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Corrections of the exercises
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The lecture notes can be found here: https://www.math.univ-toulouse.fr/~xgendre/ens/m2se/DataMining.
pdf.

Exercise 1

1) Consider 10 cars that are for sale with prices (in k euros) 10, 6, 7, 6, 22, 43, 33, 7, 8, 11. Consider the case
of uniform weights. Compute the mean price. Compute the median price.

Correction: The mean price is

0+6+7+6+22+43+33+7+8+11 153
10 10 T

The sorted data are
6,6,7,7,8,10,11,22, 33, 43.

The proportion of the data smaller or equal to 8 is 5/10 = 0.5. For any ¢ < 8, the proportion of the data smaller
or equal to ¢ is less than 4/10. Thus the median is 8.

2) Consider the following regions with population (in millions) and unemployment rates (in percent) given by the
pairs (4,8),(4,4),(6,10),(3,9),(2,6),(7,21),(6,11), (4,7), (5,2), (8,8) of the form (population, unemployment).
Each region is weighted by its population. Compute the normalized weights w1, ..., w, for these data. With
these normalized weights, compute the mean and the standard deviation of the unemployment rate. You can use
the formula o*(z) = 22 — 7%. Compute the quantile qo.25() for these data x. You can use a calculator.

Correction: The total of the population (the sum of the unnormalized weights) is
44+44+6+3+2+7+6+4+54+8=49.

Hence the normalized weights are

4 4 6 3 2 7 6 4 5 3

w1 = Zg7w2 = E)w?) = anllz Ty Ws = ——,We = ——, W7y = ——,Wg = ——,W9g = —, W10 =

The mean is

4><8+4><4+6><10+3><9+2><6+7><21+6><11+4><7+5><2+8><87462N943
49 49 T

The variance is approximately

4 4 6 3 2 7
=824+ =424+ —102 + —9%2 + =62 + —212
100 Tt T T T T

6 4 5 8

— 1124+ —7% 4+ =224 —82_-943% ~ 28.97.
Tt T Tt T



The standard deviation is approximately

V28.97 =~ 5.38.

Let us write the ordered data () < --- < x(10) (ordering x1,...,210) and the corresponding (normalized)
weights wy ), ..., Way,, (keeping the correspondence between an individual z; and its weight). We obtain

5 4 2 4 8
(way,y, 2(1)) = (E’2)’ (Wa o), T(2)) = (EA)’ (W), T(3)) = (E’G)’ (Wa 4y T () = (E’7)’ (W), 2(5)) = (@’8)’

4 3 6 6 7
(wa:(6)7x(6)) = (Ea8)a (wa:(7)7x(7)) = (Eag)a (wZ(s)am(S)) = (E7 10)7 (wa:(g)7x(9)) = (Ea 11)7 (wm(10)7x(10)) = (6721)

Let us compute some cumulated weights

o+4+2
Wz yy + Wy + Wegy = 19 ~ 0.224,
5+4+2+4
Wa gy T Wagy T Wy + Wagyy = 19 ~ 0.306.

Hence the quantile gg.25(z) is 7, because more than a fraction 0.25 of the (weighted) data are smaller or equal
to w4y = 7 but for any ¢ < 7, strictly less than a fraction 0.25 of the data are smaller or equal to ¢.

3) Consider data x1,...,x, withn =100 and x; = i for i = 1,...,100. Consider uniform weights. Compute
the mean and median of x. Consider that a data point x, 1 = 10° is added. Compute the new mean and median
(still with uniform weights). Interpret the results.

Correction: The first mean is
Z100 i 100x 101

i=1" _ 2 _
100 100 50:5.

The first median is 50, because 50/100 of the data are smaller or equal to 50 but for ¢t < 50, at most 49/100 < 0.5
of the data are smaller or equal to t.
The second mean is

106 4+ 30199 _ 1706+ 100x101

101 101 101

The second median is 51 because 51/101 > 0.5 of the data are smaller or equal to 51 but for ¢ < 51 at most
50/101 < 0.5 of the data are smaller or equal to ¢.

The interpretation is that the mean is much more sensitive than the median to outlier/extreme individual

data points.

~ 9951.

Exercise 2

Prove that the histogram function hy » : R — R on page 4 of the lecture notes has integral 1.

Correction:
We have

o7} n 1 [e%e) .
/ hoa(t)dt = wa/ K (t )\%) dt

(change of variable u = (t — x;)/\ ;) = Z wi/ K(u)du
i=1 -0

n
=2 wi
i=1

=1

Exercise 3

Prove that |p(x,y)| = 1 if and only if (x1,y1),. .., (Tn,yn) are all distributed on a straight line (as written on
page 6 of the lecture notes).



Correction: Let &, = (wi/Q(xl —I),... ,w,l/Z(xn — 1)) and g, = (w%/Q(yl —9)y--- 7w71,/2(yn —7)). Recall
the notation (-, -) for the standard inner product on R™. Then, we have

z,y) =) wilwi — ) Zw i~ B (g —5) = Y (F)i(w)i = (Fu, Gu).
=1 N

Similarly 02(z) = (T, Tw) and 0%(y) = (Juw, w)- Hence, |p(z,y)| = 1 is equivalent to

(Zw, )| = \/<jw>3:”w> X (G Yuw)

which is the equality case in Cauchy-Shwarz inequality. Hence |p(z,y)| = 1 if and only if there exists a € R
such that for¢ =1,...,n, wil/z(yi —7g) = awl-l/z(xi —I), that is, for i = 1,...,n, (y; — §) = a(x; — T). Hence
(v1—Z, 91 —4),-- ., (¥p — T, y, — §) are all distributed on a straight line. Hence (by translation in R? with shift
(Z,79)), also (z1,y1),-- -, (zn, yn) are all distributed on a straight line.

Exercise 4

Consider 7 elementary school pupils with ages and weights given by the pairs

(4,25), (5,28), (6,31),(7,33),(8,32),(9,39), (10,43)
(of the form (age, weight)). Compute the covariance between age and weight (uniform weights). You can use
the formula o(x,y) = Ty — &y Interpret the result.

Correction: The mean of the age is

44+54+6+7+8+9+10 49
7 =7 ="

The mean of the weight is

25 4+28 +31+33+32+394+43 231
7 = =%

The covariance is then
1
?(4><25+5><28—|—6><31—|—7><33+8><32—|—

9><39+10><43)—7><33
—11.

The interpretation is that the covariance is positive, which is in agreement with the fact, that, in general, the
weight increases when the age increases.

Exercise 5

Prove the expression of a and b on page 6 of the lecture notes. You can use the formulas

n n n
Z WiT;Y; = O'(QL‘, y) + ‘/Z.g7 Z wzx? = U(m)Q + an Z w’by'? = U(y)2 + g2'
=1 i=1 i=1

Correction: The derivatives of the least square criterion are

%zn:wz(yz z; —b)? :—2sz yi — az; — b)w;
i=1

=—2(U(x,y)+wy—a( (x)* +7°) — b7) (1)

and

%Zwi(yi_ i—b)? Z—QZU& yi —ax; —b)

:—2(y—ax—b). (2)



The optimal coefficients a and b make these two partial derivatives equal to zero, which yields, from (2),
b=y — ai.

Then from (1), we obtain

0 =o(x,y) + 7y — ao(z)?

which gives
0=o(z,y) —ao(z)?

and thus

Exercise 6

We consider 6 companies and their numbers of employees (in thousands), annual growth (percent) and age
(years). The data for these companies, of the form (employees,growth,age) are

(4,5,22),(6,7,11),(6,8,2),(3,8,54),(8,2,34), (4,5, 5).
Construct the data matriz X and the centered data matriz X associated to these data (uniform weights).

Correction: We have

4 5 22

6 7 11

6 8 2

X = 3 8 54

8 2 34

4 5 5

The center of gravity is

44+6+6+3+8+4 L (3 5.17
g(z) == S5+T7+8+8+2+5 =5 35 | =~ | 5.83
22+ 114+2+54434+5 128 21.33

The centered data matrix is then
—-1.17 —-0.83 0.66

0.83 117 —-10.33
083 217 —19.33
—-2.17 217  32.66
283 —-3.83 12.66
-1.17 —-0.83 —-16.33

X =

Exercise 7

Show that 'uMu = *u[(M + *M)/2]u as stated on page 8 of the lecture notes.

Correction: We have 1 !
bu[(M 4+ '™M)/2]u = ituMu + it M.

Since ‘utMu is a scalar, it is equal to its transpose which is *u®(*M )u = *uMwu. This concludes the proof.

Exercise 8

Consider the two-dimensional linear subspace E of R® spanned by the two vectors (1,1,1) and (1,0,0). Consider
the diagonal matriz M with diagonal elements (1,1/2,1/2) to define the inner product (-, ).

1) Show that (1,0,0) and (0,1,1) constitute an M-orthonormal basis of E.

Correction:



The vector (1,0,0) belongs to E. The vector (0,1,1) = (1,1,1) — (1,0,0) also belongs to E. We have
((1,0,0),(0,1,1))ps =1.1.0+0.(1/2).1 4+ 0.(1/2).1 =

((1,0,0),(1,0,0)) s = 1.1.1 4+ 0.(1/2).0 4+ 0.(1/2).0 =

nd
) ((0,1,1),(0,1,1)) 5y = 0.1.0+1.(1/2). 1+ 1.(1/2).1 = 1

hence (1,0,0) and (0, 1, 1) are M-orthonormal and thus are an M-orthonormal basis of E which is of dimension 2.
2) Compute the M -orthogonal projection of (1,1,—1) on E.
Correction:
The M-orthogonal projection is
<(17 1a _1)7 (L Oa O)>M(17 07 O) + <(17 1a _1)7 (0’ 1’ 1)>M(O7 17 1)
- (1.1.1 +1.(1/2).0 + (—1).(1/2).0)(1, 0,0) + (1.1.0 +1.(1/2).1 + (—1).(1/2).1)(0, 1,1)
= 1.(1,0,0) 4+ 0(0, 1, 1)
=(1,0,0).
Exercise 9

The goal is to prove that taking the d first eigenvectors of M (that are M -orthonormal) mazimizes the inertia
(page 10 of the lecture notes). We let the p eigenvalues of XM be Ay > --- > X\, > 0. For any M -orthonormal

vectors z', ..., z% in RP the intertia is Z?:1<2szv 2V a1 (page 10 of the lecture notes). Assume d < p.
1) Consider M-orthonormal vectors z*,...,z% in RP and write for j = 1,...,d 27 = P A v, where
v, ..., vP are p M-orthonormal eigenvectors of M associated to the eigenvalues A1, ..., \, and A is a p x d

matriz. Show that 'AA = 1.

Correction:
We have, for k,1=1,...,d,

p p
("AA)ps = ZAZ wdiy = ZZAZ kA0 0 ) ar = <,§; Aivkvi’ZIAj,l”j>M = (%, 2w = L,
i= i=

=1 j=1

where we recall the notation 1;,—; which is 1 if £ =1 and 0 otherwise.

2) For the same vectors z', ..., 2% as before, show that

d d p
> (EM2 )y ZZIA
j=1 j=1a=
Correction:
We have
d _ P d p p
Z<EMZJ,ZJ Z ZA(”EMU ZA}),]’U ZZZAGJA;,,](ZMU‘I,UI’}M
Jj=1 j=1 a=1 j=la=1b=1
d p d p p d p
= ZZZA“JAZ’J (%) = ZZZAa,jAb,j)\ala:b = ZZAaAi,j-
j=la=1b=1 j=la=1b=1 j=la=1

3) Fora=1,...,p, let B, = ijl A?L,j, Show that B, < 1. Hint: you can add columns to A to obtain a pXxp

orthonormal matriz A such that ' AA = I, (this is always possible since the d columns of A are I,-orthonormal).

Correction: With A as in the hint, 3, is smaller than the square Euclidean norm of the row a of A. We
have A'A = I, since A is square and *AA = I,. Hence, the rows of A are orthonormal hence they have square



Euclidean norms 1.
4) Show that Y _, B, =d.

Correction: The quantity Y 7_ 8, =>"_, Z;l:l A? ; is the sum of the square norms of the d columns of
A which are orthonormal since {AA = I;. Hence these d square norms are 1 and thus their sum is d.

5) Show that the mazimum of " _| XofBq under the constraints 0 < B, <1 fora=1,...,pand >."_, B =d
. —~d
iS Y a1 Aa-

Correction: There exists a maximizer by continuity and compacity. Let /3’1, . ,Bp maximize Zgzl AaBa
under the constraints above and assume Bq > 0 for some ¢ € {d+1,...,p}. Then there is some i € {1,...,d}
such that Bl < 1 since > b _, Ba = d. Let € > 0 be such that 3q > ¢ and Bl < 1 —e. Then, if we decrease
Bq by € and increase Bl by €, the constraints on 317 ey Bp are still satisfied and the criterion is increased by
€(A; — Ag) > 0. This shows that the only possible maximizer is Br=1,...,B,= 17Bd+1 =0,... ,Bp = 0. This

yields 37— Xafa = 01 Aa.
6) Conclude by showing that the d first eigenvectors of XM mazimize the inertia.

1

Correction: From the previous questions, for any M-orthonormal vectors z!,..., 2% in R?, the intertia is

P AaBe and is smaller than 22:1 Ao. With the d first eigenvectors v, ..., v? of M, the intertia becomes
d d
Z<ZMUJ,’U]>M = Z<)\j’l}J,’0j>M = Zx\j,
j=1 j=1 j=1
since v', ..., v% are M-orthonormal. Hence, v', ..., v% indeed maximize the intertia.

Exercise 10

Prove the equation 'V (MYXM)V = A on page 16 of the lecture notes.

Correction:
We have
t,Ul t,UlM t,UlM
WMEM)YV =| @ | MEM) 0 ... )= | (EMpt . (M) =| | (At L ApP).
typ tuP M P M
The right-most matrix above is p X p and, for 7,7 = 1,...,p, its element 4, j is tviM)\jvj = )\j<vi, vy = Ajli—;

which concludes the proof.

Exercise 11

Show that if a d-dimensional subspace Eq mazimizes the intertia of the projected observations In(x, Eq) (page
10 of the lecture notes) then it minimizes the intertia of the projection errors Ini(xz — g, (z)) = >y wil|Z; —

T, (T3
Correction:

For i = 1,...,n, by definition of the M-orthogonal projection, we have ||Z;||3;, = ||7g, (Z:)|3; + ||T: —
7, (Z;)||%;. Hence we obtain

S will#lh =D willwe, @)+ Y will#s — 7e, (@)|[3r = Tu (2, Ba) + Tn (@ — 7g, (2)).
i=1 =1 i=1

The quantity on the left-hand side above does not depend on E,4. Hence, if E4 maximizes Iy (z, Eq), it maximizes
St wil|@il|3 — Im(z — 7g, (z)) and thus is minimizes Iy (z — 7, (2)).



Exercise 12

1) In the context of page 20 of the lecture notes, show that fori,j € {1,...,p},

(:ij, ui>W =V )\l"l);».

Correction:
We have
) ] 7 1 - 1 = ]_
(# uyw =" Wu' = ; —FW = \/)Ti[tXWC] = \/}Ti[tXWXMV}M— m[EMV]

2) In the context of page 20 of the lecture notes, show that, for j € {1,...,p},

Correction: We have

- Joky2 _ ~ A ky2 _ ~ (#,ub)y _ @1y
Zp(x ,¢) _Zaz(xj)(vj) _Z o2(x) - o2(z9) =1

k=1 k=1

Above, in the first equality, we have used a formula on page 20 of the lecture notes, in the second equality we
have used 1) and in the third inequality, we have used that u',... u? is a W-orthonormal basis of R".

Exercise 13

1) Show that for j = 1,...,p, the new vector of observations ¢’ has mean zero (context of page 15 of the lecture
notes).
Correction: We have ¢/ = XMv7. The mean of ¢J is Z 1w2 = "1, W¢ with 1,, the n x 1 vector

composed of ones. Then the mean of ¢/ is
1 WXMy = ("1, WX) M.

Fork=1,...,p, the column k of ‘1, WX is 1,,W&* which is the mean of ¥ which is zero. Hence ‘1, WX MuvI =
0 which concludes the proof.

2) Ford = 1,...,p, let Eq be the two-dimensional subset of R"™ spanned by the d first W-orthonormal
eigenvectors ul, ... u? of XM*XW (context of page 20 of the lecture notes). Show that, for j =1,...,p,

17 ()2 j
TR Z”

Correction:
Using that u!,...,u? is a W-orthonormal basis, we have

||7TEd($])H%/V _ Zk:1<xjvuk>%v _ a(z’)? D k=1 p(a?, ck)? ket p(a?, ck)? _ Zp(zj Ck)Q

[|27[[ fo (@0 uF) g o (29)2 30 pad, )2 YTR p(ad, ck)?

Above, in the second equality we have used a formula on page 20 of the lecture notes. For the last equality, we
have used Exercize 12.



Exercise 14

The goal is to carry out the computations of PCA on simple simulated data. Note that you are not expected to

interpret the results, since the data are simulated arbitrarily and do not come from a real data set. Consider
the data matriz

1 0 0 1

1 2 2 1
X=10 -4 -4 0
-1 1 1 -1

-1 1 1 -1

1) Consider uniform weights and the matric M = I, to compute the distances on the space of individuals.
Compute the covariance matriz.

Correction: We remark that the matrix X is centered, X = X.
The covariance matrix is

4 0 0 4
' 100 22 22 0
=545 =510 2 2 0
4 0 0 4
2) Show that two eigenvalues of X are 0 and that the two first eigenvectors are
0 1/vV2
| 1V2 2_| O
v = 1/v3 and v° = 0
0 1/v2

with eigenvalues 44/5 and 8/5.

Correction:

The lines 1 and 4 of ¥ are identical. The lines 2 and 3 of ¥ are identical. The lines 1 and 2 of X are linearly
independent. Hence X has rank 2 and thus its two smallest eigenvalues are 0. We have

0 4 0 0 4 0 0 0
slv2l_1]o 22 22 0 [1/v2| _1 %+% 4 1/v2
v2l 5|0 22 22 o) |1/v2| 5| Z+2 | 5 |1/V2

0 4 0 0 4 0 0 0

Similarly

1/v/2 4 0 0 4\ [1/V2 5+ 1/v/2

s O |_1fo 22 22 0 0o |_1 0 _8f o

0 0 22 22 0 0 5 0 51 0

1/V2 4 0 0 4/ \1/v2 5t 1/V2

Finally, v! and v? indeed have Euclidean norm 1.

8) Compute c*,c?, p(z', '), p(z',c%), ... p(a%, ct), p(a®, c?).

-1 1 1 -1
-1 1 1 -1

Correction:
‘We have
1 0 0 1 0 V2
) 1 2 2 1 . /(1/5 1/ (‘)/i 2v2 V2
(cl 62) =X (v1 v2) =10 -4 —4 0 1/\/5 0 = -4v2 0

Also, with a formula on page 20 of the lecture notes,

2L el = ozt el = VAL ol = 44/5 _
P( ’ ) P( ’ ) O'(l‘l) 1 ,—4/5 0 0,

1 .2\ _ 4 2\ _ VA2 V2 = 8/5 1 _
P ) =P ) = e S s "



2 1 3 1 1
xo,c) = plxr,c) = Vy = — =1
,0( ’ ) P( ’ ) 0'(1‘2) 2 22/5 B ’
VA \/8/5
p(x?,c?) = p(a®,c?) = 22 vy = / 0=0
o(x?) 22/5
4) Draw a biplot ( Section 1.2.4 of the lecture notes).
Correction:
-1 -0.5 0 0.5 1
15 - 1 1 L 1 |
ind. 1 ind. 2
var. 4

: 1

1.0

— 0.5

0.5

0.0 _nd3 ................................................ vlarlgW 0

-0.5
— —-0.5

1.0
- -1
 ind.B

15 | | i | | |

-6 -4 -2 0 2 4 6

Remark that the plots of individuals 4 and 5 are overlapping. Remark that the plots of variables 2 and 3
are overlapping. Remark that the plots of variables 1 and 4 are overlapping.

Exercise 15

We consider n individuals, where each of them has the two qualitative variables employment and education.
Employment takes the p = 2 values “employed” (E) and “unemployed” (U). Education takes the 3 values “Up
to High school” (HS), “Undergraduate degree” (U) and “Graduate degree” (G). The n individuals are given by

the data matrixz
HS

U
HS
G
G
G )
HS
HS
U
U
HS

with column 1 for employment and column 2 for education.

eRslc Ruis ol o R ic N



1) Construct the contingency table, with the marginal totals and grand total (page 26 of the lecture notes).

Correction:

‘ HS U G ‘ Total

E n11:1 n12:2 n13:2 nl_:5
U n21:4 n22:1 n23:1 77/2,:6
Total | n1 =5 mno=3 n3=3|n=11

2) Compute the line profiles matriz Py and the corresponding center of gravilty g1

Correction:
‘We have

i mz mag 1

P, = ni. ni. 1. — 2
1 n21 N2z n23 4
6

na. na. na2.

SAEESN)
ol—N

).

The center of gravity is the average of the two transposed lines of P; (average of two individuals), with the
weights given by ny./n and ns_ /n:

i 4 0.45

5 6
g1 = ﬁ % + ﬁ % =10.27
z i 0.27

3) Compute the column profiles matriz Py and the corresponding center of gravity gs

Correction:
We have
nu oo 14
n.1 n.1 g ?
P2 — ni2 na22 — 2 1
nis s 301
n.3 n.3 3 3
The center of gravity is the average of the three transposed lines of P, (average of three individuals), with the

weights given by n.1/n, no/n and n3/n:

-2 (303068

Exercise 16

1) In the context of page 30 of the lecture notes, show that ||g1]|3,, = 1.

Correction:
Remark that, using the expressions of g; and M; page 30 of the lecture notes,
913, = 'g1Migy = ~11,D5 Dy D31, = 111,05, = li(D”)“ = li” =1
s IELIL = o a2 2n2qnq2qni:12u Z_Zl-z-
2) In the context of page 30 of the lecture notes, show that £1 My and *T D1T Dy have the same eigenvalues
apart from the one associated to g .

Correction:

From the spectral theorem, there exist ¢ x 1 vectors wi,...,w, that are eigenvectors of 3, M;, that are
M;-orthonormal and that are associated to the eigenvalues Ay > --- > A;. We know from page 30 of the
lecture notes that 0 is an eigenvalue of ¥;M;, so A\; = 0. Let r < ¢ — 1 be defined by A\, > 0 and A1 = 0.
From page 30 of the lecture notes we know that £,1M;9; = 0. Hence g1 € span(w,41,...,w,). Hence, by
a change of M;-orthonormal basis, we can construct wy. 4, ..., w,_; that are M;-orthonormal and such that
span(wy. 1, -, Wy_1,91) = span(wy41,...,w,). Hence, without loss of generality, we consider that w, = g:.

10



Consider ¢ € {1,...,q — 1}. w; and g1 are My-orthogonal. Hence, using M; = nDy in the lecture notes,
ng1'g1Dow; = g1'g1 Myw; = g1 (g1, wi)ar, = 0.
Hence, from the decomposition of 1 M7 in the lecture notes
w; = X1 Myw; = T DT Dow; — ngltnggwi =T DT Dyw;.

Hence, the eigenvalues of *I"D1T D, other than the one associated to g; are A\y > --- > Ag—1 which are the
same as the eigenvalues of X1 M; other than the one associated to g;.

Exercise 17

1) In the context of page 31 of the lecture notes, show that the data from the matriz CY) have r x 1 mean vector
0, with the weight matriz W1 .

Correction:
The 1 x x mean vector is, using the expressions of Wi, C*) and ¢g; on pages 30 and 31 of the lecture notes,

1
tlpT/VlC(l) = tlpEDflnDlTDng = t].pTDzvl = ntngng = tglMlVl.

The component 4 of *gq M1 V; is (g1,v;)pr, Where v; is one of the eigenvectors of YT DT D, that is M;-orthogonal
to g1 by definition. Hence (g1, v;)pr, = 0 and thus the component 7 is zero and thus the 1 X k mean vector is
Z€ro.

Exercise 18

We consider n = 8 wvoters, where each of them has the two qualitative variables work and preference. Work
takes the p = 3 values “Dentist” (Den), “Teacher” (T) and “Developper” (Dev). Preference takes the 3 values
“Left” (L), “Center” (C) and “Right” (R). The n individuals are given by the data matriz

Den
T
T

Dev

Dev

Den
T

Dev

QA QAN

with column 1 for work and column 2 for preference. In this exercize, you have the choice between giving exvact
expressions of the results (using fractions, square roots,...) or giving (approzimate) numerical results.

1) Construct the contingency table, with the marginal totals and grand total (page 26 of the lecture notes).

Correction:

‘ L C R ‘ Total
Den nip = 0 Nig = 0 Nnis = 2 ny, = 2
T n21:3 7122:0 7123:0 712.:3.

Dev ngy = 0 Nngg = 3 ngs = 0 ns, = 3
Total | n1=3 mno=3 ns3=2 n=2~,

2) Compute the lines profile matriz Py, the center of gravity g1, the matriz Dy, the matriz Do, the weight
matriz W1 and the distance matriz M;.

Correction:

11



Using the formulas given in the lecture notes, we have

1

ny.

D=1 0

0
10
P =DiT=[0 £
0 O

ni.

n

Wy, = 0

0

1

n.1

D=1 0

0
M1:’I’LD2:8

and
1,
g1 n p

0
1
na.

0

3
®

o osffo

w= O O

O Owi

0 1.0 0
0]=10 % 0],
1

. 0 0 %
00 2 001
300f=(10 0],
030 010

0 200

0]=10 2 0],

ns. 3

s 0 0 §

0 £ 00

0 |=(0 5 of,

= 0 0 1

0 0 200

: 0f=(0 % 0

0 3 0 0 4
3 0\ /1 %
0 0/ \1 2

3) To perform the PCA on the line profiles, provide the matriz that has the k = min(p, q) — 1 non trivial

eigenvalues Ay > --- > X\, > 0. Compute k, Ay, ...

, Ax. Compute also the q X k matriz Vi which columns are the

M; -orthogonal eigenvectors corresponding to these non-trivial eigenvalues (the choice of these k eigenvectors
will not be unique, so you can take any choice you want that is valid).

Correction:

Here xk = min(3,3) — 1 = 2. From pages 30, 31 of the lecture notes, the matrix is *7"D;T Dy, which has the
trivial eigenvalue 1 and the other eigenvalues A1, A\o. We have

0 3 0\ /3 0 0\ /00
‘TD\TDy;= {0 0 3|0 £ 0][3 0
2 0 0/\0o 0 %/ \0 3

S O N

£ 0 0 0 1 0\ /0 01 10
0 &£ 0]=(00 1)1 0 o0]=(01
00 % 100/ \0 10 00

Here the three eigenvalues of the matrix are 1. Hence Ay = Ao = 1. Here the trivial eigenvector is

g1 =

= O O

so the other two eigenvectors must be M;-orthogonal to g;. Here any vector is an eigenvector of the identity
matrix, so there is not an unique choice of the two eigenvectors. Let us find a first vector of the form *(a, b, c)
that is Mj-orthogonal to g; and has Mi-norm 1. This yields

Oz(a b c)
and
8
3
1:(@ b c) 0
0

O O wlw

O wlw O

0 0\ /3

g8 0 3 =a+b+ec

3 5

0 4 5

0 a 2 2

0 b =8i+&+4c2.
4 c 3 3

Hence we take (arbitrarily) the first non-trivial eigenvector as

12



Let us find a second non-trivial eigenvector of the form ¥(c,d,e) that has Mj-norm 1 and is M;-orthogonal
to g1 and ‘(a,b,c). From before, we thus have

c+d+e=0
and ) 2
8¢ 8
— 4+ — 44 =1
3 + 3 + 4e
We also have e
8 3
8 0 0 V3
3 4 8+/3
O=(c d ¢ |0 § 0] f_v3 —5%((:—05)
0 0 4 0

Hence we take (¢, d, e) of the form t(1,1, —2), with ¢ > 0 such that

and so

3
; %3
_ 3
dl =1 7
e _93
V64
Hence eventually
V3 3
4f \/}*4 0.43 0.22
_ 3 3 ~
V64
4) Compute the principal component matriz cW,
Correction:
We have
0 0 1 % 0 0 043  0.22 0 0 4 0.43  0.22 0 —1.76
cW=pMVi=|10 0|0 § 0)]|-043 022 |=(5 0 0] (-043 022 |~ [ 115 059
01 0/\0 0 4 0 —0.44 0% o0 0 —0.44 —-1.15  0.59

5) Using the transition formulae, compute the the principal component matriz c®,

Correction:
The matrix of non-trivial eigenvalues is

Furthermore
nii nai nai
nl ni ma 01 0
P = 2—122 % 2—32 =10 0 1
stondoni ) \1 oo o
n.3 n.3 n.3
Hence, from the transition formulae, we have
0 1 0 0 —1.76 10 1.15 0.59
C?® =pcWAY2=0 0 1 1.15  0.59 (0 1): ~1.15  0.59
1 0 0 —1.15 0.59 0 —1.76
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6)
Plot the individuals of the two principal component matriz CV) and C®), with one color for each of the
matrices, together with category name of each individual. Interpret the plot.

Correction:

/‘v
ﬂ«Z
i g

Reee DEN

_2

We observe that the values of first variable are perfectly matched by the corresponding values of the second
variable. More precisely:

e All voters who have the work variable equal to the value Den have the preference variable equal to the
value R. In the plot we see that Den (in red) and R (in blue) coincide.

e All voters who have the work variable equal to the value Dev have the preference variable equal to the
value C. In the plot we see that Dev (in red) and C (in blue) coincide.

e All voters who have the work variable equal to the value T have the preference variable equal to the value
L. In the plot we see that T (in red) and L (in blue) coincide.

Exercise 19

1) Prove that for £,0" € {1,....m}, (W)pp = w if £ = and (W)ee =0 if £ # £’ (context of page 39 of
the lecture notes).

Correction: Let ¢,¢' € {1,...,m}. We have

n

(Wew = (TWT) o = Y ("T)0.aWasToer = Z Topwala=pTy 0 = Zwa ToTaw = Zwa ac9,Lacq, -

a,b=1 a,b=1 = =

14



Hence, since i, ...,8,, are a partition of {1,...,n}, if £ # ¢’ then 1l,eq,14cq, =0 for all a € {1,...,n} and

thus (W), = 0. In the case £ = ¢, we obtain from the above computations

(W)f,f = Zwa1a€ﬂg = Z Wq = Wy.

a=1 a€y
2) Prove that
t
g1
wHTwXx = |
*gm

(context of page 40 of the lecture notes).

Correction:
Let £ € {1,...,m} and j € {1,...,p}. We have

(W 1tTWX :izﬂ: B a abWbc c,j ZZ B laTbaWbcw

a=1b,c=1

m n n
E 1= s szlb cwprd = E Tc (Wl = E 1cemwcxi— — E werd =
a=1b,c=1 Z c=1 (‘EQ@

t

g1

t

gm/ ¢

3) Prove that \GWG = ' X, W X, (contexst of page 41 of the lecture notes).

Correction:
We have, for j, k € {1,...,p},

—~

0=1 00=1 =1 =1

:Zzwz g@ g)

0=11i€Qy

FGW@G) ik = Z ('@ W) Go . = Z G jlicpweGe = Z@Ge,jée,k = Z <Z wi) (9¢ — 9)5(ge

1E€Qy

E wcxc =

CEQ@

We remark that for i € {1,...,n}, £ € {1,...,m}, with i € Q, we have that (g, — g) is the line i of X;. Hence

we obtain

Religerm Zzwz )i zkuwz 0)ig(Xo)ip = ("W Xs)

0=11i€Qy

Exercise 20

1) Here, you can use the concept of rank from linear algebra. For a matriz K of size a X b, its rank rank(K)
satisfies rank(K) < min(a, b). Also, if K = 0 for a non-zero a X 1 vector v, then rank(K) < a — 1. Also, for
two (rectangular) matrices A, B we have rank(AB) < min(rank(A),rank(B)). Finally, the number of non-zero

eigenvalues of a matrix is smaller than its rank.

Assume that ¥ is invertible. Consider the eigenvalues Ay > -+ > X\, of L2~ (context of page 41 of the
A

lecture notes). Show that at most min(p, x — 1) elements of (A1,...,\p) are non-zero.

15
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Correction:

If K > p+ 1, this is trivially true because ;X! is p x p. Assume now that x < p. Let 1, be the x x 1
vector composed on ones. We have ¥, = *GW G, where WG is k x p and satisfies tl,i(V_Vé) = 0, because the
element j of 1,(WGQ) is Y;_, we((ge); — 9j) = g; — g; = 0. Hence, rank(WG) < k — 1. Hence, rank(%;) =

rank(!GW@G) < min(rank(*G),rank(W@G)) < k — 1. Hence rank(3,X71) < min(k — 1,rank(X71)) < x — 1.
Hence at most x — 1 eigenvalues of 33X ~! are non-zero which concludes the proof.

2) Here we will show that the eigenvalues of £, 1 are in [0,1]. a) Show that the eigenvalues of X571 are
eigenvalues of ©~/25,571/2. b) Show that these eigenvalues are positive. c) Then, you can use the following
result from linear algebra: the largest eigenvalue of X~Y/2%,2"1/2 s

IImHaX txZ_l/QEbE_l/Qx.
x||=1

Show that this largest eigenvalue is smaller than 1.

Correction: a) If z is non-zero and A € R is such that £, "'z = Az then left-multiplying by £~/2 we
obtain £~1/2%,2-1/2(2£-1/2g) = A\(2~'/22) and so ) is an eigenvalue of ¥~ 1/25,%~1/2,

b) For any p x 1 vector x, we have ‘o X~1/2%, 5125 = {(8-1/22)%,(£71/22) > 0 because ¥ is a covari-
ance matrix and thus it is non-negative definite. So X~1/2%,X~1/2 is also non-negative definite and thus its
eigenvalues are non-negative.

c) Using ¥, = ¥ — X, we obtain for any p x 1 vector  with ||z|| = 1,

LR T2, n T2y = e 2e e 2t 25 T 2 = ||z P—te 228, 2 2 = 1-te R /28, T 2,

The quantity ‘zX~1/2%,% /22 is non-negative from the same arguments as in b). More precisely, ¥, is a
weighted sum of covariance matrices with non-negative weights, so it is non-negative definite. Hence, we obtain
Ly =125, %71/24 < 1. So from the linear algebra result of the exercise, the largest eigenvalue of X ~1/2%,1~1/2
is smaller than 1.

3) In the context of page 41 of the lecture notes, show that if \y = 0, then the m centers of gravity of the m
groups are equal.

Correction:

We have shown in 2) that the non-zero eigenvalues of ¥, ¥ ~! are between 0 and 1 and, by definition, \; is
the largest. Hence all the eigenvalues of 3, X! are zero. If ©~1/2%,2~1/22 = Az then, left multiplying by ¥/,
we obtain XX "1(X1/2z) = \(2'/2z). Hence all the eigenvalues of ¥~1/2%,%~1/2 are zero. Hence the matrix
»=1/2%,%-1/2 is the zero matrix (this is seen by diagonalizing it). We can left- and right- multiply by $/2
and we obtain that ¥, is the zero matrix. Hence the covariance matrix of the m centers of gravity ¢1,...,9m
is zero, which means that all these centers of gravity are equal to their mean

m
E Wegy-
(=1

Exercise 21

1) Consider the setting of pages 50, 51 of the lecture notes. Consider n = 20 individuals with corresponding 20
values of a qualitative variable, taking values in {11,72,73}, given by

t
t= (7’1,7'2,7377'277'1,7'1772,7'277'3,7'3,7'1,7377'277'1,7'1,7'2,7377'2,7'2,7'1) .

Consider uniform weights. Assume that a partition of the input space has been obtained and that its first
region Ry contains the individuals xo, x4, T5, X7, T10, T12, T15, T16, T2o and only these individuals. Compute the
frequencies p11, P12, P13. Which value of the qualitative variable should be attributed to Ry, if a classifier is built
from this partition of the input space? Compute the value of the Gini index Gy of R;.
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Correction: We have
(ta,ta,ts, b7, t10, t1a, t1s, tig, too) = (72,72, 71, T2, T3, T3, 71, T2, T1) -

Hence
.3 .4 L2
p11—97 p12—97 p13—9-

Ry should be attributed the most frequent value, that is 75. The value of the Gini index is

3
3 3 4 4 2 2 3 6 4 5 2 7 3x64+4x5+2x7 52
= p1e(1—D1e) = = (1 — = —(1—-= —([1—=)==X=-4=-X=-+=-—X=- = =
G1 ;pu( P1r) ( )-i— ( >+ ( ) 9><9—|-9><9—|—9><9

9 9)"9 9/)"9 81 8l

2) Consider the data matric

= -0 O
_— O = O

and the corresponding values of the qualitative variable

T1

T2
t:
T1

T2
Consider uniform weights. Find j* € {1,2} and s* € R that minimize
w1y (.77 S)gl (.77 S) + ’LTJQ(j, S)g2(.77 8)

(context of page 51 of the lecture notes).

Correction:

We see that t; = 71 when :z:? = 0 and t; = 7> when x? = 1. So splitting across the second variable should be
optimal. Let us show this. Let j* = 2 and s* = 0.5 (or any number strictly between 0 and 1). Then we have
w1 (5%, 8*) = 1/2 and wa(5*, s*) = 1/2. The first region

Ri(5*,5*) = {x = (2", 2?) € R%; 22 < 0.5}

contains x; and x3 with corresponding values t; and t3 both equal to 7;. Hence we have p;; = 1 and p12 =0
and thus Gy (j*, s*) = 0. Similarly the second region

Ry (j*,8%) = {x = '(«*, 2?) € R%; 2% > 0.5}

contains x, and x4 with corresponding values ¢, and t4 both equal to 7. Hence we have po; = 0 and pae = 1
and thus Gy(j*, s*) = 0. Hence we have, since the Gini index is always non-negative,

U_jl(j*aS*)gl(j*as*) + w2(j*78*)g2(j*78*) =0< wl(ja 5)g1(jas) +w2(ja S)QQ(j,S),

for any j € {1,2} and s € R.

Exercise 22

The following plot is a partition of [0,1]? obtained from a classification tree.
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[
2 7
0,75 }
|
1] 2
2. '
L ‘ i 21 2
! }
> 1 |
2 0.2 *S 0.7 7 1

Plot a classification tree leading to this partition. Ignore the problem of determining how input points located
on the green straight and dashed lines (equality cases in the classification tree) are classified.

Correction:
With the convention of going left if the inequality is true.
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Exercise 23

Consider two qualitative variables z! with values in {1,2} and z? with values in {1,2}. Consider the corre-
sponding data matrix

1 1

1 2

1 2

X = 2 1

2 1

2 2

Compute d,2(1,2) (context of page 58 of the lecture notes).

Correction:



We have p =mq = mo =2 and n = 6.
p my j€12

ZZ#{zst xz! =1}

]1@1

611 1 2 n 612(172) I (521(1,2) I 522(1,2) )
#{z st.al = 1} #{i st xl =2} #{ist. 2? =1} #{i st 22 =2}
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