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Outline

This talk is a case study of the metamodeling of a nuclear simulation code
large number of simulation results
unexpected numerical issues

Objectives
provide a concrete example of the metamodeling process
see if there is a need for new theory and methodology

The paper :

F. Bachoc, K. Ammar and J.M. Martinez “Improvement of code behaviour in a design of
experiments by metamodeling”, Nuclear Science and Engineering (2016) 183(3)
387-406.
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Fuel pin simulation

FIGURE: A schematic representation of a fuel pin and a fuel assembly in nuclear fast-neutron reactors.

Simulation process

The nuclear radiation is an input parameter (may come from an other type of simulation)

The power and heat maps are output parameters

Aspects of interest

Efficiency (produced-energy / fuel ratio)

Security (is the fuel too hot ? Is the support altered ?)
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The Germinal parametric study

We represent the input and output maps by a finite number of parameters :

FIGURE: Illustration of the code manager for Germinal

11 input parameters in [0, 1]11 (normalized)
x1 : cycle length
x2, ..., x7 : nature of the fuel pin (material and geometry)
x8, x9, x10 : input power map (would come from a neutronic simulation in case of code coupling)
x11 : volume of expansion for fission gas.

1 output parameter in R (non normalized)
fcode(x) = fcode(x1, ..., x11) : fusion margin
‘fusion margin’ = ‘fuel melting temperature’ − ‘maximal temperature along simulation’
fcode(x) < 0⇒ security issue
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Set of simulation results

One Germinal simulation takes around 1 minute
n = 3807 simulation results obtained as follows

LHS− maximin (space filling) set of points in [0, 1]11

We remove the input parameters which are non-viable (e.g. infeasible geometry) (no need for
Germinal simulation for this)

Our set of simulation results is written y1 = fcode(x(1)), ..., yn = fcode(x(n))

Metamodeling = construction of an approximation f̂code : [0, 1]11 → R of fcode so that

f̂code is only based on x(1), y1, ..., x(n), yn (black box)

f̂code is much quicker to evaluate than fcode
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Gaussian process model

Gaussian process model (Kriging)
Assume that fcode is a realization of a random function Y
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Enables to work with L
[
Y |Y (x(1)) = fcode(x(1)), ...,Y (x(n)) = fcode(x(n))

]
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Covariance function parametrization

We consider that the Gaussian process is centered, ∀x ,E(Y (x)) = 0

The Gaussian process is hence characterized by its covariance function
C(x(a), x(b)) = Cov(Y (x(a)),Y (x(b)))

We assume
Y (x) = Yc(x) + Yd (x)

Yc : continuous

Yd : discontinuous −→ numerical instabilities

Parametrization :

C(x(a), x(b)) of the form σ2C̄`(x(a), x(b)) + δ21{x(a) = x(b)}

σ2, ` variance and correlation lengths

δ2 : nugget variance

Estimates σ̂2, ˆ̀ and δ̂ obtained by Maximum Likelihood (modified because of large n, see the
paper)

François Bachoc Processus gaussiens Grenoble - Aout 2016 9 / 23



Prediction

Gaussian process Y observed at x(1), ..., x(n) and predicted at x
Let

y = (fcode(x(1)), ..., fcode(x(n)))′

R = {σ̂2C̄ˆ̀(x(i), x(j)) + δ̂21{x(i) = x(j)}}1≤i,j≤n

r(x) = {σ̂2C̄ˆ̀(x(i), x) + δ̂21{x(i) = x}}1≤i≤n

Then, conditionally to y , Y (x) follows a Gaussian distribution with mean

f̂code(x) = r(x)t R−1y

and variance
σ̂2

code(x) = σ̂2 − r(x)t R−1r(x) + δ̂2

f̂code(x) : metamodel function

σ̂2
code(x) : error indicator

σ̂2
code(x) ≥ δ̂2 : importance of the nugget variance

François Bachoc Processus gaussiens Grenoble - Aout 2016 10 / 23



1 Parametric study for the Germinal code

2 Noisy Gaussian processes

3 Prediction results

4 Improvement of code behavior

François Bachoc Processus gaussiens Grenoble - Aout 2016 11 / 23



Other metamodels and computation time

Two other metamodels

Kernel methods
similar formulas as Gaussian processes but different interpretation
no error indicator

neural networks
no support points (construction of an explicit non-linear function)
no error indicator

Computation time for prediction at q new points :

construction phase cost (1 time) + evaluation phase cost (proportional to q)

Costs for Kriging :

construction phase : few hours

evaluation phase : 0.004 seconds per input x
Costs for neural networks :

construction phase : few hours

evaluation phase : 0.00015 seconds per input x
Costs for kernel methods :

no construction phase

evaluation phase : 0.004 seconds per input x
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Prediction criteria

Test base (x(1)
t , fcode(x(1)

t )), ..., (x(nt )
t , fcode(x(nt )

t )), with nt = 1613

Root Mean Square Error (RMSE) (should be minimal)

RMSE2 =
1
nt

nt∑
i=1

(
f̂code(x(i)

t )− fcode(x(i)
t )
)2

Efficiency criterion (Q2) (should be maximal)

Q2 = 1−
RMSE2

sd2
code

sdcode empirical standard deviation of the test base

Empirical quantile qγ for γ ∈ (0, 1) : empirical quantile γ of the set of errors∣∣∣̂fcode(x(i)
t )− fcode(x(i)

t )
∣∣∣, for i = 1, ..., nt
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Estimation of the prediction criteria

Estimation of RMSE

R̂MSE
2

=
1
n

n∑
i=1

(
f̃code(x(i))− fcode(x(i))

)2

For Gaussian processes and kernel methods, f̃code(x (i)) is obtained by virtual leave-one-out
For neural networks f̃code(x (i)) = f̂code(x (i))

Estimation of Q2

Q̂2 = 1−
R̂MSE

2

ŝd
2
code

,

where ŝdcode is the standard deviation of the output on the learning base.
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Prediction results

R̂MSE RMSE Q̂2 Q2 q0.9 q0.95
Neural network 34.5◦ 38.5◦ 0.990 0.987 61.6◦ 76.7◦

Kriging 35.6◦ 36.1◦ 0.989 0.989 57.4◦ 72.7◦

Kernel methods 44.3◦ 44.5◦ 0.983 0.983 68.5◦ 88.8◦

TABLE: Prediction results for the fusion margin output of the Germinal code. The standard deviation of the output
on the test base is 342◦

Accuracy ranking : Kriging > neural networks > kernel methods

For Kriging and kernel methods, R̂MSE and Q̂2 are accurate

For neural networks, R̂MSE and Q̂2 are slightly over-optimistic

δ̂ = 28.5◦ : an important part of the prediction error comes from the numerical instabilities
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Plot of the prediction errors
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FIGURE: Plot of the metamodel predictions in the test base (y-axis), as a function of the Germinal output values
(x-axis), for the neural networks (left), Kriging (middle) and kernel methods (right). The dashed lines is defined
by y = x .

There are some very large errors =⇒ outlier computations (possibly because of numerical
issues)
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Visualization

We have encountered two types of code manager issues :
outliers (large prediction errors)
code instabilities (large nugget effect)

We decided to visualize them in 1d with points on a line segment of R11 :

  
position

FIGURE: One-dimensional representation of the Germinal code function with 97 points on a line segment. We
also plot the Gaussian process prediction with those 97 support points (the nugget estimate seems appropriate)
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Improvement of the code manager

The outlier computations are well flagged by the three metamodels. We can investigate a few
outlier computations in details and improve the code manager

We can investigate successive non-consistent computations from the 1d plot and find and
solve the following issue :

FIGURE: Simplified illustration of the cause of the numerical instabilities. The issue is the automatic mesh
generation. We update the code preprocessor to solve it
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After the code manager improvement

FIGURE: New computations, for the same input points on a line, after update of the code preprocessor

the outliers are now automatically flagged by the code postprocessor

the numerical instabilities are removed
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New prediction results

R̂MSE RMSE Q̂2 Q2 q0.9 q0.95
Neural network 27.5◦ 31.3◦ 0.993 0.991 48.7◦ 63.4◦

Kriging 27.2◦ 27.6◦ 0.993 0.993 43.2◦ 54.0◦

Kernel methods 38.3◦ 38.5◦ 0.986 0.986 60.8◦ 75.3◦

TABLE: Prediction results for the fusion margin output of the updated Germinal code. The standard deviation of
the output on the test base is 326.2◦

The predictions are more accurate after the code manager update

δ̂ = 19.8◦ : smaller than before the code manager update (28.5◦)

The relative differences between the metamodels are larger =⇒ can be explained by the
smaller nugget variance

It is possible that other types of numerical instabilities are present
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Conclusion

Recap :
Comparison of metamodels :

Kriging most accurate and provides most uncertainty quantification tools
neural networks provide fastest prediction
kernel methods do not need a construction phase

Illustrations of numerical issues in simulations
Some simulations can fail completely =⇒ well detected by all metamodels, then manual investigation
Groups of simulations can be non-consistent (numerical instabilities) =⇒ so far detected with nugget
variance and 1d plot

Addressing these numerical issues improves the accuracy of the metamodels

Qestions :

Robust Gaussian processes to outlier computations

Detection procedures for pairs of computations with numerical instabilities

Asymptotic guarantees for nugget variance estimation, even when the continuous process is
misspecified

For more details :

F. Bachoc, K. Ammar and J.M. Martinez “Improvement of code behaviour in a design of
experiments by metamodeling”, Nuclear Science and Engineering (2016) 183(3) 387-406.

François Bachoc Processus gaussiens Grenoble - Aout 2016 22 / 23



Thank you for your attention !

François Bachoc Processus gaussiens Grenoble - Aout 2016 23 / 23


	Parametric study for the Germinal code
	Noisy Gaussian processes
	Prediction results
	Improvement of code behavior

