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.
Introduction

Context

I Phd started in October 2010 in partnership between CEA and Paris VII
university.

I CEA supervisor : Jean-Marc Martinez.
I Paris VII supervisor : Josselin Garnier.

Subject

I Context of code validation : Is the code in agreement with a set of
reference experiments ?

I Gaussian processes validation : Modelling of the error between the
code and the physical system.

I Goals :
I Calibration of the code
I Completion of the code by a statistical term based on a set of experiments
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.
Numerical code and physical system

A numerical code, or parametric numerical model, is represented by a
function f :

f : Rd × Rm → R
(x , β) → f (x , β)

The physical system is represented by a function Yreal .

Yreal : Rd → R
x → Yreal (x)

I The inputs x are the experimental conditions.
I The inputs β are the calibration parameters of the numerical code.
I The outputs f (x , β) and Yreal (x) are the quantity of interest.

A numerical code modelizes (gives an approximation of) a physical system.

. Nurisp SP4 Meeting , Gaussian Processes for code validation 4/29 .



.

Context

Probability notions

Gaussian Processes Validation Model

Calibration and prediction

Application to the thermohydraulic code Flica IV

. Nurisp SP4 Meeting , Gaussian Processes for code validation 5/29 .



.
Probability notions (1/3)

I A Random Variable X is a random
number, defined by a probability
law.

I The probability law is defined by a
probability density function f with
a ≤ X ≤ b with
probability

R b
a f (x)dx

I Similarly a Random Vector
V = (V1, ...,Vn) is a vector of
random variable, and is also
defined by a probability law.

I The probability law is also defined
by a probability density function f
with V ∈ E with probabilityR

E f (v)dv
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.
Probability notions (2/3)

I The Mean of a random variable X with density f is denoted E(X) and is

E(X) =

Z +∞

−∞
xf (x)dx

I Let X ,Y be two random variables. The covariance between X and Y is
denoted cov(X ,Y ) and is

cov(X ,Y ) = E {(X − E(X))(Y − E(Y ))}

I High covariance→ X and Y have their variations linked.
I Low covariance→ X and Y are almost independant.

I Let X be a random variable. The variance of X is denoted var(X) and is

var(X) = cov(X ,X) = E
n

(X − E(X))2
o

I High variance→ X can be far from its mean→ more uncertainty.
I Low variance→ X is close to its mean→ less uncertainty.
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.
Probability notions (3/3)

Let V = (V1, ...,Vn) be a random vector. The covariance matrix of V is
denoted cov(V ) and is defined by

(cov(V ))i,j = cov(Vi ,Vj )

I The diagonal terms show which components are the most uncertain.
I The non-diagonal terms show the links between the components .

A random function is a function
x → F (x) such that F (x) is a random
variable. Alternalively a random function
is a function that is unknown, or that
depends of the hasard.

In a random function F (x), x can be multidimensional→ it will be the case
here
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.
Gaussian variables and vectors

A random variable is a Gaussian
variable with mean µ and variance σ2

when its probability density function is
f (x) = 1√

2πσ
exp

“
− 1

2σ2 (x − µ)2
”

A n dimensional random vector is a
Gaussian vector with mean vector µ
and covariance matrix R when its
multidimensional probability density
function is f (x) =

1

(2π)
n
2
√

det(R)
exp

“
− 1

2 (x − µ)t R−1(x − µ)
”
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.
Gaussian processes (1/2)

A random function Z on Rd is a Gaussian process when for all x1, ..., xn, the
random vector (Z (x1), ...,Z (xn)) is Gaussian.

In the sequel, we only consider Gaussian processes :
I Gaussian variables : most commonly used to represent errors.
I Gaussian properties make the treatment of the problem simpler.

Mean function M : x → M(x) = E(Z (x))
Covariance function C : (x1, x2)→ C(x1, x2) = cov(Z (x1),Z (x2))

I A Gaussian process is caracterized by its mean and covariance
functions.
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.
Gaussian processes (2/2)

Examples of covariance functions

Nugget covariance function C(x , y) = σ21x=y

Gaussian covariance function C(x , y) = σ2 exp
„
− (x−y)2

l2c

«
Exponential covariance function C(x , y) = σ2 exp

“
− |x−y|

lc

”
Examples of realizations with Gaussian covariance function

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Réalisation 1

Réalisation 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Réalisation 1

Réalisation 2

FIG.: Left : σ = 0.2, lc = 0.01. Right : σ = 0.2, lc = 0.05
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.
Model error

Statistical modelling : The physical system is unknown→ It is one realization
among a set of possible realizations→ It is modeled as a random function.

Equation of the statistical model

Yreal (x) = f (x , β) + Z (x)

I Equation that holds for a specific parameters vector β. Called "the"
parameter of the numerical code. We study the Bayesian case in which
β is a Gaussian random vector. Its mean vector and covariance matrix
are set by the user. The Bayesian framework allows the user to make
use of an expert knowledge.

I Z is a Gaussian process. Z has mean 0. We denote by Cmod the
covariance function of Z .
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.
Steps of Gaussian processes code validation

I Step 1 : Estimation of the covariance function for the model error.
I Important. Will not be detailed here.

I Step 2 : With a given covariance function : calibration and prediction.
I Calibration : gives a posterior mean value for the code parameter β and a

posterior variance.
I Prediction : for a new experimental condition xnew , gives a posterior mean

value for Yreal (xnew ) and a posterior variance.
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.
Linear approximation for the code

Linearization of the numerical model around the reference parameter :

∀x : f (x , β) =
mX

i=1

hi (x)βi

The approximation is correct when
I The code is approximatively linear with respect to the paramters

or
I The uncertainty of the parameters is small.
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.
Introduction

Assume we have fixed the covariance function Cmod of the model error.

I The statistical model is a linear regression model with a Gaussian
process error.

I It is the same as the Kriging Model, well known e.g in Geostatistic and
in analysis of computer experiments.

I We have closed form formulas for the calibration and the prediction.
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.
Experimental results

We observe the physical system Yreal (x) for n inputs x1, ..., xn.
We keep :

I The vector of observations : yobs = (Yobs(x1), ...,Yobs(xn)).
I The n ×m matrix of partial derivatives of the code at x1, ..., xn : H.
I The covariance matrix of z + ε at x1, ..., xn : R := Rmod + K

I Rmod is the covariance matrix of the model error process Z . Comes from
Cmod .

I K is the covariance matrix of the measure error. Can be set by the user
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.
Calibration

Recall the a priori probability law of β is normal with mean vector βprior and
covariance matrix Qprior . The posterior mean of β is

βpost = βprior + (Q−1
prior + HT R−1H)−1HT R−1(yobs − Hβprior ).

The posterior covariance matrix of β is

Qpost = (Q−1
prior + HT R−1H)−1

I When Qprior → 0 βpost → βprior .

I When Q−1
prior → 0 the value of βprior is unused.→ uninformative prior.
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.
Prediction (1/2)

Goal : to complete the prediction of the code f (x0, β̂) at a new experimental
condition x0.

Notations

I Physical system at x0 : y0 := Yreal (x0).
I Column vector of partial derivatives of the code at x0 : h0.
I Variance of y0 : σ2

mod
I Column covariance vector r0 : r0,i := cov(Z (xi ),Z (x0)).

. Nurisp SP4 Meeting , Gaussian Processes for code validation 20/29 .



.
Prediction (2/2)

The posterior mean of y0 is :

〈yobs,0〉 = (h0)Tβpost + (r0)T R−1(yobs − Hβpost )

with βpost the posterior mean of β.
I The prediction expression is decomposed into a calibration term and a

Gaussian inference term of the model error.
I When the code has a small error on the n observations, the prediction

at x0 uses almost only the calibrated code.

The posterior variance of y0 is

σ̂2
x0

= σ2
mod−r t

0R−1r0 +(h0−H t R−1r0)t (H t R−1H +Q−1
prior )−1(h0−H t R−1r0)

I Confidence intervals available
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.
The experimental results for the friction model

The experiment consists in pressurized and possibly heated water passing
through a cylinder. We measure the pressure drop between the two ends of
the cylinder.
Quantity of interest : The part of the pressure drop due to friction : ∆Pfro
Two kinds of experimental conditions :

I System parameters : Hydraulic diameter Dh, Friction height Hf , Channel
width e.

I Environment variables : Output pressure Ps , Flowrate Ge, Parietal heat
flux Φp , Liquid enthalpy hl

e, Thermodynamic title X e
th, Input temperature

Te.

We dispose of 253 experimental results. 115 are in the isothermal domain
and 138 in the monophasic (non-isothermal) domain.
Important : Among the 253 experimental results, only 8 different system
parameters→ Not enough to use the Gaussian processes model for
prediction for new system parameters→We predict for new environment
variables only.
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.
The Flica IV code for the friction model

Parameterized at and bt .
Prior information (coming from previous studies) :

βprior =

„
0.22
0.21

«
,Qprior =

„
0.112 0

0 0.1052

«
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.
Results

We compare predictions to observations
using Cross Validation

We dispose of :
I The vector of posterior mean ˆ∆Pfro of size n.
I The vector of posterior variance σ2

pred of size n.

2 quantitative criteria :

I RMSE :

r
1
n
P85

i=1

“
∆Pfro,i − ˆ∆Pfro,i

”2

I Confidence Intervals : proportion of observations that fall in the
posterior 90% confidence interval.
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.
Results : isothermal domain

RMSE Confidence Intervals
Nominal code 840Pa 80/85 ≈ 0.94

Gaussian Processes 265Pa 79/85 ≈ 0.93
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.
Results : isothermal and monophasic domain

RMSE Confidence Intervals
Nominal code 661Pa 234/253 ≈ 0.925

Gaussian Processes 189Pa 235/253 ≈ 0.93
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.
Conclusion

I We can improve the prediction capability of the code by completing it
with a statistical model based on the experimental results.

I Number of experimental results needs to be sufficient. No extrapolation.
I The choice of the covariance function is important.

Increasing use of probabilistic methods for numerical simulation : Kriging
and Gaussian processes methods for surrogate models and code calibration
and validation.
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