G>G)−1G>ε+H>P⊥G ε

= m2 +H>G(G>G)−1(Y1 −m1) +H>P⊥G ε,
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and the two above summands are independent as we have seen.
Hence, Y2 can be written as

deterministic function of Y1 + something independent to Y1.

Hence

L(Y2|Y1 = y1) = N
(
m2 +H>G(G>G)−1(Y1 −m1), H>P⊥G

(
P⊥G

)>
H

)
.

Then,

H>G(G>G)−1 =
(
B C

)(A>
D>

)((
A D

)(A>
D>

))−1

=
(
BA> + CD>

) (
AA> +DD>

)−1

= Σ>1,2Σ−1
1 .

Furthermore,

H>P⊥G

(
P⊥G

)>
H = H>P⊥GH

= H>
(
In1+n2 −G(G>G)−1G>

)
H

= H>H −H>G(G>G)−1G>H

=
(
B C

)(B>
C>

)
−
(
B C

)(A>
D>

)((
A D

)(A>
D>

))−1 (
A D

)(B>
C>

)
=
(
BB> + CC>

)
−
(
BA> + CD>

) (
AA> +DD>

)−1 (
AB> +DC>

)
= Σ2 − Σ>1,2Σ−1

1 Σ1,2.

�
We will see three main applications of the Gaussian conditioning theorem.

(1) Prediction We consider a Gaussian process Y on [0, 1]d, with mean function m and covariance
function K. We consider n observations of Y

Y (x1) = y1 (= f(x1) for the computer model),

...

Y (xn) = yn (= f(xn) for the computer model).

For all x ∈ [0, 1]d, we want to predict Y (x) (which realization is considered to be f(x)). We let R be
the n× n matrix (K(xi, xj))i,j=1,...,n. We write

Y (n) =

Y (x1)
...

Y (xn)

 ,

y(n) =

y1
...
yn

 ,

and

my =

m(x1)
...

m(xn)

 .
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We consider the n× 1 vector

r(x) =

K(x, x1)
...

K(x, xn)

 .

Then, (
Y (n)

Y (x)

)
∼ N

((
my

m(x)

)
,

(
R r(x)

r>(x) K(x, x)

))
. (2)

Hence, from the GCT,

E
(
Y (x)|Y (n) = y(n)

)
= m(x) + r(x)>R−1(y(n) −my).

we write Ŷ (x) = E
(
Y (x)|Y (n) = y(n)

)
. This is a metamodel of f . Indeed, Ŷ (x) approximates f(x)

and computing Ŷ (x) has a negligible cost compared to performing an additional computer experiments
in order to computed f(x).

(2) Predictive variance From (2) and the GCT, we obtain

Var
(
Y (x)|Y (n) = y(n)

)
= K(x, x)− r(x)>R−1r(x).

we write σ̂2(x) = Var
(
Y (x)|Y (n) = y(n)

)
. This is an error indicator of the metamodel because

σ̂2(x) = E
((

Y (x)− Ŷ (x)
)2
)
.

This enables us to obtain confidence intervals. Since L(Y (x)|Y (n) = y(n)) = N (Ŷ (x), σ̂2(x)), the
confidence interval

I(x) =
[
Ŷ (x)− 1.96σ̂(x), Ŷ (x) + 1.96σ̂(x)

]
is a 95% confidence interval for Y (x) (conditionally to Y (n) = y(n)):

P (Y (x) ∈ I(x)|Y (n) = y(n)) = 0.95.

Remark 12 Assume that there exists i ∈ {1, . . . , n} such that x = xi. Then

Ŷ (x) = yi

σ̂2(x) = 0,

which means that we know already that Y (xi) = yi.

Proof of Remark 12
Write

R =
(
? r(x) ?

)
where the three submatrices have dimensions n× (i− 1), n× 1 and n× (n− i) from left to right. We
know that R>R−1 = RR−1 = In and thus

In =

 ?
r(x)>

?

R−1 =

 ?
r(x)>R−1

?

 .

Hence, with ei the i-th base column vector of Rn,

ei =



0
...
0
1
0
...
0


,
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where the 1 is at position i, we have
e>i = r(x)>R−1.

Hence

Ŷ (x) = m(x) + r(x)>R−1(y(n) −my)

= m(x) + e>i (y(n) −my)

= m(x) + (y(n) −my)i

= m(x) + yi −m(xi)

= m(xi) + yi −m(xi)

= yi.

Furthermore

σ̂2(x) = K(x, x)− r(x)>R−1r(x)

= K(x, x)− e>i r(x)

= K(x, x)− (r(x))i
= K(x, x)−K(x, xi)

= K(xi, xi)−K(xi, xi)

= 0.

�
(3) Conditional covariance function
We still observe

Y (n) =

Y (x1)
...

Y (xn)

 =

y1
...
yn

 = y(n)

and we are interested in the joint conditional distribution of(
Y (u)
Y (v)

)
for u, v ∈ [0, 1]d. From the GCT, this distribution is Gaussian. We also already know the two
conditional means and variances. We hence want to find the conditional covariance. Keeping the
notation Y (n), y(n), r(x) and R we obtainY (n)

Y (u)
Y (v)

 ∼ N
 my

m(u)
m(v)

 ,

 R r(u) r(v)
r(u)> K(u, u) K(u, v)
r(v)> K(v, u) K(v, v)

 . (3)

Hence from the GCT, we obtain

Cov

((
Y (u)
Y (v)

)∣∣∣∣Y (n) = y(n)

)
=

(
K(u, u) K(u, v)
K(v, u) K(v, v)

)
−
(
r(u)>

r(v)>

)
R−1

(
r(u) r(v)

)
=

(
K(u, u) K(u, v)
K(v, u) K(v, v)

)
−
(
r(u)>R−1r(u) r(u)>R−1r(v)
r(v)>R−1r(u) r(v)>R−1r(v)

)
=

(
K(u, u)− r(u)>R−1r(u) K(u, v)− r(u)>R−1r(v)
K(v, u)− r(v)>R−1r(u) K(v, v)− r(v)>R−1r(v).

)
We recognize

Var(Y (u)|Y (n) = y(n)) = K(u, u)− r(u)>R−1r(u)

and
Var(Y (v)|Y (n) = y(n)) = K(v, v)− r(v)>R−1r(v).
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The new formula is

Cov(Y (u), Y (v)|Y (n) = y(n)) = K(u, v)− r(u)>R−1r(v),

which provides the conditional covariance function of Y . We hence obtain the following result.

Proposition 13 Conditionally to Y (x1) = y1, . . . , Y (xn) = yn, the process Y : [0, 1]d → R is a
Gaussian process, with mean function

x→ E(Y (x)|Y (n) = y(n)) = Ŷ (x) = m(x) + r(x)>R−1(y(n) −my)

and with covariance function

(u, v)→ cov(Y (u), Y (v)|Y (n) = y(n)) = K(u, v|Y (n) = y(n)) = K(u, v)− r(u)>R−1r(v).

1.4 Gaussian processes: covariance function estimation

In order to apply the GCT, we need to know the mean and covariance functions of Y . In practice
(computer experiments and metamodels) we do not know these functions. In these lecture notes (and
in many practical uses of Gaussian processes), we use the “plug-in” approach.

1. We estimate m and K by m̂ and K̂,

2. We apply the GCT, by replacing m and K by m̂ and K̂ in the equations.

In these lecture notes, we consider a parametric estimation method. Furthermore, for simplicity
of exposition, we assume that the mean function is zero and focus on the covariance function.

Definition 14 A parametric set of covariance functions is a set of the form

{Kθ; θ ∈ Θ}

where Θ s a subset of Rp, for p ∈ N and where, for all θ ∈ Θ, Kθ : [0, 1]d × [0, 1]d is a covariance
function.

Example: The Matérn 3/2 covariance function for d = 1 is given by Θ = [0,∞)×[0,∞), θ = (σ2, `)
and

Kσ2,`(x, y) = σ2

(
1 +
√

6
|x− y|
`

)
e−
√

6
|x−y|
` .

Definition 15 An estimator of θ is a function

θ̂ : ∪
n∈N

((
[0, 1]d × R

)n)
→ Θ.

The input space of θ̂ is the space of all possible data sets of the form

(x1, Y (x1)), . . . , (xn, Y (xn)).

The quantity θ̂(x1, y1, . . . , xn, yn) is the estimate of θ after Y (x1) = y1, . . . , Y (xn) = yn is observed.

Maximum likelihood: We assume that we know the mean function of Y and that this function
is zero. Then, if θ is the true covariance parameter (if Kθ is the covariance function of Y ), then
Y (n) = (Y (x1), . . . , Y (xn)) is a Gaussian vector with mean vector zero and with covariance matrix
Rθ = (Kθ(xi, xj))i,j=1,...,n. Hence, Y (n) has a Gaussian density which value of y(n) is

fθ(y
(n)) =

1

(2π)n/2
√

det(Rθ)
e−

1
2

(y(n))>R−1
θ y(n) .
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Writing again

y(n) =

y1
...
yn

 ,

for the observations Y (x1) = y1, . . . , Y (xn) = yn, the maximum likelihood estimator is

θ̂ML(y(n)) ∈ argmax
θ∈Θ

fθ(y
(n)).

We can simplify this and obtain, with log the Neperian logarithm,

θ̂ML(y(n)) ∈ argmax
θ∈Θ

log

(
1

(2π)n/2
√

det(Rθ)
e−

1
2

(y(n))>R−1
θ y(n)

)
∈ argmax

θ∈Θ
− 1

2
log (det(Rθ))−

1

2
(y(n))>R−1

θ y(n)

∈ argmin
θ∈Θ

log (det(Rθ)) + (y(n))>R−1
θ y(n)

2 Sensitivity analysis

2.1 Context

We consider the computer model

f : [0, 1]d → R
x 7→ f(x).

We consider d distributions for the d inputs x1, . . . , xd : L1, . . . ,Ld. For i = 1, . . . , d, we assume that
the cumulative distribution function FLi of Li is bijective from [0, 1] to [0, 1]. These distributions can
model:

• An uncertainty when we can not know the value that xi will take in practice (example: the
amount of rainfall received by a hydrology computer model).

• An opinion on the values that will be chosen for xi when a computer experiment will be performed
(this is relatively subjective, typically a uniform distribution on [0, 1] may be chosen).

Actually, we may assume without loss of generality that, for i = 1, . . . , d, Li is the uniform distribution
on [0, 1]d. Indeed, we can consider:

• The input x̃i = FLi(xi) for i = 1, . . . , d. In this case, for Xi ∼ Li and X̃i = FLi(Xi), we have,

for t ∈ [0, 1], P (X̃i ≤ t) = P (FLi(Xi) ≤ t) = P (Xi ≤ F−1
Li (t)) = FLi

(
F−1
Li (t)

)
= t. Hence, X̃i

follows the uniform distribution on [0, 1]d.

• The computer model defined by, for x̃1, . . . , x̃d ∈ [0, 1], f̃(x̃1, . . . , x̃d) = f(F−1
Li (x̃1), . . . , F−1

Li (x̃d)) =
f(x1, . . . , xd).

Hence, in the rest of this section on sensitivity analysis, we consider

f : [0, 1]d → R

and d independent uniformly distributed on [0, 1] random variables X1, . . . , Xd. The main question
that we want to address is: for i = 1, . . . , d, is the random variable f(X1, . . . , Xd) strongly or weakly
impacted by the value that Xi will take? Answering this question can have the following benefits.

• We can neglect uninfluential variables, and thus simplify the computer model f by freezing some
of its inputs (for instance by enforcing their values to 1/2).

• If a variable Xi is particularly influential, we can invest more resources in the knowledge of its
possible values.

12



2.2 ANOVA decomposition

ANOVA means analysis of variance.

The case of functions of two variables

Proposition 16 Let f : [0, 1]2 → R such that∫ 1

0

∫ 1

0
f2(x1, x2)dx1dx2 < +∞.

Then, there exists a unique decomposition of f of the form

f(x1, x2) = f0 + f1(x1) + f2(x2) + f1,2(x1, x2),

for all x1, x2 ∈ [0, 1], where f0 is a constant and where the functions f1, f1 and f1,2 satisfy∫ 1

0
f1(x1)dx1 = 0,

∫ 1

0
f2(x2)dx2 = 0

and for all x1, x2 ∈ [0, 1], ∫ 1

0
f1,2(x1, x2)dx1 = 0,

and ∫ 1

0
f1,2(x1, x2)dx2 = 0.

We do not prove Proposition 16 in these lecture notes.

Definition 17 We call the decomposition of Proposition 16 the ANOVA decomposition of f .

In this section, we will interpret the space of square summable functions on [0, 1]2

{g : [0, 1]2 → R;

∫ 1

0

∫ 1

0
g(x1, x2)2dx1dx2 < +∞}

as a Hilbert space with inner product given by, for h1, h2 from [0, 1]d to R, square summable,

〈h1, h2〉 =

∫ 1

0

∫ 1

0
h1(x1, x2)h2(x1, x2)dx1dx2.

Remark 18 In Proposition 16, the functions f0, f1, f2 and f1,2 are orthogonal.

Proof of Remark 18 We have∫ 1

0

∫ 1

0
f0f1(x1)dx1dx2 = f0

∫ 1

0
f1(x1)dx1 = 0,

from Proposition 16. Similarly ∫ 1

0

∫ 1

0
f0f2(x2)dx2 = 0.

We also have ∫ 1

0

∫ 1

0
f0f1,2(x1, x2)dx1dx2 = f0

∫ 1

0

(∫ 1

0
f1,2(x1, x2)dx2

)
dx1 = 0

13



from Proposition 16. We also have∫ 1

0

∫ 1

0
f1(x1)f2(x2)dx1dx2 =

(∫ 1

0
f1(x1)dx1

)(∫ 1

0
f2(x2)dx2

)
= 0.

Furthermore, again from Proposition 16,∫ 1

0

∫ 1

0
f1(x1)f1,2(x1, x2)dx1dx2 =

∫ 1

0
f1(x1)

(∫ 1

0
f1,2(x1, x2)dx2

)
dx1

=

∫ 1

0
f1(x1)0dx1

= 0.

Finally ∫ 1

0

∫ 1

0
f2(x2)f1,2(x1, x2)dx1dx2 =

∫ 1

0
f2(x2)

(∫ 1

0
f1,2(x1, x2)dx1

)
dx2

=

∫ 1

0
f2(x2)0dx2

= 0.

�
In fact, we know the expression of the functions in the ANOVA decomposition.

Proposition 19 The functions f0, f1, f2 and f1,2 in Proposition 16 are given by, for x1, x2 ∈ [0, 1],

f0 =

∫ 1

0

∫ 1

0
f1,2(x1, x2)dx1dx2,

f1(x1) =

∫ 1

0
f(x1, x2)dx2 − f0,

f2(x2) =

∫ 1

0
f(x1, x2)dx1 − f0

and
f1,2(x1, x2) = f(x1, x2)− (f0 + f1(x1) + f2(x2)) .

Proof of Proposition 19 Since there is unicity in Proposition 16, we just need to show that the
functions of Proposition 19 satisfy the conditions of Proposition 16. Of course we have

f(x1, x2) = f0 + f1(x1) + f2(x2) + f1,2(x1, x2),

for all x1, x2 ∈ [0, 1]. For all x1, x2 ∈ [0, 1] we also have∫ 1

0
f1(x1)dx1 =

∫ 1

0

∫ 1

0
f(x1, x2)dx1dx2 − f0 = f0 − f0 = 0.

Similarly ∫ 1

0
f2(x2)dx2 = 0.

We also have ∫ 1

0
f1,2(x1, x2)dx2 =

∫ 1

0
f(x1, x2)dx2 − f0 − f1(x1)−

∫ 1

0
f2(x2)dx2

=

∫ 1

0
f(x1, x2)dx2 − f0 −

(∫ 1

0
f(x1, x2)dx2 − f0

)
− 0

= 0.

Similarly ∫ 1

0
f1,2(x1, x2)dx1 = 0.

14



Remark 20 We have the following interpretations of the ANOVA decomposition.

i) f does not depend on x2 (f(x1, x2) = f(x1, x
′
2) for all x1, x2, x

′
2 ∈ [0, 1]) if and only if, in the

ANOVA decomposition of f , we have f2 = f1,2 = 0.

ii) f is additive (there exist two functions g1 and g2 from [0, 1] to R such that f(x1, x2) = g1(x1) +
g2(x2) for all x1, x2 ∈ [0, 1]) if and only if, in the ANOVA decomposition of f , we have f1,2 = 0.

Proof of Remark 20 i) If f(x1, x2) = f0 +f1(x1), then f(x1, x2) = f(x1, x
′
2) for all x1, x2, x

′
2 ∈ [0, 1].

So ⇐= is proved.
Let us now prove =⇒. For x1 ∈ [0, 1], let us write fx1 = f(x1, 0). Then∫ 1

0
f(x1, x2)dx2 =

∫ 1

0
f(x1, 0)dx2 =

∫ 1

0
fx1dx2 = fx1 .

Hence, for x1, x2 ∈ [0, 1],

f(x1, x2) = fx1

=

∫ 1

0
f(x1, x2)dx2

=

∫ 1

0

∫ 1

0
f(x1, x2)dx1dx2 +

∫ 1

0
f(x1, x2)dx2 −

∫ 1

0

∫ 1

0
f(x1, x2)dx1dx2.

The above decomposition is a valid ANOVA decomposition of f as the sum of a constant and as a
function of x1 with mean zero. Hence by unicity of the ANOVA decomposition, f2 = f1,2 = 0. �

Proof of Remark 20 ii) Let us prove ⇐=. We have f(x1, x2) = f0 + f1(x1) + f2(x2) so we let,
for instance g1(x1) = f0 + f1(x1) and g2(x2) = f2(x2). This proves ⇐=.

Let us now prove =⇒. We have for x1, x2 ∈ [0, 1], f(x1, x2) = g1(x1)+g2(x2). Hence we may write

f(x1, x2) =

∫ 1

0
g1(x1)dx1 +

∫ 1

0
g1(x1)dx1︸ ︷︷ ︸

f0

+ g1(x1)−
∫ 1

0
g1(x1)dx1︸ ︷︷ ︸

f1(x1)

+ g2(x2)−
∫ 1

0
g2(x2)dx2︸ ︷︷ ︸

f2(x2)

+ 0︸︷︷︸
f1,2(x1,x2)

.

We see that ∫ 1

0
f1(x1) =

∫ 1

0
f2(x2) = 0.

Hence, f0, f1, f2 and f1,2 satisfy the conditions of Proposition 16. Hence by unicity, f1,2 = 0. �
Following Remark 20 ii), we call f1,2 the term corresponding to the interactions of x1 and x2 in

the function f .

The general case

Proposition 21 (ANOVA decomposition of f) Let f : [0, 1]d → R such that∫
[0,1]d

f2(x)dx < +∞.

Then, there exists a unique decomposition of f of the form,

f(x) =f0

+
d∑
i=1

fi(xi)

+
∑

1≤i<j≤d
fi,j(xi, xj)

+ . . .

+ f1,...,d(x1, . . . , xd)

=
∑
u∈S

fu(xu),

15



where

• S is the set of all subsets of {1, . . . , d} (including the empty set ∅ and the entire set {1, . . . , d}),

• x = (x1, . . . , xd) ∈ [0, 1]d,

• for u = ∅, fu(xu) is a constant f0, for u = {i1, . . . , ik} 6= ∅, with i1 < · · · < ik, we let
fu(xu) = fi1,...,ik(xi1 , . . . , xik),

such that the functions fu, for u ∈ S, satisfy∫ 1

0
fu(xu)dxi = 0, for all i ∈ u, for all u ∈ S.

We do not prove Proposition 21 in these lecture notes. In the rest of the section, we let |u| be the
cardinality of u ∈ S.

Remark 22 In the ANOVA decomposition of f , the functions are orthogonal:∫
[0,1]d

fu(xu)fv(xv)dx = 0

for u, v ∈ S, u 6= v.

Proof of Remark 22 We can find i ∈ u such that i 6∈ v (up to exchanging u and v). We have∫
[0,1]d

fu(xu)fv(xv)dx =

∫
[0,1]|u∪v|

fu(xu)fv(xv)dxu∪v

=

∫
[0,1]|u∪v|−1

fv(xv)

(∫ 1

0
fu(xu)dxi

)
dxu∪v\{i}.

Then, by the ANOVA property,
∫ 1

0 fu(xu)dxi = 0 and so∫
[0,1]d

fu(xu)fv(xv)dx = 0.

�
We have similar interpretations as in the two variable case.

Remark 23 i) For i = 1, . . . , d, f does not depend on xi (f(x) = f(x′) for all x, x′ ∈ [0, 1]d such
that x{1,...,d}\{i} = x′{1,...,d}\{i}) if and only if, in the ANOVA decomposition of f , we have fu = 0
for i ∈ u for all u ∈ S.

ii) f is additive (there exist d functions g1, . . . , gd from [0, 1] to R such that f(x1, . . . , xd) = g1(x1)+
· · ·+ gd(xd) for all x1, . . . , xd ∈ [0, 1]) if and only if, in the ANOVA decomposition of f , we have
fu = 0 for u ∈ S such that |u| > 1.

Proof of Remark 23 i) If fu = 0 for i ∈ u, we see in Proposition 21 that xi does not appear in the
expression of f , so f does not depend on xi. Hence ⇐= is proved.

Let us now prove =⇒. If f does not depend on xi, we let, for x ∈ [0, 1]d,

• x̃1 = x1

•
...

• x̃i−1 = xi−1

• x̃i = xi+1

16



•
...

• x̃d−1 = xd

and we let
x̃ = (x̃1, . . . , x̃d−1) ∈ [0, 1]d−1

(x̃ implicitly depends on x). We let f̃(x̃1, . . . , x̃d−1) = f(x1, . . . , xi−1, 0, xi+1, . . . , xd) (= f(x1, . . . , xd)).
We write S̃ the set of all subsets of {1, . . . , d−1}. There exists an ANOVA decomposition of f̃ written

f̃(x̃) =
∑
ũ∈S̃

f̃ũ(x̃ũ).

For u = ∅, we let fu = f̃∅ = f̃0. Let us now consider u 6= ∅. We then write fu(xu) = 0 for i ∈ u and
fu(xu) = f̃ũ(x̃ũ) for i 6∈ u with

u = {i1 < · · · < il < il+1 < · · · < ik},

il < i < il+1 (convention i0 = 0 and ik+1 = d+1)

and
ũ = {i1 < · · · < il < il+1 − 1 < · · · < ik − 1}.

Let us now show that the fu(xu), u ∈ S, satisfy the properties of an ANOVA decomposition. Of
course we have, for x ∈ [0, 1]d,

f(x1, . . . , xd) = f(x1, . . . , xi−1, 0, xi+1, . . . , xd) =
∑
ũ∈S̃

f̃ũ(x̃ũ) =
∑
u∈S

fu(xu).

For i ∈ u and j ∈ u, we have ∫ 1

0
fu(xu)dxj =

∫ 1

0
0dxj = 0.

Consider now i ∈ u and j 6∈ u.
If j < i. ∫ 1

0
fu(xu)dxj =

∫ 1

0
f̃ũ(x̃ũ)dx̃j = 0

because j ∈ ũ and by definition of the ANOVA decomposition of f̃ .
If i < j. We have ∫ 1

0
fu(xu)dxj =

∫ 1

0
f̃ũ(x̃ũ)dx̃j−1 = 0

because j − 1 ∈ ũ and by definition of the ANOVA decomposition of f̃ .
Hence, finally, the fu(xu), u ∈ S constitute the ANOVA decomposition of f (by unicity). Hence,

in the ANOVA decomposition of f , fu(xu) = 0 for all x ∈ [0, 1]d and u ∈ S with i ∈ u. �
Proof of Remark 23 ii) If fu = 0 for |u| > 1 then

f(x) = f0 + f1(x1)︸ ︷︷ ︸
g1(x1)

+ · · ·+ fd(xd)︸ ︷︷ ︸
gd(xd)

so f is additive. So ⇐= is proved.
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Let us now prove =⇒. If f is additive,

f(x) = g1(x1) + · · ·+ gd(xd)

=

∫ 1

0
g1(x1)dx1 + · · ·+

∫ 1

0
gd(xd)dxd︸ ︷︷ ︸

f0

+ g1(x1)−
∫ 1

0
g1(x1)dx1︸ ︷︷ ︸

f1(x1)

+ · · ·+ gd(xd)−
∫ 1

0
gd(xd)dxd︸ ︷︷ ︸

fd(xd)

+
∑
u∈S
|u|>1

0︸︷︷︸
fu(xu)

.

We check that for i = 1, . . . , d,∫ 1

0
fi(xi)dxi =

∫ 1

0
gi(xi)dxi −

∫ 1

0
gi(xi)dxi = 0.

In all the other cases where |u| > 1, for i ∈ u,∫ 1

0
fu(xu) =

∫ 1

0
fu(xu)dxi = 0.

Hence (fu)u∈S satisfy the conditions of the ANOVA decomposition of f and thus by unicity they
constitute the ANOVA decomposition of f . Hence, in the ANOVA decomposition of f , fu = 0 for
u ∈ S, |u| > 1. �

Similarly as for the two variable case, when u = {i1, . . . , ik}, we call fu(xu) the term corresponding
to the interactions of xi1 , . . . , xik in the function f .

2.3 Sobol sensitivity indices

We now write the probabilistic form
Y = f(X1, . . . , Xd)

where each Xi, i ∈ {1, . . . , d}, is uniform on [0, 1] and where X1, . . . , Xd are independent. Then

f(X1, . . . , Xd) =
∑
u∈S

fu(Xu)

and the random variables in the above sum are decorrelated and have mean zero (except f0): for
u, v ∈ S, u 6= v,

Cov(fu(Xu), fvXv) = 0

and for u 6= ∅,
E(fu(Xu)) = 0.

Indeed, we have for u 6= ∅, with i ∈ u,

E(fu(Xu)) =

∫
[0,1]d

fu(xu)dx =

∫
[0,1]d−1

(∫ 1

0
fu(xu)dxi

)
dx{1,...,d}\{i} =

∫
[0,1]d−1

0dx{1,...,d}\{i} = 0

from the properties of the ANOVA decomposition. Hence we have for u, v ∈ S, u 6= v,

Cov(fu(Xu), fvXv) = E(fu(Xu)fvXv) =

∫
[0,1]d

fu(xu)fvxvdx = 0

from Remark 22.
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From the decorrelation, we have

Var (f(X1, . . . , Xd)) =
∑
u∈S

Var (fu(Xu)) .

This is why the name analysis of variance is used. We write for u ∈ S

Iu =
Var(fu(Xu))

Var(f(X1, . . . , Xd))

and we call Iu the sensitivity index associated to the group of variables u. More precisely:

• If u = {i} for i = 1, . . . , d, Iu is called the sensitivity index for the main effect of the variable i.

• If u = {i1, . . . , ik} with k > 1, Iu is called sensitivity index for the interactions of the variables
i1, . . . , ik.

We have ∑
u∈S

Iu =

∑
u∈S Var (fu(Xu))

Var (f(X1, . . . , Xd))

and thus ∑
u∈S

Iu = 1.

Hence, we have a decomposition of the total variance into fractions that correspond to the main and
interaction effects of the variables.

An explicit computation in dimension two For d = 2, we consider f(x1, x2) = x2(x1 +w) with
w ∈ R a fixed constant. The ANOVA decomposition of f is

f(x1, x2) =
1

2

(
1

2
+ w

)
︸ ︷︷ ︸

f0

+
1

2

(
x1 −

1

2

)
︸ ︷︷ ︸

f1(x1)

+

(
1

2
+ w

)(
x2 −

1

2

)
︸ ︷︷ ︸

f2(x2)

+

(
x1 −

1

2

) (
x2 −

1

2

)
︸ ︷︷ ︸

f1,2(x1,x2)

.

Indeed the decomposition is equal to

�
��
1

4
+

�
��

1

2
w +

�
��

1

2
x1 −

�
��
1

4
+

�
��

1

2
x2 −

�
��
1

4
+ wx2 −

�
��

1

2
w + x1x2 −

�
��

1

2
x1 −

�
��

1

2
x2 +

�
��
1

4
= x1x2 + wx2

= x2(x1 + w).

Furthermore we check
∫ 1

0 f1(x1)dx1 = 0,
∫ 1

0 (f2(x2)dx2 = 0,
∫ 1

0 f1,2(x1, x2)dx2 = 0 and
∫ 1

0 f1,2(x1, x2)dx1 =

0 for x1, x2 ∈ [0, 1] (using
∫ 1

0 xdx = 1/2).
Let us compute all the variances. We will use the formulas, for j = 1, 2

E(Xj) =
1

2
, E(X2

j ) =
1

3
, Var(Xj) =

1

12
.
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We have

Var (f(X1, X2)) = Var (X2(X1 + w))

= E
(
X2

2 (X1 + w)2
)
− E (X2(X1 + w))2

= E(X2
2 )E

(
(X1 + w)2

)
− E2(X2)E2(X1 + w)

=
1

3

(
E(X2

1 ) + w2 + 2wE(X1)
)
− 1

4

(
1

2
+ w

)2

=
1

9
+
w2

3
+
w

3
− 1

4

(
1

4
+ w2 + w

)
=

16

144
+

4w2

12
+

4w

3
− 9

144
− 3w2

12
− 3w

12

=
7

144
+
w2

12
+
w

12

=
1

12

(
7

12
+ w2 + w

)
=

1

12

((
w +

1

2

)2

+
1

3

)
.

Then

Var(f1(X1)) = Var

(
1

2

(
X1 −

1

2

))
=

1

4
Var(X1)

=
1

4

1

12
.

Then

Var(f2(X2)) = Var

((
1

2
+ w

)(
X2 −

1

2

))
=

(
1

2
+ w

)2 1

12
.

Then

Var(f1,2(X1, X2)) = Var

((
X1 −

1

2

)(
X2 −

1

2

))
= E

((
X1 −

1

2

)2(
X2 −

1

2

)2
)
− E2

((
X1 −

1

2

)(
X2 −

1

2

))
= Var(X1)Var(X2)− 0

=
1

144
.

Hence,

I1 =
1
4

1
12

1
12

((
w + 1

2

)2
+ 1

3

)
and thus

I1 =
1
4(

w + 1
2

)2
+ 1

3

Also

I2 =

(
w + 1

2

)2(
w + 1

2

)2
+ 1

3

.
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Finally,

I1,2 =
1
12

1
12

1
12

((
w + 1

2

)2
+ 1

3

)
and thus

I1,2 =
1
12(

w + 1
2

)2
+ 1

3

The interpretation is the following:

• If w → ±∞, I1 → 0, I2 → 1 and I1,2 → 0. Indeed, if w is very large then f almost does not
depend on the specific value that x1 is taking in [0, 1] because w ≈ w+1. Hence f(x1, x2) ≈ wx2.

• I1 is maximal for w = −1/2 with I1 = (1/4)/(1/3) = 3/4. Indeed, x1 − 1/2 gives the most
impact to the value of x1 in [0, 1]. In particular, the sign is most uncertain (P (X1 − 1/2 ≥ 0) =
P (X1 − 1/2 ≤ 0) = 1/2).

• For w = 0, I1 = I2 = (1/4)/((1/4) + (1/3)) = (3/12)/((3/12) + (4/12)) = 3/7 and I1,2 =
(1/12)/((1/4) + (1/3)) = 1/7. It is normal that I1 = I2 because f(x1, x2) = x1x2 is symmetric
in x1, x2.

Limitation There are 2d subsets of {1, . . . , d} so 2d indices Iu, u ∈ S. When d is above, say, 10,
this makes too many quantities to estimate/interpret. We thus now study a smaller number of indices
that are particularly interpretable.

First order indices and ranking of the variables by order of priority The sensitivity index
Ii, for i = 1, . . . , d is called a first order index.

Proposition 24 We have for i = 1, . . . , d,

Ii =
Var (E (Y |Xi))

Var(Y )
= 1− E (Var (Y |Xi))

Var(Y ).

Hence, if i ∈ {1, . . . , d} is such that Ii is the largest, then E(Var(Y |Xi)) is the smallest. Hence,
knowing Xi decrease the variance of Y the most. Xi is thus the prioritary variable, on which we want
to make the most effort to reduce the uncertainty.

Proof of Proposition 24 In the ANOVA decomposition of f ,

E(Y |Xi) =
∑
u∈S

E (fu(Xu)|Xi)

= f0 + fi(Xi) +
∑
u∈S
u6=∅
u6={i}

E (fu(Xu)|Xi) .

For u ∈ S such that u 6= ∅ and u 6= {i}, there exists j ∈ {1, . . . , d} such that j ∈ u and j 6= i. We
have

E (fu(Xu)|Xi) =

∫
[0,1]d−1

fu(x{1,...,d}\{i}, Xi)dx{1,...,d}\{i}

=

∫
[0,1]d−2

(∫ 1

0
fu(x{1,...,d}\{i}, Xi)dxj

)
︸ ︷︷ ︸

=0

dx{1,...,d}\{i,j}

= 0.
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Hence E(Y |Xi) = f0 +fi(Xi) and so Var(E(Y |Xi)) = Var(fi(Xi)). This shows the first equation of the
proposition. For the second equation, we have for any random variables A and B with finite variances

Var(B) = Var(E(B|A)) + E(Var(B|A))

which is called the law of total variance. Indeed

Var(B) = E(B2)− E2(B)

= E
(
E
(

(B − E(B|A) + E(B|A))2
∣∣A))− E2 (E(B|A))

= E
(
E
(

(B − E(B|A))2
∣∣A))+ E

(
E2(B|A)

)
+ 2E (E ((B − E(B|A))E(B|A)|A))− E2 (E(B|A))

= E(Var(B|A)) + 2E
(
E2(B|A)− E2(B|A)

)
+ E

(
E2(B|A)

)
− E2 (E(B|A))

= E(Var(B|A)) + Var(E(B|A)).

Hence
Var (E (Y |Xi))

Var(Y )
= 1− E (Var (Y |Xi))

Var(Y ).

�

Total indices and choice of the inputs to freeze For i = 1, . . . , d, we define the total index TIi
of the variable i as

TIi =
∑
u∈S
i∈u

Iu.

Proposition 25 For i = 1, . . . , d,

TIi =
E (Var(Y |X−i))

Var(Y )
= 1− Var (E(Y |X−i))

Var(Y )
,

with X−i = X{1,...,d}\{i}.

If TIi = 0, then Var(Y |X−i) = 0 and thus Y is a deterministic function ofX−i. Hence, f(X1, . . . , Xd)
does not depend on Xi. Hence if TIi is very small, Y almost does not depend on Xi and we can freeze
Xi (for instance to 1/2) to decrease the number of input variables fo the computer model f .

Proof of Proposition 25 We have

E(Y |X−i) = E

(∑
u∈S

fu(Xu)|X−i

)

= f0 +
∑
u∈S
u6=∅
i 6∈u

fu(Xu) +
∑
u∈S
i∈u

∫ 1

0
fu(Xu\{i}, xi)dxi

= f0 +
∑
u∈S
u6=∅
i 6∈u

fu(Xu).

Hence
Var (E(Y |X−i))

Var(Y )
= 1− TIi.

Hence

TIi = 1− Var (E(Y |X−i))
Var(Y )

.

Finally we use the law of total variance Var(Y ) = E(Var(Y |X−i)) + Var(E(Y |X−i)). �
We call Ii and TIi = 0, for i = 1, . . . , d the Sobol sensitivity indices.
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Estimation of the sensitivity indices For i = 1, . . . , d, for Ii, we want to estimate Var(E(Y |Xi)).

Proposition 26 Let i ∈ {1, . . . , d}. Let XA and XB be independent random vectors with uniform
distribution on [0, 1]d. We let

Y A
i = f(XA

1 , . . . , X
A
i−1, X

A
i , X

A
i+1, . . . , X

A
d )

and
Y B
i = f(XB

1 , . . . , X
B
i−1, X

A
i , X

B
i+1, . . . , X

B
d ).

We also let
XA,i = (XA

1 , . . . , X
A
i−1, X

A
i , X

A
i+1, . . . , X

A
d )

and
BB,i = (XB

1 , . . . , X
B
i−1, X

A
i , X

B
i+1, . . . , X

B
d ).

Then
Var (E (Y |Xi)) = Cov(Y A

i , Y
B
i ).

Proof of Proposition 26 We have

Cov(Y A
i , Y

B
i ) =

∑
u∈S
u6=∅

∑
v∈S
v 6=∅

Cov
(
fu(XA,i

u ), fv(X
B,i
v )

)
=
∑
u∈S
u6=∅

∑
v∈S
v 6=∅

E
(
fu(XA,i

u )fv(X
B,i
v )

)
.

Assume that in one of the above expectations there exists j 6= i with j ∈ u or j ∈ v. Assume first that
j ∈ v. We have

E
(
fu(XA,i

u )fv(X
B,i
v )

)
= E

(
E
(
fu(XA,i

u )fv(X
B,i
v )

∣∣XB,i
−j , X

A,i
))

= E
(
fu(XA,i

u )E
(
fv(X

B,i
v )

∣∣XB,i
−j , X

A,i
))

= E
(
fu(XA,i

u )

∫ 1

0
fv(X

B,i
v\{j}, xj)dxj

)
= E

(
fu(XA,i

u )0
)

= 0.

Assume then that j ∈ u. We have

E
(
fu(XA,i

u )fv(X
B,i
v )

)
= E

(
E
(
fu(XA,i

u )fv(X
B,i
v )

∣∣XA,i
−j , X

B,i
))

= E
(
fv(X

B,i
v )E

(
fu(XA,i

u )
∣∣XA,i
−j , X

B,i
))

= E
(
fv(X

B,i
v )

∫ 1

0
fu(XA,i

u\{j}, xj)dxj

)
= E

(
fv(X

B,i
v )0

)
= 0.

Hence we obtain

Cov
(
Y A
i , Y

B
i

)
= Cov

(
fi(X

A,i
i ), fi(X

B,i
i )

)
= Var(fi(Xi))

= Var (E (Y |Xi))

from the proof of Proposition 24. �
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Consider then independent vectors(
XA,i,(1)

XB,i,(1)

)
, . . . ,

(
XA,i,(n)

XB,i,(n)

)
with the same distribution as (

XA,i

XB,i

)
.

Let, for j = 1, . . . , n,

Y
A,(j)
i = f(XA,i,(j)), Y

B,(j)
i = f(XB,i,(j)).

Then we let

f̂0 =
1

2n

n∑
j=1

(
Y
A,(j)
i + Y

B,(j)
i

)
and

σ̂2 =
1

2n

n∑
j=1

([
Y
A,(j)
i

]2
+
[
Y
B,(j)
i

]2
)
− f̂2

0 .

Then the estimator of Ii is

Îi =
1
n

∑n
j=1 Y

A,(j)
i Y

B,(j)
i − f̂2

0

σ̂2.

For TIi we want to calculate E(Var(Y |X−i)).

Proposition 27 Let i ∈ {1, . . . , d} be fixed. Let XC be a third random vector with uniform distribution
on [0, 1]d, independent from XA and XB. Let

XC,i =
(
XA

1 , . . . , X
A
i−1, X

C
i , X

A
i+1, . . . , X

A
d

)
.

Let Y C
i = f(XC,i). Then

E (Var (Y |X−i)) =
1

2
E
((
Y A
i − Y C

i

)2)
.

Proof of Proposition 27
We have shown in the proof of Propositioin 25 that

Var (E (Y |X−i)) =
∑
u∈S
i 6∈u

Var(fu(Xu)).

Hence
E (Var (Y |X−i)) = Var(Y )−

∑
u∈S
i 6∈u

Var(fu(Xu)).

We have
1

2
E
((
Y A
i − Y C

i

)2)
=

1

2
(Var(Y ) + Var(Y ))− Cov

(
Y A
i , Y

C
i

)
.

In order to conclude the proof, it is hence sufficient to prove that

Cov
(
Y A
i , Y

C
i

)
=
∑
u∈S
i 6∈u

Var(fu(Xu)).

We have
Cov

(
Y A
i , Y

C
i

)
=
∑
u∈S

∑
v∈S

E
(
fu(XA,i

u )fv(X
C,i
v )
)
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Assume that i ∈ u. We have

E
(
fu(XA,i

u )fv(X
C,i
v )
)

= E
(
E
(
fu(XA,i

u )fv(X
C,i
v )
∣∣XA
{1,...,d}\{i}, X

C
))

= E
(
fv(X

C,i
v )

∫ 1

0
fu(XA,i

u\{i}, xi)dxi

)
= E

(
fv(X

C,i
v )0

)
= 0.

Similarly, for i ∈ v,

E
(
fu(XA,i

u )fv(X
C,i
v )
)

= E
(
E
(
fu(XA,i

u )fv(X
C,i
v )
∣∣XC
{1,...,d}\{i}, X

A
))

= E
(
fu(XA,i

u )

∫ 1

0
fv(X

C,i
v\{i}, xi)dxi

)
= E

(
fu(XA,i

u )0
)

= 0.

Hence

Cov
(
Y A
i , Y

C
i

)
=
∑
u∈S
i 6∈u

∑
v∈S
i 6∈v

E
(
fu(XA,i

u )fv(X
A,i
v )
)

=
∑
u∈S
i 6∈u

Var
(
fu(XA,i

u )
)

because of the decorrelation of the terms in the ANOVA decomposition. �
Consider then independent vectors(

XA,i,(1)

XC,i,(1)

)
, . . . ,

(
XA,i,(n)

XC,i,(n)

)
with the same distribution as (

XA,i

XC,i

)
.

Let, for j = 1, . . . , n,

Y
C,(j)
i = f(XC,i,(j)).

Then an estimator of TIi is

T̂Ii =
1

2n

∑n
j=1

(
Y
A,(j)
i − Y C,(j)

i

)2

σ̂2
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