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Introduction

Context
» Phd started in October 2010 in partnership between CEA and Paris VI
university.
» CEA supervisor : Jean-Marc Martinez.
» Paris VIl supervisor : Josselin Garnier.

Subject

» Context of code validation : Is the code in agreement with a set of
reference experiments ?

» Gaussian processes validation : Modelling of the error between the
code and the physical system.

» Goals :

> Calibration of the code
» Completion of the code by a statistical term based on a set of experiments
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Numerical code and physical system

A numerical code, or parametric numerical model, is represented by a
function f :

f :RIXR™ SR

The physical system is represented by a function Y.

Yew :RY SR

X — Yreal(X)

» The inputs x are the experimental conditions.
» The inputs 3 are the calibration parameters of the numerical code.
» The outputs f(x, 8) and Y,ez(x) are the quantity of interest.

A numerical code modelizes (gives an approximation of) a physical system.
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Probability notions

o
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Probability notions (1/3)

A Random Variable X is a random
number, defined by a probability
law.

The probability law is defined by a
probability density function f with
a< X < b with 3 2 4 0 1 2 3
probability [ f(x)dx

density
00 01 02 03 04

Similarly a Random Vector

V =(Vq,..., V) is a vector of
random variable, and is also
defined by a probability law.

The probability law is also defined

by a probability density function f
with V € E with probability

Je f(v)av

P = |f(dx
- Ji
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Probability notions (2/3)

» The Mean of a random variable X with density f is denoted E(X) and is

E(X) = / " ()

—o0

» Let X, Y be two random variables. The covariance between X and Y is
denoted cov(X, Y) and is

cov(X, ) = E{(X ~ E(X))(Y ~ E(Y))}

> High covariance — X and Y have their variations linked.
> Low covariance — X and Y are almost independant.

> Let X be a random variable. The variance of X is denoted var(X) and is

var(X) = cov(X,X) =E {(x - E(X))z}

> High variance — X can be far from its mean — more uncertainty.
> Low variance — X is close to its mean — less uncertainty.
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(&)  Probability notions (3/3)

Let V = (Vs, ..., Vi) be a random vector. The covariance matrix of V is
denoted cov(V) and is defined by

(cov(V));; = cov(V;, V))

» The diagonal terms show which components are the most uncertain.
» The non-diagonal terms show the links between the components .

A random function is a function i

Xx — F(x) such that F(x) is a random ] «MM\\/V\A //M/ A,

variable. Alternalively a random function AR HRAERAL v
is a function that is unknown, or that - N Wm//v\*\v\ /N )
depends of the hasard. & Y A

AW

0 W Eg g 00
t

In a random function F(x), x can be multidimensional — it will be the case
here
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(&) Gaussian variables and vectors

F | M=, @202, — |
M=, @210, —
A random variable is a Gaussian e — |
variable with mean 1 and variance o2

when its probability density function is
1) = a— oxp (— gz (x - w)?)

A ndimensional random vector is a
Gaussian vector with mean vector p
and covariance matrix R when its
multidimensional probability density
function is f(x) =

——exp (~3(x - WA~ (x — )

(2) 3 \/det(R)
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(&) Gaussian processes (1/2)

A random function Z on R? is a Gaussian process when for all xi, ..., X, the
random vector (Z(x1), ..., Z(Xa)) is Gaussian.

In the sequel, we only consider Gaussian processes :
» Gaussian variables : most commonly used to represent errors.
» Gaussian properties make the treatment of the problem simpler.

Mean function M : x — M(x) = E(Z(x))
Covariance function C : (X1, X2) — C(X1, X2) = cov(Z(x1),Z(x2))

» A Gaussian process is caracterized by its mean and covariance
functions.
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Ce:j Gaussian processes (2/2)

Examples of covariance functions

Nugget covariance function C(x,y) = o21x=y

i i ; _ 2 _ (x=yP
Gaussian covariance function C(x,y) = o< exp 7
c

le

Exponential covariance function C(x,y) = o2 exp (— 'X_”)

Examples of realizations with Gaussian covariance function

FiG.: Left: 0 = 0.2, I = 0.01. Right : 0 =.0.2, Io-= 0.05
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Gaussian Processes Validation Model
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Model error

Statistical modelling : The physical system is unknown — It is one realization
among a set of possible realizations — It is modeled as a random function.

Equation of the statistical model

Yreal(X) = f(x, ) + Z(X)

» Equation that holds for a specific parameters vector 3. Called "the"
parameter of the numerical code. We study the Bayesian case in which
(B is a Gaussian random vector. Its mean vector and covariance matrix
are set by the user. The Bayesian framework allows the user to make
use of an expert knowledge.

» Zis a Gaussian process. Z has mean 0. We denote by Cy,,q the
covariance function of Z.
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Steps of Gaussian processes code validation

» Step 1 : Estimation of the covariance function for the model error.
> Important. Will not be detailed here.
» Step 2 : With a given covariance function : calibration and prediction.

> Calibration : gives a posterior mean value for the code parameter 3 and a
posterior variance.

> Prediction : for a new experimental condition Xpew, gives a posterior mean
value for Yiea(Xnew) and a posterior variance.
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Linear approximation for the code

Linearization of the numerical model around the reference parameter :
m
vx: f(x,8) =Y hi(x)B;
i=1

The approximation is correct when

» The code is approximatively linear with respect to the paramters
or

» The uncertainty of the parameters is small.
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Calibration and prediction
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(&  Introduction

Assume we have fixed the covariance function Cp,,q of the model error.

» The statistical model is a linear regression model with a Gaussian
process error.

> It is the same as the Kriging Model, well known e.g in Geostatistic and
in analysis of computer experiments.

» We have closed form formulas for the calibration and the prediction.
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(&) Experimental results

We observe the physical system Y,q4(x) for ninputs x, ..., Xa.
We keep :
» The vector of observations : yops = (Yobs(X1), -, Yobs(Xn))-
» The n x m matrix of partial derivatives of the code at x4, ..., xn : H.
» The covariance matrix of z+ e at xq,...,Xn : R := Rpog + K
> Rmod is the covariance matrix of the model error process Z. Comes from

Cmod-
> K is the covariance matrix of the measure error. Can be set by the user
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Calibration

Recall the a priori probability law of 3 is normal with mean vector By, and
covariance matrix Qpyior. The posterior mean of 3 is

Bpost = Bprior + (Q;n.l)r +H'R™! H)71 HTR! (Yobs — HBprior)-
The posterior covariance matrix of g3 is

Quost = (@1 +HTR™TH)™!

prior

> When Qprior — 0 Bpost — Bprior-
» When Q_/

orior 0 the value of By is unused. — uninformative prior.
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Prediction (1/2)

Goal : to complete the prediction of the code f(xp, 3) at a new experimental
condition xp.

Notations
» Physical system at xo : yp := Yrea(Xo)-
» Column vector of partial derivatives of the code at xp : hg.
> Variance of yp : 02,
» Column covariance vector ry : rp ; := cov(Z(x;), Z(Xo))-
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Prediction (2/2)

The posterior mean of yy is :

(Yobs,0) = (hO)Tﬁpost + (rO)T":r1 (Yobs — HBpost)

with Bpost the posterior mean of 3.
» The prediction expression is decomposed into a calibration term and a
Gaussian inference term of the model error.
» When the code has a small error on the n observations, the prediction
at xp uses almost only the calibrated code.
The posterior variance of y; is
=02,y R o+ (h—H'R ') (HIRTTH+Q ! )" (h—H'R™ 1)

~2
X0 prior

» Confidence intervals available
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Application to the thermohydraulic code Flica IV
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The experimental results for the friction model

The experiment consists in pressurized and possibly heated water passing
through a cylinder. We measure the pressure drop between the two ends of
the cylinder.

Quantity of interest : The part of the pressure drop due to friction : APy,
Two kinds of experimental conditions :

» System parameters : Hydraulic diameter D, Friction height H;, Channel
width e.

» Environment variables : Output pressure Ps, Flowrate Ge, Parietal heat

flux ®p, Liquid enthalpy hl, Thermodynamic title Xg, Input temperature
Te.

We dispose of 253 experimental results. 115 are in the isothermal domain

and 138 in the monophasic (non-isothermal) domain.

Important : Among the 253 experimental results, only 8 different system

parameters — Not enough to use the Gaussian processes model for

prediction for new system parameters — We predict for new environment

variables only.
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(&) The Flica IV code for the friction model

Parameterized a; and by.
Prior information (coming from previous studies) :

0.22 0.112 0
5prior = ( 0.21 ) 7Qprior = ( 0 0.1052 )
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(&) Results

Cross Vaidation Test Veaiiey

We compare predictions to observations
using Cross Validation

We dispose of :
» The vector of posterior mean APy, of size n.

) ' 2 .
» The vector of posterior variance Tpred of size n.

2 quantitative criteria :

» RMSE : \/15 ?21 (APfro,i - APAfro,i)

» Confidence Intervals : proportion of observations that fall in the
posterior 90% confidence interval.

2
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(&) Results : isothermal domain

RMSE | Confidence Intervals
Nominal code 840Pa 80/85 ~ 0.94
Gaussian Processes | 265Pa 79/85 ~ 0.93

Resulas redicion Arocessus Gaussiens
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Results : isothermal and monophasic domain

RMSE | Confidence Intervals
Nominal code 661Pa 234/253 ~ 0.925
Gaussian Processes | 189Pa 235/253 ~ 0.93
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Conclusion

» We can improve the prediction capability of the code by completing it
with a statistical model based on the experimental results.

» Number of experimental results needs to be sufficient. No extrapolation.

» The choice of the covariance function is important.

Increasing use of probabilistic methods for numerical simulation : Kriging
and Gaussian processes methods for surrogate models and code calibration
and validation.
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