Nurisp SP4 Meeting Gaussian Processes for code validation

> François Bachoc Jean-Marc Martinez

CEA-Saclay, DEN, DM2S, STMF, LGLS, F-91191 Gif-Sur-Yvette, France

April 2012

Nurisp SP4 Meeting , Gaussian Processes for code validation

イロト イタト イヨト イヨト 一日

CC Introduction

Context

- Phd started in October 2010 in partnership between CEA and Paris VII university.
- CEA supervisor : Jean-Marc Martinez.
- Paris VII supervisor : Josselin Garnier.

Subject

- Context of code validation : Is the code in agreement with a set of reference experiments ?
- Gaussian processes validation : Modelling of the error between the code and the physical system.
- Goals :
 - Calibration of the code
 - Completion of the code by a statistical term based on a set of experiments

Context

Probability notions

Gaussian Processes Validation Model

Calibration and prediction

Application to the thermohydraulic code Flica IV

Numerical code and physical system

A numerical code, or parametric numerical model, is represented by a function f:

$$\begin{array}{rcl} f & : \mathbb{R}^d \times \mathbb{R}^m & \to \mathbb{R} \\ & & (x, \beta) & \to f(x, \beta) \end{array}$$

The physical system is represented by a function Y_{real} .

$$egin{array}{rll} Y_{real} & : \mathbb{R}^d &
ightarrow \mathbb{R} \ & x &
ightarrow Y_{real}(x) \end{array}$$

- ▶ The inputs *x* are the experimental conditions.
- The inputs β are the calibration parameters of the numerical code.
- The outputs $f(x, \beta)$ and $Y_{real}(x)$ are the quantity of interest.

A numerical code modelizes (gives an approximation of) a physical system.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ト … ヨ

Context

Probability notions

Gaussian Processes Validation Model

Calibration and prediction

Application to the thermohydraulic code Flica IV

Probability notions (1/3)

- A Random Variable X is a random number, defined by a probability law.
- ► The probability law is defined by a probability density function *f* with $a \le X \le b$ with probability $\int_a^b f(x) dx$
- Similarly a Random Vector V = (V₁, ..., V_n) is a vector of random variable, and is also defined by a probability law.
- ► The probability law is also defined by a probability density function *f* with $V \in E$ with probability $\int_E f(v) dv$

イロト イヨト イヨト イヨト

æ

Probability notions (2/3)

▶ The Mean of a random variable X with density f is denoted $\mathbb{E}(X)$ and is

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

► Let X, Y be two random variables. The covariance between X and Y is denoted *cov*(X, Y) and is

$$cov(X, Y) = \mathbb{E} \{ (X - \mathbb{E}(X))(Y - \mathbb{E}(Y)) \}$$

- High covariance $\rightarrow X$ and Y have their variations linked.
- Low covariance $\rightarrow X$ and Y are almost independent.
- Let X be a random variable. The variance of X is denoted var(X) and is

$$var(X) = cov(X, X) = \mathbb{E}\left\{(X - \mathbb{E}(X))^2\right\}$$

- High variance $\rightarrow X$ can be far from its mean \rightarrow more uncertainty.
- Low variance → X is close to its mean → less uncertainty.

-

イロト イヨト イヨト イヨト

Probability notions (3/3)

Let $V = (V_1, ..., V_n)$ be a random vector. The covariance matrix of V is denoted cov(V) and is defined by

$$(cov(V))_{i,j} = cov(V_i, V_j)$$

- > The diagonal terms show which components are the most uncertain.
- > The non-diagonal terms show the links between the components .

A random function is a function $x \rightarrow F(x)$ such that F(x) is a random variable. Alternalively a random function is a function that is unknown, or that depends of the hasard.

イロト イヨト イヨト イヨト

In a random function F(x), x can be multidimensional \rightarrow it will be the case here

Gaussian variables and vectors

A random variable is a Gaussian variable with mean μ and variance σ^2 when its probability density function is $f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$

A *n* dimensional random vector is a Gaussian vector with mean vector μ and covariance matrix *R* when its multidimensional probability density function is $f(x) = \int_{x}^{x} f(x) dx$

$$\frac{1}{(2\pi)^{\frac{n}{2}}\sqrt{\det(R)}}\exp\left(-\frac{1}{2}(x-\mu)^{t}R^{-1}(x-\mu)\right)$$

A random function Z on \mathbb{R}^d is a Gaussian process when for all $x_1, ..., x_n$, the random vector ($Z(x_1), ..., Z(x_n)$) is Gaussian.

In the sequel, we only consider Gaussian processes :

- Gaussian variables : most commonly used to represent errors.
- Gaussian properties make the treatment of the problem simpler.

Mean function $M : x \to M(x) = \mathbb{E}(Z(x))$ Covariance function $C : (x_1, x_2) \to C(x_1, x_2) = cov(Z(x_1), Z(x_2))$

 A Gaussian process is caracterized by its mean and covariance functions.

Gaussian processes (2/2) Examples of covariance functions Nugget covariance function $C(x, y) = \sigma^2 \mathbf{1}_{x=y}$ Gaussian covariance function $C(x, y) = \sigma^2 \exp\left(-\frac{(x-y)^2}{l_c^2}\right)$ Exponential covariance function $C(x, y) = \sigma^2 \exp\left(-\frac{|x-y|}{l_c}\right)$

Examples of realizations with Gaussian covariance function

FIG.: Left : $\sigma = 0.2$, $l_c = 0.01$. Right : $\sigma = 0.2$, $l_c = 0.05$

Context

Probability notions

Gaussian Processes Validation Model

Calibration and prediction

Application to the thermohydraulic code Flica IV

Model error

Statistical modelling : The physical system is unknown \rightarrow It is one realization among a set of possible realizations \rightarrow It is modeled as a random function.

Equation of the statistical model

$$Y_{real}(x) = f(x,\beta) + Z(x)$$

- Equation that holds for a specific parameters vector β. Called "the" parameter of the numerical code. We study the Bayesian case in which β is a Gaussian random vector. Its mean vector and covariance matrix are set by the user. The Bayesian framework allows the user to make use of an expert knowledge.
- Z is a Gaussian process. Z has mean 0. We denote by C_{mod} the covariance function of Z.

3

イロト イヨト イヨト イヨト

CCC Steps of Gaussian processes code validation

- Step 1 : Estimation of the covariance function for the model error.
 - Important. Will not be detailed here.
- Step 2 : With a given covariance function : calibration and prediction.
 - Calibration : gives a posterior mean value for the code parameter β and a posterior variance.
 - Prediction : for a new experimental condition x_{new}, gives a posterior mean value for Y_{real}(x_{new}) and a posterior variance.

CCC Linear approximation for the code

Linearization of the numerical model around the reference parameter :

$$\forall x: f(x,\beta) = \sum_{i=1}^m h_i(x)\beta_i$$

The approximation is correct when

The code is approximatively linear with respect to the paramters

or

The uncertainty of the parameters is small.

3

イロト イヨト イヨト イヨト

Context

Probability notions

Gaussian Processes Validation Model

Calibration and prediction

Application to the thermohydraulic code Flica IV

Assume we have fixed the covariance function C_{mod} of the model error.

- The statistical model is a linear regression model with a Gaussian process error.
- It is the same as the Kriging Model, well known e.g in Geostatistic and in analysis of computer experiments.
- ▶ We have closed form formulas for the calibration and the prediction.

We observe the physical system $Y_{real}(x)$ for *n* inputs $x_1, ..., x_n$. We keep :

- The vector of observations : $y_{obs} = (Y_{obs}(x_1), ..., Y_{obs}(x_n)).$
- The $n \times m$ matrix of partial derivatives of the code at $x_1, ..., x_n : H$.
- The covariance matrix of $z + \epsilon$ at $x_1, ..., x_n : R := R_{mod} + K$
 - *R_{mod}* is the covariance matrix of the model error process *Z*. Comes from *C_{mod}*.
 - K is the covariance matrix of the measure error. Can be set by the user

Cert Calibration

Recall the a priori probability law of β is normal with mean vector β_{prior} and covariance matrix Q_{prior} . The posterior mean of β is

$$\beta_{post} = \beta_{prior} + (Q_{prior}^{-1} + H^T R^{-1} H)^{-1} H^T R^{-1} (y_{obs} - H \beta_{prior}).$$

The posterior covariance matrix of β is

$$Q_{post} = (Q_{prior}^{-1} + H^T R^{-1} H)^{-1}$$

- When $Q_{prior} \rightarrow 0 \ \beta_{post} \rightarrow \beta_{prior}$.
- When $Q_{prior}^{-1} \rightarrow 0$ the value of β_{prior} is unused. \rightarrow uninformative prior.

イロト 不得 とくきとくきとうき

Goal : to complete the prediction of the code $f(x_0, \hat{\beta})$ at a new experimental condition x_0 .

Notations

- Physical system at $x_0 : y_0 := Y_{real}(x_0)$.
- Column vector of partial derivatives of the code at x₀ : h₀.
- Variance of y₀ : σ²_{mod}
- Column covariance vector $r_0 : r_{0,i} := cov(Z(x_i), Z(x_0))$.

・ロト ・四ト ・ヨト ・ヨト … ヨ

Prediction (2/2)

The posterior mean of y_0 is :

$$\langle y_{obs,0} \rangle = (h_0)^T \beta_{post} + (r_0)^T R^{-1} (y_{obs} - H \beta_{post})$$

with β_{post} the posterior mean of β .

- The prediction expression is decomposed into a calibration term and a Gaussian inference term of the model error.
- ▶ When the code has a small error on the *n* observations, the prediction at *x*₀ uses almost only the calibrated code.

The posterior variance of y_0 is

$$\hat{\sigma}_{x_0}^2 = \sigma_{mod}^2 - r_0^t R^{-1} r_0 + (h_0 - H^t R^{-1} r_0)^t (H^t R^{-1} H + Q_{prior}^{-1})^{-1} (h_0 - H^t R^{-1} r_0)$$

Confidence intervals available

Context

Probability notions

Gaussian Processes Validation Model

Calibration and prediction

Application to the thermohydraulic code Flica IV

CCC The experimental results for the friction model

The experiment consists in pressurized and possibly heated water passing through a cylinder. We measure the pressure drop between the two ends of the cylinder.

Quantity of interest : The part of the pressure drop due to friction : ΔP_{fro} Two kinds of experimental conditions :

- System parameters : Hydraulic diameter D_h, Friction height H_f, Channel width e.
- Environment variables : Output pressure P_s , Flowrate G_e , Parietal heat flux Φ_p , Liquid enthalpy h'_e , Thermodynamic title X^e_{th} , Input temperature T_e .

We dispose of 253 experimental results. 115 are in the isothermal domain and 138 in the monophasic (non-isothermal) domain.

Important : Among the 253 experimental results, only 8 different system parameters \rightarrow Not enough to use the Gaussian processes model for prediction for new system parameters \rightarrow We predict for new environment variables only.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ト … ヨ

CC The Flica IV code for the friction model

Parameterized a_t and b_t . Prior information (coming from previous studies) :

$$\beta_{prior} = \begin{pmatrix} 0.22\\ 0.21 \end{pmatrix}, Q_{prior} = \begin{pmatrix} 0.11^2 & 0\\ 0 & 0.105^2 \end{pmatrix}$$

イロト イロト イヨト イヨト 一日

Cec Results

Cost Text Texting

Example of the second sec

イロト イヨト イヨト イヨト

We compare predictions to observations using Cross Validation

We dispose of :

- The vector of posterior mean $\Delta \hat{P}_{fro}$ of size *n*.
- The vector of posterior variance σ_{pred}^2 of size *n*.

2 quantitative criteria :

• RMSE :
$$\sqrt{\frac{1}{n}\sum_{i=1}^{85} \left(\Delta P_{fro,i} - \Delta \hat{P_{fro,i}}\right)^2}$$

 Confidence Intervals : proportion of observations that fall in the posterior 90% confidence interval.

3

Results : isothermal domain

	RMSE	Confidence Intervals
Nominal code	840 <i>Pa</i>	80/85 pprox 0.94
Gaussian Processes	265 <i>Pa</i>	79/85pprox 0.93

Nurisp SP4 Meeting , Gaussian Processes for code validation

Э

▲□▶ ▲□▶ ▲□▶ ▲□▶ →

Results : isothermal and monophasic domain

	RMSE	Confidence Intervals
Nominal code	661 <i>Pa</i>	234/253pprox 0.925
Gaussian Processes	189 <i>Pa</i>	235/253pprox 0.93

Nurisp SP4 Meeting , Gaussian Processes for code validation

Э

▲□▶ ▲□▶ ▲□▶ ▲□▶ →

Certain Conclusion

- We can improve the prediction capability of the code by completing it with a statistical model based on the experimental results.
- > Number of experimental results needs to be sufficient. No extrapolation.
- > The choice of the covariance function is important.

Increasing use of probabilistic methods for numerical simulation : Kriging and Gaussian processes methods for surrogate models and code calibration and validation.

3

イロト イヨト イヨト イヨト

Cert Some references

F Bachoc, G Bois, and J.M Martinez.

Contribution à la validation des codes de calcul par processus Gaussiens. Application à la calibration du modéle de frottement pariétal de flica 4.

Technical report, Commissariat à l'Energie Atomique et aux Energies Alternatives DEN/DANS/DM2S/STMF, 2012.

M.L Stein.

Interpolation of Spatial Data Some Theory for Kriging. Springer, 1999.

T.J Santner, B.J Williams, and W.I Notz. The Design and Analysis of Computer Experiments. Springer, 2003.

-

イロト イヨト イヨト イヨト