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Random variables and vectors

A random Variable X is a random
number, defined by a probability
density function fX : R→ R+ for
which, for a, b ∈ R :

"probability of a ≤ X ≤ b" =

∫ b

a
fX (x)dx

Similarly a random Vector
V = (V1, ...,Vn)t is a vector of
random variables. It is also defined
by a probability density function
fV : Rn → R+ for which, for
E ∈ Rn :

"probability of V ∈ E" =

∫
E

fV (v)dv

Remark

Naturally we have
∫ +∞
−∞ fX (x)dx =

∫
Rn fV (v)dv = 1
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Mean, variance and covariance

The mean of a random variable X with density fX is denoted E(X) and is

E(X) =

∫ +∞

−∞
xfX (x)dx

Let X be a random variable. The variance of X is denoted var(X) and is

var(X) = E
{

(X − E(X))2
}

var(X) is large→ X can be far from its mean→ more uncertainty.
var(X) is small→ X is close to its mean→ less uncertainty.

Let X ,Y be two random variables. The covariance between X and Y is denoted cov(X ,Y )
and is

cov(X ,Y ) = E {(X − E(X))(Y − E(Y ))}

|cov(X , Y )| ≈
√

var(X)var(Y )→ X and Y are almost proportional to one another.
|cov(X , Y )| <<

√
var(X)var(Y )→ X and Y are almost independent (when they are Gaussian).
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Mean vector and covariance matrix

Let V = (V1, ...,Vn)t be a random vector. The mean vector of V is denoted E(V ) and is the
n × 1 vector defined by

(E(V ))i = E(Vi )

Let V = (V1, ...,Vn)t be a random vector. The covariance matrix of V is denoted cov(V ) and
is the n × n matrix defined by

(cov(V ))i,j = cov(Vi ,Vj )

The diagonal terms show which components are the most uncertain.
The non-diagonal terms show the dependence between the components.
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Stochastic processes

A stochastic process is a function
Z : Rn → R such that Z (x) is a random
variable. Alternatively a stochastic
process is a function on Rn that is
unknown, or that depends of underlying
random phenomena.

We explicit the randomness of Z (x) by writing it Z (ω, x) with ω in a probability space Ω. For a
given ω0, we call the function x → Z (ω0, x) a realization of the stochastic process Z .

Mean function M : x → M(x) = E(Z (x))
Covariance function C : (x1, x2)→ C(x1, x2) = cov(Z (x1),Z (x2))
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Gaussian variables and vectors

A random variable X is a Gaussian
variable with mean µ and variance
σ2 > 0 when its probability density
function is

fµ,σ2 (x) =
1

√
2πσ

exp
(
−

1
2σ2

(x − µ)2
)

A n-dimensional random vector V is a
Gaussian vector with mean vector m
and invertible covariance matrix R when
its multidimensional probability density
function is

fm,R(v) =

1

(2π)
n
2
√

det(R)
exp

(
−

1
2

(v −m)t R−1(v −m)

)

E.g. for Gaussian variables : µ and σ2 are both parameters of the probability density function and
the mean and variances of it. That is

∫ +∞
−∞ xfµ,σ2 (x)dx = µ and

∫ +∞
−∞ (x − µ)2fµ,σ2 (x)dx = σ2
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Gaussian processes

A stochastic process Z on Rd is a Gaussian process when for all x1, ..., xn, the random vector
(Z (x1), ...,Z (xn)) is Gaussian.

A Gaussian process is characterized by its mean and covariance functions.

Why are Gaussian processes convenient ?

Gaussian distribution is reasonable for modeling a large variety of random variables

Gaussian processes are simple to define and simulate

They are characterized by their mean and covariance functions

As we will see, Gaussian properties simplify the resolution of problems

Gaussian processes have been the most studied theoretically
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Example of the Matérn 3
2 covariance function on R

The Matérn 3
2 covariance function, for a

Gaussian process on R is
parameterized by

A variance parameter σ2 > 0

A correlation length parameter
` > 0

It is defined as

C(x1, x2) =

(
1 +
√

6
|x1 − x2|

`

)
e−
√

6
|x1−x2|

`
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0
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Interpretation

The Matérn 3
2 function is stationary : C(x1 + h, x2 + h) = c(x1, x2)⇒ The behavior of the

corresponding Gaussian process is invariant by translation.

σ2 corresponds to the order of magnitude of the functions that are realizations of the
Gaussian process

` corresponds to the speed of variation of the functions that are realizations of the Gaussian
process
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The Matérn 3
2 convariance function on R : illustration of `

Plot of realizations of a Gaussian process having the Matérn 3
2 covariance function for σ2 = 1 and

` = 0, 5, 1, 2 from left to right
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The Matérn 3
2 convariance function : generalization to Rd

We now consider a Gaussian process on Rd .
The corresponding multidimensional Matérn 3

2 convariance function is parameterized by

A variance parameter σ2 > 0

d correlation length parameters `1 > 0, ..., `d > 0

It is defined as
C(x , y) =

(
1 +
√

6||x − y ||`1,...,`d

)
e−
√

6||x−y||`1,...,`d

with

||x − y ||`1,...,`d =

√√√√ d∑
i=1

(xi − yi )2

`2i

Interpretation
Still stationary

σ2 still drives the order of magnitudes of the realizations

`1, ..., `d correspond to the speed of variation of the realizations x → Z (ω, x) when only the
corresponding variable x1, ..., xd varies.

⇒ when `i is particularly small, then the variable xi is particularly important⇒ hierarchy of
the input variables x1, ...xd according to their correlation lengths `1, ..., `d
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Summary

A Gaussian process can be seen as a random phenomenon yielding realizations, i.e. specific
functions Rd → R
The standard probability tools enable to model and quantify the uncertainty we have on these
realizations

The choice of the covariance function (e.g. Matérn 3
2 ) enables to synthesize the information

we have (get) on the nature of the realizations with a small number of parameters
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Conditional probability density function

Consider a partitioned random vector (Y1,Y2)t

of size (n1 + 1)× 1, with probability density
function fY1,Y2 : Rn1+1 → R+. Then, Y1 has the
probability density function
fY1 (y1) =

∫
R fY1,Y2 (y1, y2)dy2.

The conditional probability density function of Y2
given Y1 = y1 is then

fY2|Y1=y1
(y2) =

fY1,Y2 (y1, y2)

fY1 (y1)

Interpretation
It is the continuous generalization of the Bayes formula

P(A|B) =
P(A,B)

P(B)
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Conditional mean

Consider a partitioned random vector (Y1,Y2)t of size (n1 + 1)× 1, with conditional probability
density function of Y2 given Y1 = y1 given by fY2|Y1=y1

(y2).
Then the conditional mean of Y2 given Y1 = y1 is

E(Y2|Y1 = y1) =

∫
R

y2fY2|Y1=y1
(y2)dy2

E(Y2|Y1 = y1) is in fact a function of Y1. Thus it is also a random variable. We emphasize this by
writing E(Y2|Y1). Thus E(Y2|Y1 = y1) is a realization of E(Y2|Y1).

Optimality
The function y1 → E(Y2|Y1 = y1) is the best prediction of Y2 we can make, when observing only
Y1. That is, for any function f : Rn1 → R :

E
{

(Y2 − f (Y1))2
}
≥ E

{
(Y2 − E(Y2|Y1))2

}
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Conditional variance

Consider a partitioned random vector (Y1,Y2)t of size (n1 + 1)× 1, with conditional probability
density function of Y2 given Y1 = y1 given by fY2|Y1=y1

(y2).
Then the conditional variance of Y2 given Y1 = y1 is

var(Y2|Y1 = y1) =

∫
R

(y2 − E(Y2|Y1 = y1))2 fY2|Y1=y1
(y2)dy2

Summary
The conditional mean E(Y2|Y1) is the best possible prediction of Y2 given Y1

The conditional probability density function y2 → fY2|Y1=y1
(y2) can give the probability density

function of the corresponding error (⇒ most probable value, probability of threshold
exceedance...)

The conditional variance var(Y2|Y1 = y1) summarizes the order of magnitude of the
prediction error
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Gaussian conditioning theorem

Theorem
Let (Y1,Y2)t be a (n1 + 1)× 1 Gaussian vector with mean vector (mt

1, µ2)t and covariance matrix(
R1 r1,2
r t
1,2 σ2

2

)
Then, conditionaly on Y1 = y1, Y2 is a Gaussian vector with mean

E(Y2|Y1 = y1) = µ2 + r t
1,2R−1

1 (y1 −m1)

and variance
var(Y2|Y1 = y1) = σ2

2 − r t
1,2R−1

1 r1,2

Illustration
When (Y1,Y2)t be a 2× 1 Gaussian vector with mean vector (µ1, µ2)t and covariance matrix(

1 ρ
ρ 1

)
Then

E(Y2|Y1 = y1) = µ2 + ρ(y1 − µ1) and var(Y2|Y1 = y1) = 1− ρ2

François Bachoc Introduction to Kriging models March 2014 17 / 55



1 Introduction to Gaussian processes

2 Kriging prediction
Conditional distribution and Gaussian conditioning theorem
Kriging prediction

3 Application to metamodeling of the GERMINAL code

4 Application to validation of the FLICA 4 thermal-hydraulic code

François Bachoc Introduction to Kriging models March 2014 18 / 55



A problem of function approximation

We want to approximate a deterministic function, from a finite number of observed values of it.
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A possibility : deterministic approximation : polynomial regression, neural networks, splines,
RKHS, ...

−→ we can have a deterministic error bound

With a Kriging model : stochastic method

−→ gives a stochastic error bound
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Kriging model with Gaussian process realizations

Kriging model : representing the deterministic and unknown function by a realization of a Gaussian
process.
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Bayesian interpretation
In statistics, a Bayesian model generally consists in representing a deterministic and unknown
number by the realization of a random variable (⇒ enables to incorporate expert knowledge, gives
access to Bayes formula...). Here, we do the same with functions
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Kriging prediction

We let Y be the Gaussian process, on Rd . Y is observed at x1, ..., xn ∈ Rd . We consider here that
we know the covariance function C of Y , and that the mean function of Y is zero

Notations
Let Yn = (Y (x1), ...,Y (xn))t be the observation vector. It is a Gaussian vector

Let R be the n × n covariance matrix of Yn : (R)i,j = C(xi , xj ).

Let xnew ∈ Rd be a new input point for the Gaussian process Y . We want to predict Y (xnew ).

Let r be the n × 1 covariance vector between y and Y (xnew ) : ri = C(xi , xnew )

Then the Gaussian conditioning theorem gives the conditional mean of Y (xnew ) given the
observed values in Yn :

ŷ(xnew ) := E(Y (xnew )|Yn) = r t R−1Yn

We also have the conditional variance :

σ̂2(xnew ) := var(Y (xnew )|Yn) = C(xnew , xnew )− r t R−1r
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Kriging prediction : interpretation

Exact reproduction of known values
Assume, xnew = x1. Then , Ri,1 = C(xi , x1) = C(xi , xnew ) = ri . Thus

r t R−1Yn = r t ×


r t

∗
...
∗


−1

×

Y (x1)
...

Y (xn)

 = (1, 0, . . . , 0)

Y (x1)
...

Y (xn)

 = Y (x1)

Conservative extrapolation
Let xnew be far from x1, ..., xn. Then, we generally have ri = C(xi , xnew ) ≈ 0. Thus

ŷ(xnew ) = r t R−1Yn ≈ 0

and
σ̂2(xnew ) = C(xnew , xnew )− r t R−1r ≈ C(xnew , xnew )

⇒ conservative

François Bachoc Introduction to Kriging models March 2014 22 / 55



Illustration of Kriging prediction

observations
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Illustration of Kriging prediction

observations

realizations from conditional distribution given Yn
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Illustration of Kriging prediction

observations

realizations from conditional distribution given Yn

conditional mean xnew → E(Y (xnew )|Yn)
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Illustration of Kriging prediction

observations

realizations from conditional distribution given Yn

conditional mean xnew → E(Y (xnew )|Yn)

95% confidence intervals
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Kriging prediction with measure error

It can be desirable not to reproduce the observed value exactly :

when the observations comes from experiments⇒ variability of the response for a fixed input
point

even when the response is fixed for a given input point, it can vary strongly between very
close input points

Observations with measure error
We consider that at x1, ..., xn, we observe Y (x1) + ε1, ...,Y (xn) + εn. ε1, ..., εn are independent
and are Gaussian variables, with mean 0 and known variance σ2

mes .

We Let Yn = (Y (x1) + ε1, ...,Y (xn)εn)t

Then the Gaussian conditioning theorem still gives the conditional mean of Y (xnew ) given the
observed values in Yn :

ŷ(xnew ) := E(Y (xnew )|Yn) = r t (R + σ2
mes In)−1Yn

We also have the conditional variance :

σ̂2(xnew ) := var(Y (xnew )|Yn) = C(xnew , xnew )− r t (R + σ2
mes In)−1r
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Illustration of Kriging prediction with measure error

observations
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Illustration of Kriging prediction with measure error

observations

realizations from conditional distribution given Yn
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Illustration of Kriging prediction with measure error

observations

realizations from conditional distribution given Yn

conditional mean xnew → E(Y (xnew )|Yn)
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Illustration of Kriging prediction with measure error

observations

realizations from conditional distribution given Yn

conditional mean xnew → E(Y (xnew )|Yn)

95% confidence intervals
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Covariance function estimation

In most practical cases, the covariance function (x1, x2)→ C(x1, x2) is unknown.
It is important to choose it correctly.
In practice, it is first constrained in a parametric family of the form

{Cθ, θ ∈ Θ}, Θ ⊂ Rp

⇒ E.g. the multidimensional Matérn 3
2 covariance function model on Rd , with θ = (σ2, `1, ..., `d )

Then, most classically, the covariance parameter θ is automatically selected by Maximum
Likelihood
In the case without measure errors :

Let Yn = (Y (x1), ...,Y (xn))t be the n × 1 observation vector

Let Rθ , be the n × n covariance matrix of Yn, under covariance parameter θ :
(Rθ)i,j = Cθ(xi , xj ).

The Maximum Likelihood estimator θ̂ML of θ is then :

θ̂ML ∈ argmin
θ∈Θ

1

(2π)
n
2
√

det(Rθ)
exp

(
−

1
2

Y t
nR−1
θ Yn

)

We maximize the Gaussian probability density function of the observation vector, as a
function of the covariance parameter

Numerical optimization problem, where the cost function has a O(n3) computational cost
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Summary for Kriging prediction

Most classical method :
1 From observed values gathered in the vector Yn

2 Choose a covariance function family, parameterized by θ
Generally before investigating the observed values in detail and from a limited number of classical
options (e.g. Matérn 3

2 )

3 Optimize the Maximum Likelihood criterion w.r.t θ⇒ θ̂ML
Numerical optimization : gradient, quasi Newton, genetic algorithm... Potential condition-number
problems

4 In the sequel, do as if the estimated covariance function Cθ̂ML
(x1, x2) is the true covariance

function (plug-in method).
5 Compute the conditional mean xnew → E(Y (xnew )|Yn) and the conditional variance

xnew → var(Y (xnew )|Yn) with explicit matrix vector formulas (Gaussian conditioning theorem)
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GERMINAL code : presentation

Context

GERMINAL code : simulation of the thermal-mechanical impact of the irradiation on a nuclear
fuel pin

Its utilization is part of a multi-physics and multi-objective optimization problem from reactor
core design

In collaboration with Karim Ammar (PhD student, CEA, DEN)
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GERMINAL code : inputs and outputs

12 inputs x1, ..., x12 ∈ [0, 1] (normalization)

x1, x2 : Schedule parameters for the exploitation of the fuel pin

x3, ..., x8 : Nature parameters of the fuel pin (geometry, plutonium concentration)

x9, x10, x11 : parameters for the characterization of the power map in the fuel pin

x12 : disposal volume for the fission gas produced in the fuel pin

2 scalar variable of interests

g1 : initial temperature. Maximum, over space, of the temperature at the initial time. Rather
simple to approximate

g2 : fusion-margin. Minimum difference, over space and time, of the fusion temperature of the
fuel and the current temperature. More difficult to approximate

general scheme
12 scalar inputs⇒ GERMINAL run⇒ spatio-temporal maps⇒ 2 scalar outputs

→We want to approximate 2 functions g1, g2 : R12 → R
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GERMINAL code : data bases and measure error

Data bases
For the first output g1, we have a learning base of n = 15722 points (15722 couples
(x1, g1(x1)), ..., (xn, g1(xn)) with xi ∈ R12 ). We have a test base of ntest = 6521 elements.
For the second output g2, we have n = 3807 and ntest = 1613

Measure errors
The GERMINAL computation scheme (GERMINAL + pre and post-treatment) had not been used
for so many inputs→ numerical instabilities (some very close inputs can give significantly distant
outputs)
⇒ we incorporate the measure error parameter σ2

mes to model numerical instabilities (estimated by
Maximum Likelihood, together with covariance function parameters)
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GERMINAL code : metamodels and performance indicators

Metamodel
A metamodel of g is a function ĝ : [0, 1]12 → R, that is built using the learning base only.
We consider 2 metamodels :

The Kriging conditional mean (with Matérn 3
2 covariance function and measure error variance

estimated by Maximum Likelihood)

A neural-network method, of the uncertainty platform URANIE

⇒ Once built, the cost of computing ĝ(xnew ) for a new xnew ∈ [0, 1]12 is very small compared to a
GERMINAL run.

Error indicator
Root Mean Square Error (RMSE) on the test base :

RMSE =

√√√√ 1
ntest

ntest∑
i=1

(ĝ(xtest,i )− g(xtest,i ))2
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Results

For initial temperature g1 (standard deviation of 344˚)

estimated σmes RMSE
Kriging 7.8˚ 9.03˚

Neural networks 11.9˚

For Fusion Margin g2 (standard deviation of 342˚)

estimated σmes RMSE
Kriging 28˚ 35.9˚

Neural networks 39.7˚

Confirmation that output g2 is more difficult to predict than g1

In both cases, a significant part of the RMSE comes from the numerical instability, of order of
magnitude σmes

The metamodels have overall quite good performances (3% and 10% relative error)

The Kriging metamodel has here comparable to slightly larger accuracy than the neural
networks

On the other hand, the neural network metamodel is significantly faster than Kriging
(computational cost in O(n) with n large). Nevertheless both metamodels can be considered
as fast enough
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Computer code and physical system

The computer code is represented by a function f :

f : Rd × Rm → R
(x , β) → f (x , β)

The physical system is represented by a function Yreal .

Yreal : Rd → R
x → Yreal (x)

Yobs : x → Yobs(x) := Yreal (x) + ε(x)

The inputs in x are the experimental conditions

The inputs in β are the calibration parameters of the computer code

The outputs f (x , β) and Yreal (x) are the variable of interest

Measure error ε(x)
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Explaining discrepancies between simulation and experimental
results

We have carried out experiments Yobs(x1), ...,Yobs(xn). Discrepancies between simulations
f (xi , β) and observations Yobs(xi ) can have 3 sources :

misspecification of β

measure errors on the observations Yobs(xi )

Errors on the specifications of the experimental conditions xi

−→ These 3 errors can insufficient to explain the differences between simulations and experiments
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Gaussian process modeling of the
model error

Gaussian process model : unknown physical system→ represented by a realization of a Gaussian
process

Yreal (x) = f (x , β) + Z (x)

Yobs(x) = Yreal (x) + ε(x)

β : calibration parameter
incorporation of expert knowledge with the Bayesian framework

Z is the model error of the code. Z is modeled as the realization of a Gaussian process
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Universal Kriging model

Linear approximation of the code

∀x : f (x , β) =
m∑

i=1

hi (x)βi

→ small uncertainty on β
Observations stem from a Gaussian process with linearly parameterized mean function with
unknown coefficients⇒ universal Kriging model.

3 steps
With similar matrix vector formula and interpretation as for the 0 mean function case :

Estimation of the covariance function of Z

Code calibration : conditional probability density function of β

Prediction of the physical system : conditional mean E(Yreal (xnew )|Yn) and conditional
variance var(Yreal (xnew )|Yn)
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Universal Kriging model : calibration and prediction formula (1/2)

Yreal is observed at x1, ..., xn ∈ Rd . We consider here that we know the covariance function C of
the model error Z

Notations
Let Yn = (Yreal (x1), ...,Yreal (xn))t be the observation vector. It is a Gaussian vector

Let R be the n × n covariance matrix of (Z (x1), ...,Z (xn)) : (R)i,j = C(xi , xj ).

Let xnew ∈ Rd be a new input point for the Gaussian process Yreal . We want to predict
Y (xnew ).

Let r be the n × 1 covariance vector between Z (x1), ...,Z (xn) and Z (xnew ) : ri = C(xi , xnew )

Let H be the n ×m matrix of partial derivatives of f at x1, ..., xn : Hi,j = hj (xi )

Let h be the m × 1 vector of partial derivatives of f at Xnew : hi = hi (xnew )

Let σ2
mes be the variance of the measure error

Then the Gaussian conditioning theorem gives the conditional mean of β given the observed
values in Yn :

βpost := E(β|Yn) = βprior + (Q−1
prior + HT (R + σ2

mes In)−1H)−1HT (R + σ2
mes In)−1(Yn − Hβprior ).
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Universal Kriging model : calibration and prediction formula (2/2)

We also have the conditional mean of Yreal (xnew ) :

ŷreal (xnew ) := E(Yreal (xnew )|Yn) = htβpost + r t (R + σ2
mes In)−1(Yn − Hβpost )

The conditional variance of Yreal (xnew ) is

σ̂2(xnew ) := var(Yreal (xnew )|Yn)

= C(xnew , xnew )− r t (R + σ2
mes In)−1r

+ (h − H t (R + σ2
mes In)−1h)t (H t (R + σ2

mes In)−1H + Q−1
prior )−1(h − H t (R + σ2

mes In)−1r)

Interpretation
The prediction expression is decomposed into a calibration term and a Gaussian inference
term of the model error

When the code has a small error on the n observations, the prediction at xnew uses almost
only the calibrated code

The conditional variance is larger than when the mean function is known
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Application to FLICA 4 thermal-hydraulic code

The experiment consists in pressurized and possibly heated water passing through a cylinder. We
measure the pressure drop between the two ends of the cylinder.
Quantity of interest : The part of the pressure drop due to friction : ∆Pfro
Two kinds of experimental conditions :

System parameters : Hydraulic diameter Dh, Friction height Hf , Channel width e

Environment variables : Output pressure Ps , Flowrate Ge, Parietal heat flux Φp , Liquid
enthalpy hl

e, Thermodynamic title X e
th, Input temperature Te

We have 253 experimental results
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Friction model of FLICA 4

Code based on the (local) analytical model

∆Pfro =
H

2ρDh
G2fiso fh.

with

fiso : Isothermal model. Parameterized at and bt .

fh : Monophasic model.

Prior information case with

βprior =

(
0.22
0.21

)
,Qprior =

(
0.112 0

0 0.1052

)
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Results

We compare predictions to observations
using Cross Validation

We dispose of :

The vector of posterior mean ˆ∆Pfro of size n.

The vector of posterior variance σ2
pred of size n.

2 quantitative criteria :

RMSE :

√
1
n
∑n

i=1

(
∆Pfro,i − ∆̂Pfro(xi )

)2

Confidence Interval Reliability : proportion of observations that fall in the posterior 90%
confidence interval.
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Results with the thermal-hydraulic code Flica IV (2/2)

RMSE 90% Confidence Interval Reliability
Nominal code 661Pa 234/253 ≈ 0.925

Gaussian Processes 189Pa 235/253 ≈ 0.93
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Conclusion

We can improve the predictions of a computer code by completing it with a Kriging model built
with the experimental results

The number of experimental results needs to be sufficient. No extrapolation

For more details

Bachoc F, Bois G, Garnier J and Martinez J.M, Calibration and improved prediction of
computer models by universal Kriging, Nuclear Science and Engineering 176(1) (2014)
81-97.
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General conclusion

Standard Kriging framework
Versatile and easy-to-use statistical model

We can incorporate a priori knowledge in the choice of the covariance function family

After this choice, the standard method is rather automatic

We associate confidence intervals to the predictions

The Gaussian framework brings numerical criteria for the quality of the obtained model

Extensions
Kriging model can be goal-oriented : optimization, code validation, estimation of failure
regions, global sensitivity analysis...

Standard Kriging method can be computationally costly for large n⇒ approximate Kriging
prediction and covariance function estimation is a current research domain
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Thank you for your attention !
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