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Data generating process

Location model
Y=pn+U.

m Y of size n x 1: observation vector.

m 4 of size n x 1: unknown mean vector.

m U~ N(0,02%1,).

m o2 known in the first three sections for simplicity of exposition.
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Linear models

m Design matrix X of size n x p.
e p<norp2>>n.
m Universe M of models/submodels.

MC{MC{1,....p}}.

e Each M is a set of selected columns of X.
e Write |M| for the cardinality of M.
o Write X[M] of size n x |[M|: only the columns of X that are in M.

m Restricted least square estimator

Bu = (X'IMIX[M]) " X' [M] Y.

e For M € M.

e Assuming X[M] has full column rank for M € M.

e Implies |[M| < n.
— We consider subsets of selected variables and construct linear models
from them.
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Examples of universes of models M

m All non-empty models:

M={MC{1,....,p}; M0},

e only when p < n.

m All models containing the first variable:

M={MC{l,....p}iM£0,1€ M},

e only when p < n,
e e.g. first variable is an intercept (first column of X composed of 1s).

m s-sparse models:

M={MC{1,...,p}; M| <s},

e allows for n < p,
e 1 < s < nis the sparsity parameter.
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Regression coefficients of interest

m The projection-based target: Let for M € M,
B\ = argmin [jp—X[M]v]]
M| x 1 vector v

= (X'[MIX[M]) ™ X'[M]p.

— ﬁ,(\;) is a target of inference in this talk.

— Motivated in Berk et al 2013.

— Subsequently considered in Lee et al 2016, Tibshirani et al 2018,
Kuchibhotla et al 2019,...

= When p < n and p ¢ span(X): links to extensive literature on
misspecified parametric models (e.g. Huber 1967, White 1982).
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lllustration (1/2)

mn=>50p=2

|
1 X1
X = :
1 x,
m well-specified case:
M = 1/2 + X

fori=1,...,n.
o 4 € span(X).
m misspecified case:

i = —1/2 + x; + 4x?
fori=1,...,n

o 1 ¢ span(X).
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lllustration (2/2)

Plot of
m Observations Yi,..., Y,,

n (X[M]B,(\;))i, i=1,...,n, for

, M={2}and M ={1,2}.

(well-specified) (misspecified)
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Post-model-selection inference

m Model selection procedure: data-driven selection of the model with

M(Y)=Me M.

e Sequential testing, AIC, BIC, LASSO, SCAD (Fan and Li 2001),
MCP (Zhang 2010),...

m In Berk et al 2013, target for inference is ﬁ,(é;) and M can be any
model selection procedure.

o Model selector M is imposed.
e Objective: best coefficients in this imposed model.

This is what we call the post-model-selection inference setting.
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Discussion (1/2)

m Motivated by the following common practice in applications:
Select model M from data Y. .
Apply usual confidence intervals/tests with design matrix X[M].
— Invalid because M is data-dependent.
— Aim at changing tests/confidence intervals so that they become
valid.
m Motivation for considering target 65\7';):
e Best we can do once M is fixed.

e Relevant in misspecified case when p ¢ span(X) (when p < n).
e Relevant when p > n and no sparse representation of y in X.
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Discussion (2/2)

= Aim for procedures that work for any function Y — M(Y).

m In practice M can be

e not formally defined,
e imposed.

m Robustness to

e hunting for significance,
e data snooping.

m This talk is not about how to select a “good” model M.
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Related literature

m We consider the setting of Berk et al 2013,

e confidence intervals for ﬂ(f’) for any M,
e current related work Zhang 2017, Kuchibhotla et al 2019,...

m In Lee et al 2016, Tibshirani et al 2018, ...,
e confidence intervals for ﬁ,(\;),

o Mis specific: LASSO, sequential testing,...,
e valid (coverage probability) conditionally to M.

m In Van der Geer et al 2014, the LASSO model selector is used for
confidence intervals in sparse well-specified models in
high-dimension.

m Some intrinsic difficulties in post-model-selection inference were
discussed earlier in Leeb and Potscher 2005, 2006,....
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Post-model-selection inference with Gaussian linear models

Confidence intervals

Extension to linear predictors

B Extension to non-linear non-Gaussian settings



Confidence intervals

We consider confidence intervals for

A

for j=1,...,|M|, of the form

Clig; = (B % Kllsqlo-

with )
r_ . ey ) >
S, = row j of (X [M]X[M]) X'TM].
Interpretation:

m For fixed M and j,
(Bu) = (84) ~ N (. llsm

m Thus, selecting K as a Gaussian quantile is valid when M is
deterministic.
m When M is random, K needs to be larger to account for model
selection.
—> Question: choosing K.
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Reduction to a simultaneous coverage problem

Berk et al 2013:
The coverage

for j=1,...,|M| (ﬁ/(\;))j € Cli

holds if the simultaneous coverage
for M e Mandj=1,...,|M| (5}?), € Cly;
J
holds. This is equivalent to

](@M)j - (#49),

[Ismjllo

<K

forMe Mandj=1,...,|M|,

(convention 0/0 = 0).
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POSI (post-selection inference) constant

The last event can be rewritten as

<K.

5/ . Y _
max ‘ M,j ( u’)‘
MeMj=1,.. M| ||[smj]] o

m Distribution of the maximum does not depend on u,o.

— Taking
K = Ki—a(X)

(POSI constant) as the 1 — « quantile of this maximum yields

P (forj: 1,..., M, (5};))1 € CI,\;,,J) >1-a,

forall n, p, u € R", 0 > 0.
= Uniformly valid confidence intervals (Berk et al 2013).
= Ki_o(X) is optimal to guarantee this property.
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POSI constant

Ki—o(X) quantile 1 — « of

/

M ()

max
|sm 1|

MeM j=1,...,|M|

with U/o ~ N(0, I).
m Supremum norm of a large centered Gaussian vector,
e dimension >, M|,
e up to p2°~! when p < n.

m With unit variances.

m Alternatively: many one-dimensional projections of a standard
Gaussian vector.
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Computation of the POSI constant

m When p not too large, Ki_(X) can be estimated by Monte Carlo,

e say p < 30 when M is unrestricted,
e larger p for sparse models,
e R package PoSI.

m But cost usually exponential in p.
m Upper bound
Blfa 2 Kl—a(X)

suggested in Berk et al 2013,

e computation complexity ~ constant w.r.t. n, p,
e can be used in practice for large n, p.
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R
PoSI

How large are the POSI constant and its upper bound?
(Berk et al 2013:)
m Fixed model, M = {Mp}:
sup Ki—a(X) = O(1).

X nXp matrix

m All models, p < n, M={MC{1,...,p}}:

inf  Ki_o(X) = /2log(p)(1 + o(1)),

X nXp matrix

0.6363,/p(1+0(1)) <  sup  Ki_a(X) < 0.866,/p(1 + o(1)).

X nXxp matrix

= Ki_o(X) depends on X in a complex way.

Upper bound:
m Sparse models, n< p, M={MC{1,...,p};

Bi,=0 ( slog (f))
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Extension to linear predictors




Linear predictors

This section is based on the paper:

@ Bachoc, F., Leeb, H., & Potscher, B.M., Valid confidence intervals
for post-model-selection predictors, Annals of Statistics, 47(3),
1475-1504, 2019.

m We consider a p x 1 vector xp,
e new explanatory variables.

m Define xo[M]: subvector of xo with indices in M,
o for M € M.

m We want to cover the post-model-selection predictor

xo[ M) B
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Confidence intervals

Adaptation of Berk et al 2013:
m Confidence interval:
Clyy = xo[M)' By £ Ki—a(X, 0) |55 |10
m with )
Stae = M (X' IVIXINY)  X'[M),

m with K;_,(X, x) the 1 — a quantile of

S/IW,XO (Y — :U’) ’

max
MeM |[[smyll o
m We still have an upper bound

Bi o > Ki—a(X,;X0).
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Case of partially observed xg

m Can frequently happen that

e Xy not observed entirely,
e only xo[M] is observed,
e variable selection for cost reasons.

m In this case Ki_,(X, xp) is unavailable.
m We still have the upper bound Bj_,.
m We also suggest
Ka,1—a(X, x0[M], M) = sup Ki_a(X,x0),

Xo[NI€]

e very hard to compute,
e but theoretically interesting.

Ki—a(X,%0) < Ka1-aX, x0[M], M) < B]_,.
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Large p analysis for orthogonal design matrices (1/2)

m When X has orthogonal columns, Ki_,(X) has rate /log(p) (Berk
et al. 2013).

m From that we deduce that K;_,(X,xp) has rate y/log(p) when xg is
a sequence of basis vectors.
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Large p analysis for orthogonal design matrices (2/2)

We show:

Proposition

Let M be the power set of {1, ..., p}.
(a) Let X have orthogonal columns. There exists a sequence of vectors
xo such that Ki_, (X, xo) satisfies

lim inf Ko (X, %0)//P > 0.6363.
p—>00
(b) Let v € [0,1) be given. Then Kz 1_o (X, xo[M], M) satisfies

liminf inf inf inf Ko 1—a(X, x0[M], M > 0.63634/1 — 7,
Lnl’gl XOIQRPXg)]((p)MG./\/llRM\S'yp - ( XO[ ] )/\/B

where X(p) = Uan {X : X is n x p with non-zero orthogonal columns}.

— Strong impact of xg on Kl_Aa(X,xo).
= Price to pay when only xo[M] is observed.
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Summary of another contribution of the paper

m We consider the random regressors setting.
m The rows of X and xq are realizations from a distribution L.
m We define the post-model-selection predictor

xo[M)' B

defined based on L rather than on X.

m We show that the same confidence intervals as before work
asymptotically.
e p fixed, n — oo here.

— Recent work on the distinction between fixed and random
regressors, Buja et al 2019, Kuchibothla et al 2018.
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Extension to non-linear non-Gaussian settings




The paper

This section is based on the paper:

@ Bachoc, F., Preinerstorfer, D. & Steinberger, L., Uniformly valid
confidence intervals post-model-selection, Annals of Statistics,
forthcoming, arxiv.org/abs/1611.01043, 2019.
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Data and models

Data:
m We consider a triangular array of independent 1 x / random vectors
Yi,ny -3 Yn,n-
m We let P, = ®;_; Pi,» be the distribution of y, = (y1 ,,---, ¥ )",
where P; , is the distribution of y; ,.
Models:

m We now consider a set M, = {Mj ,,...,My ,} composed of d
models.

m M , is a set of distributions on R<L

m d does not depend on n (fixed-dimensional asymptotics).

—> We do not assume that the observation distribution P, belongs to
one of the {My ,...,My ,}. The set of models can be misspecified.

Francois Bachoc Valid confidence intervals post-model-selection 29 /44



Parameters and estimators

Parameters:

m We define for each model M € M,, an optimal parameter
O3 » = 031.,(Pn), that we assume to be non-random and of fixed
dimension m(M).
m In the case of linear models:
e each M € M, corresponds to a M C {1,...,p},
)
M,n M -
m The optimal parameter 0y , is specific to the model M.

Estimators:

m We consider, for each M € M,,, an estimator 9M,,, of the optimal
parameter 05 .
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Post-model-selection inference

Model selection:
[ We consider a model selection procedure: a function
M, : R — M,,.
m We are hence interested in constructing confidence intervals for the
random quantity of interest 9;&1

ns
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Main idea and notation

Main idea:
m We aim at showing a joint asymptotic normality of
{Ovin — O3t MiEM, -
m We then use the same construction as in the linear Gaussian case for
the confidence intervals.

m Additional difficulty: we do not know the asymptotic covariance

matrix.
Notation:
N _ () N/ ’
.0”_(M1,n""’ Md,n)'
* *! */ /
u en - (eMl,n’ oy Md,n) .

m Let k = 27:1 m(M; ,,), be the dimension of 8.
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Joint Asymptotic normality

Let r, = 0, — 0%
Let S, = VC,(r,) (covariance matrix).

Let d,, be a distance generating the topology of weak convergence
for distributions on an Euclidean space.

Let corr(X) be the correlation matrix obtained from a covariance
matrix X.

Let diag(X) be obtained by setting the off-diagonal elements of ¥ to
0.

Lemma

Under some conditions, we have

dw (/aw of diag(S,) /2 (5,, - 9:) , N(O, corr(S,,))) — 0.
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Some notation

m For a € (0,1) and for a covariance matrix I', let Ki_,(I") be the
1 — a-quantile of ||Z]| for Z ~ N(0,T).
— Very similar to above POSI constant.

m For M=M;,eM,andje{l,...,mM)} let
i—1
JxM = m(M; ) +j
1=1

(j =M is the index of (651 ,); in (637, ns-- -0, ,)')-
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Confidence intervals with consistent estimator of asymptotic covariance matrix

Let o € (0,1). Let S, be such that, with ||A|| the largest singular value
of A,

corr §n — corr (VC,(r, + || diag(VC,(r,)) ! diag §n — Ikl| =, 0.
P

Consider, for M € M, and j = 1,..., m(M), the confidence interval

U = [Bun] £ I8ibsan Ko (co(3).

We show:

Theorem

Then, P, ([9{{41,"]] € CI*™t for all M € M, and j = 1,..., m(M))
goestol—a asn — oco. In particular, for any model selection procedure
M,,, we have

liminf P, ([9M | € 1O for all j = 1,...7m(I\\7JI,,)) >1-a.
ns .I - y n

n—oo
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Confidence intervals with conservative estimator of asymptotic covariance matrix

m When the models are misspecified it may not be possible to estimate
VC,(r,) consistently.

m We show how to overestimate the diagonal components of VC,(r,).

m This is based on overestimating V(y; ,) based on

V(¥i,n) < E((Yin — 9in)%)

where §; , is obtained from a misspecified model M.
m Also there exists an upper-bound of Ki_, (corr(S,)) (similar to
Bi_a).

= We obtain the same asymptotic guarantee as before with more
conservative confidence intervals.
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Applications

m We have seen a general method that can be applied to specific
situations on a case by case basis.

m Need uniform central limit theorems for fixed models in misspecified
cases (sandwich rule).

m Need to consistently overestimate variances.

m In the paper, we provide applications to

m homoscedastic linear models with homoscedastic data,
m heteroscedastic linear models with heteroscedastic data,
m binary regression models with binary data.
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Some simulation results

In a Monte Carlo simulation (1000 repetitions) for logistic regression

(p=10,n=30,100), we compare

m Cl coverage for a nominal level at 0.9 (cov. 0.9),

m Cl median length (med.),
m Cl 90% quantile length (qua.)

for

m our post-selection inference CI (P),
m the Cl by Taylor and Tibshirani, 2017, specific to the lasso (L),

m the naive Cl that ignores the presence of model selection (N).

model

cov. 0.9

med. qua.
selector P L N P L N P L N
lasso (1) | 0.99 0.89 0.84 | 426 7.44 209 | 6.97 4333 342
lasso (2) | 1.00 0.85 0.68 | 1.63 231 0.74 | 1.90 1352 0.84
lasso (3) | 1.00 0.25 0.98 | 222 123 101|283 350 1.24
sig. hun. | 0.95 0.39 | 4.40 2.63 | 6.22 3.63
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Some simulation results in high dimension (1/2)

Monte Carlo simulation (1000 repetitions) for homoscedastic linear
models (p = 1000, n = 50).
m The model selector is forward stepwise.
We compare
m Cl coverage for a nominal level at 0.9 (cov.),
m Cl median length (med.),
m Cl 90% quantile length (qua.)
for
m our post-selection inference Cl (P),
m the Cl by Tibshirani et al. 2016, specific to forward-stepwise (FS),

m the naive Cl that ignores the presence of model selection (N).
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Some simulation results in high dimension (2/2)

Step 1 Step 2 Step 3 Simult.

cov. med. qua. cov. med. qua. cov. med. qua. cov.
P | 0.99 8.33 9.38 | 1.00 10.39 12.73 | 1.00 11.49 14.35 0.99
FS | 094 11.66 55.76 | 0.88 786.92 Inf | 0.90 1754.00 Inf 0.77
N | 0.58 3.54 3.98 | 0.49 3.33 4.08 | 0.45 3.22 4.03 0.08
P 0.91 7.24 8.07 | 1.00 9.34 12.15 | 1.00 10.36 13.68 0.91
FS | 0.93 15.15 72.67 | 0.88 752.74 Inf | 0.90 1582.32 Inf 0.76
N | 0.00 3.07 3.43 | 0.12 3.00 3.90 | 0.19 2.91 3.84 0.00

Remarks:

m Top 3 rows: design matrix X has independent columns.

m Bottom 3 rows: design matrix X has correlated columns.

m The CI's P and FS use the knowledge that k variables are selected
at step k.
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Conclusion

Inference for targets that depend on selected models.
Simultaneous coverage of many correlated and normalized errors.

Exact for Gaussian case = asymptotic for more general cases.

Open questions: high-dimensional asymptotics, computational
aspects.

Thank you for your attention!
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