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Kriging model with Gaussian processes

Kriging model : study of a single
realization of a Gaussian process
Y (x) on a domain X ⊂ Rd

Goal : predicting the continuous
realization function, from a finite
number of observation points
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Classical plug-in approach
Given an observation vector of Y at x1, ..., xn ∈ X , y = (Y (x1), ...,Y (xn)) :

1 Estimation of the covariance function

2 Assume the covariance function is known and equal to its estimate. Then prediction of the
Gaussian process realization is carried out with the explicit Kriging equations

=⇒ This talk is mainly focused on covariance function estimation
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Covariance function estimation

Covariance function
The function K : X 2 → R, defined by K (x1, x2) = cov(Y (x1),Y (x2))

We assume here for simplicity that the Gaussian process is centered (E(Y (x)) = 0)
=⇒ the covariance function characterizes the Gaussian process

Parameterization
Covariance function model

{
σ2Kθ, σ2 ≥ 0, θ ∈ Θ

}
for the Gaussian Process Y

σ2 is the variance parameter

θ is a multidimensional correlation parameter. Kθ is a stationary correlation function

Observations
Y is observed at x1, ..., xn ∈ X , yielding the Gaussian vector y = (Y (x1), ...,Y (xn))

Estimation

Objective : build estimators σ̂2(y) and θ̂(y)
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Maximum Likelihood for estimation

Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood
Define Rθ as the correlation matrix of y = (Y (x1), ...,Y (xn)) with correlation function Kθ and
σ2 = 1.
The Maximum Likelihood estimator of (σ2, θ) is

(σ̂2
ML, θ̂ML) ∈ argmin

σ2≥0,θ∈Θ

1
n

(
ln (|σ2Rθ|) +

1
σ2

y t R−1
θ y

)

⇒ Numerical optimization with O(n3) criterion
⇒ Most standard estimation method. Expected to work best when the covariance function model
is well specified
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Cross Validation for estimation

ŷθ,i,−i = Eσ2,θ(Y (xi )|y1, ..., yi−1, yi+1, ..., yn)

σ2c2
θ,i,−i = varσ2,θ(Y (xi )|y1, ..., yi−1, yi+1, ..., yn)

Leave-One-Out criteria we study

θ̂CV ∈ argmin
θ∈Θ

n∑
i=1

(yi − ŷθ,i,−i )
2

and
1
n

n∑
i=1

(yi − ŷθ̂CV ,i,−i )
2

σ̂2
CV c2

θ̂CV ,i,−i

= 1⇔ σ̂2
CV =

1
n

n∑
i=1

(yi − ŷθ̂CV ,i,−i )
2

c2
θ̂CV ,i,−i

Robustness
We showed that Cross Validation can be preferable to Maximum Likelihood when the covariance
function model is misspecified

Bachoc F, Cross Validation and Maximum Likelihood estimations of hyper-parameters of
Gaussian processes with model misspecification, Computational Statistics and Data Analysis
66 (2013) 55-69
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Virtual Leave One Out formula

Let Rθ be the covariance matrix of y = (y1, ..., yn) with correlation function Kθ and σ2 = 1

Virtual Leave-One-Out

yi − ŷθ,i,−i =
1

(R−1
θ )i,i

(
R−1
θ y

)
i

and c2
i,−i =

1

(R−1
θ )i,i

O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, Mathematical Geology,
1983.

Using the virtual Cross Validation formula :

θ̂CV ∈ argmin
θ∈Θ

1
n

y t R−1
θ diag(R−1

θ )−2R−1
θ y

and
σ̂2

CV =
1
n

y t R−1
θ̂CV

diag(R−1
θ̂CV

)−1R−1
θ̂CV

y

⇒ Same computational cost as ML
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Summary

The covariance function characterizes the Gaussian process

Standard Kriging approach : estimation and prediction with "fixed" estimated covariance
function
=⇒ we focus on the estimation step

We consider Maximum Likelihood and Cross Validation estimation
=⇒ numerical optimization with similar computational cost for both methods
=⇒ Maximum Likelihood : the standard method
=⇒ Cross Validation : can be a more appropriate alternative
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Framework and objectives

Estimation
We do not make use of the distinction σ2, θ. Hence we use the set {Kθ, θ ∈ Θ} of stationary
covariance functions for the estimation.

Well-specified model
The true covariance function K of the Gaussian Process belongs to the set {Kθ, θ ∈ Θ}. Hence

K = Kθ0 , θ0 ∈ Θ

Objectives
Study the consistency and asymptotic distribution of the Cross Validation estimator

Confirm that, asymptotically, Maximum Likelihood is more efficient

Study the influence of the spatial sampling on the estimation
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Spatial sampling for covariance parameter estimation

Spatial sampling : initial design of experiments for Kriging

It has been shown that irregular spatial sampling is often an advantage for covariance
parameter estimation

Stein M, Interpolation of Spatial Data : Some Theory for Kriging, Springer, New York,
1999. Ch.6.9.

Zhu Z, Zhang H, Spatial sampling design under the infill asymptotics framework,
Environmetrics 17 (2006) 323-337.

Our question : can we confirm this finding in an asymptotic framework ?
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Two asymptotic frameworks for covariance parameter estimation

Asymptotics (number of observations n→ +∞) is an active area of research (Maximum
Likelihood estimator)

Two main asymptotic frameworks
fixed-domain asymptotics : The observation points are dense in a bounded domain
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increasing-domain asymptotics : A minimum spacing exists between the observation points
−→ infinite observation domain.
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Choice of the asymptotic framework

Comments on the two asymptotic frameworks
fixed-domain asymptotics
From 80’-90’ and onwards. Fruitful theory

Stein, M., Interpolation of Spatial Data Some Theory for Kriging, Springer, New York,
1999.

However, when convergence in distribution is proved, the asymptotic distribution does not
depend on the spatial sampling −→ Impossible to compare sampling techniques for
estimation in this context

increasing-domain asymptotics :
Asymptotic normality proved for Maximum Likelihood (under conditions that are not simple to
check)

Sweeting, T., Uniform asymptotic normality of the maximum likelihood estimator, Annals
of Statistics 8 (1980) 1375-1381.

Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance
in spatial regression, Biometrika 71 (1984) 135-146.

(no results for CV)

We study increasing-domain asymptotics for ML and CV with spatial sampling with tunable
irregularity
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The randomly perturbed regular grid that we study

Observation point i :
vi + εXi

(vi )i∈N∗ : regular square grid of step one in dimension d
(Xi )i∈N∗ : iid with uniform distribution on [−1, 1]d

ε ∈ (− 1
2 ,

1
2 ) is the regularity parameter of the grid.

ε = 0 −→ regular grid.
|ε| close to 1

2 −→ irregularity is maximal

Illustration with ε = 0, 1
8 ,

3
8
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Consistency and asymptotic normality

Under general summability, regularity and identifiability conditions, we show

Proposition : for ML
a.s convergence of the random Fisher information : The random trace
1

2n Tr
(

R−1
θ0

∂Rθ0
∂θi

R−1
θ0

∂Rθ0
∂θj

)
converges a.s to the element (IML)i,j of a p × p deterministic

matrix IML as n→ +∞
asymptotic normality : With ΣML = I−1

ML

√
n
(
θ̂ML − θ0

)
→ N (0,ΣML)

Proposition : for CV
Same result with more complex expressions for asymptotic covariance matrix ΣCV

=⇒ Same rate of convergence for ML and CV
=⇒ The asymptotic covariance matrices ΣML,CV depend only on the regularity parameter ε
−→ we can study the functions ε→ ΣML,CV
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Main ideas for the proof

A central tool : because of the minimum distance between observation points : the
eigenvalues of the random matrices involved are uniformly lower and upper bounded

For consistency : bounding from below the difference of M-estimator criteria between θ and θ0
by the integrated square difference between Kθ and Kθ0

For almost-sure convergence of random traces : block-diagonal approximation of the random
matrices involved and Cauchy criterion

For asymptotic normality of criterion gradient : almost-sure (with respect to the random
perturbations) Lindeberg-Feller Central Limit Theorem

Conclude with classical M-estimator method
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Analysis of the asymptotic covariance matrices

We study the functions ε→ ΣML,CV

Matérn model in dimension one

K`,ν(x1, x2) =
1

Γ(ν)2ν−1

(
2
√
ν
|x1 − x2|

`

)ν
Kν
(

2
√
ν
|x1 − x2|

`

)
,

with Γ the Gamma function and Kν the modified Bessel function of second order

=⇒ ` ≥ 0 : correlation length
=⇒ ν ≥ 0 : smoothness parameter

We consider

The estimation of ` when ν0 is known

The estimation of ν when `0 is known

=⇒We study scalar asymptotic variances
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Results for the Matérn model (1/2)

Estimation of ` when ν0 is known.
Level plot of

[
ΣML,CV (ε = 0)

]
/
[
ΣML,CV (ε = 0.45)

]
in `0 × ν0 for ML (left) and CV (right)
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Perturbations of the regular grid are always beneficial for ML
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Results for the Matérn model (2/2)

Estimation of ν when `0 is known.
Level plot of

[
ΣML,CV (ε = 0)

]
/
[
ΣML,CV (ε = 0.45)

]
in `0 × ν0 for ML (left) and CV (right)
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Perturbations of the regular grid are always beneficial for ML and CV
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Some particular functions ε → ΣML,CV (1/2)

Estimation of ` when ν0 is known, for `0 = 2.7, ν0 = 1.
Plot of ε→ ΣML,CV for ML (left) and CV (right)
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The asymptotic variance of CV is significantly larger than that of ML (but ML uses the known
variance value, contrary to CV)

François Bachoc Covariance function estimation July 2014 22 / 28



Some particular functions ε → ΣML,CV (2/2)

Estimation of ν when `0 is known, for `0 = 2.7, ν0 = 2.5.
Plot of ε→ ΣML,CV for ML (left) and CV (right)
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The asymptotic variance of CV is significantly larger than that of ML (but ML uses the known
variance value, contrary to CV)
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Prediction error with estimated covariance parameters

Let Ŷθ(t) be the Kriging prediction of the Gaussian process Y at t , under correlation function Kθ
Let N1,n so that Nd

1,n ≤ n < (N1,n + 1)d (≈ edge length of the spatial sampling)

Integrated prediction error

Eε,θ :=
1

Nd
1,n

∫
[0,N1,n ]d

(
Ŷθ(t)− Y (t)

)2
dt

We show

Proposition

Consider a consistent estimator θ̂ of θ0. Then

|Eε,θ0 − Eε,θ̂| = op(1)

Furthermore, there exists a constant A > 0 so that for all n,

E
(
Eε,θ0

)
≥ A

=⇒ No first-order difference of prediction error with estimated covariance between ML and CV (in
the well-specified case)
=⇒ Other possible asymptotic framework showing a difference in the well-specified case ( ?)
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Impact of spatial sampling on prediction error

Matérn model in dimension one. Plot in `0 × ν0 of an estimate (for n = 100) of

E
[
Eε,`0,ν0 (ε = 0)

]
E
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The regular grid is always better for prediction mean square error
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Conclusion on covariance function estimation and spatial sampling

CV is consistent and has the same rate of convergence as ML

We confirm that ML is more efficient
In our numerical study : strong irregularity in the sampling is an advantage for covariance
function estimation

With ML, irregular sampling is more often an advantage than with CV
However, regular sampling is better for prediction with known covariance function
=⇒ motivation for using space-filling samplings augmented with some clustered observation points

Z. Zhu and H. Zhang, Spatial Sampling Design Under the Infill Asymptotics Framework,
Environmetrics 17 (2006) 323-337.

L. Pronzato and W. G. Müller, Design of computer experiments : space filling and beyond,
Statistics and Computing 22 (2012) 681-701.

For further details :

F. Bachoc, Asymptotic analysis of the role of spatial sampling for covariance parameter
estimation of Gaussian processes, Journal of Multivariate Analysis 125 (2014) 1-35.
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Some perspectives

Ongoing work
Asymptotic analysis of the case of a misspecified covariance-function model with purely
random sampling

Other potential perspectives
Designing other CV procedures (LOO error weighting, decorrelation and penalty term) to
reduce the variance

Start studying the fixed-domain asymptotics of CV, in the particular cases where it is done for
ML
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Thank you for your attention !
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