Processus gaussiens pour l'utilisation massive et automatique de simulateurs numériques

François Bachoc, Karim Ammar, Jean-Marc Martinez

University Paul Sabatier, Toulouse CEA Saclay

Journées MAS 2016

- This talk is a case study of the metamodeling of a nuclear simulation code
 - · large number of simulation results
 - unexpected numerical issues
- Objectives
 - provide a concrete example of the metamodeling process
 - see if there is a need for new theory and methodology
- The paper :
 - F. Bachoc, K. Ammar and J.M. Martinez "Improvement of code behaviour in a design of experiments by metamodeling", *Nuclear Science and Engineering (2016) 183(3)* 387-406.

Fuel pin simulation

FIGURE: A schematic representation of a fuel pin and a fuel assembly in nuclear fast-neutron reactors.

Simulation process

- The nuclear radiation is an input parameter (may come from an other type of simulation)
- The power and heat maps are output parameters

Aspects of interest

- Efficiency (produced-energy / fuel ratio)
- Security (is the fuel too hot ? Is the support altered ?)

The Germinal parametric study

We represent the input and output maps by a finite number of parameters :

FIGURE: Illustration of the code manager for Germinal

- 11 input parameters in [0, 1]¹¹ (normalized)
 - x₁ : cycle length
 - x₂,..., x₇ : nature of the fuel pin (material and geometry)
 - x₈, x₉, x₁₀ : input power map (would come from a neutronic simulation in case of code coupling)
 - x₁₁ : volume of expansion for fission gas.
- 1 output parameter in ℝ (non normalized)
 - $f_{code}(\mathbf{x}) = f_{code}(x_1, ..., x_{11})$: fusion margin
 - 'fusion margin' = 'fuel melting temperature' 'maximal temperature along simulation'
 - $f_{code}(\mathbf{x}) < 0 \Rightarrow$ security issue

- One Germinal simulation takes around 1 minute
- n = 3807 simulation results obtained as follows
 - LHS- maximin (space filling) set of points in [0, 1]¹¹
 - We remove the input parameters which are non-viable (e.g. infeasible geometry) (no need for Germinal simulation for this)
- Our set of simulation results is written $y_1 = f_{code}(\mathbf{x}^{(1)}), ..., y_n = f_{code}(\mathbf{x}^{(n)})$

Metamodeling = construction of an approximation $\hat{f}_{code} : [0, 1]^{11} \to \mathbb{R}$ of f_{code} so that

- \hat{f}_{code} is only based on $\mathbf{x}^{(1)}, y_1, ..., \mathbf{x}^{(n)}, y_n$ (black box)
- \hat{f}_{code} is much quicker to evaluate than f_{code}

Parametric study for the Germinal code

Noisy Gaussian processes

Prediction results

Improvement of code behavior

Gaussian process model (Kriging)

Assume that f_{code} is a realization of a random function Y

• Enables to work with $\mathcal{L}\left[Y|Y(\boldsymbol{x}^{(1)}) = f_{code}(\boldsymbol{x}^{(1)}), ..., Y(\boldsymbol{x}^{(n)}) = f_{code}(\boldsymbol{x}^{(n)})\right]$

Covariance function parametrization

- We consider that the Gaussian process is centered, $\forall \boldsymbol{x}, \mathbb{E}(\boldsymbol{Y}(\boldsymbol{x})) = 0$
- The Gaussian process is hence characterized by its covariance function $C(\mathbf{x}^{(a)}, \mathbf{x}^{(b)}) = \text{Cov}(Y(\mathbf{x}^{(a)}), Y(\mathbf{x}^{(b)}))$

We assume

$$Y(\boldsymbol{x}) = Y_c(\boldsymbol{x}) + Y_d(\boldsymbol{x})$$

• Y_c : continuous

• Y_d : discontinuous \longrightarrow numerical instabilities

Parametrization :

$$C(\mathbf{x}^{(a)}, \mathbf{x}^{(b)})$$
 of the form $\sigma^2 \bar{C}_{\ell}(\mathbf{x}^{(a)}, \mathbf{x}^{(b)}) + \delta^2 \mathbf{1}\{\mathbf{x}^{(a)} = \mathbf{x}^{(b)}\}$

- σ^2, ℓ variance and correlation lengths
- δ^2 : nugget variance
- Estimates $\hat{\sigma}^2$, $\hat{\ell}$ and $\hat{\delta}$ obtained by Maximum Likelihood (modified because of large *n*, see the paper)

Prediction

Gaussian process *Y* observed at $\mathbf{x}^{(1)}, ..., \mathbf{x}^{(n)}$ and predicted at \mathbf{x} Let

•
$$\mathbf{y} = (f_{code}(\mathbf{x}^{(1)}), ..., f_{code}(\mathbf{x}^{(n)}))'$$

• $\mathbf{R} = \{\hat{\sigma}^2 \bar{C}_{\hat{\ell}}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) + \hat{\delta}^2 \mathbf{1} \{\mathbf{x}^{(i)} = \mathbf{x}^{(j)}\}\}_{1 \le i, j \le n}$
• $\mathbf{r}(\mathbf{x}) = \{\hat{\sigma}^2 \bar{C}_{\hat{\ell}}(\mathbf{x}^{(i)}, \mathbf{x}) + \hat{\delta}^2 \mathbf{1} \{\mathbf{x}^{(i)} = \mathbf{x}\}\}_{1 \le i \le n}$

Then, conditionally to y, Y(x) follows a Gaussian distribution with mean

$$\hat{f}_{code}(\boldsymbol{x}) = \boldsymbol{r}(\boldsymbol{x})^t \mathbf{R}^{-1} \boldsymbol{y}$$

and variance

$$\hat{\sigma}_{code}^2(\mathbf{x}) = \hat{\sigma}^2 - \mathbf{r}(\mathbf{x})^t \mathbf{R}^{-1} \mathbf{r}(\mathbf{x}) + \hat{\delta}^2$$

- $\hat{f}_{code}(\mathbf{x})$: metamodel function
- $\hat{\sigma}_{code}^2(\mathbf{x})$: error indicator
- $\hat{\sigma}_{\textit{code}}^2(\textbf{\textit{x}}) \geq \hat{\delta}^2$: importance of the nugget variance

Parametric study for the Germinal code

2 Noisy Gaussian processes

Improvement of code behavior

Other metamodels and computation time

Two other metamodels

- Kernel methods
 - similar formulas as Gaussian processes but different interpretation
 - no error indicator
- neural networks
 - no support points (construction of an explicit non-linear function)
 - no error indicator

Computation time for prediction at q new points :

construction phase cost (1 time) + evaluation phase cost (proportional to q)

Costs for Kriging :

- construction phase : few hours
- evaluation phase : 0.004 seconds per input x

Costs for neural networks :

- construction phase : few hours
- evaluation phase : 0.00015 seconds per input x

Costs for kernel methods :

- no construction phase
- evaluation phase : 0.004 seconds per input x

Test base $(\mathbf{x}_{t}^{(1)}, f_{code}(\mathbf{x}_{t}^{(1)})), ..., (\mathbf{x}_{t}^{(n_{t})}, f_{code}(\mathbf{x}_{t}^{(n_{t})}))$, with $n_{t} = 1613$

• Root Mean Square Error (RMSE) (should be minimal)

$$RMSE^{2} = \frac{1}{n_{t}} \sum_{i=1}^{n_{t}} \left(\hat{f}_{code}(\boldsymbol{x}_{t}^{(i)}) - f_{code}(\boldsymbol{x}_{t}^{(i)}) \right)^{2}$$

• Efficiency criterion (Q²) (should be maximal)

$$Q^2 = 1 - \frac{RMSE^2}{sd_{code}^2}$$

- sd_{code} empirical standard deviation of the test base
- Empirical quantile q_{γ} for $\gamma \in (0, 1)$: empirical quantile γ of the set of errors $\left|\hat{f}_{code}(\boldsymbol{x}_{t}^{(i)}) f_{code}(\boldsymbol{x}_{t}^{(i)})\right|$, for $i = 1, ..., n_{t}$

Estimation of the prediction criteria

Estimation of RMSE

$$\widehat{RMSE}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(\widetilde{f}_{code}(\boldsymbol{x}^{(i)}) - f_{code}(\boldsymbol{x}^{(i)}) \right)^{2}$$

- For Gaussian processes and kernel methods, $\tilde{f}_{code}(\boldsymbol{x}^{(i)})$ is obtained by virtual leave-one-out
- For neural networks $\tilde{f}_{code}(\boldsymbol{x}^{(i)}) = \hat{f}_{code}(\boldsymbol{x}^{(i)})$
- Estimation of Q²

$$\widehat{Q}^2 = 1 - \frac{\widehat{RMSE}^2}{\widehat{sd}_{code}^2},$$

where \widehat{sd}_{code} is the standard deviation of the output on the learning base.

	RMSE	RMSE	\widehat{Q}^2	Q^2	q _{0.9}	q _{0.95}
Neural network	34.5°	38.5°	0.990	0.987	61.6°	76.7°
Kriging	35.6°	36.1°	0.989	0.989	57.4°	72.7°
Kernel methods	44.3°	44.5°	0.983	0.983	68.5°	88.8°

TABLE: Prediction results for the fusion margin output of the Germinal code. The standard deviation of the output on the test base is 342°

- Accuracy ranking : Kriging > neural networks > kernel methods
- For Kriging and kernel methods, \widehat{RMSE} and \widehat{Q}^2 are accurate
- For neural networks, \widehat{RMSE} and \widehat{Q}^2 are slightly over-optimistic
- $\hat{\delta} = 28.5^{\circ}$: an important part of the prediction error comes from the numerical instabilities

Plot of the prediction errors

FIGURE: Plot of the metamodel predictions in the test base (y-axis), as a function of the Germinal output values (x-axis), for the neural networks (left), Kriging (middle) and kernel methods (right). The dashed lines is defined by y = x.

 There are some very large errors → outlier computations (possibly because of numerical issues)
 Parametric study for the Germinal code

2 Noisy Gaussian processes

Prediction results

Improvement of code behavior

Visualization

We have encountered two types of code manager issues :

- outliers (large prediction errors)
- code instabilities (large nugget effect)

We decided to visualize them in 1*d* with points on a line segment of \mathbb{R}^{11} :

FIGURE: One-dimensional representation of the Germinal code function with 97 points on a line segment. We also plot the Gaussian process prediction with those 97 support points (the nugget estimate seems appropriate)

- The outlier computations are well flagged by the three metamodels. We can investigate a few outlier computations in details and improve the code manager
- We can investigate successive non-consistent computations from the 1*d* plot and find and solve the following issue :

FIGURE: Simplified illustration of the cause of the numerical instabilities. The issue is the automatic mesh generation. We update the code preprocessor to solve it

_		-	
Fran	cole	Rac	hoc
I I LUIT		Duc	100

FIGURE: New computations, for the same input points on a line, after update of the code preprocessor

- the outliers are now automatically flagged by the code postprocessor
- the numerical instabilities are removed

	RMSE	RMSE	\hat{Q}^2	Q^2	<i>q</i> _{0.9}	q _{0.95}
Neural network	27.5°	31.3°	0.993	0.991	48.7°	63.4°
Kriging	27.2°	27.6°	0.993	0.993	43.2°	54.0°
Kernel methods	38.3°	38.5°	0.986	0.986	60.8°	75.3°

TABLE: Prediction results for the fusion margin output of the updated Germinal code. The standard deviation of the output on the test base is 326.2°

- The predictions are more accurate after the code manager update
- $\hat{\delta} = 19.8^{\circ}$: smaller than before the code manager update (28.5°)
- The relative differences between the metamodels are larger \implies can be explained by the smaller nugget variance
- It is possible that other types of numerical instabilities are present

Conclusion

Recap :

- Comparison of metamodels :
 - Kriging most accurate and provides most uncertainty quantification tools
 - neural networks provide fastest prediction
 - kernel methods do not need a construction phase
- Illustrations of numerical issues in simulations
 - Some simulations can fail completely \Longrightarrow well detected by all metamodels, then manual investigation
 - Groups of simulations can be non-consistent (numerical instabilities) \implies so far detected with nugget variance and 1*d* plot
- Addressing these numerical issues improves the accuracy of the metamodels

Qestions :

- Robust Gaussian processes to outlier computations
- Detection procedures for pairs of computations with numerical instabilities
- Asymptotic guarantees for nugget variance estimation, even when the continuous process is misspecified

For more details :

F. Bachoc, K. Ammar and J.M. Martinez "Improvement of code behaviour in a design of experiments by metamodeling", *Nuclear Science and Engineering (2016) 183(3) 387-406.*

Image: A matrix

Thank you for your attention !

< 口 > < 🗗