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Grenoble

January 2020

François Bachoc Valid confidence intervals post-model-selection 1 / 44



Outline

1 Post-model-selection inference with Gaussian linear models

2 Confidence intervals

3 Extension to linear predictors

4 Extension to non-linear non-Gaussian settings

François Bachoc Valid confidence intervals post-model-selection 2 / 44



Data generating process

Location model
Y = µ+ U.

Y of size n × 1: observation vector.

µ of size n × 1: unknown mean vector.

U ∼ N (0, σ2In).

σ2 known in the first three sections for simplicity of exposition.
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Linear models

Design matrix X of size n × p.
• p < n or p ≥ n.

Universe M of models/submodels.

M⊆ {M ⊆ {1, . . . , p}}.

• Each M is a set of selected columns of X .
• Write |M| for the cardinality of M.
• Write X [M] of size n × |M|: only the columns of X that are in M.

Restricted least square estimator

β̂M = (X ′[M]X [M])
−1

X ′[M]Y .

• For M ∈M.
• Assuming X [M] has full column rank for M ∈M.
• Implies |M| ≤ n.

=⇒ We consider subsets of selected variables and construct linear models
from them.
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Examples of universes of models M

All non-empty models:

M = {M ⊆ {1, . . . , p};M 6= ∅},

• only when p ≤ n.

All models containing the first variable:

M = {M ⊆ {1, . . . , p};M 6= ∅, 1 ∈ M},

• only when p ≤ n,
• e.g. first variable is an intercept (first column of X composed of 1s).

s-sparse models:

M = {M ⊆ {1, . . . , p}; |M| ≤ s},

• allows for n < p,
• 1 ≤ s ≤ n is the sparsity parameter.
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Regression coefficients of interest

The projection-based target: Let for M ∈M,

β
(n)
M = argmin

|M| × 1 vector v
||µ− X [M]v ||

= (X ′[M]X [M])
−1

X ′[M]µ.

=⇒ β
(n)
M is a target of inference in this talk.

=⇒ Motivated in Berk et al 2013.
=⇒ Subsequently considered in Lee et al 2016,Tibshirani et al 2018,
Kuchibhotla et al 2019,...
=⇒ When p < n and µ 6∈ span(X ): links to extensive literature on
misspecified parametric models (e.g. Huber 1967, White 1982).

François Bachoc Valid confidence intervals post-model-selection 6 / 44



Illustration (1/2)

n = 50, p = 2

X =

1 x1

...
...

1 xn

 .

well-specified case:
µi = 1/2 + xi

for i = 1, . . . , n.

• µ ∈ span(X ).

misspecified case:

µi = −1/2 + xi + 4x2
i

for i = 1, . . . , n.

• µ 6∈ span(X ).
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Illustration (2/2)

Plot of

Observations Y1, . . . ,Yn,(
X [M]β

(n)
M

)
i
, i = 1, . . . , n, for

M = {1}, M = {2} and M = {1, 2}.

●

●

●●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

1
2
1,2

●●
●

●

●
●

●

●
●

●

●●●●●

●

●
●

●●

●●
●●

●●●

●●●
●●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3
4

5

x

y

1
2
1,2

(well-specified) (misspecified)

François Bachoc Valid confidence intervals post-model-selection 8 / 44



Post-model-selection inference

Model selection procedure: data-driven selection of the model with

M̂(Y ) = M̂ ∈M.

• Sequential testing, AIC, BIC, LASSO, SCAD (Fan and Li 2001),
MCP (Zhang 2010),...

In Berk et al 2013, target for inference is β
(n)

M̂
and M̂ can be any

model selection procedure.

• Model selector M̂ is imposed.
• Objective: best coefficients in this imposed model.

This is what we call the post-model-selection inference setting.
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Discussion (1/2)

Motivated by the following common practice in applications:

1 Select model M̂ from data Y .
2 Apply usual confidence intervals/tests with design matrix X [M̂].

=⇒ Invalid because M̂ is data-dependent.
=⇒ Aim at changing tests/confidence intervals so that they become
valid.

Motivation for considering target β
(n)

M̂
:

• Best we can do once M̂ is fixed.
• Relevant in misspecified case when µ 6∈ span(X ) (when p < n).
• Relevant when p > n and no sparse representation of µ in X .
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Discussion (2/2)

Aim for procedures that work for any function Y → M̂(Y ).

In practice M̂ can be

• not formally defined,
• imposed.

Robustness to

• hunting for significance,
• data snooping.

This talk is not about how to select a “good” model M̂.
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Related literature

We consider the setting of Berk et al 2013,

• confidence intervals for β
(n)

M̂
for any M̂,

• current related work Zhang 2017, Kuchibhotla et al 2019,...

In Lee et al 2016, Tibshirani et al 2018,...,

• confidence intervals for β
(n)

M̂
,

• M̂ is specific: LASSO, sequential testing,...,
• valid (coverage probability) conditionally to M̂.

In Van der Geer et al 2014, the LASSO model selector is used for
confidence intervals in sparse well-specified models in
high-dimension.

Some intrinsic difficulties in post-model-selection inference were
discussed earlier in Leeb and Pötscher 2005, 2006,....
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1 Post-model-selection inference with Gaussian linear models

2 Confidence intervals

3 Extension to linear predictors

4 Extension to non-linear non-Gaussian settings
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Confidence intervals

We consider confidence intervals for(
β

(n)

M̂

)
j
,

for j = 1, . . . , |M̂|, of the form

CIM̂,j =
(
β̂M̂

)
j
± K ||sM̂,j ||σ,

with

s ′
M̂,j

= row j of
(
X ′[M̂]X [M̂]

)−1

X ′[M̂].

Interpretation:
For fixed M and j ,(

β̂M

)
j
−
(
β

(n)
M

)
j
∼ N (0, ||sM,j ||2σ2).

Thus, selecting K as a Gaussian quantile is valid when M is
deterministic.
When M̂ is random, K needs to be larger to account for model
selection.

=⇒ Question: choosing K .
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Reduction to a simultaneous coverage problem

Berk et al 2013:
The coverage

for j = 1, . . . , |M̂|,
(
β

(n)

M̂

)
j
∈ CIM̂,j

holds if the simultaneous coverage

for M ∈M and j = 1, . . . , |M|,
(
β

(n)
M

)
j
∈ CIM,j

holds. This is equivalent to

for M ∈M and j = 1, . . . , |M|,

∣∣∣∣(β̂M)j − (β(n)
M

)
j

∣∣∣∣
||sM,j ||σ

≤ K

(convention 0/0 = 0).
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POSI (post-selection inference) constant

The last event can be rewritten as

max
M∈M,j=1,...,|M|

∣∣∣∣ s ′M,j
||sM,j ||

(Y − µ)

σ

∣∣∣∣ ≤ K .

Distribution of the maximum does not depend on µ, σ.

=⇒ Taking
K = K1−α(X )

(POSI constant) as the 1− α quantile of this maximum yields

P
(

for j = 1, . . . , |M̂|,
(
β

(n)

M̂

)
j
∈ CIM̂,j

)
≥ 1− α,

for all n, p, µ ∈ Rn, σ > 0.
=⇒ Uniformly valid confidence intervals (Berk et al 2013).
=⇒ K1−α(X ) is optimal to guarantee this property.
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POSI constant

K1−α(X ) quantile 1− α of

max
M∈M,j=1,...,|M|

∣∣∣∣ s ′M,j
||sM,j ||

(U/σ)

∣∣∣∣
with U/σ ∼ N (0, In).

Supremum norm of a large centered Gaussian vector,

• dimension
∑

M∈M |M|,
• up to p2p−1 when p < n.

With unit variances.

Alternatively: many one-dimensional projections of a standard
Gaussian vector.
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Computation of the POSI constant

When p not too large, K1−α(X ) can be estimated by Monte Carlo,

• say p < 30 when M is unrestricted,
• larger p for sparse models,
• R package PoSI.

But cost usually exponential in p.

Upper bound
B1−α ≥ K1−α(X )

suggested in Berk et al 2013,

• computation complexity ≈ constant w.r.t. n, p,
• can be used in practice for large n, p.
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How large are the POSI constant and its upper bound?

(Berk et al 2013:)

Fixed model, M = {M0}:

sup
X n×p matrix

K1−α(X ) = O(1).

All models, p < n, M = {M ⊆ {1, . . . , p}}:

inf
X n×p matrix

K1−α(X ) =
√

2 log(p)(1 + o(1)),

0.6363
√
p(1 + o(1)) ≤ sup

X n×p matrix
K1−α(X ) ≤ 0.866

√
p(1 + o(1)).

=⇒ K1−α(X ) depends on X in a complex way.

Upper bound:

Sparse models, n < p, M = {M ⊆ {1, . . . , p}; |M| ≤ s}:

B1−α = O

(√
s log

(p
s

))
.

François Bachoc Valid confidence intervals post-model-selection 19 / 44



1 Post-model-selection inference with Gaussian linear models

2 Confidence intervals

3 Extension to linear predictors

4 Extension to non-linear non-Gaussian settings
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Linear predictors

This section is based on the paper:

Bachoc, F., Leeb, H., & Pötscher, B.M., Valid confidence intervals
for post-model-selection predictors, Annals of Statistics, 47(3),
1475-1504, 2019.

We consider a p × 1 vector x0,

• new explanatory variables.

Define x0[M]: subvector of x0 with indices in M,

• for M ∈M.

We want to cover the post-model-selection predictor

x0[M̂]′β
(n)

M̂
.
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Confidence intervals

Adaptation of Berk et al 2013:

Confidence interval:

CIM̂,x0
= x0[M̂]′β̂M̂ ± K1−α(X , x0)||sM̂,x0

||σ,

with

s ′
M̂,x0

= x0[M̂]′
(
X ′[M̂]X [M̂]

)−1

X ′[M̂],

with K1−α(X , x0) the 1− α quantile of

max
M∈M

∣∣∣∣ s ′M,x0

||sM,x0 ||
(Y − µ)

σ

∣∣∣∣ .
We still have an upper bound

B ′1−α ≥ K1−α(X , x0).
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Case of partially observed x0

Can frequently happen that

• x0 not observed entirely,
• only x0[M̂] is observed,
• variable selection for cost reasons.

In this case K1−α(X , x0) is unavailable.

We still have the upper bound B ′1−α.

We also suggest

K2,1−α(X , x0[M̂], M̂) = sup
xo [M̂c ]

K1−α(X , x0),

• very hard to compute,
• but theoretically interesting.

=⇒
K1−α(X , x0) ≤ K2,1−α(X , x0[M̂], M̂) ≤ B ′1−α.
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Large p analysis for orthogonal design matrices (1/2)

When X has orthogonal columns, K1−α(X ) has rate
√

log(p) (Berk
et al. 2013).

From that we deduce that K1−α(X , x0) has rate
√

log(p) when x0 is
a sequence of basis vectors.

François Bachoc Valid confidence intervals post-model-selection 24 / 44



Large p analysis for orthogonal design matrices (2/2)

We show:

Proposition

Let M be the power set of {1, ..., p}.
(a) Let X have orthogonal columns. There exists a sequence of vectors
x0 such that K1−α(X , x0) satisfies

lim inf
p→∞

K1−α(X , x0)/
√
p ≥ 0.6363.

(b) Let γ ∈ [0, 1) be given. Then K2,1−α(X , x0[M],M) satisfies

lim inf
p→∞

inf
x0∈Rp

inf
X∈X(p)

inf
M∈M,|M|≤γp

K2,1−α(X , x0[M],M)/
√
p ≥ 0.6363

√
1− γ,

where X(p) =
⋃

n≥p {X : X is n × p with non-zero orthogonal columns}.

=⇒ Strong impact of x0 on K1−α(X , x0).
=⇒ Price to pay when only x0[M̂] is observed.
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Summary of another contribution of the paper

We consider the random regressors setting.

The rows of X and x0 are realizations from a distribution L.

We define the post-model-selection predictor

x0[M̂]′β
(?)

M̂

defined based on L rather than on X .

We show that the same confidence intervals as before work
asymptotically.

• p fixed, n→∞ here.

=⇒ Recent work on the distinction between fixed and random
regressors, Buja et al 2019, Kuchibothla et al 2018.
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The paper

This section is based on the paper:

Bachoc, F., Preinerstorfer, D. & Steinberger, L., Uniformly valid
confidence intervals post-model-selection, Annals of Statistics,
forthcoming, arxiv.org/abs/1611.01043, 2019.
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Data and models

Data:

We consider a triangular array of independent 1× l random vectors
y1,n, ..., yn,n.

We let Pn =
⊗n

i=1 Pi,n be the distribution of yn = (y ′1,n, . . . , y
′
n,n)′,

where Pi,n is the distribution of yi,n.

Models:

We now consider a set Mn = {M1,n, . . . ,Md,n} composed of d
models.

Mi,n is a set of distributions on Rn×`.

d does not depend on n (fixed-dimensional asymptotics).

=⇒ We do not assume that the observation distribution Pn belongs to
one of the {M1,n, . . . ,Md,n}. The set of models can be misspecified.
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Parameters and estimators

Parameters:

We define for each model M ∈ Mn an optimal parameter
θ∗M,n = θ∗M,n(Pn), that we assume to be non-random and of fixed
dimension m(M).

In the case of linear models:

• each M ∈ Mn corresponds to a M ⊆ {1, . . . , p},
• θ∗M,n = β

(n)
M .

The optimal parameter θ∗M,n is specific to the model M.

Estimators:

We consider, for each M ∈ Mn, an estimator θ̂M,n of the optimal
parameter θ∗M,n.
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Post-model-selection inference

Model selection:

We consider a model selection procedure: a function
M̂n : Rn×` → Mn.

We are hence interested in constructing confidence intervals for the
random quantity of interest θ∗M̂n,n

.
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Main idea and notation

Main idea:

We aim at showing a joint asymptotic normality of
{θ̂M,n − θ∗M,n}M∈Mn .

We then use the same construction as in the linear Gaussian case for
the confidence intervals.

Additional difficulty: we do not know the asymptotic covariance
matrix.

Notation:

θ̂n = (θ̂′M1,n
, . . . , θ̂′Md ,n

)′.

θ∗n = (θ∗
′

M1,n
, . . . , θ∗

′

Md ,n
)′.

Let k =
∑d

j=1 m(Mj,n), be the dimension of θ̂n.
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Joint Asymptotic normality

Let rn = θ̂n − θ∗n .

Let Sn = VCn(rn) (covariance matrix).

Let dw be a distance generating the topology of weak convergence
for distributions on an Euclidean space.

Let corr(Σ) be the correlation matrix obtained from a covariance
matrix Σ.

Let diag(Σ) be obtained by setting the off-diagonal elements of Σ to
0.

Lemma

Under some conditions, we have

dw
(
law of diag(Sn)−1/2

(
θ̂n − θ∗n

)
,N(0, corr(Sn))

)
→ 0.
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Some notation

For α ∈ (0, 1) and for a covariance matrix Γ, let K1−α(Γ) be the
1− α-quantile of ‖Z‖∞ for Z ∼ N(0, Γ).
=⇒ Very similar to above POSI constant.

For M = Mi,n ∈ Mn and j ∈ {1, . . . ,m(M)} let

j ?M :=
i−1∑
l=1

m(Ml,n) + j

(j ?M is the index of (θ∗
′

M,n)j in (θ∗
′

M1,n
, . . . , θ∗

′

Md ,n
)′).
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Confidence intervals with consistent estimator of asymptotic covariance matrix

Let α ∈ (0, 1). Let Ŝn be such that, with ||A|| the largest singular value
of A,

‖ corr(Ŝn)− corr (VCn(rn)) ‖+ ‖ diag(VCn(rn))−1 diag(Ŝn)− Ik‖ →p 0.

Consider, for M ∈ Mn and j = 1, . . . ,m(M), the confidence interval

CI
(j),est
1−α,M =

[
θ̂M,n

]
j
±
√

[Ŝn]j?M,j?M K1−α

(
corr(Ŝn)

)
.

We show:

Theorem

Then, Pn

([
θ∗M,n

]
j
∈ CI

(j),est
1−α,M for all M ∈ Mn and j = 1, . . . ,m(M)

)
goes to 1− α as n→∞. In particular, for any model selection procedure
M̂n, we have

lim inf
n→∞

Pn

([
θ∗M̂n,n

]
j
∈ CI

(j),est

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)
≥ 1− α.
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Confidence intervals with conservative estimator of asymptotic covariance matrix

When the models are misspecified it may not be possible to estimate
VCn(rn) consistently.

We show how to overestimate the diagonal components of VCn(rn).

This is based on overestimating V(yi,n) based on

V(yi,n) ≤ E((yi,n − ŷi,n)2)

where ŷi,n is obtained from a misspecified model M.

Also there exists an upper-bound of K1−α (corr(Sn)) (similar to
B1−α).

=⇒ We obtain the same asymptotic guarantee as before with more
conservative confidence intervals.
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Applications

We have seen a general method that can be applied to specific
situations on a case by case basis.

Need uniform central limit theorems for fixed models in misspecified
cases (sandwich rule).

Need to consistently overestimate variances.

In the paper, we provide applications to

homoscedastic linear models with homoscedastic data,
heteroscedastic linear models with heteroscedastic data,
binary regression models with binary data.

François Bachoc Valid confidence intervals post-model-selection 37 / 44



Some simulation results

In a Monte Carlo simulation (1000 repetitions) for logistic regression
(p = 10, n = 30, 100), we compare

CI coverage for a nominal level at 0.9 (cov. 0.9),

CI median length (med.),

CI 90% quantile length (qua.)

for

our post-selection inference CI (P),

the CI by Taylor and Tibshirani, 2017, specific to the lasso (L),

the naive CI that ignores the presence of model selection (N).

model cov. 0.9 med. qua.
selector P L N P L N P L N
lasso (1) 0.99 0.89 0.84 4.26 7.44 2.09 6.97 43.33 3.42
lasso (2) 1.00 0.85 0.68 1.63 2.31 0.74 1.90 13.52 0.84
lasso (3) 1.00 0.25 0.98 2.22 1.23 1.01 2.83 3.50 1.24
sig. hun. 0.95 0.39 4.40 2.63 6.22 3.63
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Some simulation results in high dimension (1/2)

Monte Carlo simulation (1000 repetitions) for homoscedastic linear
models (p = 1000, n = 50).

The model selector is forward stepwise.

We compare

CI coverage for a nominal level at 0.9 (cov.),

CI median length (med.),

CI 90% quantile length (qua.)

for

our post-selection inference CI (P),

the CI by Tibshirani et al. 2016, specific to forward-stepwise (FS),

the naive CI that ignores the presence of model selection (N).
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Some simulation results in high dimension (2/2)

Step 1 Step 2 Step 3 Simult.
cov. med. qua. cov. med. qua. cov. med. qua. cov.

P 0.99 8.33 9.38 1.00 10.39 12.73 1.00 11.49 14.35 0.99
FS 0.94 11.66 55.76 0.88 786.92 Inf 0.90 1754.00 Inf 0.77
N 0.58 3.54 3.98 0.49 3.33 4.08 0.45 3.22 4.03 0.08

P 0.91 7.24 8.07 1.00 9.34 12.15 1.00 10.36 13.68 0.91
FS 0.93 15.15 72.67 0.88 752.74 Inf 0.90 1582.32 Inf 0.76
N 0.00 3.07 3.43 0.12 3.00 3.90 0.19 2.91 3.84 0.00

Remarks:

Top 3 rows: design matrix X has independent columns.

Bottom 3 rows: design matrix X has correlated columns.

The CI’s P and FS use the knowledge that k variables are selected
at step k .
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Conclusion

Inference for targets that depend on selected models.

Simultaneous coverage of many correlated and normalized errors.

Exact for Gaussian case =⇒ asymptotic for more general cases.

Open questions: high-dimensional asymptotics, computational
aspects.

Thank you for your attention!
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