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Kriging models

Study of a single realization of a Gaussian
process Y (x) on a domain X ∈ Rd
Two-step approach: covariance function estima-
tion and prediction
Widely applied to computer experiments. E.g.
in nuclear engineering, aeronautic...
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Covariance function estimation

Covariance function model {Kθ, θ ∈ Θ} for
the Gaussian Process Y
Estimator θ̂(y) for a vector of observations
y = (Y (x1), ..., y(xn))
Maximum likelihood: optimization of the ex-
plicit Gaussian likelihood function for the obser-
vation vector y
Leave-One-Out prediction errors: ŷθ,i,−i =
Eθ(Y (xi)|y1, ..., yi−1, yi+1, ..., yn)
Leave-One-Out criterion we study

θ̂CV ∈ argmin
θ∈Θ

n∑
i=1

(yi − ŷθ,i,−i)2

Numerical optimization for both methods
with same computational cost

Main objectives

Study the consistency and asymptotic distribu-
tion of the Cross Validation estimator
Con�rm that, asymptotically, Maximum Like-
lihood is more e�cient
Study the in�uence of the irregularity of the
spatial sampling on the estimation
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Randomly perturbed regular grid

Observation point i (i = 1, ..., n):
vi + εXi

• (vi)i∈N∗ : in�nite regular square grid of step one in dimension d

• (Xi)i∈N∗ : iid with uniform distribution on [−1, 1]d

• ε ∈ (− 1
2 ,

1
2 ) is the regularity parameter of the spatial sampling

Illustration with d = 2, n = 64 and ε = 0, 1
8 ,

3
8 :
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=⇒ This is an increasing-domain asymptotic framework

Consistency and asymptotic normality

Almost-sure convergence of the random Fisher information matrix to a p × p deterministic
matrix IML as n→ +∞.

For Maximum likelihood: with ΣML = I−1
ML,

√
n
(
θ̂ML − θ0

)
→ N (0,ΣML)

For Cross Validation: Same result with more complex expressions for asymptotic covariance
matrix ΣCV

Irregular spatial sampling is bene�cial to estimation

The asymptotic covariance matrices ΣML,CV depend only on the regularity parameter ε.
We study the estimation of either the correlation length ` or the smoothness parameter ν in the
Matérn model in dimension 1
Level plot of [ΣML,CV (ε = 0)] / [ΣML,CV (ε = 0.45)] in `0 × ν0

Estimation of ` when ν0 is known for ML (left) and CV (right)
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Estimation of ν when `0 is known for ML (left) and CV (right)
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