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@ This talk is a case study of the metamodeling of a nuclear simulation code

o large number of simulation results
@ unexpected numerical issues

@ Objectives
@ provide a concrete example of the metamodeling process
@ see if there is a need for new theory and methodology

@ The paper :

@ F. Bachoc, K. Ammar and J.M. Martinez “Improvement of code behaviour in a design of
experiments by metamodeling”, Nuclear Science and Engineering (2016) 183(3)
387-406.
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° Parametric study for the Germinal code

e Noisy Gaussian processes

e Prediction results

° Improvement of code behavior
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Fuel pin simulation

Fuel assembly

Fuel pin Spacingwire  Clad Fuel Gas

FIGURE: A schematic representation of a fuel pin and a fuel assembly in nuclear fast-neutron reactors.

Simulation process
@ The nuclear radiation is an input parameter (may come from an other type of simulation)
@ The power and heat maps are output parameters
Aspects of interest
@ Efficiency (produced-energy / fuel ratio)
@ Security (is the fuel too hot ? Is the support altered ?)
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The Germinal parametric study

We represent the input and output maps by a finite number of parameters :
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FIGURE: lllustration of the code manager for Germinal

@ 11 input parameters in [0, 1]'! (normalized)
@ X :cycle length
® X, ..., X7 : nature of the fuel pin (material and geometry)
@ Xg, X9, X10 : input power map (would come from a neutronic simulation in case of code coupling)
@ xy1 : volume of expansion for fission gas.
@ 1 output parameter in R (non normalized)
©® foode(X) = foode(X1, ---, X11) & fusion margin
e ‘fusion margin’ = ‘fuel melting temperature’ — ‘maximal temperature along simulation’
o frue(X) < 0 = security issue
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Set of simulation results

@ One Germinal simulation takes around 1 minute
@ n = 3807 simulation results obtained as follows
o LHS— maximin (space filling) set of points in [0, 1]
@ We remove the input parameters which are non-viable (e.g. infeasible geometry) (no need for
Germinal simulation for this)

@ Our set of simulation results is written y; = fo0e(X(M), ..., ¥n = froge(x(M)

Metamodeling = construction of an approximation e : [0,1]" — R of fqe SO that
@ Fo04e is only based on x() y; . x(M_y, (black box)

® f200e is much quicker to evaluate than f,oge
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e Noisy Gaussian processes
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Gaussian process model

Gaussian process model (Kriging)

Assume that fyoqe is a realization of a random function Y

- 4

> O+

@ Enables to work with £ [Y]Y(x(M) = fooge(x()), ..., Y(X(M) = froqe(x(M)]
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Covariance function parametrization

@ We consider that the Gaussian process is centered, Vx,E(Y(x)) =0

@ The Gau53|an process is hence characterized by its covariance function
C(x®, x(b)y = Cov(Y(x(@), Y(x())

We assume

Y(x) = Yo(x) + Yo(x)

@ Y, :continuous
@ Y, :discontinuous — numerical instabilities

Parametrization :
C(x@ x0)y of the form o2 Cp(x(@, x(P)) 4 521{x(d = x(0)}

@ o2, ¢ variance and correlation lengths
@ 62 : nugget variance

@ Estimates 62, 2 and § obtained by Maximum Likelihood (modified because of large n, see the
paper)

Frangois Bachoc Processus gaussiens Grenoble - Aout 2016 9/23



Gaussian process Y observed at x(1)
Let

o y= (fcode(x(1)),~-~
e R= {&ZC@(X(i)

x(") and predicted at x

7fcode(x(n)))/
 x)) + 521{x() = X(j)}}1g/,/gn
o r(x) = {62C;(x), x) + #1{x\) = x}}1<i<n

Then, conditionally to y, Y(x) follows a Gaussian distribution with mean

feode(X) = r(x)tR_1y
and variance

ooe(X) = 6% — r(X)'R™Tr(x) + 6
0 Frode(X) : metamodel function
@ 52 .(x) : error indicator
o code(x) > 62 importance of the nugget variance
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e Prediction results
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Other metamodels and computation time

Two other metamodels

@ Kernel methods

e similar formulas as Gaussian processes but different interpretation
@ no error indicator

@ neural networks

@ no support points (construction of an explicit non-linear function)
@ no error indicator

Computation time for prediction at g new points :
@ construction phase cost (1 time) + evaluation phase cost (proportional to g)

Costs for Kriging :

@ construction phase : few hours

@ evaluation phase : 0.004 seconds per input x
Costs for neural networks :

@ construction phase : few hours

@ evaluation phase : 0.00015 seconds per input x
Costs for kernel methods :

@ no construction phase

@ evaluation phase : 0.004 seconds per input x
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Prediction criteria

Test base (X!, o006 (X$")), ..o, (™), Froge(x4™))), with n, = 1613

@ Root Mean Square Error (RMSE) (should be minimal)

n,

1 too. . " 2
AMSE? = =3~ (Teose(x{") — feoto(x{"))

i—1
@ Efficiency criterion (Q2) (should be maximal)

RMSE?
sa?

code

QP=1-

@ Sdgo0e €empirical standard deviation of the test base
@ Empirical quantile g, for v € (0, 1) : empirical quantile ~ of the set of errors
Foode (") = Teoae(x{)|, fori =1, nt
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Estimation of the prediction criteria

@ Estimation of RMSE

n

2 1 " ) N2
AMSE =~ (Teoae(x) ~ feoao(x))

i=1

o For Gaussian processes and kernel methods, e (X)) is obtained by virtual leave-one-out
o For neural networks fooge(X) = Foge (X))

@ Estimation of Q2

52_17@\352

)

—2
Sdcode

where E:Bcode is the standard deviation of the output on the learning base.
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Prediction results

AMSE | RMSE | Q2 Q2 Go.s | Qo.95
Neural network | 34.5° | 38.5° | 0.990 | 0.987 | 61.6° | 76.7°

Kriging 356° | 36.1° | 0.989 | 0.989 | 57.4° | 72.7°
Kernel methods | 44.3° | 44.5° | 0.983 | 0.983 | 68.5° | 88.8°

TABLE: Prediction results for the fusion margin output of the Germinal code. The standard deviation of the output
on the test base is 342°

@ Accuracy ranking : Kriging > neural networks > kernel methods

@ For Kriging and kernel methods, RMSE and Q2 are accurate

@ For neural networks, RMSE and Q2 are slightly over-optimistic

@ 0 = 28.5° : an important part of the prediction error comes from the numerical instabilities
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Plot of the prediction errors
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FIGURE: Plot of the metamodel predictions in the test base (y-axis), as a function of the Germinal output values
(x-axis), for the neural networks (left), Kriging (middle) and kernel methods (right). The dashed lines is defined
by y = x.

@ There are some very large errors = outlier computations (possibly because of numerical
issues)
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° Improvement of code behavior
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Visualization

We have encountered two types of code manager issues :
@ outliers (large prediction errors)
@ code instabilities (large nugget effect)
We decided to visualize them in 1d with points on a line segment of R'" :

Numerical instability
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FIGURE: One-dimensional representation of the Germinal code function with 97 points on a line segment. We
also plot the Gaussian process prediction with those 97 support points (the nugget estimate seems appropriate)
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Improvement of the code manager

@ The outlier computations are well flagged by the three metamodels. We can investigate a few
outlier computations in details and improve the code manager

@ We can investigate successive non-consistent computations from the 1d plot and find and
solve the following issue :

* Pin height 1y
Temperature perturbation o
° °
Temperature
computation L Physical + T
point Ao « hot °
] point / ||
° ° =
Fuel rod First mesh method New mesh method

FiGURE: Simplified illustration of the cause of the numerical instabilities. The issue is the automatic mesh
generation. We update the code preprocessor to solve it

Frangois Bachoc Processus gaussiens Grenoble - Aout 2016 19/23



After the code m er improvement
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FIGURE: New computations, for the same input points on a line, after update of the code preprocessor

@ the outliers are now automatically flagged by the code postprocessor
@ the numerical instabilities are removed

Frangois Bachoc Processus gaussiens Grenoble - Aout 2016 20/23



New prediction results

RMSE | RMSE | Q2 Q2 Gos | Q.95
Neural network | 27.5° | 31.3° | 0.993 | 0.991 | 48.7° | 63.4°

Kriging 27.2° | 27.6° | 0.993 | 0.993 | 43.2° | 54.0°
Kernel methods | 38.3° | 38.5° | 0.986 | 0.986 | 60.8° | 75.3°

TABLE: Prediction results for the fusion margin output of the updated Germinal code. The standard deviation of
the output on the test base is 326.2°

@ The predictions are more accurate after the code manager update
@ § =19.8° : smaller than before the code manager update (28.5°)

@ The relative differences between the metamodels are larger =—> can be explained by the
smaller nugget variance

@ |t is possible that other types of numerical instabilities are present

Frangois Bachoc Processus gaussiens Grenoble - Aout 2016 21/23



Conclusion

Recap :
@ Comparison of metamodels :

@ Kriging most accurate and provides most uncertainty quantification tools
@ neural networks provide fastest prediction
@ kernel methods do not need a construction phase

@ lllustrations of numerical issues in simulations

@ Some simulations can fail completely =—- well detected by all metamodels, then manual investigation
@ Groups of simulations can be non-consistent (numerical instabilities) => so far detected with nugget
variance and 1d plot

@ Addressing these numerical issues improves the accuracy of the metamodels

Qestions :
@ Robust Gaussian processes to outlier computations
@ Detection procedures for pairs of computations with numerical instabilities

@ Asymptotic guarantees for nugget variance estimation, even when the continuous process is
misspecified

For more details :

@ F. Bachoc, K. Ammar and J.M. Martinez “Improvement of code behaviour in a design of
experiments by metamodeling”, Nuclear Science and Engineering (2016) 183(3) 387-406.
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Thank you for your attention !
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