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Framework and notation

Random input vector X = (X1, . . . ,Xp) on space X = X1 × · · · × Xp ⊂ Rp .

X1, . . . ,Xp are dependent.

Deterministic black box function f : X → R.

Stochastic output
Y = f (X).

For u ⊆ {1, . . . , p}, let
X u = (Xi , i ∈ u),
−u = {1, . . . , p}\u,
|u| be the cardinality of u.
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Shapley effects

Conditional elements
For u ⊆ {1, . . . , p}, let

VEu = Var (E (Y |X u))

and
EVu = E (Var (Y |X−u)) .

Large VEu or EVu =⇒ X u is important.

Shapley effects [Shapley, 1953, Owen, 2014, Iooss and Prieur, 2019]
For i ∈ {1, . . . , p}, the Shapley effect ηi is

ηi =
1

pVar(Y )

∑
u⊂−{i}

(p − 1
|u|

)−1 (
Wu∪{i} −Wu

)
,

with Wu = VEu or Wu = EVu .

0 ≤ ηi ≤ 1.∑p
i=1 ηi = 1.

Easy interpretation as percentage of importance even with dependent inputs.

Even if f does not depend on variable i , we can have ηi > 0 if X i is correlated with
X j and f depends on variable j .
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Non-given data framework and double Monte Carlo

Non-given data framework

We can choose any x ∈ X and compute f (x).
We can sample from the conditional distributions of X .

Estimation of EVu by double Monte Carlo

Estimator

ÊVu =
1

Nu

Nu∑
n=1

1
NI − 1

NI∑
k=1

(
f
(

X (n)
−u ,X

(n,k)
u

)
− f
(

X (n)
−u

))2
.

X (1)
−u , . . . ,X

(Nu)
−u iid with law of X−u .

X (n,1)
u , . . . ,X (n,NI )

u iid with law of X u conditionally to X (n)
−u .

f
(

X (n)
−u

)
is the average of f

(
X (n)
−u ,X

(n,1)
u

)
, . . . , f

(
X (n)
−u ,X

(n,NI )
u

)
.

=⇒ Unbiased.
=⇒We take NI = 3 as in [Song et al., 2016].
=⇒ Nu is the budget/accuracy parameter.

Pick-freeze : an estimator of VEu (not detailed explicitly here) [Janon et al., 2014].
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Subset aggregation of estimators of conditional elements

For u ⊆ {1, . . . , p}, consider the estimator ÊVu of EVu .
Then subset aggregation simply means summing over all subsets :

η̂i =
1

pV̂ar(Y )

∑
u⊂−{i}

(p − 1
|u|

)−1 (
ÊVu∪{i} − ÊVu

)
.

Question : For each u ⊆ {1, . . . , p}, which budget (number of samples Nu) to allocate
to ÊVu ?

Contribution : optimal budget allocation

The optimal choice of (Nu)u subject to
∑

u⊆{1,...,p}
u 6=∅,{1,...,p}

Nu = Ntot is

N∗u ∝
√

(p − |u|)!|u|!(p − |u| − 1)!(|u| − 1)!Var(ÊV
(1)
u ),

with ÊV
(1)
u computed with budget Nu = 1.

=⇒ Issue : Var(ÊV
(1)
u ) unknown.

=⇒ For practice (with some approximations) we take

N∗u ∝ Round

((
p
|u|

)−1
)
.

Prospect : For large p, have N∗u = 0 for many u to be computationally scalable ?
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Random-permutation aggregation

For a permutation σ on {1, . . . , p} and i ∈ {1, . . . , p}, we let
Pi (σ) = {σ(j); j = 1, . . . , σ−1(i)− 1}. We have [Song et al., 2016]

ηi =
1

p!Var(Y )

∑
permutations

σ

(EVPi (σ)∪{i} − EVPi (σ)
).

Hence the random-permutation aggregation :

η̂i =
1

V̂ar(Y )

1
M

M∑
j=1

(ÊVPi (σj )∪{i} − ÊVPi (σj )
),

with σ1, . . . , σM iid random permutations (uniform).

[Song et al., 2016] suggests to take the budget for each ÊVu minimal (Nu = 1)
and to take M maximal.
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A numerical comparison

A Gaussian linear
example.

s? : true value.

ss : subset
aggregation.

spr : random
permutation.

MC : double Monte
Carlo for ÊVu .

PF : pick-freeze for
V̂Eu .
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Given data framework

Only a data set of the input variables is available : X (1), . . . ,X (n) iid with the
distribution of X .

The corresponding Y1 = f (X (1)), . . . ,Yn = f (X (n)) are available
OR
f can be called at any input x .

The exact conditional sampling needed by the previous estimators is not available.

We will mimick this conditional sampling using nearest neighbors.
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Nearest-neighbor approximation of conditional distributions
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Estimator of EVu with nearest-neighbors

Recall
EVu = E (Var (Y |X−u)) .

Let k−u
n (i, `) be the `-th nearest neighbor of X (i)

−u among X (1)
−u , . . . ,X

(n)
−u .

The estimator is

ÊVu =
1
n

n∑
i=1

1
NI − 1

NI∑
`=1

(
f
(

X (k−u
n (i,`))
−u ,X (k−u

n (i,`))
u

)
− f
(

X (i)
−u

))2

=
1
n

n∑
i=1

1
NI − 1

NI∑
`=1

(
Yk−u

n (i,`) − Yi

)2

with

f
(

X (i)
−u

)
= average

(
f
(

X (k−u
n (i,1))
−u ,X (k−u

n (i,1))
u

)
, . . . , f

(
X (k−u

n (i,NI ))
−u ,X (k−u

n (i,NI ))
u

))
Yi = average

(
Yk−u

n (i,1), . . . ,Yk−u
n (i,NI )

)
.

Other variants available when we can call f (x) at new x .

This time, good choice of NI is more open. Not necessarily NI = 3.

Similarities with rank methods for | − u| = 1 [Gamboa et al., 2020].
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Rate of convergence

Consider a fixed u ⊆ {1, . . . , p}.

Condition
The function f is C1, X is compact in Rp , and X has a density fX with respect to
Lebesgue measure that is lower and upper bounded and Lipschitz continuous.

Contribution : rate of convergence

We have, for each δ > 0,

∣∣∣ÊVu − EVu

∣∣∣ = op

(
1

n
1

2(p−|u|)−δ

)
.

p − |u| = | − u| is the dimension of the nearest-neighbor approximation =⇒ curse
of dimensionality.

When p − |u| = 1, essentially we reach parametric rate n−1/2 =⇒ optimal.

For p − |u| > 1, is the rate optimal ?
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A numerical example

s? : true value.

ss : subset
aggregation.

spr : random
permutation.

MC : double Monte
Carlo for ÊVu .

PF : pick-freeze for
V̂Eu .

knn : nearest
neighbor estimation.

mix : a variant with
new calls to f .
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Conclusion

Conclusion :

η1, . . . , ηp are percentages of importance for dependent inputs.

Estimation by aggregating ÊVu , u ⊆ {1, . . . , p}.
Can be beneficial to tune budgets Nu , u ⊆ {1, . . . , p}.
Nearest neighbors to mimick conditional distributions.

The paper :

B. Broto, F. Bachoc and M. Depecker, Variance reduction for estimation of
Shapley effects and adaptation to unknown input distribution, SIAM/ASA Journal
on Uncertainty Quantification,8(2) : 693–716, 2020

The R implementation : Function shapleySubsetMC in R package sensitivity.

Some follow-up works : [Broto et al., 2022, Demange-Chryst et al., 2022].

Many other ongoing work and prospects :

Large dimension p, link with Hilbert-Schmidt Independence Criterion, interactions
with machine learning...

[Da Veiga, 2021, Ghorbani and Zou, 2019],...

Thank you for your attention !
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