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Kriging model with Gaussian processes

Kriging model

Study of a single realization of a Gaussian process Y (x) on a domain X ∈ Rd
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Goal
Predicting the continuous realization function, from a finite number of observation points
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The Gaussian process

The Gaussian process
We consider that the Gaussian process is centered, ∀x ,E(Y (x)) = 0

The Gaussian process is hence characterized by its covariance function

The covariance function
The function K : X 2 → R, defined by K (x1, x2) = cov(Y (x1),Y (x2))

In most classical cases :

Stationarity : K (x1, x2) = K (x1 − x2)

Continuity : K (x) is continuous⇒ Gaussian process realizations are continuous

Decrease : K (x) is a decreasing function for x ≥ 0 and limx→+∞ K (x) = 0
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Example of the Matérn 3
2 covariance function on R

The Matérn 3
2 covariance function, for a Gaussian

process on R is parameterized by

A variance parameter σ2 > 0

A correlation length parameter ` > 0

It is defined as

Cσ2,`(x1, x2) = σ2
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Interpretation
Stationarity, continuity, decrease

σ2 corresponds to the order of magnitude of the functions that are realizations of the
Gaussian process

` corresponds to the speed of variation of the functions that are realizations of the Gaussian
process

⇒ Natural generalization on Rd
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Covariance function estimation

Parameterization
Covariance function model

{
σ2Kθ, σ2 ≥ 0, θ ∈ Θ

}
for the Gaussian Process Y .

σ2 is the variance parameter

θ is the multidimensional correlation parameter. Kθ is a stationary correlation function.

Observations
Y is observed at x1, ..., xn ∈ X , yielding the Gaussian vector y = (Y (x1), ...,Y (xn)).

Estimation

Objective : build estimators σ̂2(y) and θ̂(y)
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Maximum Likelihood for estimation

Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood
Define Rθ as the correlation matrix of y = (Y (x1), ...,Y (xn)) with correlation function Kθ and
σ2 = 1.
The Maximum Likelihood estimator of (σ2, θ) is

(σ̂2
ML, θ̂ML) ∈ argmin

σ2≥0,θ∈Θ

1
n

(
ln (|σ2Rθ|) +

1
σ2

y t R−1
θ y

)

⇒ Numerical optimization with O(n3) criterion
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Cross Validation for estimation

ŷθ,i,−i = Eσ2,θ(Y (xi )|y1, ..., yi−1, yi+1, ..., yn)

σ2c2
θ,i,−i = varσ2,θ(Y (xi )|y1, ..., yi−1, yi+1, ..., yn)

Leave-One-Out criteria we study

θ̂CV ∈ argmin
θ∈Θ

n∑
i=1

(yi − ŷθ,i,−i )
2

and
1
n

n∑
i=1

(yi − ŷθ̂CV ,i,−i )
2

σ̂2
CV c2

θ̂CV ,i,−i

= 1⇔ σ̂2
CV =

1
n

n∑
i=1

(yi − ŷθ̂CV ,i,−i )
2

c2
θ̂CV ,i,−i

Robustness
We show that Cross Validation can be preferable to Maximum Likelihood when the covariance
function model is misspecified

Bachoc F, Cross Validation and Maximum Likelihood estimations of hyper-parameters of
Gaussian processes with model misspecification, Computational Statistics and Data Analysis
66 (2013) 55-69
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Virtual Leave One Out formula

Let Rθ be the covariance matrix of y = (y1, ..., yn) with correlation function Kθ and σ2 = 1

Virtual Leave-One-Out

yi − ŷθ,i,−i =
1

(R−1
θ )i,i

(
R−1
θ y

)
i

and c2
i,−i =

1

(R−1
θ )i,i

O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, Mathematical Geology,
1983.

Using the virtual Cross Validation formula :

θ̂CV ∈ argmin
θ∈Θ

1
n

y t R−1
θ diag(R−1

θ )−2R−1
θ y

and
σ̂2

CV =
1
n

y t R−1
θ̂CV

diag(R−1
θ̂CV

)−1R−1
θ̂CV

y

⇒ Same computational cost as ML
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Prediction with fixed covariance function

Gaussian process Y observed at x1, ..., xn and predicted at xnew
y = (Y (x1), ...,Y (xn))t

Once the covariance function has been estimated and fixed
R is the covariance matrix of Y at x1, ..., xn

r is the covariance vector of Y between x1, ..., xn and xnew

Prediction

The prediction is Ŷ (xnew ) := E(Y (xnew )|Y (x1), ...,Y (xn)) = r t R−1y .

Predictive variance
The predictive variance is
var(Y (xnew )|Y (x1), ...,Y (xn)) = E

[
(Y (xnew )− Ŷ (xnew ))2

]
= var(Y (xnew ))− r t R−1r .
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Illustration of prediction

Observations

Prediction mean

95% confidence intervals

Conditional realizations
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Application to computer experiments

Computer model
A computer model, computing a given variable of interest, corresponds to a deterministic function
Rd → R. Evaluations of this function are time consuming

Examples : Simulation of a nuclear fuel pin, of thermal-hydraulic systems, of components of a
car, of a plane...

Kriging model for computer experiments
Basic idea : representing the code function by a realization of a Gaussian process

Bayesian framework on a fixed function

What we obtain
metamodel of the code : the Kriging prediction function approximates the code function, and
its evaluation cost is negligible

Error indicator with the predictive variance

Full conditional Gaussian process⇒ possible goal-oriented iterative strategies for
optimization, failure domain estimation, small probability problems, code calibration...
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Conclusion

Kriging models :

The covariance function characterizes the Gaussian process

It is estimated first. Here we consider Maximum Likelihood and Cross Validation estimation

Then we can compute prediction and predictive variances with explicit matrix vector formulas

Widely used for computer experiments
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1 Kriging models with Gaussian processes

2 Asymptotic analysis of covariance function estimation and of spatial sampling impact
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Framework and objectives

Estimation
We do not make use of the distinction σ2,θ. Hence we use the set {Kθ ,θ ∈ Θ} of stationary
covariance functions for the estimation.

Well-specified model
The true covariance function K of the Gaussian Process belongs to the set {Kθ ,θ ∈ Θ}. Hence

K = Kθ0 ,θ0 ∈ Θ

Objectives
Study the consistency and asymptotic distribution of the Cross Validation estimator

Confirm that, asymptotically, Maximum Likelihood is more efficient

Study the influence of the spatial sampling on the estimation
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Spatial sampling for covariance parameter estimation

Spatial sampling : initial design of experiments for Kriging

It has been shown that irregular spatial sampling is often an advantage for covariance
parameter estimation

Stein M, Interpolation of Spatial Data : Some Theory for Kriging, Springer, New York,
1999. Ch.6.9.

Zhu Z, Zhang H, Spatial sampling design under the infill asymptotics framework,
Environmetrics 17 (2006) 323-337.

Our question : can we confirm this finding in an asymptotic framework

François Bachoc Kriging models April 2014 16 / 28



Two asymptotic frameworks for covariance parameter estimation

Asymptotics (number of observations n→ +∞) is an active area of research
(Maximum-Likelihood estimator)

Two main asymptotic frameworks
fixed-domain asymptotics : The observation points are dense in a bounded domain
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increasing-domain asymptotics : A minimum spacing exists between the observation points
−→ infinite observation domain.
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Choice of the asymptotic framework

Comments on the two asymptotic frameworks
fixed-domain asymptotics
From 80’-90’ and onwards. Fruitful theory

Stein, M., Interpolation of Spatial Data Some Theory for Kriging, Springer, New York,
1999.

However, when convergence in distribution is proved, the asymptotic distribution does not
depend on the spatial sampling −→ Impossible to compare sampling techniques for
estimation in this context

increasing-domain asymptotics :
Asymptotic normality proved for Maximum-Likelihood (under conditions that are not simple to
check)

Sweeting, T., Uniform asymptotic normality of the maximum likelihood estimator, Annals
of Statistics 8 (1980) 1375-1381.

Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance
in spatial regression, Biometrika 71 (1984) 135-146.

(no results for CV)

We study increasing-domain asymptotics for ML and CV under irregular sampling
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The randomly perturbed regular grid that we study

Observation point i :
v i + εXi

(v i )i∈N∗ : regular square grid of step one in dimension d
(Xi )i∈N∗ : iid with symmetric distribution on [−1, 1]d

ε ∈ (− 1
2 ,

1
2 ) is the regularity parameter of the grid.

ε = 0 −→ regular grid.
|ε| close to 1

2 −→ irregularity is maximal

Illustration with ε = 0, 1
8 ,
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Consistency and asymptotic normality

Under general summability, regularity and identifiability conditions, we show

Proposition : for ML
a.s convergence of the random Fisher information : The random trace
1

2n Tr
(

R−1
θ0

∂Rθ0
∂θi

R−1
θ0

∂Rθ0
∂θj

)
converges a.s to the element (IML)i,j of a p × p deterministic

matrix IML as n→ +∞
asymptotic normality : With ΣML = I−1

ML

√
n
(
θ̂ML − θ0

)
→ N (0,ΣML)

Proposition : for CV
Same result with more complex expressions for asymptotic covariance matrix ΣCV
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Main ideas for the proof

A central tool : because of the minimum distance between observation points : the
eigenvalues of the random matrices involved are uniformly lower and upper bounded

For consistency : bounding from below the difference of M-estimator criteria between θ and
θ0 by the integrated square difference between Kθ and Kθ0

For almost-sure convergence of random traces : block-diagonal approximation of the random
matrices involved and Cauchy criterion

For asymptotic normality of criterion gradient : almost-sure (with respect to the random
perturbations) Lindeberg-Feller Central Limit Theorem

Conclude with classical M-estimator method
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Analysis of the asymptotic covariance matrices

The asymptotic covariance matrices ΣML,CV depend only on the regularity parameter ε.
−→ in the sequel, we study the functions ε→ ΣML,CV

Matérn model in dimension one

K`,ν(x1, x2) =
1

Γ(ν)2ν−1

(
2
√
ν
|x1 − x2|

`

)ν
Kν
(

2
√
ν
|x1 − x2|

`

)
,

with Γ the Gamma function and Kν the modified Bessel function of second order

We consider

The estimation of ` when ν0 is known

The estimation of ν when `0 is known

=⇒We study scalar asymptotic variances
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Results for the Matérn model (1/2)

Estimation of ` when ν0 is known.
Level plot of

[
ΣML,CV (ε = 0)

]
/
[
ΣML,CV (ε = 0.45)

]
in `0 × ν0 for ML (left) and CV (right)
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Perturbations of the regular grid are always beneficial for ML
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Results for the Matérn model (2/2)

Estimation of ν when `0 is known.
Level plot of

[
ΣML,CV (ε = 0)

]
/
[
ΣML,CV (ε = 0.45)

]
in `0 × ν0 for ML (left) and CV (right)
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Perturbations of the regular grid are always beneficial for ML and CV
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Conclusion on covariance function estimation and spatial sampling

CV is consistent and has the same rate of convergence as ML

We confirm (not presented here) that ML is more efficient
Strong irregularity in the sampling is an advantage for covariance function estimation

With ML, irregular sampling is more often an advantage than with CV
We show that, however, regular sampling is better for prediction with known covariance function =⇒
motivation for using space-filling samplings augmented with some clustered observation points

Z. Zhu and H. Zhang, Spatial Sampling Design Under the Infill Asymptotics Framework,
Environmetrics 17 (2006) 323-337.

L. Pronzato and W. G. Müller, Design of computer experiments : space filling and beyond,
Statistics and Computing 22 (2012) 681-701.

For further details :

F. Bachoc, Asymptotic analysis of the role of spatial sampling for covariance parameter
estimation of Gaussian processes, Journal of Multivariate Analysis 125 (2014) 1-35.
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Some perspectives

Ongoing work
Asymptotic analysis of the case of a misspecified covariance function model with purely
random sampling

Other potential perspectives
Designing other CV procedures (LOO error weighting, decorrelation and penalty term) to
reduce the variance

Start studying the fixed-domain asymptotics of CV, in the particular cases where it is done for
ML
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French community

French community

GDR MASCOT-NUM www.gdr-mascotnum.fr

consortium ReDICE www.redice-project.org
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Thank you for your attention !
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