
Data Mining

Corrections of the exercises

François Bachoc
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Exercise 1

1) Consider 10 cars that are for sale with prices (in k euros) 10, 6, 7, 6, 22, 43, 33, 7, 8, 11. Consider the case
of uniform weights. Compute the mean price. Compute the median price.

Correction: The mean price is

10 + 6 + 7 + 6 + 22 + 43 + 33 + 7 + 8 + 11

10
=

153

10
≈ 15.3.

The sorted data are
6, 6, 7, 7, 8, 10, 11, 22, 33, 43.

The proportion of the data smaller or equal to 8 is 5/10 = 0.5. For any t < 8, the proportion of the data smaller
or equal to t is less than 4/10. Thus the median is 8.

2) Consider the following regions with population (in millions) and unemployment rates (in percent) given by the
pairs (4, 8), (4, 4), (6, 10), (3, 9), (2, 6), (7, 21), (6, 11), (4, 7), (5, 2), (8, 8) of the form (population, unemployment).
Each region is weighted by its population. Compute the normalized weights w1, . . . , wn for these data. With
these normalized weights, compute the mean and the standard deviation of the unemployment rate. You can use
the formula σ2(x) = x2 − x̄2. Compute the quantile q0.25(x) for these data x. You can use a calculator.

Correction: The total of the population (the sum of the unnormalized weights) is

4 + 4 + 6 + 3 + 2 + 7 + 6 + 4 + 5 + 8 = 49.

Hence the normalized weights are

w1 =
4

49
, w2 =

4

49
, w3 =

6

49
, w4 =

3

49
, w5 =

2

49
, w6 =

7

49
, w7 =

6

49
, w8 =

4

49
, w9 =

5

49
, w10 =

8

49
.

The mean is

4× 8 + 4× 4 + 6× 10 + 3× 9 + 2× 6 + 7× 21 + 6× 11 + 4× 7 + 5× 2 + 8× 8

49
=

462

49
≈ 9.43.

The variance is approximately

4

49
82 +

4

49
42 +

6

49
102 +

3

49
92 +

2

49
62 +

7

49
212

+
6

49
112 +

4

49
72 +

5

49
22 +

8

49
82 − 9.432 ≈ 28.97.
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The standard deviation is approximately √
28.97 ≈ 5.38.

Let us write the ordered data x(1) ≤ · · · ≤ x(10) (ordering x1, . . . , x10) and the corresponding (normalized)
weights wx(1)

, . . . , wx(10)
(keeping the correspondence between an individual xi and its weight). We obtain

(wx(1)
, x(1)) = (

5

49
, 2), (wx(2)

, x(2)) = (
4

49
, 4), (wx(3)

, x(3)) = (
2

49
, 6), (wx(4)

, x(4)) = (
4

49
, 7), (wx(5)

, x(5)) = (
8

49
, 8),

(wx(6)
, x(6)) = (

4

49
, 8), (wx(7)

, x(7)) = (
3

49
, 9), (wx(8)

, x(8)) = (
6

49
, 10), (wx(9)

, x(9)) = (
6

49
, 11), (wx(10)

, x(10)) = (
7

49
, 21).

Let us compute some cumulated weights

wx(1)
+ wx(2)

+ wx(3)
=

5 + 4 + 2

49
≈ 0.224,

wx(1)
+ wx(2)

+ wx(3)
+ wx(4)

=
5 + 4 + 2 + 4

49
≈ 0.306.

Hence the quantile q0.25(x) is 7, because more than a fraction 0.25 of the (weighted) data are smaller or equal
to x(4) = 7 but for any t < 7, strictly less than a fraction 0.25 of the data are smaller or equal to t.

3) Consider data x1, . . . , xn with n = 100 and xi = i for i = 1, . . . , 100. Consider uniform weights. Compute
the mean and median of x. Consider that a data point xn+1 = 106 is added. Compute the new mean and median
(still with uniform weights). Interpret the results.

Correction: The first mean is ∑100
i=1 i

100
=

100×101
2

100
= 50.5.

The first median is 50, because 50/100 of the data are smaller or equal to 50 but for t < 50, at most 49/100 < 0.5
of the data are smaller or equal to t.

The second mean is
106 +

∑100
i=1 i

101
=

106

101
+

100×101
2

101
≈ 9951.

The second median is 51 because 51/101 ≥ 0.5 of the data are smaller or equal to 51 but for t < 51 at most
50/101 < 0.5 of the data are smaller or equal to t.

The interpretation is that the mean is much more sensitive than the median to outlier/extreme individual
data points.

Exercise 2

Prove that the histogram function hx,λ : R→ R on page 4 of the lecture notes has integral 1.

Correction:
We have ∫ ∞

−∞
hx,λ(t)dt =

n∑
i=1

wi
1

λ

∫ ∞
−∞

K

(
t− xi
λ

)
dt

(change of variable u = (t− xi)/λ :) =

n∑
i=1

wi

∫ ∞
−∞

K(u)du

=

n∑
i=1

wi

= 1.

Exercise 3

Prove that |ρ(x, y)| = 1 if and only if (x1, y1), . . . , (xn, yn) are all distributed on a straight line (as written on
page 6 of the lecture notes).
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Correction: Let x̃w = (w
1/2
1 (x1 − x̄), . . . , w

1/2
n (xn − x̄)) and ỹw = (w

1/2
1 (y1 − ȳ), . . . , w

1/2
n (yn − ȳ)). Recall

the notation 〈·, ·〉 for the standard inner product on Rn. Then, we have

σ(x, y) =

n∑
i=1

wi(xi − x̄)(yi − ȳ) =

n∑
i=1

w
1/2
i (xi − x̄)w

1/2
i (yi − ȳ) =

n∑
i=1

(x̃w)i(ỹw)i = 〈x̃w, ỹw〉.

Similarly σ2(x) = 〈x̃w, x̃w〉 and σ2(y) = 〈ỹw, ỹw〉. Hence, |ρ(x, y)| = 1 is equivalent to

|〈x̃w, ỹw〉| =
√
〈x̃w, x̃w〉 × 〈ỹw, ỹw〉

which is the equality case in Cauchy-Shwarz inequality. Hence |ρ(x, y)| = 1 if and only if there exists a ∈ R
such that for i = 1, . . . , n, w

1/2
i (yi − ȳ) = aw

1/2
i (xi − x̄), that is, for i = 1, . . . , n, (yi − ȳ) = a(xi − x̄). Hence

(x1− x̄, y1− ȳ), . . . , (xn− x̄, yn− ȳ) are all distributed on a straight line. Hence (by translation in R2 with shift
(x̄, ȳ)), also (x1, y1), . . . , (xn, yn) are all distributed on a straight line.

Exercise 4

Consider 7 elementary school pupils with ages and weights given by the pairs

(4, 25), (5, 28), (6, 31), (7, 33), (8, 32), (9, 39), (10, 43)

(of the form (age,weight)). Compute the covariance between age and weight (uniform weights). You can use
the formula σ(x, y) = xy − x̄ȳ Interpret the result.

Correction: The mean of the age is

4 + 5 + 6 + 7 + 8 + 9 + 10

7
=

49

7
= 7.

The mean of the weight is
25 + 28 + 31 + 33 + 32 + 39 + 43

7
=

231

7
= 33.

The covariance is then

1

7

(
4× 25 + 5× 28 + 6× 31 + 7× 33 + 8× 32+

9× 39 + 10× 43
)
− 7× 33

= 11.

The interpretation is that the covariance is positive, which is in agreement with the fact, that, in general, the
weight increases when the age increases.

Exercise 5

Prove the expression of â and b̂ on page 6 of the lecture notes. You can use the formulas

n∑
i=1

wixiyi = σ(x, y) + x̄ȳ,

n∑
i=1

wix
2
i = σ(x)2 + x̄2,

n∑
i=1

wiy
2
i = σ(y)2 + ȳ2.

Correction: The derivatives of the least square criterion are

∂

∂a

n∑
i=1

wi(yi − axi − b)2 = −2

n∑
i=1

wi(yi − axi − b)xi

= −2
(
σ(x, y) + x̄ȳ − a(σ(x)2 + x̄2)− bx̄

)
(1)

and

∂

∂b

n∑
i=1

wi(yi − axi − b)2 = −2

n∑
i=1

wi(yi − axi − b)

= −2 (ȳ − ax̄− b) . (2)
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The optimal coefficients â and b̂ make these two partial derivatives equal to zero, which yields, from (2),

b̂ = ȳ − âx̄.

Then from (1), we obtain
0 = σ(x, y) + x̄ȳ − âσ(x)2 − âx̄2 − (ȳ − âx̄)x̄

which gives
0 = σ(x, y)− âσ(x)2

and thus

â =
σ(x, y)

σ(x)2
.

Exercise 6

We consider 6 companies and their numbers of employees (in thousands), annual growth (percent) and age
(years). The data for these companies, of the form (employees,growth,age) are

(4, 5, 22), (6, 7, 11), (6, 8, 2), (3, 8, 54), (8, 2, 34), (4, 5, 5).

Construct the data matrix X and the centered data matrix X̄ associated to these data (uniform weights).

Correction: We have

X =


4 5 22
6 7 11
6 8 2
3 8 54
8 2 34
4 5 5

 .

The center of gravity is

g(x) =
1

6

 4 + 6 + 6 + 3 + 8 + 4
5 + 7 + 8 + 8 + 2 + 5

22 + 11 + 2 + 54 + 34 + 5

 =
1

6

 31
35
128

 ≈
 5.17

5.83
21.33

 .

The centered data matrix is then

X̄ =


−1.17 −0.83 0.66
0.83 1.17 −10.33
0.83 2.17 −19.33
−2.17 2.17 32.66
2.83 −3.83 12.66
−1.17 −0.83 −16.33

 .

Exercise 7

Show that ut Mu = ut [(M + Mt )/2]u as stated on page 8 of the lecture notes.

Correction: We have

ut [(M + Mt )/2]u =
1

2
ut Mu+

1

2
ut Mt u.

Since ut Mt u is a scalar, it is equal to its transpose which is ut t( Mt )u = ut Mu. This concludes the proof.

Exercise 8

Consider the two-dimensional linear subspace E of R3 spanned by the two vectors (1, 1, 1) and (1, 0, 0). Consider
the diagonal matrix M with diagonal elements (1, 1/2, 1/2) to define the inner product 〈·, ·〉M .

1) Show that (1, 0, 0) and (0, 1, 1) constitute an M -orthonormal basis of E.

Correction:
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The vector (1, 0, 0) belongs to E. The vector (0, 1, 1) = (1, 1, 1)− (1, 0, 0) also belongs to E. We have

〈(1, 0, 0), (0, 1, 1)〉M = 1.1.0 + 0.(1/2).1 + 0.(1/2).1 = 0,

〈(1, 0, 0), (1, 0, 0)〉M = 1.1.1 + 0.(1/2).0 + 0.(1/2).0 = 1

and
〈(0, 1, 1), (0, 1, 1)〉M = 0.1.0 + 1.(1/2).1 + 1.(1/2).1 = 1

hence (1, 0, 0) and (0, 1, 1) are M -orthonormal and thus are an M -orthonormal basis of E which is of dimension 2.

2) Compute the M -orthogonal projection of (1, 1,−1) on E.

Correction:

The M -orthogonal projection is

〈(1, 1,−1), (1, 0, 0)〉M (1, 0, 0) + 〈(1, 1,−1), (0, 1, 1)〉M (0, 1, 1)

=
(

1.1.1 + 1.(1/2).0 + (−1).(1/2).0
)

(1, 0, 0) +
(

1.1.0 + 1.(1/2).1 + (−1).(1/2).1
)

(0, 1, 1)

= 1.(1, 0, 0) + 0(0, 1, 1)

= (1, 0, 0).

Exercise 9

The goal is to prove that taking the d first eigenvectors of ΣM (that are M -orthonormal) maximizes the inertia
(page 10 of the lecture notes). We let the p eigenvalues of ΣM be λ1 > · · · > λp > 0. For any M -orthonormal

vectors z1, . . . , zd in Rp the intertia is
∑d
j=1〈ΣMzj , zj〉M (page 10 of the lecture notes). Assume d < p.

1) Consider M -orthonormal vectors z1, . . . , zd in Rp and write for j = 1, . . . , d zj =
∑p
i=1Ai,jv

i, where
v1, . . . , vp are p M -orthonormal eigenvectors of ΣM associated to the eigenvalues λ1, . . . , λp and A is a p × d
matrix. Show that At A = Id.

Correction:
We have, for k, l = 1, . . . , d,

( At A)k,l =

p∑
i=1

Ai,kAi,l =

p∑
i=1

p∑
j=1

Ai,kAj,l〈vi, vj〉M = 〈
p∑
i=1

Ai,kv
i,

p∑
j=1

Aj,lv
j〉M = 〈zk, zl〉M = 1k=l,

where we recall the notation 1k=l which is 1 if k = l and 0 otherwise.
2) For the same vectors z1, . . . , zd as before, show that

d∑
j=1

〈ΣMzj , zj〉M =

d∑
j=1

p∑
a=1

λaA
2
a,j .

Correction:

We have

d∑
j=1

〈ΣMzj , zj〉M =

d∑
j=1

〈
p∑
a=1

Aa,jΣMva,

p∑
b=1

Ab,jv
b〉M =

d∑
j=1

p∑
a=1

p∑
b=1

Aa,jAb,j〈ΣMva, vb〉M

=

d∑
j=1

p∑
a=1

p∑
b=1

Aa,jAb,jλa〈va, vb〉M =

d∑
j=1

p∑
a=1

p∑
b=1

Aa,jAb,jλa1a=b =

d∑
j=1

p∑
a=1

λaA
2
a,j .

3) For a = 1, . . . , p, let βa =
∑d
j=1A

2
a,j. Show that βa ≤ 1. Hint: you can add columns to A to obtain a p×p

orthonormal matrix Ã such that tÃÃ = Ip (this is always possible since the d columns of A are Ip-orthonormal).

Correction: With Ã as in the hint, βa is smaller than the square Euclidean norm of the row a of Ã. We
have ÃtÃ = Ip since Ã is square and tÃÃ = Ip. Hence, the rows of Ã are orthonormal hence they have square

5



Euclidean norms 1.

4) Show that
∑p
a=1 βa = d.

Correction: The quantity
∑p
a=1 βa =

∑p
a=1

∑d
j=1A

2
a,j is the sum of the square norms of the d columns of

A which are orthonormal since At A = Id. Hence these d square norms are 1 and thus their sum is d.

5) Show that the maximum of
∑p
a=1 λaβa under the constraints 0 ≤ βa ≤ 1 for a = 1, . . . , p and

∑p
a=1 βa = d

is
∑d
a=1 λa.

Correction: There exists a maximizer by continuity and compacity. Let β̂1, . . . , β̂p maximize
∑p
a=1 λaβa

under the constraints above and assume β̂q > 0 for some q ∈ {d+ 1, . . . , p}. Then there is some i ∈ {1, . . . , d}
such that β̂i < 1 since

∑p
a=1 β̂a = d. Let ε > 0 be such that β̂q ≥ ε and β̂i ≤ 1 − ε. Then, if we decrease

β̂q by ε and increase β̂i by ε, the constraints on β̂1, . . . , β̂p are still satisfied and the criterion is increased by

ε(λi − λq) > 0. This shows that the only possible maximizer is β̂1 = 1, . . . , β̂d = 1, β̂d+1 = 0, . . . , β̂p = 0. This

yields
∑p
a=1 λaβ̂a =

∑d
a=1 λa.

6) Conclude by showing that the d first eigenvectors of ΣM maximize the inertia.

Correction: From the previous questions, for any M -orthonormal vectors z1, . . . , zd in Rd, the intertia is∑p
a=1 λaβa and is smaller than

∑d
a=1 λa. With the d first eigenvectors v1, . . . , vd of M , the intertia becomes

d∑
j=1

〈ΣMvj , vj〉M =

d∑
j=1

〈λjvj , vj〉M =

d∑
j=1

λj ,

since v1, . . . , vd are M -orthonormal. Hence, v1, . . . , vd indeed maximize the intertia.

Exercise 10

Prove the equation Vt (MΣM)V = Λ on page 16 of the lecture notes.

Correction:
We have

Vt (MΣM)V =

 vt 1

...
vt p

M(ΣM)
(
v1 . . . vp

)
=

 vt 1M
...

vt pM

((ΣM)v1 . . . (ΣM)vp
)

=

 vt 1M
...

vt pM

(λ1v
1 . . . λpv

p
)
.

The right-most matrix above is p×p and, for i, j = 1, . . . , p, its element i, j is vt iMλjv
j = λj〈vi, vj〉M = λj1i=j

which concludes the proof.

Exercise 11

Show that if a d-dimensional subspace Ed maximizes the intertia of the projected observations IM (x,Ed) (page
10 of the lecture notes) then it minimizes the intertia of the projection errors IM (x− πEd

(x)) =
∑n
i=1 wi||x̃i −

πEd
(x̃i)||2M .

Correction:
For i = 1, . . . , n, by definition of the M -orthogonal projection, we have ||x̃i||2M = ||πEd

(x̃i)||2M + ||x̃i −
πEd

(x̃i)||2M . Hence we obtain

n∑
i=1

wi||x̃i||2M =

n∑
i=1

wi||πEd
(x̃i)||2M +

n∑
i=1

wi||x̃i − πEd
(x̃i)||2M = IM (x,Ed) + IM (x− πEd

(x)).

The quantity on the left-hand side above does not depend on Ed. Hence, if Ed maximizes IM (x,Ed), it maximizes∑n
i=1 wi||x̃i||2M − IM (x− πEd

(x)) and thus is minimizes IM (x− πEd
(x)).
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Exercise 12

1) In the context of page 20 of the lecture notes, show that for i, j ∈ {1, . . . , p},

〈x̃j , ui〉W =
√
λiv

i
j .

Correction:
We have

〈x̃j , ui〉W = tx̃jWui =
1√
λi

tx̃jWci =
1√
λi

[tX̄WC]j,i =
1√
λi

[tX̄WX̄MV ]j,i =
1√
λi

[ΣMV ]j,i

=
1√
λi

[ΣMvi]j =
√
λi(v

i)j =
√
λiv

i
j .

2) In the context of page 20 of the lecture notes, show that, for j ∈ {1, . . . , p},

p∑
k=1

ρ(xj , ck)2 = 1.

Correction: We have

p∑
k=1

ρ(xj , ck)2 =

p∑
k=1

λk
σ2(xj)

(vkj )2 =

p∑
k=1

〈x̃j , uk〉2W
σ2(xj)

=
||x̃j ||2W
σ2(xj)

= 1.

Above, in the first equality, we have used a formula on page 20 of the lecture notes, in the second equality we
have used 1) and in the third inequality, we have used that u1, . . . , up is a W -orthonormal basis of Rn.

Exercise 13

1) Show that for j = 1, . . . , p, the new vector of observations cj has mean zero (context of page 15 of the lecture
notes).

Correction: We have cj = X̄Mvj . The mean of cj is
∑n
i=1 wic

j
i = 1t nWcj with 1n the n × 1 vector

composed of ones. Then the mean of cj is

1t nWX̄Mvj = ( 1t nWX̄)Mvj .

For k = 1, . . . , p, the column k of 1t nWX̄ is 1t nWx̃k which is the mean of x̃k which is zero. Hence 1t nWX̄Mvj =
0 which concludes the proof.

2) For d = 1, . . . , p, let Ed be the two-dimensional subset of Rn spanned by the d first W -orthonormal
eigenvectors u1, . . . , ud of X̄M tX̄W (context of page 20 of the lecture notes). Show that, for j = 1, . . . , p,

||πEd
(xj)||2W
||xj ||2W

=

d∑
k=1

ρ(xj , ck)2.

Correction:
Using that u1, . . . , up is a W -orthonormal basis, we have

||πEd
(xj)||2W
||xj ||2W

=

∑d
k=1〈xj , uk〉2W∑p
k=1〈xj , uk〉2W

=
σ(xj)2

∑d
k=1 ρ(xj , ck)2

σ(xj)2
∑p
k=1 ρ(xj , ck)2

=

∑d
k=1 ρ(xj , ck)2∑p
k=1 ρ(xj , ck)2

=

d∑
k=1

ρ(xj , ck)2.

Above, in the second equality we have used a formula on page 20 of the lecture notes. For the last equality, we
have used Exercize 12.
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Exercise 14

The goal is to carry out the computations of PCA on simple simulated data. Note that you are not expected to
interpret the results, since the data are simulated arbitrarily and do not come from a real data set. Consider
the data matrix

X =


1 0 0 1
1 2 2 1
0 −4 −4 0
−1 1 1 −1
−1 1 1 −1

 .

1) Consider uniform weights and the matrix M = I4 to compute the distances on the space of individuals.
Compute the covariance matrix.

Correction: We remark that the matrix X is centered, X = X̄.
The covariance matrix is

Σ =
1

5

t

X̄X̄ =
1

5


4 0 0 4
0 22 22 0
0 22 22 0
4 0 0 4

 .

2) Show that two eigenvalues of Σ are 0 and that the two first eigenvectors are

v1 =


0

1/
√

2

1/
√

2
0

 and v2 =


1/
√

2
0
0

1/
√

2


with eigenvalues 44/5 and 8/5.

Correction:
The lines 1 and 4 of Σ are identical. The lines 2 and 3 of Σ are identical. The lines 1 and 2 of Σ are linearly

independent. Hence Σ has rank 2 and thus its two smallest eigenvalues are 0. We have

Σ


0

1/
√

2

1/
√

2
0

 =
1

5


4 0 0 4
0 22 22 0
0 22 22 0
4 0 0 4




0

1/
√

2

1/
√

2
0

 =
1

5


0

22√
2

+ 22√
2

22√
2

+ 22√
2

0

 =
44

5


0

1/
√

2

1/
√

2
0

 .

Similarly

Σ


1/
√

2
0
0

1/
√

2

 =
1

5


4 0 0 4
0 22 22 0
0 22 22 0
4 0 0 4




1/
√

2
0
0

1/
√

2

 =
1

5


4√
2

+ 4√
2

0
0

4√
2

+ 4√
2

 =
8

5


1/
√

2
0
0

1/
√

2

 .

Finally, v1 and v2 indeed have Euclidean norm 1.

3) Compute c1, c2, ρ(x1, c1), ρ(x1, c2), . . . , ρ(x4, c1), ρ(x4, c2).

Correction:
We have

(
c1 c2

)
= X̄

(
v1 v2

)
=


1 0 0 1
1 2 2 1
0 −4 −4 0
−1 1 1 −1
−1 1 1 −1




0 1/
√

2

1/
√

2 0

1/
√

2 0

0 1/
√

2

 =


0

√
2

2
√

2
√

2

−4
√

2 0√
2 −

√
2√

2 −
√

2

 .

Also, with a formula on page 20 of the lecture notes,

ρ(x1, c1) = ρ(x4, c1) =

√
λ1

σ(x1)
v1

1 =

√
44/5√
4/5

0 = 0,

ρ(x1, c2) = ρ(x4, c2) =

√
λ2

σ(x1)
v2

1 =

√
8/5√
4/5

1√
2

= 1,

8



ρ(x2, c1) = ρ(x3, c1) =

√
λ1

σ(x2)
v1

2 =

√
44/5√
22/5

1√
2

= 1,

ρ(x2, c2) = ρ(x3, c2) =

√
λ2

σ(x2)
v2

2 =

√
8/5√
22/5

0 = 0.

4) Draw a biplot ( Section 1.2.4 of the lecture notes).

Correction:

−6 −4 −2 0 2 4 6

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
ind. 1 ind. 2

ind. 3

ind. 4ind. 5

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1
var. 1

var. 2var. 3

var. 4

Remark that the plots of individuals 4 and 5 are overlapping. Remark that the plots of variables 2 and 3
are overlapping. Remark that the plots of variables 1 and 4 are overlapping.

Exercise 15

We consider n individuals, where each of them has the two qualitative variables employment and education.
Employment takes the p = 2 values “employed” (E) and “unemployed” (U). Education takes the 3 values “Up
to High school” (HS), “Undergraduate degree” (U) and “Graduate degree” (G). The n individuals are given by
the data matrix 

E HS
E U
U HS
U G
E G
E G
U HS
U HS
E U
U U
U HS


,

with column 1 for employment and column 2 for education.
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1) Construct the contingency table, with the marginal totals and grand total (page 26 of the lecture notes).

Correction:

HS U G Total
E n11 = 1 n12 = 2 n13 = 2 n1. = 5
U n21 = 4 n22 = 1 n23 = 1 n2. = 6

Total n.1 = 5 n.2 = 3 n.3 = 3 n = 11

2) Compute the line profiles matrix P1 and the corresponding center of gravity g1

Correction:
We have

P1 =

(n11

n1.

n12

n1.

n13

n1.
n21

n2.

n22

n2.

n23

n2.

)
=

(
1
5

2
5

2
5

4
6

1
6

1
6

)
.

The center of gravity is the average of the two transposed lines of P1 (average of two individuals), with the
weights given by n1./n and n2./n:

g1 =
5

11

 1
5
2
5
2
5

+
6

11

 4
6
1
6
1
6

 =

0.45
0.27
0.27

 .

3) Compute the column profiles matrix P2 and the corresponding center of gravity g2

Correction:
We have

P2 =

n11

n.1

n21

n.1
n12

n.2

n22

n.2
n13

n.3

n23

n.3

 =

 1
5

4
5

2
3

1
3

2
3

1
3

 .

The center of gravity is the average of the three transposed lines of P2 (average of three individuals), with the
weights given by n.1/n, n.2/n and n.3/n:

g2 =
5

11

(
1
5
4
5

)
+

3

11

(
2
3
1
3

)
+

3

11

(
2
3
1
3

)
=

(
0.45
0.54

)
.

Exercise 16

1) In the context of page 30 of the lecture notes, show that ||g1||2M1
= 1.

Correction:
Remark that, using the expressions of g1 and M1 page 30 of the lecture notes,

||g1||2M1
= gt 1M1g1 =

1

n
1t qD

−1
2 nD2

1

n
D−1

2 1q =
1

n
1t qD

−1
2 1q =

1

n

q∑
i=1

(D−1
2 )ii =

1

n

q∑
i=1

n.i = 1.

2) In the context of page 30 of the lecture notes, show that Σ1M1 and Tt D1TD2 have the same eigenvalues
apart from the one associated to g1.

Correction:
From the spectral theorem, there exist q × 1 vectors w1, . . . , wq that are eigenvectors of Σ1M1, that are

M1-orthonormal and that are associated to the eigenvalues λ1 ≥ · · · ≥ λq. We know from page 30 of the
lecture notes that 0 is an eigenvalue of Σ1M1, so λq = 0. Let r ≤ q − 1 be defined by λr > 0 and λr+1 = 0.
From page 30 of the lecture notes we know that Σ1M1g1 = 0. Hence g1 ∈ span(wr+1, . . . , wq). Hence, by
a change of M1-orthonormal basis, we can construct w′r+1, . . . , w

′
q−1 that are M1-orthonormal and such that

span(w′r+1, . . . , w
′
q−1, g1) = span(wr+1, . . . , wq). Hence, without loss of generality, we consider that wq = g1.
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Consider i ∈ {1, . . . , q − 1}. wi and g1 are M1-orthogonal. Hence, using M1 = nD2 in the lecture notes,

ng1 g
t

1D2wi = g1 g
t

1M1wi = g1〈g1, wi〉M1 = 0.

Hence, from the decomposition of Σ1M1 in the lecture notes

λiwi = Σ1M1wi = Tt D1TD2wi − ng1 g
t

1D2wi = Tt D1TD2wi.

Hence, the eigenvalues of Tt D1TD2, other than the one associated to g1 are λ1 ≥ · · · ≥ λq−1 which are the
same as the eigenvalues of Σ1M1 other than the one associated to g1.

Exercise 17

1) In the context of page 31 of the lecture notes, show that the data from the matrix C(1) have κ×1 mean vector
0, with the weight matrix W1.

Correction:
The 1× κ mean vector is, using the expressions of W1, C(1) and g1 on pages 30 and 31 of the lecture notes,

1t pW1C
(1) = 1t p

1

n
D−1

1 nD1TD2V1 = 1t pTD2V1 = n gt 1D2V1 = gt 1M1V1.

The component i of gt 1M1V1 is 〈g1, vi〉M1 where vi is one of the eigenvectors of Tt D1TD2 that is M1-orthogonal
to g1 by definition. Hence 〈g1, vi〉M1 = 0 and thus the component i is zero and thus the 1 × κ mean vector is
zero.

Exercise 18

We consider n = 8 voters, where each of them has the two qualitative variables work and preference. Work
takes the p = 3 values “Dentist” (Den), “Teacher” (T) and “Developper” (Dev). Preference takes the 3 values
“Left” (L), “Center” (C) and “Right” (R). The n individuals are given by the data matrix

Den R
T L
T L
Dev C
Dev C
Den R
T L
Dev C


,

with column 1 for work and column 2 for preference. In this exercize, you have the choice between giving exact
expressions of the results (using fractions, square roots,...) or giving (approximate) numerical results.

1) Construct the contingency table, with the marginal totals and grand total (page 26 of the lecture notes).

Correction:

L C R Total
Den n11 = 0 n12 = 0 n13 = 2 n1. = 2
T n21 = 3 n22 = 0 n23 = 0 n2. = 3

Dev n31 = 0 n32 = 3 n33 = 0 n3. = 3
Total n.1 = 3 n.2 = 3 n.3 = 2 n = 8

.

2) Compute the lines profile matrix P1, the center of gravity g1, the matrix D1, the matrix D2, the weight
matrix W1 and the distance matrix M1.

Correction:

11



Using the formulas given in the lecture notes, we have

D1 =

 1
n1.

0 0

0 1
n2.

0

0 0 1
n3.

 =

 1
2 0 0
0 1

3 0
0 0 1

3

 ,

P1 = D1T =

 1
2 0 0
0 1

3 0
0 0 1

3

0 0 2
3 0 0
0 3 0

 =

0 0 1
1 0 0
0 1 0

 ,

W1 =

n1.

n 0 0
0 n2.

n 0
0 0 n3.

n

 =

 2
8 0 0
0 3

8 0
0 0 3

8

 ,

D2 =

 1
n.1

0 0

0 1
n.2

0

0 0 1
n.3

 =

 1
3 0 0
0 1

3 0
0 0 1

2

 ,

M1 = nD2 = 8

 1
3 0 0
0 1

3 0
0 0 1

2

 =

 8
3 0 0
0 8

3 0
0 0 4


and

g1 =
1

n
Tt 1p =

1

8

0 3 0
0 0 3
2 0 0

1
1
1

 =

 3
8
3
8
2
8

 .

3) To perform the PCA on the line profiles, provide the matrix that has the κ = min(p, q) − 1 non trivial
eigenvalues λ1 ≥ · · · ≥ λκ ≥ 0. Compute κ, λ1, . . . , λκ. Compute also the q×κ matrix V1 which columns are the
M1-orthogonal eigenvectors corresponding to these non-trivial eigenvalues (the choice of these κ eigenvectors
will not be unique, so you can take any choice you want that is valid).

Correction:
Here κ = min(3, 3)− 1 = 2. From pages 30, 31 of the lecture notes, the matrix is Tt D1TD2, which has the

trivial eigenvalue 1 and the other eigenvalues λ1, λ2. We have

Tt D1TD2 =

0 3 0
0 0 3
2 0 0

 1
2 0 0
0 1

3 0
0 0 1

3

0 0 2
3 0 0
0 3 0

 1
3 0 0
0 1

3 0
0 0 1

2

 =

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

 =

1 0 0
0 1 0
0 0 1

 .

Here the three eigenvalues of the matrix are 1. Hence λ1 = λ2 = 1. Here the trivial eigenvector is

g1 =

 3
8
3
8
2
8

 ,

so the other two eigenvectors must be M1-orthogonal to g1. Here any vector is an eigenvector of the identity
matrix, so there is not an unique choice of the two eigenvectors. Let us find a first vector of the form t(a, b, c)
that is M1-orthogonal to g1 and has M1-norm 1. This yields

0 =
(
a b c

) 8
3 0 0
0 8

3 0
0 0 4

 3
8
3
8
2
8

 = a+ b+ c

and

1 =
(
a b c

) 8
3 0 0
0 8

3 0
0 0 4

ab
c

 =
8a2

3
+

8b2

3
+ 4c2.

Hence we take (arbitrarily) the first non-trivial eigenvector asab
c

 =


√

3
4

−
√

3
4

0


12



Let us find a second non-trivial eigenvector of the form t(c, d, e) that has M1-norm 1 and is M1-orthogonal
to g1 and t(a, b, c). From before, we thus have

c+ d+ e = 0

and
8c2

3
+

8d2

3
+ 4e2 = 1.

We also have

0 =
(
c d e

) 8
3 0 0
0 8

3 0
0 0 4



√

3
4

−
√

3
4

0

 =
8

3

√
3

4
(c− d).

Hence we take (c, d, e) of the form t(1, 1,−2), with t ≥ 0 such that

8t2

3
+

8t2

3
+ 4(−2t)2 = 1

and so

1 = t2
(

8

3
+

8

3
+ 16

)
= t2(

64

3
).

Hence we take t =
√

3/
√

64 and thus we take the second eigenvector as

cd
e

 =


√

3√
64√
3√
64

−2
√

3√
64

 .

Hence eventually

V1 =


√

3
4

√
3√
64

−
√

3
4

√
3√
64

0 −2
√

3√
64

 ≈
 0.43 0.22
−0.43 0.22

0 −0.44

 .

4) Compute the principal component matrix C(1).

Correction:
We have

C(1) = P1M1V1 =

0 0 1
1 0 0
0 1 0

 8
3 0 0
0 8

3 0
0 0 4

 0.43 0.22
−0.43 0.22

0 −0.44

 =

0 0 4
8
3 0 0
0 8

3 0

 0.43 0.22
−0.43 0.22

0 −0.44

 ≈
 0 −1.76

1.15 0.59
−1.15 0.59

 .

5) Using the transition formulae, compute the the principal component matrix C(2).

Correction:
The matrix of non-trivial eigenvalues is

Λ =

(
1 0
0 1

)
.

Furthermore

P2 =

n11

n.1

n21

n.1

n31

n.1
n12

n.2

n22

n.2

n32

n.2
n13

n.3

n23

n.3

n33

n.3

 =

0 1 0
0 0 1
1 0 0

 .

Hence, from the transition formulae, we have

C(2) = P2C
(1)Λ−1/2 =

0 1 0
0 0 1
1 0 0

 0 −1.76
1.15 0.59
−1.15 0.59

(1 0
0 1

)
=

 1.15 0.59
−1.15 0.59

0 −1.76

 .
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6)
Plot the individuals of the two principal component matrix C(1) and C(2), with one color for each of the

matrices, together with category name of each individual. Interpret the plot.

Correction:

 

We observe that the values of first variable are perfectly matched by the corresponding values of the second
variable. More precisely:

• All voters who have the work variable equal to the value Den have the preference variable equal to the
value R. In the plot we see that Den (in red) and R (in blue) coincide.

• All voters who have the work variable equal to the value Dev have the preference variable equal to the
value C. In the plot we see that Dev (in red) and C (in blue) coincide.

• All voters who have the work variable equal to the value T have the preference variable equal to the value
L. In the plot we see that T (in red) and L (in blue) coincide.

Exercise 19

1) Prove that for `, `′ ∈ {1, . . . ,m}, (W̄ )`,`′ = w̄` if ` = `′ and (W̄ )`,`′ = 0 if ` 6= `′ (context of page 39 of
the lecture notes).

Correction: Let `, `′ ∈ {1, . . . ,m}. We have

(W̄ )`,`′ = ( Tt WT )`,`′ =

n∑
a,b=1

( Tt )`,aWa,bTb,`′ =

n∑
a,b=1

Ta,`wa1a=bTb,`′ =

n∑
a=1

waTa,`Ta,`′ =

n∑
a=1

wa1a∈Ω`
1a∈Ω`′ .
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Hence, since Ω1, . . . ,Ωm are a partition of {1, . . . , n}, if ` 6= `′ then 1a∈Ω`
1a∈Ω`′ = 0 for all a ∈ {1, . . . , n} and

thus (W̄ )`,` = 0. In the case ` = `′, we obtain from the above computations

(W̄ )`,` =

n∑
a=1

wa1a∈Ω`
=
∑
a∈Ω`

wa = w̄`.

2) Prove that

W̄−1 Tt WX =

 gt 1

...
gt m


(context of page 40 of the lecture notes).

Correction:
Let ` ∈ {1, . . . ,m} and j ∈ {1, . . . , p}. We have

(W̄−1 Tt WX)`,j =

m∑
a=1

n∑
b,c=1

(W̄−1)`,a( Tt )a,bWb,cXc,j =

m∑
a=1

n∑
b,c=1

(W̄−1)`,aTb,aWb,cx
j
c

=

m∑
a=1

n∑
b,c=1

1`=a
1

w̄`
Tb,`1b=cwbx

j
c =

n∑
c=1

1

w̄`
Tc,`wcx

j
c =

1

w̄`

n∑
c=1

1c∈Ω`
wcx

j
c =

1

w̄`

∑
c∈Ω`

wcx
j
c = (

1

w̄`

∑
c∈Ω`

wcxc)j = (g`)j

=

 gt 1

...
gt m


`,j

.

3) Prove that tḠW̄ Ḡ = tX̄bWX̄b (context of page 41 of the lecture notes).

Correction:
We have, for j, k ∈ {1, . . . , p},

(tḠW̄ Ḡ)j,k =

m∑
`,`′=1

(tḠ)j,`(W̄ )`,`′Ḡ`′,k =

m∑
`,`′=1

Ḡ`,j1`=`′w̄`Ḡ`′,k =

m∑
`=1

w̄`Ḡ`,jḠ`,k =

m∑
`=1

(∑
i∈Ω`

wi

)
(g` − g)j(g` − g)k

=

m∑
`=1

∑
i∈Ω`

wi(g` − g)j(g` − g)k.

We remark that for i ∈ {1, . . . , n}, ` ∈ {1, . . . ,m}, with i ∈ Ω`, we have that t(g`− g) is the line i of X̄b. Hence
we obtain

(tḠW̄ Ḡ)j,k =

m∑
`=1

∑
i∈Ω`

wi(X̄b)i,j(X̄b)i,k =

n∑
i=1

wi(X̄b)i,j(X̄b)i,k =
(
tX̄bWX̄b

)
j,k
.

Exercise 20

1) Here, you can use the concept of rank from linear algebra. For a matrix K of size a× b, its rank rank(K)
satisfies rank(K) ≤ min(a, b). Also, if vt K = 0 for a non-zero a× 1 vector v, then rank(K) ≤ a− 1. Also, for
two (rectangular) matrices A,B we have rank(AB) ≤ min(rank(A), rank(B)). Finally, the number of non-zero
eigenvalues of a matrix is smaller than its rank.

Assume that Σ is invertible. Consider the eigenvalues λ1 ≥ · · · ≥ λp of ΣbΣ
−1 (context of page 41 of the

lecture notes). Show that at most min(p, κ− 1) elements of (λ1, . . . , λp) are non-zero.
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Correction:
If κ ≥ p + 1, this is trivially true because ΣbΣ

−1 is p × p. Assume now that κ ≤ p. Let 1κ be the κ × 1
vector composed on ones. We have Σb = tḠW̄ Ḡ, where W̄ Ḡ is κ × p and satisfies t1κ(W̄ Ḡ) = 0, because the
element j of 1κ(W̄ Ḡ) is

∑κ
`=1 w̄`((g`)j − gj) = gj − gj = 0. Hence, rank(W̄ Ḡ) ≤ κ − 1. Hence, rank(Σb) =

rank( Ḡt W̄ Ḡ) ≤ min(rank( Ḡt ), rank(W̄ Ḡ)) ≤ κ − 1. Hence rank(ΣbΣ
−1) ≤ min(κ − 1, rank(Σ−1)) ≤ κ − 1.

Hence at most κ− 1 eigenvalues of ΣbΣ
−1 are non-zero which concludes the proof.

2) Here we will show that the eigenvalues of ΣbΣ
−1 are in [0, 1]. a) Show that the eigenvalues of ΣbΣ

−1 are
eigenvalues of Σ−1/2ΣbΣ

−1/2. b) Show that these eigenvalues are positive. c) Then, you can use the following
result from linear algebra: the largest eigenvalue of Σ−1/2ΣbΣ

−1/2 is

max
||x||=1

xt Σ−1/2ΣbΣ
−1/2x.

Show that this largest eigenvalue is smaller than 1.

Correction: a) If x is non-zero and λ ∈ R is such that ΣbΣ
−1x = λx then left-multiplying by Σ−1/2 we

obtain Σ−1/2ΣbΣ
−1/2(Σ−1/2x) = λ(Σ−1/2x) and so λ is an eigenvalue of Σ−1/2ΣbΣ

−1/2.
b) For any p × 1 vector x, we have xt Σ−1/2ΣbΣ

−1/2x = t(Σ−1/2x)Σb(Σ
−1/2x) ≥ 0 because Σb is a covari-

ance matrix and thus it is non-negative definite. So Σ−1/2ΣbΣ
−1/2 is also non-negative definite and thus its

eigenvalues are non-negative.
c) Using Σb = Σ− Σw we obtain for any p× 1 vector x with ||x|| = 1,

xt Σ−1/2ΣbΣ
−1/2x = xt Σ−1/2ΣΣ−1/2x− xt Σ−1/2ΣwΣ−1/2x = ||x||2− xt Σ−1/2ΣwΣ−1/2x = 1− xt Σ−1/2ΣwΣ−1/2x.

The quantity xt Σ−1/2ΣwΣ−1/2x is non-negative from the same arguments as in b). More precisely, Σw is a
weighted sum of covariance matrices with non-negative weights, so it is non-negative definite. Hence, we obtain
xt Σ−1/2ΣbΣ

−1/2x ≤ 1. So from the linear algebra result of the exercise, the largest eigenvalue of Σ−1/2ΣbΣ
−1/2

is smaller than 1.

3) In the context of page 41 of the lecture notes, show that if λ1 = 0, then the m centers of gravity of the m
groups are equal.

Correction:
We have shown in 2) that the non-zero eigenvalues of ΣbΣ

−1 are between 0 and 1 and, by definition, λ1 is
the largest. Hence all the eigenvalues of ΣbΣ

−1 are zero. If Σ−1/2ΣbΣ
−1/2x = λx then, left multiplying by Σ1/2,

we obtain ΣbΣ
−1(Σ1/2x) = λ(Σ1/2x). Hence all the eigenvalues of Σ−1/2ΣbΣ

−1/2 are zero. Hence the matrix
Σ−1/2ΣbΣ

−1/2 is the zero matrix (this is seen by diagonalizing it). We can left- and right- multiply by Σ1/2

and we obtain that Σb is the zero matrix. Hence the covariance matrix of the m centers of gravity g1, . . . , gm
is zero, which means that all these centers of gravity are equal to their mean

m∑
`=1

w̄`g`.

Exercise 21

1) Consider the setting of pages 50, 51 of the lecture notes. Consider n = 20 individuals with corresponding 20
values of a qualitative variable, taking values in {τ1, τ2, τ3}, given by

t = t
(
τ1, τ2, τ3, τ2, τ1, τ1, τ2, τ2, τ3, τ3, τ1, τ3, τ2, τ1, τ1, τ2, τ3, τ2, τ2, τ1

)
.

Consider uniform weights. Assume that a partition of the input space has been obtained and that its first
region R1 contains the individuals x2, x4, x5, x7, x10, x12, x15, x16, x20 and only these individuals. Compute the
frequencies p̂11, p̂12, p̂13. Which value of the qualitative variable should be attributed to R1, if a classifier is built
from this partition of the input space? Compute the value of the Gini index G1 of R1.
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Correction: We have(
t2, t4, t5, t7, t10, t12, t15, t16, t20

)
=
(
τ2, τ2, τ1, τ2, τ3, τ3, τ1, τ2, τ1

)
.

Hence

p̂11 =
3

9
, p̂12 =

4

9
, p̂13 =

2

9
.

R1 should be attributed the most frequent value, that is τ2. The value of the Gini index is

G1 =

3∑
`=1

p̂1`(1−p̂1`) =
3

9

(
1− 3

9

)
+

4

9

(
1− 4

9

)
+

2

9

(
1− 2

9

)
=

3

9
×6

9
+

4

9
×5

9
+

2

9
×7

9
=

3× 6 + 4× 5 + 2× 7

81
=

52

81
.

2) Consider the data matrix

X =


0 0
0 1
1 0
1 1


and the corresponding values of the qualitative variable

t =


τ1
τ2
τ1
τ2

 .

Consider uniform weights. Find j? ∈ {1, 2} and s? ∈ R that minimize

w̄1(j, s)G1(j, s) + w̄2(j, s)G2(j, s)

(context of page 51 of the lecture notes).

Correction:
We see that tj = τ1 when x2

j = 0 and tj = τ2 when x2
j = 1. So splitting across the second variable should be

optimal. Let us show this. Let j? = 2 and s? = 0.5 (or any number strictly between 0 and 1). Then we have
w̄1(j?, s?) = 1/2 and w̄2(j?, s?) = 1/2. The first region

R1(j?, s?) = {x = t(x1, x2) ∈ R2;x2 ≤ 0.5}

contains x1 and x3 with corresponding values t1 and t3 both equal to τ1. Hence we have p̂11 = 1 and p̂12 = 0
and thus G1(j?, s?) = 0. Similarly the second region

R2(j?, s?) = {x = t(x1, x2) ∈ R2;x2 > 0.5}

contains x2 and x4 with corresponding values t2 and t4 both equal to τ2. Hence we have p̂21 = 0 and p̂22 = 1
and thus G2(j?, s?) = 0. Hence we have, since the Gini index is always non-negative,

w̄1(j?, s?)G1(j?, s?) + w̄2(j?, s?)G2(j?, s?) = 0 ≤ w̄1(j, s)G1(j, s) + w̄2(j, s)G2(j, s),

for any j ∈ {1, 2} and s ∈ R.

Exercise 22

The following plot is a partition of [0, 1]2 obtained from a classification tree.
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Plot a classification tree leading to this partition. Ignore the problem of determining how input points located
on the green straight and dashed lines (equality cases in the classification tree) are classified.

Correction:
With the convention of going left if the inequality is true.
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Exercise 23

Consider two qualitative variables x1 with values in {1, 2} and x2 with values in {1, 2}. Consider the corre-
sponding data matrix

X =


1 1
1 2
1 2
2 1
2 1
2 2

 .

Compute dχ2(1, 2) (context of page 58 of the lecture notes).
Correction:
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We have p = m1 = m2 = 2 and n = 6.

dχ2(1, 2) =
n

p

p∑
j=1

mj∑
`=1

δj`(1, 2)

#{i s.t. xji = `}

=
6

2

2∑
j=1

2∑
`=1

δj`(1, 2)

#{i s.t. xji = `}

= 3

(
δ11(1, 2)

#{i s.t. x1
i = 1}

+
δ12(1, 2)

#{i s.t. x1
i = 2}

+
δ21(1, 2)

#{i s.t. x2
i = 1}

+
δ22(1, 2)

#{i s.t. x2
i = 2}

)
= 3

(
0

3
+

0

3
+

1

3
+

1

3

)
= 2.
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