Gaussian processes with inequality constraints: theory and computation

François Bachoc^{1,4}, Nicolas Durrande², Agnès Lagnoux¹, Andrés Felipe Lopez Lopera³, Olivier Roustant¹

> ¹Institut de Mathématiques de Toulouse ²Monumo (Cambridge) ³Université de Valenciennes ⁴Institut universitaire de France (IUF)

> > Université de Lausanne

March 2025

1 Gaussian processes (without inequality constraints)

- 2 Gaussian processes under inequality constraints
- 3 Theory : maximum likelihood under inequality constraints
- 4 Computation : finite-dimensional approximation and MaxMod algorithm
- 5 Theory : convergence of the MaxMod algorithm

Motivation : computer models

Computer models have become essential in science and industry!

For clear reasons : cost reduction, possibility to explore hazardous or extreme scenarios...

Computer models as expensive functions

A computer model can be seen as a deterministic function

$$f: \mathbb{X} \subset \mathbb{R}^d \to \mathbb{R}$$
$$x \mapsto f(x).$$

- *x* : tunable simulation parameter (e.g. geometry).
- f(x) : scalar quantity of interest (e.g. energetic efficiency).

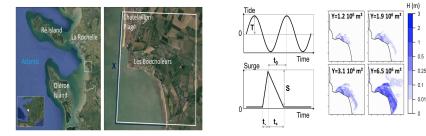
The function *f* is usually

- continuous (at least)
- non-linear
- only available through evaluations $x \mapsto f(x)$.

 \implies Black box model.

Figures from [Azzimonti et al., 2019].

Hydrodynamic numerical simulations made by BRGM [Rohmer et al., 2018].



Input x with d = 5.

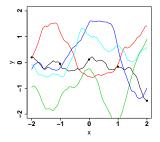
- Tide (meter).
- Surge peak (meter).
- Phase difference between surge peak and high tide (hour).
- Time duration of raising part of surge (hour).
- Time duration of falling part of surge (hour).

• Output f(x).

- Maximal flooding area (m²).
- 1 hour simulation time.

Gaussian processes (Kriging model)

Modeling the **black box function** as a **single realization** of a Gaussian process $x \to \xi(x)$ on the domain $\mathbb{X} \subset \mathbb{R}^d$.



Usefulness

Predicting the continuous realization function, from a finite number of **observation points**.

Definition

A stochastic process $\xi : \mathbb{X} \to \mathbb{R}$ is Gaussian if for any $x_1, ..., x_n \in \mathbb{X}$, the vector $(\xi(x_1), ..., \xi(x_n))$ is a Gaussian vector.

Mean and covariance functions

The distribution of a Gaussian process is characterized by :

Its mean function :

 $x\mapsto m(x)=\mathbb{E}(\xi(x)).$

- Can be any function $\mathbb{X} \to \mathbb{R}$.
- Will be the zero function throughout this talk !

Its covariance function :

$$(x_1, x_2) \mapsto k(x_1, x_2) = Cov(\xi(x_1), \xi(x_2)).$$

• Must be symmetric non-negative definite (to provide "valid" covariance matrices).

Conditional distribution

Gaussian process ξ observed at $x_1, ..., x_n$, without noise.

Notation

- $y = (\xi(x_1), ..., \xi(x_n))^{\top}$.
- **R** is the $n \times n$ matrix $[k(x_i, x_j)]$.
- $r(x) = (k(x, x_1), ..., k(x, x_n))^{\top}$.

Conditional mean

The conditional mean is $m_n(x) = \mathbb{E}(\xi(x)|\xi(x_1),...,\xi(x_n)) = r(x)^\top R^{-1}y$.

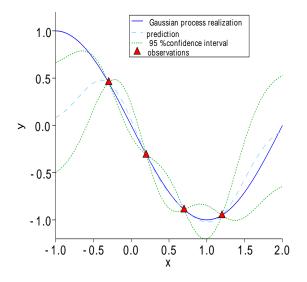
Conditional variance

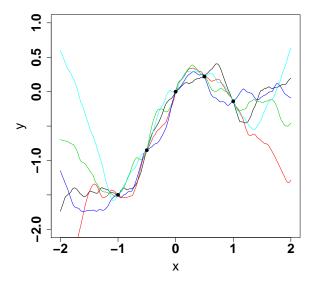
The conditional variance is
$$k_n(x, x) = var(\xi(x)|\xi(x_1), ..., \xi(x_n)) = \mathbb{E}\left[(\xi(x) - m_n(x))^2\right] = k(x, x) - r(x)^\top R^{-1}r(x).$$

Conditional distribution

Conditionally to $\xi(x_1), ..., \xi(x_n), \xi$ is a Gaussian process with (conditional) mean function m_n and (conditional) covariance function $(u, v) \mapsto k_n(u, v) = k(u, v) - r(u)^\top R^{-1} r(v).$

Illustration of conditional mean and variance





Parameterization

Covariance function model $\{k_{\theta}, \theta \in \Theta\}$ for the Gaussian process ξ .

- $\bullet \Theta \subset \mathbb{R}^{p}.$
- \bullet *θ* is the multidimensional covariance parameter.
- **•** k_{θ} is a covariance function.

Observations

 ξ is observed at $x_1, ..., x_n \in \mathbb{X}$, yielding the Gaussian vector $y = (\xi(x_1), ..., \xi(x_n))^\top$.

Estimation

Objective : build estimator $\hat{\theta}(y)$.

Explicit Gaussian likelihood function for the observation vector y.

Maximum likelihood

Define R_{θ} as the covariance matrix of $y = (\xi(x_1), ..., \xi(x_n))^{\top}$ with covariance function $k_{\theta} : R_{\theta} = [k_{\theta}(x_i, x_j)]_{i,j=1,...,n}$. The maximum likelihood estimator of θ is

$$\hat{\theta}_{ML} \in \operatorname*{argmax}_{\theta \in \Theta} \mathcal{L}_n(\theta)$$

with

$$\mathcal{L}_n(\theta) = \log(p_\theta(y)) = \log\left(\frac{1}{(2\pi)^{n/2}|R_\theta|}e^{-\frac{1}{2}y^\top R_\theta^{-1}y}\right).$$

Outline

1 Gaussian processes (without inequality constraints)

- 2 Gaussian processes under inequality constraints
- 3 Theory : maximum likelihood under inequality constraints
- 4 Computation : finite-dimensional approximation and MaxMod algorithm
- 5 Theory : convergence of the MaxMod algorithm

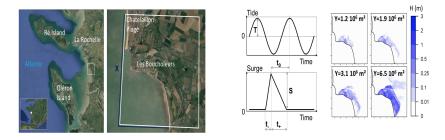
We consider a Gaussian process ξ on $\mathbb{X} = [0, 1]^d$ for which we assume that additional information is available.

- $\xi(x)$ belongs to $[\ell, u]$ for $x \in [0, 1]^d$ (boundedness constraints).
- $\partial \xi(x) / \partial x_i \ge 0$ for $x \in [0, 1]^d$ and i = 1, ..., d (monotonicity constraints).
- ξ is convex on $[0, 1]^d$ (convexity constraints).
- Modifications and/or combinations of the above constraints.

Application examples in computer experiments.

- **Boundedness :** computer model output belongs to ℝ⁺ (energy) or [0, 1] (concentration, energetic efficiency).
- Monotonicity : inputs are known to have positive effects (more input power → more output energy).

Coastal flooding : the constraints



Input x.

- : Tide (meter). Output increases when tide increases !
- : Surge peak (meter). Output increases when surge increases!
- : Phase difference between surge peak and high tide (hours).
- : Time duration of raising part of surge (hours).
- : Time duration of falling part of surge (hours).

• Output f(x).

• Maximal flooding area (m²).

Generic form of the constraints :

 $\xi\in \mathcal{E}$

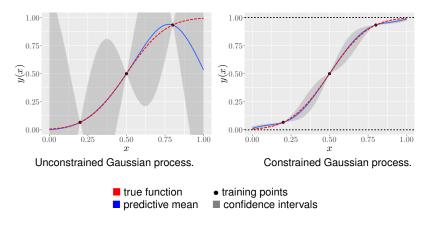
where \mathcal{E} is a set of functions from $[0, 1]^d \to \mathbb{R}$ such that $P(\xi \in \mathcal{E}) > 0$.

Impact.

- **New Bayesian model :** The prior on the realization function is $P(\xi \in .|\xi \in \mathcal{E})$.
- **New conditional distribution :** Conditional distribution of *ξ* given
 - $\xi(x_1) = y_1, \ldots, \xi(x_n) = y_n$ (data interpolation),
 - $\xi \in \mathcal{E}$ (inequality constraints).

■ New estimation of the covariance parameters θ in the covariance model $\{k_{\theta}; \theta \in \Theta\}$.

Illustration of constraint benefits

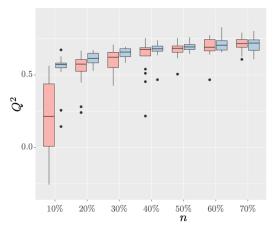


Target function : bounded and monotonic.

Results on coastal flooding example

Gaussian process predictive score.

- Without constraints.
- With constraints.



The Q^2 (\leq 1) measures the prediction quality,

- $Q^2 = 1$: perfect prediction,
- $Q^2 = 0$: no better than constant prediction.

An application to nuclear engineering

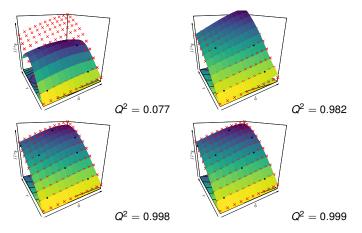


Figure – Two-dimensional nuclear engineering example. **Radius** and **density** of uranium sphere \implies **criticality coefficient**. Monononicity constraints.

- Left : unconstrained Gaussian process models.
- Right : constrained Gaussian process models.

Outline

1 Gaussian processes (without inequality constraints)

- 2 Gaussian processes under inequality constraints
- 3 Theory : maximum likelihood under inequality constraints
- 4 Computation : finite-dimensional approximation and MaxMod algorithm
- 5 Theory : convergence of the MaxMod algorithm

Constrained maximum likelihood estimator

The constrained maximum likelihood estimator for $\boldsymbol{\theta}$ is

 $\hat{\theta}_{cML} \in \operatorname*{argmax}_{\theta \in \Theta} \mathcal{L}_{\mathcal{C},n}(\theta)$

with

$$\begin{aligned} \mathcal{L}_{\mathcal{C},n}(\theta) &= \log(p_{\theta}(y|\xi\in\mathcal{E})) \\ &= \log(p_{\theta}(y)) - \log(\mathbb{P}_{\theta}(\xi\in\mathcal{E})) + \log(\mathbb{P}_{\theta}(\xi\in\mathcal{E}|y)). \end{aligned}$$

- The additional terms $\log(\mathbb{P}_{\theta}(\xi \in \mathcal{E}))$ and $\log(\mathbb{P}_{\theta}(\xi \in \mathcal{E}|y))$ have no explicit expressions.
- They need to be approximated by numerical integration or Monte Carlo : [Genz, 1992, Botev, 2017].
- We do not address this approximation issue in this theory section (see next computation section).

Main questions :

- $\hat{\theta}_{ML}$ ignores the constraints. Is it biased conditionally to the constraints?
 - For instance if $\hat{\theta}_{ML}$ is the variance estimator, if the true variance is 4 and if the constraints are $\xi \in [-1, 1]$, does $\hat{\theta}_{ML}$ underestimate the variance?
- Does $\hat{\theta}_{cML}$ improve over $\hat{\theta}_{ML}$ by taking the constraints into account?

We address these questions asymptotically.

Fixed-domain asymptotics with fixed constraints

- Asymptotics (number of observations $n \to +\infty$) is an active area of research.
- Mostly without constraints.
- There are several asymptotic frameworks because there are several possible location patterns for the observation points.

Fixed-domain asymptotics

The observation points x_1, \ldots, x_n are dense in a bounded domain.

Fixed constraints

Fixed constraint set ${\ensuremath{\mathcal E}}$ with

$$\mathbb{P}(\xi \in \mathcal{E}) > 0.$$

Microergodic parameters

- Consistent estimation is impossible for some covariance parameters (identifiable in finite-sample), see e.g. [Zhang, 2004, Stein, 1999].
 - Covariance parameters that yield equivalent Gaussian measures are called non-microergodic. They cannot be estimated consistently.
 - Covariance parameters that yield orthogonal Gaussian measures are called microergodic. They can be estimated consistently.
- For instance, consider the set of covariance functions $\{k_{\theta}, \theta \in (0, \infty)^2\}$ on [0, 1] given by $\theta = (\sigma^2, \alpha)$ and $k_{\theta}(t_1, t_2) = \sigma^2 e^{-\alpha |t_1 t_2|}$.
 - σ^2 is non-microergodic.
 - $\ \alpha$ is non-microergodic.
 - $\sigma^2 \alpha$ is microergodic.

Some initial properties

Let $\theta_0 \in \Theta$ such that $k = k_{\theta_0}$ (true covariance parameter).

A non-microergodic parameter cannot be estimated consistently conditionally to the constraints.

• Has a short proof using that $\mathbb{P}(\xi \in \mathcal{E}) > 0$ is fixed.

If
$$\hat{\theta}_{ML} - \theta_0 = O_{\mathbb{P}}(n^{-1/2})$$
 then $\hat{\theta}_{ML} - \theta_0 = O_{\mathbb{P}|\xi \in \mathcal{E}}(n^{-1/2})$ which means

$$\limsup_{n\to\infty} \mathbb{P}\left(\left.\sqrt{n}\|\hat{\theta}_{ML}-\theta_0\|\geq M\right|\xi\in\mathcal{E}\right)\underset{M\to\infty}{\longrightarrow} 0.$$

Holds because

$$\begin{split} \mathbb{P}\left(\left.\sqrt{n}\|\hat{\theta}_{ML}-\theta_{0}\|\geq M\right|\xi\in\mathcal{E}\right) &=\frac{1}{\mathbb{P}\left(\xi\in\mathcal{E}\right)}\mathbb{P}\left(\sqrt{n}\|\hat{\theta}_{ML}-\theta_{0}\|\geq M,\xi\in\mathcal{E}\right)\\ &\leq\frac{1}{\mathbb{P}\left(\xi\in\mathcal{E}\right)}\mathbb{P}\left(\sqrt{n}\|\hat{\theta}_{ML}-\theta_{0}\|\geq M\right) \end{split}$$

and $\mathbb{P}(\xi \in \mathcal{E}) > 0$ is fixed.

- \implies Rate of convergence is preserved with constraints.
- \implies What about asymptotic distribution?

Asymptotic normality result 1 : variance estimation

Setting :

- Gaussian process ξ on $[0, 1]^d$.
- Monotonicity, boundedness or convexity constraints.
- Observation point sequence $(x_i)_{i \in \mathbb{N}}$ is dense in $[0, 1]^d$.
- $\theta = \sigma^2$ and $k_{\theta}(u_1, u_2) = \sigma^2 \tilde{k}(u_1, u_2)$, for some fixed \tilde{k} .
- True covariance function $k = \sigma_0^2 \tilde{k}$.

Asymptotic normality without constraints

It is well-known that in this case

$$\sqrt{n}\left(\hat{\sigma}_{ML}^2-\sigma_0^2\right)\xrightarrow[n\to\infty]{\mathcal{L}}\mathcal{N}(0,2\sigma_0^4).$$

Asymptotic normality result 1 : variance estimation

Notation (convergence in distribution given the constraints) : we write

$$X_n \stackrel{\mathcal{L}|\xi \in \mathcal{E}}{\underset{n \to \infty}{\longrightarrow}} L$$

when for all bounded measurable function f:

$$\mathbb{E}(f(X_n)|\xi\in\mathcal{E})\xrightarrow[n\to\infty]{}\int f(x)dL(x).$$

Theorem [Bachoc et al., 2019]

Under technical conditions on k and the sequence $(x_i)_{i \in \mathbb{N}}$ (see paper), we have

$$\sqrt{n} \left(\hat{\sigma}_{\textit{ML}}^2 - \sigma_0^2 \right) \overset{\mathcal{L}|\xi \in \mathcal{E}}{\underset{n \to \infty}{\longrightarrow}} \mathcal{N}(0, 2\sigma_0^4)$$

and

$$\sqrt{n} \left(\hat{\sigma}_{\textit{CML}}^2 - \sigma_0^2 \right) \overset{\mathcal{L}|\xi \in \mathcal{E}}{\underset{n \to \infty}{\longrightarrow}} \mathcal{N}(0, 2\sigma_0^4).$$

- Same asymptotic distribution as the (unconstrained) maximum likelihood estimator, in the unconstrained case.
- No asymptotic impact of the constraints.

Asymptotic normality result 2 : Matérn model

Setting :

- Gaussian process ξ on $[0, 1]^d$, d = 1, 2, 3, with covariance function k.
- Monotonicity, boundedness or convexity constraints.
- Observation point sequence $(x_i)_{i \in \mathbb{N}}$ is dense in $[0, 1]^d$.
- $\theta = (\sigma^2, \rho) \in (0, \infty)^2$ and

$$k_{\theta,\nu}(x,x') = \sigma^2 K_{\nu}\left(\frac{\|x-x'\|}{\rho}\right) = \frac{\sigma^2}{\Gamma(\nu)2^{\nu-1}}\left(\frac{\|x-x'\|}{\rho}\right)^{\nu} \kappa_{\nu}\left(\frac{\|x-x'\|}{\rho}\right)$$

- Γ is the Gamma function.
- κ_{ν} is the modified Bessel function of the second kind.
- *ν* > 0 (assumed known) is the smoothness parameter : *ν* > *r* ⇒ corresponding Gaussian process is *r* times differentiable.

True covariance function $k = k_{\theta_0,\nu}, \theta_0 = (\sigma_0^2, \rho_0).$

In this case :

 \bullet σ^2 is non-microergodic

 ρ is non-microergodic

• $\sigma^2/\rho^{2\nu}$ is microergodic and

$$\sqrt{n} \bigg(\frac{\widehat{\sigma}_{ML}^2}{\widehat{\rho}_{ML}^{2\nu}} - \frac{\sigma_0^2}{\rho_0^{2\nu}} \bigg) \xrightarrow[n \to +\infty]{} \mathcal{N} \bigg(0, 2 \bigg(\frac{\sigma_0^2}{\rho_0^{2\nu}} \bigg)^2 \bigg).$$

This is shown in [Kaufman and Shaby, 2013] using results from [Du et al., 2009, Wang and Loh, 2011].

Theorem [Bachoc et al., 2019]

Under technical conditions on ν and the sequence $(x_i)_{i \in \mathbb{N}}$ (see paper), we have

$$\sqrt{n} \left(\frac{\widehat{\sigma}_{ML}^2}{\widehat{\rho}_{ML}^{2\nu}} - \frac{\sigma_0^2}{\rho_0^{2\nu}} \right) \xrightarrow[n \to +\infty]{\mathcal{L}|\xi \in \mathcal{E}} \mathcal{N} \left(0, 2 \left(\frac{\sigma_0^2}{\rho_0^{2\nu}} \right)^2 \right)$$

and

$$\sqrt{n} \left(\frac{\widehat{\sigma}_{cML}^2}{\widehat{\rho}_{cML}^{2\nu}} - \frac{\sigma_0^2}{\rho_0^{2\nu}} \right) \xrightarrow[n \to +\infty]{L|\xi \in \mathcal{E}} \mathcal{N} \left(0, 2 \left(\frac{\sigma_0^2}{\rho_0^{2\nu}} \right)^2 \right).$$

Same conclusions as for the estimation of a variance parameter.

An illustration

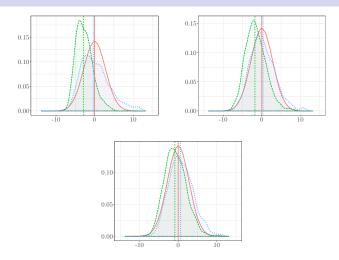


Figure – An example with the estimation of σ_0^2 with boundedness constraints.

Distribution of $n^{1/2}(\hat{\sigma}^2 - \sigma_0^2)$. n = 20 (top left), n = 50 (top right) and n = 80 (bottom).

- Green : ML.
- Blue : cML.
- Red : Gaussian limit.

Some proof ideas : ML for the variance

When $k_{\theta} = \sigma^2 \tilde{k}$ and for boundedness constraint.

Write the variance estimator as

$$\begin{aligned} \widehat{\sigma}_{ML}^{2} &= \frac{\sigma_{0}^{2}}{n} \sum_{i=1}^{n} \frac{(y_{i} - \mathbb{E}[y_{i}|y_{1}, \dots, y_{i-1}])^{2}}{\operatorname{Var}(y_{i}|y_{1}, \dots, y_{i-1})} \\ &= \frac{\sigma_{0}^{2}}{n} \sum_{i=1}^{m} \frac{(y_{i} - \mathbb{E}[y_{i}|y_{1}, \dots, y_{i-1}])^{2}}{\operatorname{Var}(y_{i}|y_{1}, \dots, y_{i-1})} + \frac{\sigma_{0}^{2}}{n} \sum_{i=m+1}^{n} \frac{(y_{i} - \mathbb{E}[y_{i}|y_{1}, \dots, y_{i-1}])^{2}}{\operatorname{Var}(y_{i}|y_{1}, \dots, y_{i-1})} \\ &:= A_{m} + B_{m,n} \end{aligned}$$

with fixed *m* and as $n \to \infty$.

- Approximate boundedness event by $\{y_i \in [\ell, u]; i = 1, ..., m\}$.
- A_m is negligible as $n \to \infty$.
- Conditioning by approximated boundedness does not affect $B_{m,n}$ by independence so $\sqrt{n}(B_{m,n} \sigma_0^2) \rightarrow \mathcal{N}(0, 2\sigma_0^4)$ also conditionally.
- Conclude by letting $m = m_n \rightarrow \infty$ as $n \rightarrow \infty$ slowly enough.
- Same method for monotonicity and convexity.

Some proof ideas : ML for Matérn

Introduce estimated variance with imposed correlation length

$$\bar{\sigma}_n^2(\rho) \in \operatorname*{argmax}_{\sigma^2 \in (0,\infty)} \mathcal{L}_n(\sigma^2, \rho).$$

Then from [Kaufman and Shaby, 2013, Du et al., 2009, Wang and Loh, 2011], for $0 < \rho_l < \rho_u < \infty$,

$$\sup_{\rho_1,\rho_2\in [\rho_l,\rho_u]} \left| \frac{\bar{\sigma}_n^2(\rho_1)}{\rho_1^{2\nu}} - \frac{\bar{\sigma}_n^2(\rho_2)}{\rho_2^{2\nu}} \right| = o_{\mathbb{P}}(1/\sqrt{n}).$$

We conclude with the previous result for

$$\frac{\bar{\sigma}_n^2(\rho_0)}{\rho_0^{2\nu}}$$

For boundedness constraint.

- We show that the two added terms in the constrained likelihood are negligible.
- For the unconditional constraints :

$$|\log(\mathbb{P}(\sigma_1 \xi \in \mathcal{E})) - \log(\mathbb{P}(\sigma_2 \xi \in \mathcal{E}))| \leq ext{Constant} \left| \sigma_1^2 - \sigma_2^2 \right|.$$

Using Tsirelson's theorem.

For the conditional constraints :

$$\sup_{\theta\in\Theta} |\log(\mathbb{P}_{\theta}(\xi\in\mathcal{E}|y))| = o_{\mathbb{P}|\xi\in\mathcal{E}}(1).$$

Because conditional constraint probability \rightarrow 1. More technical part. Using Borel-TIS inequality, and RKHS arguments for the Matérn case.

Outline

1 Gaussian processes (without inequality constraints)

- 2 Gaussian processes under inequality constraints
- 3 Theory : maximum likelihood under inequality constraints

4 Computation : finite-dimensional approximation and MaxMod algorithm

5 Theory : convergence of the MaxMod algorithm

Handling the constraints computationally

- For boundedness constraints, it is possible to consider models of the form $y_i = T(\xi(x_i))$ with *T* bijective from \mathbb{R} to $[\ell, u]$ and ξ a Gaussian process.
 - No computational problem.
- For monotonicity and convexity constraints, the model $P(\xi \in .|\xi \in \mathcal{E})$ has become standard.
 - But the constraint $\xi \in \mathcal{E}$ needs to be approximated.
 - $\xi \in \mathcal{E}$ is replaced by a finite number of constraints on inducing points in [Da Veiga and Marrel, 2012, Golchi et al., 2015].

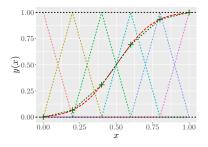
 $(\partial_i \xi)(s) \ge 0, s \in [0, 1]^d \qquad \approx \qquad (\partial_i \xi)(s_j) \ge 0, j = 1, \dots, m.$

 ξ is replaced by a finite-dimensional approximation ξ_m in [López-Lopera et al., 2018, Maatouk and Bay, 2017].

In dimension 1, for $x \in [0, 1]$:

$$\begin{aligned} \xi_m(x) &= \sum_{i=1}^m \xi(t_i) \phi_i(x) \\ &= \sum_{i=1}^m \xi_m(t_i) \phi_i(x), \end{aligned}$$

0 = t₁ < ··· < t_m = 1 : knots,
 φ_i : hat basis function centered at t_i.



34/54

Finite-dimensional linear inequalities for the constraints

In dimension 1

Boundedness

 ξ_m is bounded in $[\ell, u]$ on $[0,1] \iff \xi_m(t_i) \in [\ell, u]$ for $i = 1, \dots, m$.

Monotonicity

 ξ_m is non-decreasing on [0,1] $\iff \xi_m(t_i) \le \xi_m(t_{i+1})$ for $i = 1, \dots, m-1$.

In dimension d

Finite-dimensional approximation, for $u = (u_1, \dots, u_d) \in [0, 1]^d$,

$$\xi_m(u_1,\ldots,u_d) = \sum_{i_1=1}^{m_1}\cdots\sum_{i_d=1}^{m_d}\xi_m(t_{i_1}^{(1)},\ldots,t_{i_d}^{(d)})\phi_{i_1}^{(1)}(u_1)\cdots\phi_{i_d}^{(d)}(u_d),$$

- $(t_{i_1}^{(1)}, \ldots, t_{i_d}^{(d)})$: multi-dimensional knot,
- $\phi_{i_1}^{(1)}(\cdot) \cdots \phi_{i_d}^{(d)}(\cdot)$: multi-dimensional hat basis function.

For boundedness, monotonicity, component-wise convexity :

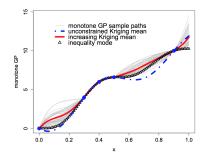
 $\xi_m \in \mathcal{E} \iff$ finite number of linear inequalities on $[\xi_m(t_{i_1}^{(1)}, \dots, t_{i_d}^{(d)})]_{i_1,\dots,i_d}$.

Mode and conditional distribution

In the frame of [López-Lopera et al., 2018, Maatouk and Bay, 2017].

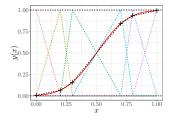
 \implies Boils down to optimizing/sampling w.r.t. the Gaussian vector $[\xi_m(t_{i_1}^{(1)}, \ldots, t_{i_d}^{(d)})]_{i_1, \ldots, i_d}.$

- The mode is the "most likely" function for ξ_m , obtained by quadratic optimization with linear constraints.
- Conditional realizations of ξ_m can be sampled approximately, for instance by Hamiltonian Monte Carlo for truncated Gaussian vectors [Pakman and Paninski, 2014].



The MaxMod algorithm in 1d

Introduced in [Bachoc et al., 2022].



Let \widehat{Y} be the mode function with an ordered set of knots :

 $\{t_1, \ldots, t_m\}, \text{ with } 0 = t_1 < \cdots < t_m = 1.$

■ Here, we aim at adding a new knot *t* (where ?).

To do so, we aim at maximising the total modification of the mode :

$$I(t) = \int_{[0,1]} \left(\widehat{Y}_{+t}(x) - \widehat{Y}(x)\right)^2 dx.$$
⁽¹⁾

The integral in (1) has a closed-form expression.

1D example under boundedness and monotonicity constraints

We write the mode $\widehat{Y} = Y^{MAP}$.

Mode

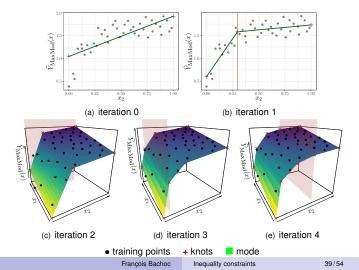
Conditional sample-path

2D example under monotonicity constraints

MaxMod in multiD

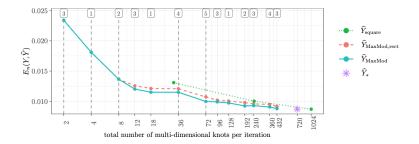
Adding new active variables or adding new knots to active variables.

Figure – Evolution of the MaxMod algorithm using $f(x) = \frac{1}{2}x_1 + \arctan(10x_2)$



MaxMod results on coastal example

- $E_n(Y, \hat{Y})$: relative square error.
- \hat{Y}_{square} : regularly spaced knots, identical number per variable.
- $\hat{Y}_{MaxMod,rect}$: regularly spaced knots, numbers per variable given by MaxMod.
- \hat{Y}_* : optimized by hand in a previous study.



		$E_n(Y, \widehat{Y})$		CPU tir	ne [s]
Approach	m	$\begin{bmatrix} L_n(I, I) \\ [1 \times 10^{-3}] \end{bmatrix}$	Training step	Computation	Sampling step
				of \widehat{Y}	with 100 realizations
$\widehat{Y}_{ m square}$	1024	8.72	49.1	8.03	non converged after 1 day
\widehat{Y}_{MaxMod}	432	8.81	949.5	0.58	108.72

François Bachoc

Inequality constraints

40/54

Outline

1 Gaussian processes (without inequality constraints)

- 2 Gaussian processes under inequality constraints
- 3 Theory : maximum likelihood under inequality constraints
- 4 Computation : finite-dimensional approximation and MaxMod algorithm
- 5 Theory : convergence of the MaxMod algorithm

When the sequence of knots is fixed and dense

Setting :

- Fixed data set from now on.
- **\square** \mathcal{I} : set of functions interpolating the data set.
- For variable $j \in \{1, ..., d\}$: sequence of one-dimensional knots $t_1^{(j)}, ..., t_{m_j}^{(j)}$ and $m_j \to \infty$. The sequence is dense in [0, 1].
- The mode $\widehat{Y}_{m_1,\ldots,m_d}: [0,1]^d \to \mathbb{R}.$
- Kernel k with corresponding RKHS \mathcal{H} of functions from $[0, 1]^d$ to \mathbb{R} .
- Inequality set \mathcal{C} of functions from $[0, 1]^d$ to \mathbb{R} .

Theorem [Bay et al., 2017, Bay et al., 2016]

Under some technical conditions

$$\widehat{Y}_{m_1,...,m_d} \to Y_{\text{opt}},$$

uniformly on $[0, 1]^d$, with

$$Y_{\mathsf{opt}} = \operatorname*{argmin}_{f \in \mathcal{H} \cap \mathcal{C} \cap \mathcal{I}} \|f\|_{\mathcal{H}}.$$

Definition

Let F_1, \ldots, F_d be (general) closed subsets of [0, 1] containing 0 and 1. Let *f* be a continuous function on $F = F_1 \times \cdots \times F_d$. Then, there exists a *unique continuous extension of f on* $[0, 1]^d$ *such that any 1D marginal cut functions* $u_i \mapsto f(u_i, t_{\sim i})$ *is affine* on intervals of $[0, 1] \setminus F_i$. Denoted $P_{F \to [0, 1]^d}(f)$, it is obtained by sequential 1D affine interpolations.

 $\implies P_{F \to [0,1]^d}(f)$ is called the multiaffine extension of *f*.

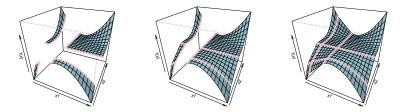


Figure - Sequential construction of the multiaffine extension (2D case).

Properties

The multiaffine extension is expressed with 2^d neighbours as

$$P_{F \to [0,1]^d}(f)(u_1,\ldots,u_d) = \sum_{\epsilon_1,\ldots,\epsilon_d \in \{-,+\}} \left(\prod_{j=1}^d \omega_{\epsilon_j}(u_j)\right) f(u_1^{\epsilon_1},\ldots,u_d^{\epsilon_d}),$$

where u_j^- , u_j^+ are the closest left and right neighbours of u_j in F_j , $\omega_+(u_j) = \frac{u_j - u_j^-}{u_j^+ - u_j^-}$ if $u_j \notin F_j$ and $\frac{1}{2}$ otherwise, and $\omega_-(u_j) = 1 - \omega_+(u_j)$. It preserves boundedness, monotonicity and componentwise convexity.

Setting :

For variable $j \in \{1, ..., d\}$: sequence of one-dimensional knots $t_1^{(j)}, ..., t_{m_j}^{(j)}$ and $m_j \to \infty$. The sequence has closure $F_j \subset [0, 1]$.

First approach : can we still find a limit function from $[0, 1]^d$ to \mathbb{R} ?

 \longrightarrow Not successful to stay on $[0, 1]^d$ here.

Instead : Work on $F := F_1 \times \cdots \times F_d$ and define

- **\mathcal{H}_F** RKHS of *k* restricted to $F \times F$.
- C_F : set of functions from F to \mathbb{R} which multi-affine extensions satisfy inequality constraints.
- \mathcal{I}_F : set of functions from *F* to \mathbb{R} which multi-affine extensions interpolate the data set.

The multiaffine extension for a fixed sequence of knots that is not dense

Theorem [Bachoc et al., 2022]

Under some technical conditions

$$\widehat{Y}_{m_1,...,m_d} \to Y_{\text{opt},\mathsf{F}},$$

uniformly on *F*, with

$$Y_{\text{opt},\mathsf{F}} = \operatorname*{argmin}_{f \in \mathcal{H}_F \cap \mathcal{C}_F \cap \mathcal{I}_F} \|f\|_{\mathcal{H}_F}.$$

As a consequence

$$\widehat{Y}_{m_1,\ldots,m_d} \to P_{F \to [0,1]^d} \left(Y_{\text{opt},F} \right),$$

uniformly on $[0, 1]^d$.

- Mode $\widehat{Y}_{MaxMod,m}$ at iteration *m* of MaxMod.
- We add an exploration reward to MaxMod.

Theorem [Bachoc et al., 2022]

Under some technical conditions, as $m \to \infty$,

$$\widehat{Y}_{MaxMod,m} \rightarrow Y_{opt},$$

uniformly on $[0, 1]^d$, with

$$Y_{\mathsf{opt}} = \operatorname*{argmin}_{f \in \mathcal{H} \cap \mathcal{C} \cap \mathcal{I}} \|f\|_{\mathcal{H}}.$$

Application to convergence of MaxMod

Proof arguments :

- \implies let us show that sequence of knots is dense.
 - As is common for algorithms maximizing acquisition functions (EGO,...), two ingredients :
 - \rightarrow Show that acquisition function is small at points close to existing ones.
 - ightarrow Show that acquisition function is large at points away from existing ones.
 - Here :
 - → Show that mode perturbation vanishes from $\hat{Y}_{MaxMod,m}$ to $\hat{Y}_{MaxMod,m+1}$ → previous convergence result.
 - $\rightarrow\,$ Acquisition function is large at points away from existing ones \longrightarrow the exploration reward.

Conclusion

Summary.

- Inequality constraints correspond to additional information (e.g. physical knowledge).
- Taking them into account can significantly improve the predictions.
- With a computational cost (explicit \implies Monte Carlo).
- Asymptotically, we do not see an impact of the constraints and ML \approx cML.
- MaxMod algorithm for higher dimension.

Main open question on likelihood theory.

■ How to analyse asymptotically *n*-dependent constraints $\xi \in \mathcal{E}_n$ with

$$\mathbb{P}(\xi \in \mathcal{E}_n) \underset{n \to \infty}{\longrightarrow} 0.$$

- For instance boundedness with tighter and tighter bounds or monotonicity over larger and larger domains.
- Should yield more impacts of the constraints?
- Previous proof techniques do not apply.

Subsequent work on computation.

- Additive model and corresponding MaxMod : [López-Lopera et al., 2022].
- Block additive model and corresponding MaxMod : [Deronzier et al., 2024].
 - PhD thesis of Mathis Deronzier.

References.

- Constrained Gaussian processes : [López-Lopera et al., 2018].
- Constrained Maximum Likelihood : [Bachoc et al., 2019].
- MaxMod : [Bachoc et al., 2022].
- Extension of MaxMod for additive models : [López-Lopera et al., 2022].
- Extension of MaxMod for block-additive models : [Deronzier et al., 2024].
- R package LineqGPR: https://github.com/anfelopera/lineqGPR.

Thank you for your attention!

Bibliography I

Azzimonti, D., Ginsbourger, D., Rohmer, J., and Idier, D. (2019). Profile extrema for visualizing and quantifying uncertainties on excursion regions : application to coastal flooding. *Technometrics.*

Bachoc, F., Lagnoux, A., and López-Lopera, A. F. (2019). Maximum likelihood estimation for Gaussian processes under inequality constraints.

Electronic Journal of Statistics, 13(2) :2921–2969.

Bachoc, F., López-Lopera, A. F., and Roustant, O. (2022). Sequential construction and dimension reduction of Gaussian processes under inequality constraints.

SIAM Journal on Mathematics of Data Science, 4(2):772-800.

Bay, X., Grammont, L., and Maatouk, H. (2016). Generalization of the Kimeldorf-Wahba correspondence for constrained interpolation.

Electronic Journal of Statistics, 10(1) :1580–1595.

Bay, X., Grammont, L., and Maatouk, H. (2017). A new method for interpolating in a convex subset of a Hilbert space. *Computational Optimization and Applications*, 68(1) :95–120.

Bibliography II

Botev, Z. I. (2017).

The normal law under linear restrictions : simulation and estimation via minimax tilting.

Journal of the Royal Statistical Society : Series B (Statistical Methodology). 79(1):125-148.

Da Veiga, S. and Marrel, A. (2012). Gaussian process modeling with inequality constraints. Annales de la Faculté des Sciences de Toulouse Mathématiques, 21(6) :529–555.

Deronzier, M., López-Lopera, A. F., Bachoc, F., Roustant, O., and Rohmer, J. (2024). Block-additive Gaussian processes under monotonicity constraints.

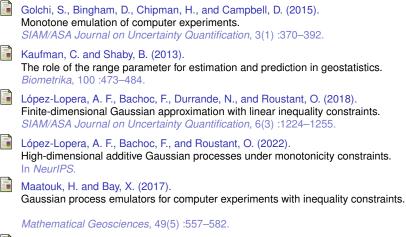
arXiv preprint arXiv :2407.13402.

Du, J., Zhang, H., and Mandrekar, V. (2009). Fixed-domain asymptotic properties of tapered maximum likelihood estimators. The Annals of Statistics, 37:3330-3361.

Genz, A. (1992).

Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1:141–150.

Bibliography III



Pakman, A. and Paninski, L. (2014).

Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians.

Journal of Computational and Graphical Statistics, 23(2):518–542.

Bibliography IV

Rohmer, J., Idier, D., Paris, F., Pedreros, R., and Louisor, J. (2018). Casting light on forcing and breaching scenarios that lead to marine inundation : Combining numerical simulations with a random-forest classification approach. Environmental Modelling and Software, 104:64-80.

Stein, M. (1999).

Interpolation of Spatial Data : Some Theory for Kriging. Springer, New York.

Wang, D. and Loh, W.-L. (2011).

On fixed-domain asymptotics and covariance tapering in Gaussian random field models.

Electronic Journal of Statistics, 5:238–269.

Zhang, H. (2004).

Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics.

Journal of the American Statistical Association, 99:250-261.