Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling

François Bachoc francois.bachoc@univie.ac.at

Kriging models

Study of a single realization of a Gaussian process Y(x) on a domain $\mathcal{X} \in \mathbb{R}^d$ Two-step approach: covariance function estimation and prediction Widely applied to computer experiments. E.g. in nuclear engineering, aeronautic...

Randomly perturbed regular grid

Observation point $i \ (i = 1, ..., n)$:

 $\boldsymbol{v}_i + \epsilon X_i$

- $(v_i)_{i \in \mathbb{N}^*}$: infinite regular square grid of step one in dimension d
- $(X_i)_{i \in \mathbb{N}^*}$: *iid* with uniform distribution on $[-1, 1]^d$
- $\epsilon \in (-\frac{1}{2}, \frac{1}{2})$ is the regularity parameter of the spatial sampling

Illustration with d = 2, n = 64 and $\epsilon = 0, \frac{1}{8}, \frac{3}{8}$:

	1	2	3	4	5	6	7	8			2		4		6		8			2	4		6	8
~	-0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		0	0	0 0	0	0	
2	-0	0	0	0	0	0	0	0	N -	0	0	0	0	0	0	0	0	N -	0	0	0 0	0	0 0	0
e e	-0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		0	0	0	0 0	00	0
4	-0	0	0	0	0	0	0	0	4 -	0	0	0	0	0	0	0	0	4 -	0	0	0 0	0	0 0	0
Û.	-0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0			0	0	0 0	0 0	0
O	-0	0	0	0	0	0	0	0	- ى	0	0	0	0	0	0	0	0	۔ ی	0	0	0 0	0	0 (0 0
~	-0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		0	0	00	0	0 0	0
~		0	\bigcirc	0	\bigcirc	0	0	0		\bigcirc	\bigcirc	0	\bigcirc	~	\circ	\circ				\circ				

 \implies This is an increasing-domain asymptotic framework

Covariance function estimation

Covariance function model $\{K_{\theta}, \theta \in \Theta\}$ for the Gaussian Process YEstimator $\hat{\theta}(y)$ for a vector of observations $y = (Y(x_1), ..., y(x_n))$ Maximum likelihood: optimization of the explicit Gaussian likelihood function for the observation vector yLeave-One-Out prediction errors: $\hat{y}_{\theta,i,-i} =$ $\mathbb{E}_{\theta}(Y(x_i)|y_1, ..., y_{i-1}, y_{i+1}, ..., y_n)$ Leave-One-Out criterion we study

Consistency and asymptotic normality

Almost-sure convergence of the random Fisher information matrix to a $p \times p$ deterministic matrix \mathbf{I}_{ML} as $n \to +\infty$.

For Maximum likelihood: with $\Sigma_{ML} = \mathbf{I}_{ML}^{-1}$,

 $\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{ML}-\boldsymbol{\theta}_{0}\right) \rightarrow \mathcal{N}\left(0,\Sigma_{ML}\right)$

For Cross Validation: Same result with more complex expressions for asymptotic covariance matrix Σ_{CV}

 $\hat{\theta}_{CV} \in \operatorname*{argmin}_{\theta \in \Theta} \sum_{i=1}^{i} (y_i - \hat{y}_{\theta,i,-i})^2$

Numerical optimization for both methods with same computational cost

Main objectives

Study the consistency and asymptotic distribution of the Cross Validation estimator **Confirm** that, asymptotically, Maximum Likelihood is more efficient

Study the influence of the irregularity of the spatial sampling on the estimation

References

- Bachoc F, Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification, Computational Statistics and Data Analysis 66 (2013) 55-
- Bachoc F, Asymptotic analysis of the role of spa-[2]

Irregular spatial sampling is beneficial to estimation

The asymptotic covariance matrices $\Sigma_{ML,CV}$ depend only on the regularity parameter ϵ . We study the estimation of either the correlation length ℓ or the smoothness parameter ν in the Matérn model in dimension 1 Level plot of $[\Sigma_{ML,CV}(\epsilon=0)] / [\Sigma_{ML,CV}(\epsilon=0.45)]$ in $\ell_0 \times \nu_0$

Estimation of ℓ when ν_0 is known for ML (left) and CV (right)

Estimation of ν when ℓ_0 is known for ML (left) and CV (right)

- tial sampling for covariance parameter estimation of Gaussian processes, Journal of Multivariate Analysis 125 (2014) 1-35
- Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance in spatial regression, *Biometrika* 71 (1984) 135-146
- Zhu Z, Zhang H, Spatial sampling design under the infill asymptotics framework, *Environmetrics* 17 (2006) 323-337

Acknowledgements

This work was performed while the author was a PhD student, supervised by **Jean-Marc Martinez** (French Atomic Energy commission) and **Josselin Garnier** (Paris Diderot University).

