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Outline of the course

1 Introduction to Gaussian processes

2 Sequential learning and consistency of stepwise uncertainty reduction strategies

3 Gaussian processes under inequality constraints
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Gaussian processes in different fields

Gaussian processes are studied in different fields :

Geostatistics computer experiments machine learning

Stein, 99 Santner et al, 03 Rasmussen and Williams, 06

Common ground but also

Different type of data

Different algorithms

Different theoretical focus

Different vocabulary

François Bachoc Gaussian processes 3 / 116



Canonical goal : learning an unknown function

We are interested in learning a fixed unknown function

f : X→ R
x 7→ f (x)

X : input space (no assumption so far)

x : input parameter

f (x) : quantity of interest

The function f is a black box

=⇒ Only available through observations

=⇒ No or few a priori information available

Examples :

Geostatistics : x is a two-dimensional position and f (x) is a pollutant concentration

Computer experiments : x is a simulation parameter and f (x) is a simulation result

Machine learning : x is a set of flight features and f (x) is a delay time
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Various types of observations of f

Regression
Exact observations : We observe f (x1), . . . , f (xn)

Noisy observations : We observe f (x1) + ε1, . . . , f (xn) + εn
f can be interpreted as a conditional expectation

Binary classification
• We observe Y1, . . . ,Yn where, for i = 1, . . . , n, Yi ∈ {0, 1} and

P(Yi = 1) = φ(f (xi )),

with φ strictly increasing from (−∞,∞) to (0, 1)
E.g. logistic function φ(t) = et/(1 + et )

And more : multiclass classification, f gives the intensity of a point process,...
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The role of Gaussian processes

The previous types of observations can be tackled by several statistics or machine
learning algorithms

Kernel smoothing

Random forests

Neural networks

and many more

Gaussian processes also tackle these types of observations and are based on a
Bayesian prior on the function f
=⇒ Hence they provide an important benefit for uncertainty quantification
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Gaussian processes as Bayesian prior

Bayesian prior

Modeling the black box function f as a single realization of a Gaussian process
x → ξ(x) on the domain X
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Usefulness
Using the conditional distribution of ξ, given the observations, to learn f
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A quick summary

Gaussian processes provide a Bayesian prior over unknown functions, that enables to
address various machine learning problems, with the benefit of uncertainty

quantification
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Stochastic processes

A stochastic process on X is a function
ξ : X→ R such that ξ(x) is a random
variable for all x ∈ X.
Alternatively a stochastic process is a
function on X that is random

Probability space

We explicit the randomness of ξ(x) by writing it ξ(ω, x) with ω in a probability space Ω.
For a given ω0, we call the function x → ξ(ω0, x) a realization of the stochastic process
ξ.
=⇒ The probability space Ω is the same for all ξ(ω, x) with x ∈ X
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Gaussian variables and vectors

A random variable X on R is a Gaussian
variable with mean µ ∈ R and variance
σ2 > 0 when its probability density
function is

fµ,σ2 (x) =
1

√
2πσ

exp
(
−

1
2σ2

(x − µ)2
)

A n-dimensional random vector V is a
Gaussian vector with mean vector m
and invertible covariance matrix R when
its multidimensional probability density
function is

fm,R(v) =

1

(2π)
n
2
√

det(R)
exp

(
−

1
2

(v −m)>R−1(v −m)

)

Characterization by mean and variance

E.g. for Gaussian variables : µ and σ2 are both parameters of the probability density
function and the mean and variances of it. That is

∫ +∞
−∞ xfµ,σ2 (x)dx = µ and∫ +∞

−∞ (x − µ)2fµ,σ2 (x)dx = σ2
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Gaussian variables and vectors : degenerate cases

A random variable X that is constant equal to µ is said to be a Gaussian variable with
mean µ and variance σ2 = 0

A n-dimensional random vector V is a Gaussian vector with mean vector m and
covariance matrix R when, for any fixed n × 1 vector λ, λ>V is a Gaussian variable
with mean λ>m and variance λ>Rλ

This definition holds whether or not R is invertible

=⇒ All linear combinations of Gaussian vectors are Gaussian variables

When R is not invertible, V is supported on a lower dimensional linear subspace
of Rn (spanned by the eigenvectors of the non-zero eigenvalues or R)
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Gaussian processes

Definition
A stochastic process ξ on X is a Gaussian process when for all x1, ..., xn ∈ X, the
random vector (ξ(x1), ..., ξ(xn)) is a Gaussian vector

Mean and covariance functions

The mean function of a Gaussian process ξ is the function

m : X→ R
x 7→ E(ξ(x))

The covariance function of a Gaussian process ξ is the function

k : X× X→ R
(x1, x2) 7→ Cov(ξ(x1), ξ(x2))

=⇒ A Gaussian process is characterized by its mean and covariance functions
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Constraints on the covariance function

First, remark that k is symmetric :

k(x1, x2) = Cov(ξ(x1), ξ(x2)) = Cov(ξ(x2), ξ(x1)) = k(x2, x1)

Second, let ξ be a Gaussian process on a set X, with covariance function k
Consider x1, . . . , xn ∈ X and λ1, . . . , λn ∈ R to be fixed
We have

0 ≤ Var

( n∑
i=1

λiξ(xi )

)

=
n∑

i,j=1

λiλj Cov(ξ(xi ), ξ(xj ))

=
n∑

i,j=1

λiλj k(xi , xj )

=⇒Hence a second constraint on k
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Constraints on the covariance function

Symmetric non-negative definite functions

A function h : X× X→ R is symmetric non-negative definite (SNND) if

For any x1, x2 ∈ X :
h(x1, x2) = h(x2, x1)

For any x1, . . . , xn ∈ X and λ1, . . . , λn ∈ R :

n∑
i,j=1

λiλj h(xi , xj ) ≥ 0

=⇒Covariance functions are SNND

Alternatively, for any x1, . . . , xn ∈ X, the n× n covariance matrix R = [k(xi , xj )]i,j=1,...,n
of the Gaussian vector (ξ(x1), . . . , ξ(xn)) is symmetric non-negative definite

Hence, covariance functions can also be called

kernels

radial basis functions

positive definite functions
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Existence of Gaussian processes

Theorem

Let X be any set

Let m be any function from X to R
Let k be any SNND function from X× X to R

Then there exists a Gaussian process ξ on X with mean function m and covariance
function k

Proof : Kolmogorov extension theorem

Hence
To create a Gaussian process it is sufficient to create a mean and covariance
function
Any function can be a mean function
The crux is thus to create SNND functions

Next :
1 Creation of covariance (SNND) functions and interplay with behavior of the

Gaussian process
2 Given a mean and covariance function −→ conditional distribution of the

Gaussian process given observations
3 Estimating the mean and covariance functions
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Two extreme covariance functions

Let X be any set

Constant covariance function
Let the function k1 : X× X→ R be defined by, for any x1, x2 ∈ X,

k1(x1, x2) = 1

Then k1 is SNND
A Gaussian process ξ with mean zero and covariance function k1 is constant :

for all x ∈ X, ξ(x) = X ,

where X ∼ N (0, 1)

White noise covariance function
Let the function k2 : X× X→ R be defined by, for any x1, x2 ∈ X,

k2(x1, x2) = 1{x1=x2}

Then k2 is SNND
A Gaussian process ξ with mean zero and covariance function k2 is composed of
independent Gaussian values
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Covariance functions on Rd

Let X = Rd

Stationarity

A covariance function k is stationary when for any x1, x2 ∈ Rd :

k(x1, x2) = k(x1 − x2)

(slight abuse of notation)

=⇒ The behavior of the corresponding Gaussian process is invariant by translation

Bochner’s theorem
Consider a continuous function k : Rd → R with Fourier transform k̂ , such that the
inverse Fourier relation holds :

for all x ∈ Rd , k(x) =

∫
Rd

k̂(ω)eiω>x dω

Then k is SNND if and only if k̂ takes positive values

=⇒ A convenient characterization of stationary covariance functions
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Proof of one implication of Bochner’s theorem

Assume that k̂ takes positive values
For all x1, ..., xn ∈ X, λ1, ..., λn ∈ R :

n∑
i,j=1

λiλj k(xi , xj ) =
n∑

i,j=1

λiλj k(xi − xj )

=
n∑

i,j=1

λiλj

∫
Rd

k̂(ω)eiω>(xi−xj )dω

=

∫
Rd

k̂(ω)

 n∑
i,j=1

λiλj eiω>xi e−iω>xj

 dω

=

∫
Rd

k̂(ω)

 n∑
i,j=1

λi eiω>xiλj eiω>xj

 dω

=

∫
Rd

k̂(ω)

∣∣∣∣∣
n∑

i=1

λi eiω>xi

∣∣∣∣∣
2

dω

≥ 0

Hence k is SNND
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Hence some stationary covariance functions on R

Exponential covariance function

k(x1, x2) = σ2e−|x1−x2|/`

=⇒ parametrized by variance σ2 and correlation length `
(positive Fourier transform)
Square exponential (or Gaussian) covariance function

k(x1, x2) = σ2e−(x1−x2)2/`2

(positive Fourier transform)
Matérn covariance function

k(x1 − x2) =
σ2

Γ(ν)2ν−1

(
2
√
ν|x1 − x2|
`

)ν
Kν
(

2
√
ν|x1 − x2|
`

)
ν > 0 is called the smoothness parameter
Γ is the Gamma function
Kν is the modified Bessel function of the second kind

The Fourier transform k̂ is of the form, for ω ∈ R,

k̂(ω) =
a

(b + ω2)ν+1/2
≥ 0,

where a ≥ 0 and b > 0 depend on σ2, `, ν but not on ω
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Example of the Matérn 3
2 covariance function on R

The Matérn 3
2 (ν = 3/2) covariance

function, for a Gaussian process on R,
is parameterized by

A variance parameter σ2 > 0

A correlation length parameter
` > 0

The Matérn formula is simplified to

k(x1, x2) = σ2
(

1 +
√

6
|x1 − x2|

`

)
e−
√

6
|x1−x2|
` 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

co
v

l=0.5
l=1
l=2

Interpretation

stationary

σ2 corresponds to the order of magnitude of the functions that are realizations of
the Gaussian process

` corresponds to the speed of variation of the functions that are realizations of the
Gaussian process
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The Matérn 3
2 covariance function on R : illustration of `

Plot of realizations of a Gaussian process having the Matérn 3
2 covariance function for

σ2 = 1 and various values of `
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` = 0.5 ` = 1 ` = 2
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Smoothness of the covariance function and Gaussian process

Continuous covariance function =⇒ continuous Gaussian process :

Proposition (see e.g. Adler, 1990)

Let ξ be a Gaussian process on R with mean function 0 and covariance function k
Then

k is continuous (+ mild technical assumptions)

=⇒
The trajectories of ξ are almost surely continuous on R

Smooth covariance function =⇒ smooth Gaussian process :

Proposition (see e.g. Adler, 1990)

Let ξ be a Gaussian process on R with mean function 0 and covariance function k
Then, for r ∈ N,

k is 2r times differentiable (+ mild technical assumptions)

=⇒
The trajectories of ξ are almost surely r times differentiable on R

The covariance function k needs to be twice as much differentiable as ξ, because it
can be shown that, with ξ′ the derivative of ξ,

Cov
(
ξ′(u), ξ′(v)

)
=
∂k(u, v)

∂u∂v
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Using the Fourier transform

Using properties of Fourier transform :

Proposition

Let k be a stationary covariance function with Fourier transform k̂ , such that the
inverse Fourier transform relation holds

for all x ∈ Rd , k(x) =

∫
Rd

k̂(ω)eiω>x dω

Then, for r ∈ N,

The Fourier transform k̂ verifies
∫
R ω

2r k̂(ω) < +∞
=⇒

k is 2r times differentiable

Fourier transform decays quickly at infinity =⇒ covariance function is smooth =⇒
Gaussian process is smooth
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Smoothness of the Matérn model

Recalling that the Fourier transform of Matérn is

k̂(ω) =
a

(b + ω2)ν+1/2
≥ 0,

we obtain

Proposition

Let ξ be a Gaussian process on R with mean function 0 and covariance function k of
the Matérn class with parameters σ2 ≥ 0, ` > 0 and ν > 0. Then, for r ∈ N,

ν > r

=⇒
The trajectories of ξ are almost surely r times differentiable on R

=⇒ The integer part of ν is the number of derivatives
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Illustration of the impact of ν

Trajectories of Gaussian processes with mean function 0 and Matérn covariance
functions with σ2 = 1, ` = 1 and various values of ν
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ν = 1/2 ν = 3/2 ν = 5/2
continuous, not differentiable once differentiable twice differentiable
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Product and mapping of kernels

Proposition (product of SNND functions)

Let k1 and k2 be two SNND functions on X (here can be any space)
Then k1k2 is SNND on X

See e.g. Scholkopf and Smola, 06

Proposition (kernel mapping)

Let k2 be a SNND function on a set X2. Let φ : X1 → X2 be any function. Let k1 be
defined on X1 × X1 by, for u, v ∈ X1,

k1(u, v) = k2(φ(u), φ(v))

Then k1 is SNND

Proof : For x1, . . . , xn ∈ X1 and λ1, . . . , λn ∈ R,

n∑
i,j=1

λiλj k1(xi , xj ) =
n∑

i,j=1

λiλj k2(φ(xi ), φ(xj ))

≥ 0

since k2 is SNND and φ(x1), . . . , φ(xn) ∈ X2
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Tensorization to create covariance functions on Rd

Proposition (tensorization)

Let k1, . . . , kd be SNND functions on R. Let k be defined on Rd × Rd as

k(u, v) = k1(u1, v1)× . . .× kd (ud , vd )

for u = (u1, . . . , ud ) ∈ Rd and v = (v1, . . . , vd ) ∈ Rd .
Then k is SNND

Proof : Application of the two previous propositions with mapping functions φ1, . . . , φd
with φi (x) = xi for x = (x1, . . . , xd ) ∈ Rd
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Standard tensorized covariance functions

The function k defined by, for u = (u1, . . . , ud ) ∈ Rd and v = (v1, . . . , vd ) ∈ Rd ,

k(u, v) = σ2
d∏

i=1

ψ(|ui − vi |/`i )

is
the tensorized exponential covariance function when

ψ(t) = e−t

the tensorized square exponential covariance function when

ψ(t) = e−t2

the tensorized Matérn covariance function when

ψ(t) =
1

Γ(ν)2ν−1

(
2
√
νt
)ν Kν

(
2
√
νt
)

Interpretation of the parameters :
σ2 is the variance and is interpreted as before
For i = 1, . . . , d , `i is the correlation length for the variable i
`i small means that variable i is important
=⇒ Allows variable ranking and screening

M. Ben Salem, F. Bachoc, O. Roustant, F. Gamboa and L. Tomaso, Gaussian
Process based dimension reduction for goal-oriented sequential design,
SIAM/ASA Journal on Uncertainty Quantification, forthcoming
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Isotropic covariance functions

We want to create covariance functions on Rd of the form, for x1, x2 ∈ Rd ,

k(x1, x2) = ψ(||x1 − x2||), (1)

with ψ : R+ → R

We have a characterization of the functions ψ for which we obtain an SNND function
for all d ∈ N

Theorem (Shoenberg, 38)

Let k : Rd × Rd → R defined by (1) where ψ is not constant. Then the following
statements are equivalent

1 k is SNND for all d ∈ N
2 ψ is of the form

ψ(t) =

∫ +∞

0
e−ωt2

dµ(ω),

with a non-negative measure µ on R+, not concentrated at 0

3 ψ(
√
.) is completely monotone on [0,∞) and not constant. A function g on [0,∞)

is completely monotone if

(−1)r g(r)(t) ≥ 0 for r ∈ N and t ∈ [0,∞)
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Standard isotropic covariance functions

The function k defined by, for u ∈ Rd and v ∈ Rd ,

k(u, v) = σ2ψ(||u − v ||/`)

is

the isotropic exponential covariance function when

ψ(t) = e−t

the isotropic square exponential covariance function when

ψ(t) = e−t2

the isotropic Matérn covariance function when

ψ(t) =
1

Γ(ν)2ν−1

(
2
√
νt
)ν Kν

(
2
√
νt
)

Interpretation of the parameters :

σ2 is the variance and is interpreted as before

` is the correlation length, controls how fast covariance changes with distance (in
any direction)
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Geometric anisotropy

The function k defined by, for u = (u1, . . . , ud ) ∈ Rd and v = (v1, . . . , vd ) ∈ Rd ,

k(u, v) = σ2ψ


√√√√ d∑

i=1

(ui − vi )2

`2i


is

the geometric anisotropic exponential covariance function when

ψ(t) = e−t

the geometric anisotropic square exponential covariance function when

ψ(t) = e−t2

the geometric anisotropic Matérn covariance function when

ψ(t) =
1

Γ(ν)2ν−1

(
2
√
νt
)ν Kν

(
2
√
νt
)

=⇒ These functions are SNND from the previous results

Interpretation of the parameters :
σ2 is the variance and is interpreted as before
For i = 1, . . . , d , `i is the correlation length for the variable i
`i small means that variable i is important
=⇒ Allows variable ranking and screening
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Functional inputs

Consider now that

X = {square summable functions f :[0, 1]p → R}

Motivations

Inputs of computer models can be curves (p = 1) or maps (p = 2). E.g. input
power profile of an industry system. Modeling of the system output as a Gaussian
process

Classification of curves (p = 1) or images (p = 2). E.g. individual healthy or
unhealthy according to EEG

R

1 3

5

12 10
Output ∈ R
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Obtaining covariance functions on functional inputs by limit

Consider functions f1, . . . , fn ∈ X and λ1, . . . , λn ∈ R. Let (Xa)a∈N be i.i.d. and
uniformly distributed on [0, 1]p

We have

n∑
i,j=1

λiλj e
−
√∫

[0,1]p (fi (x)−fj (x))2dx
=a.s. lim

d→∞

n∑
i,j=1

λiλj e
−
√

1
d
∑d

a=1(fi (Xa)−fj (Xa))2

≥ 0

by considering the isotropic exponential covariance function on Rd with the n input
points

(f1(X1), . . . , f1(Xd ))

. . .

(fn(X1), . . . , fn(Xd ))
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Hence standard covariance functions for functional inputs

The function k defined by, for f ∈ X and g ∈ X,

k(f , g) = σ2ψ

(
1
`

√∫
[0,1]p

(f (x)− g(x))2dx

)

is

the functional isotropic exponential covariance function when

ψ(t) = e−t

the functional isotropic square exponential covariance function when

ψ(t) = e−t2

the functional isotropic Matérn covariance function when

ψ(t) =
1

Γ(ν)2ν−1

(
2
√
νt
)ν Kν

(
2
√
νt
)

Interpretation of the parameters :

σ2 is the variance and is interpreted as before

` is the correlation length, controls how fast covariance changes with distance (in
any direction)
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L1 norm exponential covariance function

By the same principle as above, the covariance function defined by, for f ∈ X and
g ∈ X,

k(f , g) = σ2e−
1
`

∫
[0,1]p |f (x)−g(x)|dx

is SNND.
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Examples of work related to functional inputs

In Muehlenstaedt et al., 2017, Gaussian processes with functional inputs are
considered, for computer experiments
The functional inputs are decomposed on spline basis functions
In Morris 2012, the above constructions of covariance functions for functional
inputs are used
Related setting : inputs are distributions on Rp .
For two distributions µ1, µ2 on Rp , the Wasserstein (or Monge-Kantorovich)
distance W2 between µ1 and µ2 is defined by

W 2
2 (µ1, µ2) = inf

(X ,Y ) random vector on R2p

X∼µ1
Y∼µ2

E
(
||X − Y ||2

)

(optimal transport)

R

R

x

µ1

µ2

dist. of (X,Y)
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Examples of work based on the Wasserstein distance

In

S. Kolouri, Y. Zou, and G. K. Rohde, Sliced wasserstein kernels for
probability distributions, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 5258-5267.

and

F. Bachoc, F. Gamboa, J.M. Loubes and N. Venet, Gaussian process
regression model for distribution inputs, IEEE Transactions on Information
Theory, 2017.

Gaussian processes are studied on the set of one-dimensional distributions
In dimension 1, with q1 and q2 the quantile functions of µ1 and µ2 we have the
explicit explicit expression for the Wasserstein distance

W 2
2 (µ1, µ2) =

∫ 1

0
(q1(t)− q2(t))2dt

=⇒ Hence same covariance functions as above, operating on quantile functions
=⇒ The Wasserstein distance is beneficial because less sensitive to very high

probability densities
In Koulouri et al 2016 and

F. Bachoc, A. Suvorikova, D. Ginsbourger, J-M. Loubes and V. Spokoiny,
Gaussian processes with multidimensional distribution inputs via optimal
transport and Hilbertian embedding, arXiv :1805.00753

extensions are given to distributions on Rp with p ≥ 2
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Conclusions on covariance functions

Conclusions
Covariance function drives the order of magnitude and speed of variation of the
Gaussian process

On Rd , smooth covariance function =⇒ smooth Gaussian process

Catalog of available SNND functions on Rd

Canonical extensions to functional inputs

Topics we did not address
Covariance functions on character strings

Covariance functions on a manifold (e.g. the sphere in climate sciences)

Covariance functions on neural network architectures

. . .

Next : Conditional distribution given observations (with a fixed given covariance
function)
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Gaussian conditioning theorem

Theorem
Let (Y 1,Y 2)> be a (n1 + n2)× 1 Gaussian vector with mean vector (m>1 ,m

>
2 )> and

covariance matrix (
R1 R1,2

R>1,2 R2

)
Then, conditionaly on Y 1 = y1, Y 2 is a Gaussian vector with mean

E(Y 2|Y 1 = y1) = m2 + R>1,2R−1
1 (y1 −m1)

and variance
var(Y 2|Y 1 = y1) = R2 − R>1,2R−1

1 R1,2

Illustration
Let (Y1,Y2)> be a 2× 1 Gaussian vector with mean vector (µ1, µ2)> and covariance
matrix (

1 ρ
ρ 1

)
Then

E(Y2|Y1 = y1) = µ2 + ρ(y1 − µ1) and var(Y2|Y1 = y1) = 1− ρ2
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The case of exact observations

We can obtain exact observations of the function f
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Typical example : f (x) is the result of a deterministic computer experiment with
simulation parameters x
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Reminder of the Bayesian model

It is a function interpolation/approximation problem
Possible methods : polynomial regression, neural networks, splines, RKHS, ...
−→ can provide a deterministic error bound

Gaussian process model : representing the deterministic and unknown function f by a
realization of a Gaussian process.
−→ gives a stochastic error bound
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Bayesian statistics

In statistics, a Bayesian model generally consists in representing a deterministic and
unknown number/vector by the realization of a random variable/vector (the prior)
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Gaussian process prediction

We let ξ be the Gaussian process on X, with mean function m and covariance
function k
ξ is observed at x1, ..., xn ∈ X

Notations

Let Yn = (ξ(x1), ..., ξ(xn))> be the observation vector. It is a Gaussian vector

Let yn = (f (x1), ..., f (xn))> be the observed values

Let mn be the mean vector of Yn : mn = (m(x1), . . . ,m(xn))>

Let R be the n × n covariance matrix of Yn : Ri,j = k(xi , xj )

Let x ∈ X be a new input point for the Gaussian process ξ. We want to predict ξ(x)

Let r(x) be the n × 1 covariance vector between Yn and ξ(x) : r(x)i = k(xi , x)

Then the Gaussian conditioning theorem gives the conditional mean function of ξ given
the observed values in Yn :

mn(x) := E(ξ(x)|Yn = yn) = m(x) + r(x)>R−1(yn −mn)

We also have the conditional covariance function, for u, v ∈ X :

kn(u, v) := Cov(ξ(u), ξ(v)|Yn = yn) = k(u, v)− r(u)>R−1r(v)

=⇒ Conditionally to Yn = yn, ξ is a Gaussian process with mean function mn and
covariance function kn
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Gaussian process prediction : interpretation

Exact interpolation of known values

Assume x = x1. Then, R1,i = k(x1, xi ) = k(x , xi ) = r(x)i . Thus

m(x) + r(x)>R−1(yn −mn) = m(x) + r(x)> ×


r(x)>

∗
...
∗


−1

×

f (x1)−m(x1)
...

f (xn)−m(xn)



= m(x) + (1, 0, . . . , 0)

 f (x1)−m(x)
...

f (xn)−m(xn)

 = f (x1)

Conservative extrapolation

Let x be far from x1, ..., xn. Then, we generally have r(x)i = k(xi , x) ≈ 0. Thus

mn(x) = m(x) + r(x)>R−1(yn −mn) ≈ m(x)

and
kn(x , x) = k(x , x)− r(x)>R−1r(x) ≈ k(x , x)

⇒ conservative
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Illustration of Gaussian process prediction

observations
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Illustration of Gaussian process prediction

observations

conditional realizations given Yn = yn
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Illustration of Gaussian process prediction

observations

conditional realizations given Yn = yn

conditional mean x → mn(x)
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Illustration of Gaussian process prediction

observations

conditional realizations given Yn = yn

conditional mean mn(x)

95% confidence intervals based on kn(x, x)
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Gaussian process prediction with noisy observations

It can be desirable not to reproduce the
observed values exactly :

when same x can give different
observed values =⇒ common in
machine learning applications

=⇒ E.g. flight delay from flight features

We consider that at x1, ..., xn, we observe

Yn =

ξ(x1)+E1
...

ξ(xn)+En


E1, ..., En are independent and are Gaussian variables, with mean 0 and variance τ2

We let yn be the realization of Yn

yn =

y1
...

yn

 =

f (x1)+ε1
...

f (xn)+εn


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Gaussian process prediction with noisy observations

Then the Gaussian conditioning theorem still gives the conditional mean of ξ(x) given
the observed values in yn :

mn(x) := E(ξ(x)|Yn = yn) = m(x) + r(x)>(R+τ2In)−1(yn −mn)

We also have the conditional covariance, for u, v ∈ X :

kn(u, v) := Cov(ξ(u), ξ(v)|Yn = yn) = k(u, v)− r(u)>(R+τ2In)−1r(v)

=⇒ Conditionally to Yn = yn, ξ is a Gaussian process with mean function mn and
covariance function kn
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Illustration of Gaussian process prediction with measure error

observations
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Illustration of Gaussian process prediction with measure error

observations

conditional realizations given Yn = yn
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Illustration of Gaussian process prediction with measure error

observations

conditional realizations given Yn = yn

conditional mean x → mn(x)
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Illustration of Gaussian process prediction with measure error

observations

conditional realizations given Yn = yn

conditional mean x → mn(x)

95% confidence intervals based on kn(x, x)
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Remarks

The conditioning takes the same form, independently of the input space X
The computation cost for an exact implementation is
• O(n2) in storage and O(n3) in computation, once, offline
• O(n2) in computation for each new x , online

Exist various works when n very large
Aggregation of submodels :

B. van Stein, H. Wang, W. Kowalczyk, T, Bäck, and M. Emmerich, Optimally
weighted cluster kriging for big data regression, In International Symposium
on Intelligent Data Analysis, pages 310-321, Springer, 2015

D. Rullière, N. Durrande, F. Bachoc and C. Chevalier, Nested Kriging
predictions for datasets with a large number of observations, Statistics and
Computing, 28(4), 849-867, 2018

Inducing points :

J. Hensman, N. Fusi, N.D. Lawrence, Gaussian Processes for Big Data,
Uncertainty in Artificial Intelligence conference, paper Id 244, 2013

Works well with integrals and derivatives (remains Gaussian)
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Gaussian process classification model

Gaussian process ξ with realization f

Observation points x1, . . . , xn

Observation vector

Yn =

Y1
...

Yn

∈ {0, 1}n

with for i = 1, . . . , n

P(Yi = 1|ξ = f ) =
eαf (xi )

1 + eαf (xi )

α large =⇒ P(Yi = 1) close to 0 or 1 =⇒ Yi almost deterministic given ξ = f
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Conditional distribution

Step 1 : conditional distribution of Gaussian vector given observations
Let

Vn =

ξ(x1)
...

ξ(xn)


Let yn be the observed realization of Yn

Then, conditionally to Yn = yn, Vn has density φn given by, for
v = (v1, . . . , vn)> ∈ Rn,

φn(v) =(constant not depending on v)×N (v|mn,R)

×
n∏

i=1

(
1{yi =1}

eαvi

1 + eαvi
+ 1{yi =0}

1
1 + eαvi

)
with

N (v|mn,R) the Gaussian density at v with mean vector mn and covariance matrix R
=⇒ density of Vn

The conditional density φn is non-Gaussian
Sampling from φn or approximating φn is the difficult part
MCMC procedures, Laplace approximation, EM algorithm, ...

H. Nickisch and C. E. Rasmussen, Approximations for binary Gaussian
process classification, Journal of Machine Learning Research, 9 :
2035-2078, 2008
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Conditional distribution

Step 2 : Classification after Vn is sampled from φn
Assumes that vn is a conditional realization of Vn given Yn = yn (density φn)

Conditionally to Yn = yn and Vn = vn, ξ is a Gaussian process with mean function
mn (depends on vn) and covariance function kn

Conditionally to Yn = yn and Vn = vn, ξ(x) is Gaussian with mean mn(x)
(depends on vn) and variance kn(x , x)

Consider a new observation Yx ∈ {−1, 1} such that

P(Yx = 1|ξ = f ) =
eαf (x)

1 + eαf (x)

Then, conditionally to Yn = yn and Vn = vn,

P(Yx = 1|Yn = yn,Vn = vn) =

∫ +∞

−∞
N (v |mn(x), kn(x , x))

eαv

1 + eαv
dv

One-dimensional integral can be computed explicitly

Things are again Gaussian and simpler
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An example of purely Monte Carlo classification

Step 1 : obtain N realizations
v(1)

n , . . . , v(N)
n

approximately following the conditional distribution of Vn given Yn = yn
=⇒ Potentially costly MCMC here

Each realization v(i)
n provides a conditional mean function m(i)

n

Step 2 : average classifications

P(Yx = 1|Yn = yn) ≈
1
N

N∑
i=1

∫ +∞

−∞
N (v |m(i)

n (x), kn(x , x))
eαv

1 + eαv
dv

Remarks :
There can be convergence guarantees as N →∞ and for large MCMC budget

Potentially computationally costly

Approximations in Nickisch and Rasmussen, 2008 are typically faster (but less
guarantees)
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Illustration
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FIGURE: posterior probabilities of 1
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Covariance function estimation

Parameterization
Covariance function model

{
σ2cθ, σ2 ≥ 0, θ ∈ Θ

}
for the Gaussian Process ξ

σ2 is the variance parameter

θ is the multidimensional correlation parameter. cθ is a stationary correlation
function

We want to choose the covariance function k of the form σ2cθ
Assume mean function is 0 for simplicity

Estimation
ξ is observed at x1, ..., xn ∈ X, yielding the Gaussian vector Yn = (ξ(x1), ..., ξ(xn))>.
Estimators σ̂2(Yn) and θ̂(Yn)

"Plug-in" Gaussian process prediction

1 Estimate the covariance function

2 Assume that the covariance function is fixed and carry out the conditioning studied
before
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Maximum Likelihood for estimation

Explicit Gaussian likelihood function for the observation vector Yn

Maximum Likelihood
Define Cθ as the correlation matrix of Yn = (ξ(x1), ..., ξ(xn))> under correlation
function cθ .
The Maximum Likelihood estimator of (σ2, θ) is

(σ̂2
ML, θ̂ML) ∈ argmin

σ2≥0,θ∈Θ

1
n

(
ln (|σ2Cθ|) +

1
σ2

Y>n C−1
θ Yn

)

Remarks :

Needs to be optimized numerically

Cost O(n3) in time per evaluation of likelihood

Existing work to approximate when n is large, e.g. Gramacy and Apley 2015
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Cross Validation for estimation

m(−i)
n,θ = Eσ2,θ(ξ(xi )|ξ(x1), ..., ξ(xi−1), ξ(xi+1), ..., ξ(xn))

σ2(c(−i)
n,θ )2 = varσ2,θ(ξ(xi )|ξ(x1), ..., ξ(xi−1), ξ(xi+1), ..., ξ(xn))

Leave one out estimation

θ̂CV ∈ argmin
θ∈Θ

n∑
i=1

(ξ(xi )−m(−i)
n,θ )2

and

1
n

n∑
i=1

(ξ(xi )−m(−i)
n,θ̂CV

)2

σ̂2
CV (c(−i)

n,θ̂CV
)2

= 1⇔ σ̂2
CV =

1
n

n∑
i=1

(ξ(xi )−m(−i)
n,θ̂CV

)2

(c(−i)
n,θ̂CV

)2
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Virtual Leave One Out formula

Let Cθ be the correlation matrix of Yn = (ξ(x1), ..., ξ(xn))> with correlation function cθ

Virtual Leave-One-Out

ξ(xi )−m(−i)
n,θ =

(
C−1
θ Yn

)
i(

C−1
θ

)
i,i

and (c(−i)
n,θ )2 =

1

(C−1
θ )i,i

O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, Mathematical
Geology, 1983.

Using the virtual Cross Validation formula :

θ̂CV ∈ argmin
θ∈Θ

1
n

Y>n C−1
θ diag(C−1

θ )−2C−1
θ Yn

and
σ̂2

CV =
1
n

Y>n C−1
θ̂CV

diag(C−1
θ̂CV

)−1C−1
θ̂CV

Yn
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Some references on covariance function estimation

Practical aspects of cross validation

F. Bachoc, Cross Validation and Maximum Likelihood estimation of
hyper-parameters of Gaussian processes with model misspecification,
Computational Statistics and Data Analysis, 66 55-69, 2013

H. Zhang and Y. Wang, Kriging and cross-validation for massive spatial data,
Environmetrics, 21(3/4) :290-304, 2010

Theory on maximum likelihood and cross validation

F. Bachoc, Asymptotic analysis of covariance parameter estimation for
Gaussian processes in the misspecified case, Bernoulli, 24(2), 1531-1575,
2018

C.G. Kaufman and B. A. Shaby, The role of the range parameter for
estimation and prediction in geostatistics, Biometrika, 100(2), 473-484, 2013
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Conclusions on Gaussian processes

Gaussian processes can be defined on any space X, by using suitable covariance
functions

Setting of direct observations is favorable for conditioning =⇒ benefit of Gaussian
processes

Indirect observations (e.g. Gaussian process classification) are computationally
more challenging.

But the Gaussian process still brings simplifications

Gaussian variables, vectors and processes come with many existing theoretical
results =⇒ Gaussian processes are also a convenient theoretical framework

Gaussian processes can be used as elementary bricks to construct more complex
stochastic processes
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1 Introduction to Gaussian processes

2 Sequential learning and consistency of stepwise uncertainty reduction strategies

3 Gaussian processes under inequality constraints
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Sequential designs

We consider a Gaussian process ξ on a compact X ⊂ Rd with continuous mean
function m, continuous covariance function k and continuous sample paths
We consider the setting of exact direct observations of ξ(x)

Motivation

When we observe ξ(x1), ..., ξ(xn), the mean and covariance functions become mn
and kn

=⇒We want to choose x1, ..., xn so that mn and kn become maximally informative
(e.g. kn(x , x) small, or kn(x , x) small when mn(x) is large)

Sequential design

It is more efficient to select xi+1 after ξ(x1), ..., ξ(xi ) are observed

The observation points x1, ..., xn become random observation points X1, ...,Xn
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Sequential designs : definitions

Definition
A sequence (Xn)n≥1 of random points in X will be said to form a (non-randomized)
sequential design if, for all n ≥ 1, Xn is Fn−1-measurable, where

Fi = σ(X1, ξ(X1), ...,Xi , ξ(Xi ))

Gaussian measures

A Gaussian measure ν is a measure on C(X) corresponding to a Gaussian
process with continuous sample paths (see e.g. Bogachev 98).

ν is characterized by the mean function mν and the covariance function kν
We let GP(mν , kν) denote the Gaussian measure ν
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The conditioning mapping

The conditioning mapping

We let Condx1,z1,...,xn,zn (ν) be the Gaussian measure GP(mν,n, kν,n) where

mν,n(x) = mν(x) + r(x)>R−1(zn −mn)

and
kn(x , y) = kν(x , y)− r(x)>R−1r(y)

with

zn = (z1, ..., zn)>

R is the n × n matrix [kν(xi , xj )]

r(x) = (kν(x , x1), ..., kν(x , xn))>

mn = (mν(x1), ...,mν(xn))>

A convenient result
For any sequential design of experiment (Xi ), the conditional distribution of ξ (with
Gaussian measure ν) given X1, ξ(X1), ...,Xn, ξ(Xn) is CondX1,ξ(X1),...,Xn,ξ(Xn)(ν)

=⇒ conditioning ‘as if’ X1, ...,Xn were deterministic
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Uncertainty functional

Let ν = GP(mν , kν) be a Gaussian measure and let ξν be a Gaussian process with
measure ν

Uncertainty functional

It is a function H : ν 7→ H(ν) ∈ [0,∞)
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Uncertainty functional : examples

Expected improvement (EI) (Mockus 78, Jones et al 98)

H(ν) = E(max
u∈X

ξν(u))− max
u∈X;kν (u,u)=0

E(ξν(u))

Knowledge gradient (Frazier et al 08, 09)

H(ν) = E(max
u∈X

ξν(u))−max
u∈X

E(ξν(u))

Integrated Bernoulli variance (Bect at al 12, Chevalier et al 14)

H(ν) =

∫
X

pν(u)(1− pν(u))du

with pν(u) = P(ξν(u) ≤ T ) for fixed T ∈ R
Variance of excursion volume (Bect at al 12, Chevalier et al 14)

H(ν) = Var
(∫

X
1ξν (u)≤T du

)
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Stepwise Uncertainty Reduction

Let
Jx (ν) = E

(
H(Condx,ξν (x)(ν))

)
Jx (ν) is the expected uncertainty after observing ξ(x)

Stepwise Uncertainty Reduction (SUR)

The sequential design (Xi ) follows a SUR strategy when

Xi+1 ∈ argmin
x∈X

Jx (CondX1,ξ(X1),...,Xi ,ξ(Xi )
(ν0))

with ν0 the distribution of the Gaussian process ξ
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For the examples

Let En, Covn and Pn denote conditional mean, covariance and probability for the
distribution of ξ given Fn

Expected improvement

Xn+1 ∈ argmax
x∈X

En

((
ξ(x)− max

u∈X;kn(u,u)=0
ξ(u)

)+
)

Knowledge gradient

Xn+1 ∈ argmax
x∈X

En

(
max
u∈X

En(ξ(u)|ξ(x))

)
Integrated Bernoulli variance

Xn+1 ∈ argmin
x∈X

En

(∫
X

pn+1,x (u)(1− pn+1,x (u))du
)

with pn+1,x (u) = Pn(ξ(u) ≤ T |ξ(x))

Variance of excursion volume

Xn+1 ∈ argmin
x∈X

En

(
Varn

(∫
X

1ξ(u)≤T du
∣∣∣∣ ξ(x)

))
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Illustration of Expected Improvement

(for minimization)

(Figure borrowed from Viana et al 13, Journal of Global Optimization)
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Some applications

Expected improvement is the most used SUR strategy
optimal design (car industry...)
optimal fitting of parametric model (chemistry...)

Integrated Bernoulli variance and Variance of excursion volume are used in failure
domain estimation

nuclear engineering...

Knowledge gradient can be used when Expected improvement is used
drug discovery...

Remark : Other (non SUR) sequential strategies exist, for instance Gaussian process
upper confidence band (GP UCB), for optimization, Srinivas et al 12

robotic

bandit problems
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Goal

Now we study a joint work with Julien Bect and David Ginsbourger

J. Bect, F. Bachoc and D. Ginsbourger, A supermartingale approach to Gaussian
process based sequential design of experiments, Bernoulli, forthcoming, 2018

We want to provide general conditions ensuring that

H
(
CondX1,ξ(X1),...,Xn,ξ(Xn)(ν0)

)
→a.s.

n→∞ 0

with ν0 the distribution of the Gaussian process ξ
=⇒ Uncertainty going to zero
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Existing consistency results for sequential strategies

Srinivas et al 12 provide rates of convergence for the sequential strategy GP-UCB
(optimization)

Bull 11 provides rates of convergence for expected improvement. Here the
function f to optimize is deterministic and belongs to the RKHS of k

Vazquez and Bect 10 prove the consistency of Expected Improvement. They work
with covariance functions that are not too smooth and not degenerate (we will
improve this point here)

Yarotsky 13 shows that expected improvement can be inconsistent for specific
fixed objective functions and covariance functions
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Convergence of conditional moments

Convergence

For any sequential design of experiments (Xi ), a.s. as n→∞
The conditional mean function mn converges to a random continuous function
m∞ : X→ R
The conditional covariance function kn converges to a random continuous function
k∞ : X× X→ R
The above convergences are uniform on X and X× X

Proof : the conditional variance is decreasing + martingale arguments

Limit conditionning

Let F∞ be the sigma-algebra generated by ∪n≥1Fn. Then conditionally to F∞, ξ is a
Gaussian process with mean function m∞ and covariance function k∞
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An ‘Ad Hoc’ convergence for Gaussian measures

Definition
Let (νn) denote a sequence of Gaussian measures. We will say that (νn) is an almost
surely convergent sequence of conditional distributions if

i) there exists a random Gaussian measure ν∞ such a.s., as n→∞, mνn and kνn
converge to mν∞ and kν∞ uniformly on X and X× X ;

ii) there exists a Gaussian process ξ such that, for all n ∈ N ∪ {+∞},
νn = P

(
ξ ∈ · | F̃n

)
for some σ-algebra F̃n ⊂ F .

Two examples

For any sequential design, the conditional distribution Pξn = P(ξ ∈ .|Fn) converges
almost surely to Pξ∞ = P(ξ ∈ .|F∞)

Let x∞ ∈ X such that k(x∞, x∞) > 0. Let (xi ) be a sequence in X such that
xi → x∞. For each i ∈ N ∪ {+∞}, let νi = Condxi , ξ(xi )

(
Pξ0
)
. Then (νi ) is an

almost surely convergent sequence of conditional distributions with limit ν∞.
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Supermartingale property

Definition
The functional H is said to have the supermartingale property if, for any sequential
design X1, X2, . . . , the sequence

(
H(Pξn)

)
is an (Fn)-supermartingale

The supermartingale property holds for the four examples.

Expected improvement

with Pξn+1,ξ(x)
= Condx,ξ(x)(Pξn )

H(Pξn )− En[H(Pξn+1,ξ(Xn+1)
)] = En(max

u∈X
ξ(u))− En

(
En(max

u∈X
ξ(u)|ξ(Xn+1))

)
− max

kn(u,u)=0
En(ξ(u)) + En

(
max

kn(u,u|ξ(Xn+1))=0
En(ξ(u)|ξ(Xn+1))

)

≥ En

(
max

kn(u,u)=0
En(ξ(u)|ξ(Xn+1))

)
− max

kn(u,u)=0
En(ξ(u))

= max
kn(u,u)=0

ξ(u)− max
kn(u,u)=0

ξ(u)

= 0

from law of total variance and since kn(u, u|ξ(x)) = Varn(ξ(u)|ξ(x)) ≤ kn(u, u)
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Supermartingale property

Integrated Bernoulli variance

Let pn+1,x,z (u) = En(1ξ(u)≤T |ξ(x) = z)

En[H(Pξn+1,ξ(Xn+1)
)] = En

(∫
X

pn+1,Xn+1,ξ(Xn+1)(u)(1− pn+1,Xn+1,ξ(Xn+1)(u))du
)

=

∫
X
En
(
varn(1ξu≤T |ξ(Xn+1))

)
du

≤
∫
X

varn(1ξu≤T )du

= H(Pξn )
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The convergence result

Let
G(ν) = sup

x∈X

(
H(ν)− E(H(Condx,ξν(x)

(ν)))
)

(maximum expected uncertainty reduction)

Theorem
Let H denote an uncertainty functional with the supermartingale property.
Let (Xn) denote a SUR sequential design for H

Xn+1 ∈ argmin
x∈X

E(H(Condx,ξ(x)(Pξn )))

Then G
(
Pξn
)
→ 0 almost surely. If, moreover,

i) H
(
Pξn
)
→H

(
Pξ∞
)

almost surely

ii) G
(
Pξn
)
→ G

(
Pξ∞
)

almost surely

iii) G(ν) = 0 =⇒H(ν) = 0

then H
(
Pξn
)
→ 0 almost surely

Assumptions i) and ii) are continuity assumptions
Assumption iii) is essential, it means

no possible uncertainty reduction with one more observation =⇒ no uncertainty
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Summary of additional results

We prove that the general results apply to the four examples

We introduce the notion of regular loss function, where H is an average loss when
estimating a quantity of interest (e.g. maximum of ξ, {u ∈ X : ξ(u) ≤ T},...)
We provide a specific convergence result for regular loss functions, with easier to
check assumptions
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Conclusion

Summary

The probabilistic framework of Gaussian processes enables to define expected
uncertainties and Stepwise Uncertainty Reduction (SUR) strategies

We prove convergence of SUR strategies

Remark : Our proof does not rely on showing that (Xi ) is almost surely dense in X.
We allow for degenerate or very smooth covariance functions. Sometimes we do
not need supu∈X kn(u, u)→ 0

Two open questions

When the covariance function is estimated (frequentist or Bayesian)

Rate of convergence
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1 Introduction to Gaussian processes

2 Sequential learning and consistency of stepwise uncertainty reduction strategies

3 Gaussian processes under inequality constraints
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Inequality constraints

This last section is based on the PhD thesis of Andrès Felipe Lopez Lopera =⇒ to be
defended on September 19

We consider a Gaussian process ξ on X = [0, 1]d (with mean function 0 for simplicity)
for which we assume that additional information is available :

ξ(x) belongs to [`, u] for x ∈ [0, 1]d (boundedness constraints)

∂/∂xiξ(x) ≥ 0 for x ∈ [0, 1]d and i = 1, . . . , d (monotonicity constraints)

ξ is convex on [0, 1]d (convexity constraints)

Modifications and/or combinations of the above constraints

Application cases :

Quantity of interest belongs to R+ (energy) or [0, 1] (concentration, energetic
efficiency)

Inputs are known to have positive effects (more input power→ more output
energy)
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Impact of the constraints

Generic form of the constraints :
ξ ∈ E

where E is a set of functions from [0, 1]d → R so that P(ξ ∈ E) > 0

Impact :

New stochastic model : The law of the realization function is P(ξ ∈ .|ξ ∈ E)

New conditional distribution : Conditional distribution of ξ given ξ ∈ E and
ξ(x1) = y1, . . . , ξ(xn) = yn

New estimation of the covariance parameters θ in the covariance model
{kθ; θ ∈ Θ}
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Illustration of constraint benefits
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Existing work

For boundedness constraints, it is possible to consider models of the form
yi = T (ξ(xi )) with T bijective from R to [`, u] and ξ a Gaussian process

For monotonicity and convexity constraints, the approach P(ξ ∈ .|ξ ∈ E) has
become standard

=⇒ but the constraint ξ ∈ E needs to be approximated

ξ ∈ E is replaced by a finite number of constraints on inducing points in

S. Da Veiga and A. Marrel, Gaussian process modeling with inequality
constraints, Annales de la faculté des sciences de Toulouse Mathématiques
21 (2012) 529-555.

S. Golchi, D. Bingham, H. Chipman and D.A. Campbell, Monotone emulation
of computer experiments, SIAM/ASA Journal on Uncertainty Quantification 3
(2015) 370-392.

ξ is replaced by a finite-dimensional approximation ξm in

H. Maatouk and X. Bay, Gaussian process emulators for computer
experiments with inequality constraints, Mathematical Geosciences 49(5)
(2017) 557-582.

(we follow this latter approach)
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The finite dimensional approximation

Maatouk and Bay 2017 suggest to consider, in dimension d = 1,

ξm(t) =
m∑

j=1

Ejφj (t),

where

Ej = ξ(tj )

t1 = 0, t2 = 1/(m − 1), . . . , tm = 1

the φj are hat functions, φj (t) = (1− (m − 1)|t − tj |)+ for j = 1, . . . ,m
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The finite dimensional approximation

Computational benefit (Maatouk and Bay 2017) :

` ≤ ξm ≤ u ⇐⇒ ` ≤ E1, . . . ,Em ≤ u

ξm is a non-decreasing function⇐⇒ E1 ≤ . . . ≤ Em

ξm is a convex function⇐⇒ E2 − E1 ≤ . . . ≤ Em − Em−1

=⇒ Only a finite number of inequalities =⇒ guarantee to satisfy the constraints
everywhere on [0, 1]

Extension to dimension 2

ξm(t1, t2) =
m∑

j1,j2=1

Ej1,j2φj1 (t1)φj2 (t2)

Becomes problematic in higher dimension

We are developing other approaches (cf later)
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General framework

With the finite-dimensional approximation

ξm(t) =
m∑

j=1

Ejφj (t),

we study linear constraints of the form

` ≤ ΛE ≤ u

where

E = (E1, . . . ,Em)>

Λ is a q ×m matrix

` and u are q × 1 vectors

boundedness, monotonicity, convexity constraints can be enforced, as well as
combinations

=⇒ After observed values yn of (ξ(x1), . . . , ξ(xn))>, the conditional distribution is

L (ΛE|ΦE = yn, ` ≤ ΛE ≤ u) ,

where Φ = [φj (xi )]i=1,...,n,j=1,...,m is n ×m
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Sampling problem

Let M be the covariance matrix of E = (E1, . . . ,Em)> = (ξ(t1), . . . , ξ(tm))>

We have

L (ΛE|ΦE = yn) =N
(
ΛMΦ>(ΦMΦ>)−1yn,ΛMΛ> − ΛMΦ>(ΦMΦ>)−1ΦMΛ>

)
:=N (Λµ,ΛΣΛ>)

Hence the sampling problem is to sample

V n ∼ N (Λµ,ΛΣΛ>),

conditionally to ` ≤ V n ≤ u

We take Λ injective so that V n =⇒ E =⇒ ξm

Computing argmaxṼ pV n (Ṽ |` ≤ V n ≤ u) provides the mode

Computing E(V n|` ≤ V n ≤ u) provides the conditional mean

Sampling V n given ` ≤ V n ≤ u provides conditional samples
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Illustration

FIGURE: (from Maatouk and Bay 2017) Illustration of conditional samples with constraints
(monotone GP sample paths), conditional mean without constraints (unconstrained Kriging mean),
conditional mean with monotonicity constraints (increasing Kriging mean) and mode with
monotonicity constraints (inequality mode)
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Algorithms

The mode is obtained by solving

v̂n ∈ argmin
V∈Rq

`≤V≤u

(V − Λµ)>(ΛΣΛ>)−1(v − Λµ)

quadratic function optimization subject to linear inequality constraints

quite fast algorithms

corresponds to the (unconstrained) conditional mean Λµ if it satisfies the
inequality constraints

Sampling V n ∼ N (Λµ,ΛΣΛ>) subject to ` ≤ V n ≤ u :

rejection sampling from the mode Maatouk and Bay 2017 (low acceptance rate for
q large)

We investigate

Hastings metropolis

Gibbs sampling (never rejects) Taylor and Benjamini 2017

Minimax tilting Botev 2017 JRSSB

Hamiltonian Monte Carlo Pakman and Paninski 2014 JCGS

and conclude that Hamiltonian Monte Carlo is an efficient sampler in our framework
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An application to nuclear engineering
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FIGURE: Two dimensional nuclear engineering example. radius and density of uranium sphere
=⇒ criticality coefficient. Monononicity constraints. Left : unconstrained Gaussian process
models. Right : constrained Gaussian process models. The Q2 measures the prediction quality and
should be close to 1
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The paper

A. F. López-Lopera, F. Bachoc, N. Durrande and O. Roustant, Finite-dimensional
Gaussian approximation with linear inequality constraints, SIAM/ASA Journal on
Uncertainty Quantification, forthcoming.
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Adaptation to higher dimension

In dimension d ≥ 5, say, we can not use the full grid approach

We aim for a representation

ξm = function(E1, . . . ,Em)

so that we keep
ξm ∈ E⇐⇒(E1, . . . ,Em) ∈ C

Approach 1 : additive Gaussian processes

ξm(x1, . . . , xd ) =
d∑

i=1

ξm,i (xi ) +
∑

i,j=1,...,d
i 6=j

ξm,i,j (xi , xj )

with grids in dimensions 1 and 2.

Approach 2 : Tensorized grid with less grid points for less important variables
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Covariance parameter estimation under constraints

Setting

For simplicity, let us forget about the finite-dimensional approximation ξm (but see
the papers)

We observe the Gaussian process ξ at x1, . . . , xn ∈ [0, 1]d and let
Y n = (ξ(x1), . . . , ξ(xn))>

We assume that ξ has covariance function k

We consider the model of covariance functions {kθ; θ ∈ Θ}
The inequality constraints are ξ ∈ E

The maximum likelihood estimator of θ is

θ̂ML ∈ argmax
θ∈Θ

Ln(θ)

with

Ln(θ) = log(pθ(Y n)) = log
(

1
(2π)n/2|Rθ|

e−
1
2 Y>n R−1

θ
Y n

)

(it ignores the information ξ ∈ E)

explicit expression of Ln with O(n3) cost
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Constrained maximum likelihood estimator

The constrained maximum likelihood estimator of θ is

θ̂cML ∈ argmax
θ∈Θ

LC,n(θ)

with
LC,n(θ) = log(pθ(Y n))− log(pθ(ξ ∈ E)) + log(pθ(ξ ∈ E|Y n))

The additional terms log(pθ(ξ ∈ E)) and log(pθ(ξ ∈ E|Y n)) have no explicit
expressions

They need to be approximated by numerical integration or Monte Carlo : Genz
1992 JCGS, Botev 2017 JRSSB

=⇒We aim at comparing θ̂ML and θ̂cML asymptotically
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Two asymptotic frameworks for covariance parameter estimation

Asymptotics (number of observations n→ +∞) is an active area of research
(case without constraints so far)
There are several asymptotic frameworks because there are several possible
location patterns for the observation points

Two main asymptotic frameworks

fixed-domain asymptotics : The observation points are dense in a bounded
domain
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increasing-domain asymptotics : number of observation points is proportional to
domain volume −→ unbounded observation domain.
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Existing increasing-domain asymptotic results

Consistent estimation is possible for all covariance parameters (that are
identifiable in finite-sample). [asymptotic independence between observations]

Asymptotic normality proved for maximum likelihood

Mardia K, Marshall R, Maximum likelihood estimation of models for residual
covariance in spatial regression, Biometrika 71 (1984) 135-146.

N. Cressie and S.N Lahiri, The asymptotic distribution of REML estimators,
Journal of Multivariate Analysis 45 (1993) 217-233.

N. Cressie and S.N Lahiri, Asymptotics for REML estimation of spatial
covariance parameters, Journal of Statistical Planning and Inference 50
(1996) 327-341.

F. Bachoc, Asymptotic analysis of the role of spatial sampling for covariance
parameter estimation of Gaussian processes, Journal of Multivariate
Analysis 125 (2014) 1-35.
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Existing fixed-domain asymptotic results

Consistent estimation is impossible for some covariance parameters (identifiable
in finite-sample), see e.g.

Zhang, H., Inconsistent Estimation and Asymptotically Equivalent
Interpolations in Model-Based Geostatistics, Journal of the American
Statistical Association (99), 250-261, 2004.

Stein M, Interpolation of Spatial Data : Some Theory for Kriging, Springer,
New York, 1999.
covariance parameters that can not be estimated consistently are called
non-microergodic
covariance parameters that can be estimated consistently are called microergodic

For instance, consider the set of covariance functions {kθ, θ ∈ (0,∞)2} on [0, 1]

given by θ = (σ2, α) and kθ(t1, t2) = σ2e−α|t1−t2|

σ2 is non-microergodic
α is non-microergodic
σ2α is microergodic

=⇒We address fixed-domain asymptotics here
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Preservation of consistency

Setting :

ξ is a Gaussian process on [0, 1]d , d ∈ N, with mean zero and covariance function
k

θ = (σ2, α1, . . . , αd )

kθ is the covariance function of the Gaussian process
(x1, . . . , xd )→ σ2ξ(α1x1, . . . , αd xd )

=⇒ k = kθ0 with θ0 = (1, . . . , 1)

The constraints are given by the set E and are boundedness, monotonicity or
convexity
(xi )i∈N is dense in [0, 1]d

Proposition : preservation of consistency for ML (López-Lopera, Bachoc, Durrande, Roustant
2018)
Assume that the covariance function k satisfy technical conditions (see papers).
Assume ∀ε > 0,

P(‖θ̂ML − θ0‖ ≥ ε) −−−−→
n→∞

0 (unconditional consistency of ML)

Then, we have P(ξ ∈ E) > 0, and thus

P(‖θ̂ − θ0‖ ≥ ε | ξ ∈ E) −−−−→
n→∞

0 (conditional consistency of ML)
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Preservation of consistency

Proposition : preservation of consistency for cML (López-Lopera, Bachoc, Durrande,
Roustant 2018)

Assume that the covariance function k satisfy technical conditions (see papers).
Assume that ∀ε > 0 and ∀M <∞, (sufficient condition for unconditional consistency of ML)

P
(

sup
‖θ−θ0‖≥ε

(Ln(θ)− Ln(θ0)) ≥ −M
)
−−−−→
n→∞

0

Then, (sufficient condition for conditional consistency of cML)

P
(

sup
‖θ−θ0‖≥ε

(LC,n(θ)− LC,n(θ0)) ≥ −M
∣∣∣∣ ξ ∈ E) −−−−→n→∞

0

Consequently (conditional consistency of ML and cML)

θ̂ML
P|ξ∈E−−−−→
n→∞

θ0 and θ̂cML
P|ξ∈E−−−−→
n→∞

θ0
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Asymptotic normality result 1 : variance estimation

Setting :

Gaussian process ξ on [0, 1]d , d ∈ N, with zero mean function and covariance
function k

Monotonicity, boundedness or convexity constraints (as before)

(xi )i∈N is dense in [0, 1]d

θ = σ2 and kθ(u1, u2) = σ2k(u1, u2)

Known results

It is well-known that in this case
√

n
(
σ̂2

ML − σ
2
0

)
→Ln→∞ N(0, 2σ4

0)
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Asymptotic normality result 1 : variance estimation

Notation : we write Xn →L|ξ∈En→∞ L when for all bounded measurable function f :

E(f (Xn)|ξ ∈ E)→n→∞

∫
f (x)dL(x)

Theorem (Bachoc, Lagnoux, López-Lopera 2018)

Under technical conditions on k and the sequence (xi )i∈N (see papers), we have

√
n
(
σ̂2

ML − σ
2
0

)
→L|ξ∈En→∞ N(0, 2σ4

0)

and √
n
(
σ̂2

cML − σ
2
0

)
→L|ξ∈En→∞ N(0, 2σ4

0)

Same asymptotic distribution as the (unconstrained) maximum likelihood
estimator, in the unconstrained case

No asymptotic impact of the constraints
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Asymptotic normality result 2 : Matérn model

Setting :
Gaussian process ξ on [0, 1]d , d = 1, 2, 3, with zero mean function and
covariance function k
Monotonicity, boundedness or convexity constraints (as before)
(xi )i∈N is dense in [0, 1]d

θ = (σ2, ρ) ∈ (0,∞)2 and

kθ,ν(x , x ′) = σ2Kν
(
||x − x ′||

ρ

)
=

σ2

Γ(ν)2ν−1

(
||x − x ′||

ρ

)ν
κν

(
||x − x ′||

ρ

)
Γ is the Gamma function
κν is the modified Bessel function of the second kind
ν > 0 (assumed known) is the smoothness parameter : ν > r ⇐⇒ corresponding
Gaussian process if r times differentiable

In this case :
σ2 is non-microergodic
ρ is non-microergodic
σ2/ρ2ν is microergodic and

√
n
(
σ̂2

ML

ρ̂2ν
ML
−

σ2
0

ρ2ν
0

)
L−−−−−→

n→+∞
N
(

0, 2
(
σ2

0

ρ2ν
0

)2)
C. G. Kaufman and B. A. Shaby, The Role of the Range Parameter for Estimation
and Prediction in Geostatistics, Biometrika 100 (2013) 473–484.
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Asymptotic normality result 2 : Matérn model

We show

Theorem (Bachoc, Lagnoux, López-Lopera 2018)

Under technical conditions on ν and the sequence (xi )i∈N (see papers), we have

√
n
(
σ̂2

ML

ρ̂2ν
ML
−

σ2
0

ρ2ν
0

)
L|ξ∈E−−−−−→
n→+∞

N
(

0, 2
(
σ2

0

ρ2ν
0

)2)
and

√
n
(
σ̂2

cML

ρ̂2ν
cML
−

σ2
0

ρ2ν
0

)
L|ξ∈E−−−−−→
n→+∞

N
(

0, 2
(
σ2

0

ρ2ν
0

)2)

Same conclusions as for the estimation of a variance parameter
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An illustration
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FIGURE: An example with the estimation of σ2 with boundedness constraints. Distribution of
n1/2(σ̂2 − σ2

0). n = 20 (top left), n = 50 (top right) and n = 80 (bottom). Green : ML. Blue : cML.
Red : Gaussian limit
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The papers

For consistency :

A. F. López-Lopera, F. Bachoc, N. Durrande and O. Roustant, Finite-dimensional
Gaussian approximation with linear inequality constraints, SIAM/ASA Journal on
Uncertainty Quantification, forthcoming

For asymptotic normality :

F. Bachoc, Agnès Lagnoux and A. F. López-Lopera, Maximum likelihood
estimation for Gaussian processes under inequality constraints, Electronic
Journal of Statistics, forthcoming
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Conclusion

Summary

Inequality constraints correspond to additional information (e. g. physical
knowledge)

Taking them into account can significantly improve the predictions

With a computational cost (explicit =⇒ Monte Carlo)

The constrained maximum likelihood estimator (cML) has similar consistency
guarantees as maximum likelihood (ML)

Asymptotically, we do not see an impact of the constraints and ML ≈ cML

For small sample size, cML appears to be beneficial

Ongoing work

The finite-dimensional approach in higher dimension
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Thank you for your attention !
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