Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling

François Bachoc

former PhD advisor: Josselin Garnier former CEA advisor: Jean-Marc Martinez

Department of Statistics and Operations Research, University of Vienna (Former PhD student at CEA-Saclay, DEN, DM2S, STMF, LGLS, F-91191 Gif-Sur-Yvette, France and LPMA, Université Paris Diderot)

JPS 2014 - Forges-les-Eaux - March 2014

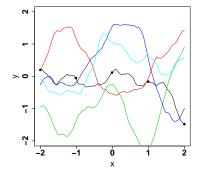
Kriging models with Gaussian processes

Asymptotic analysis of covariance function estimation and of spatial sampling impact

Kriging model with Gaussian processes

Kriging model

Study of a **single realization** of a Gaussian process Y(x) on a domain $\mathcal{X} \in \mathbb{R}^d$



Goal

Predicting the continuous realization function, from a finite number of observation points

The Gaussian process

- We consider that the Gaussian process is centered, $\forall x, \mathbb{E}(Y(x)) = 0$
- The Gaussian process is hence characterized by its covariance function

The covariance function

• The function $K : \mathcal{X}^2 \to \mathbb{R}$, defined by $K(x_1, x_2) = cov(Y(x_1), Y(x_2))$

In most classical cases :

- Stationarity : $K(x_1, x_2) = K(x_1 x_2)$
- Continuity : K(x) is continuous \Rightarrow Gaussian process realizations are continuous
- Decrease : K(x) is a decreasing function for $x \ge 0$ and $\lim_{x \to +\infty} K(x) = 0$

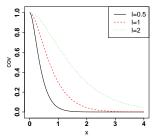
Example of the Matérn $\frac{3}{2}$ covariance function on \mathbb{R}

The Matérn $\frac{3}{2}$ covariance function, for a Gaussian process on \mathbb{R} is parameterized by

- A variance parameter $\sigma^2 > 0$
- A correlation length parameter l > 0

It is defined as

$$C_{\sigma^{2},\ell}(x_{1},x_{2}) = \sigma^{2}\left(1 + \sqrt{6}\frac{|x_{1} - x_{2}|}{\ell}\right)e^{-\sqrt{6}\frac{|x_{1} - x_{2}|}{\ell}}$$



Interpretation

- Stationarity, continuity, decrease
- σ^2 corresponds to the order of magnitude of the functions that are realizations of the Gaussian process
- $\bullet \ \ell$ corresponds to the speed of variation of the functions that are realizations of the Gaussian process
- \Rightarrow Natural generalization on \mathbb{R}^d

Parameterization

Covariance function model $\{\sigma^2 K_{\theta}, \sigma^2 \ge 0, \theta \in \Theta\}$ for the Gaussian Process *Y*.

- σ^2 is the variance parameter
- θ is the multidimensional correlation parameter. K_{θ} is a stationary correlation function.

Observations

Y is observed at $x_1, ..., x_n \in \mathcal{X}$, yielding the Gaussian vector $y = (Y(x_1), ..., Y(x_n))$.

Estimation

Objective : build estimators $\hat{\sigma}^2(y)$ and $\hat{\theta}(y)$

Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood

Define \mathbf{R}_{θ} as the correlation matrix of $y = (Y(x_1), ..., Y(x_n))$ with correlation function K_{θ} and $\sigma^2 = 1$.

The Maximum Likelihood estimator of (σ^2, θ) is

$$(\hat{\sigma}_{ML}^{2}, \hat{\theta}_{ML}) \in \underset{\sigma^{2} > 0, \theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \left(\ln \left(|\sigma^{2} \mathbf{R}_{\theta}| \right) + \frac{1}{\sigma^{2}} y^{t} \mathbf{R}_{\theta}^{-1} y \right)$$

 \Rightarrow Numerical optimization with $O(n^3)$ criterion

Cross Validation for estimation

•
$$\hat{y}_{\theta,i,-i} = \mathbb{E}_{\sigma^2,\theta}(Y(x_i)|y_1,...,y_{i-1},y_{i+1},...,y_n)$$

•
$$\sigma^2 c_{\theta,i,-i}^2 = var_{\sigma^2,\theta}(Y(x_i)|y_1,...,y_{i-1},y_{i+1},...,y_n)$$

Leave-One-Out criteria we study

$$\hat{\theta}_{CV} \in \operatorname*{argmin}_{\theta \in \Theta} \sum_{i=1}^{n} (y_i - \hat{y}_{\theta,i,-i})^2$$

and

$$\frac{1}{n}\sum_{i=1}^{n}\frac{(y_{i}-\hat{y}_{\hat{\theta}_{CV},i,-i})^{2}}{\hat{\sigma}_{CV}^{2}c_{\hat{\theta}_{CV},i,-i}^{2}}=1\Leftrightarrow\hat{\sigma}_{CV}^{2}=\frac{1}{n}\sum_{i=1}^{n}\frac{(y_{i}-\hat{y}_{\hat{\theta}_{CV},i,-i})^{2}}{c_{\hat{\theta}_{CV},i,-i}^{2}}$$

Robustness

We show that Cross Validation can be preferable to Maximum Likelihood when the covariance function model is misspecified

Bachoc F, Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification, *Computational Statistics and Data Analysis* 66 (2013) 55-69

< <p>O > < <p>O >

Virtual Leave One Out formula

Let \mathbf{R}_{θ} be the covariance matrix of $y = (y_1, ..., y_n)$ with correlation function K_{θ} and $\sigma^2 = 1$

Virtual Leave-One-Out

$$y_i - \hat{y}_{\theta,i,-i} = \frac{1}{(\mathbf{R}_{\theta}^{-1})_{i,i}} \left(\mathbf{R}_{\theta}^{-1} y\right)_i \text{ and } c_{i,-i}^2 = \frac{1}{(\mathbf{R}_{\theta}^{-1})_{i,i}}$$

 O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, Mathematical Geology, 1983.

Using the virtual Cross Validation formula :

$$\hat{\theta}_{CV} \in \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{n} y^t \mathbf{R}_{\theta}^{-1} diag(\mathbf{R}_{\theta}^{-1})^{-2} \mathbf{R}_{\theta}^{-1} y$$

and

$$\hat{\sigma}_{CV}^2 = \frac{1}{n} y^t \mathbf{R}_{\hat{\theta}_{CV}}^{-1} diag(\mathbf{R}_{\hat{\theta}_{CV}}^{-1})^{-1} \mathbf{R}_{\hat{\theta}_{CV}}^{-1} y$$

 \Rightarrow Same computational cost as ML

Gaussian process Y observed at $x_1, ..., x_n$ and predicted at x_{new} $y = (Y(x_1), ..., Y(x_n))^t$

Once the covariance function has been estimated and fixed

- **R** is the covariance matrix of *Y* at *x*₁, ..., *x*_n
- r is the covariance vector of Y between x₁,..., x_n and x_{new}

Prediction

var(

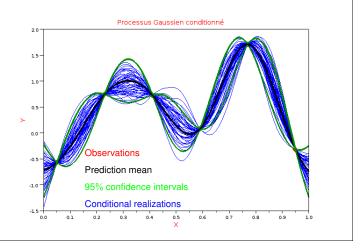
The prediction is
$$\hat{Y}(x_{new}) := \mathbb{E}(Y(x_{new})|Y(x_1),...,Y(x_n)) = r^t \mathbf{R}^{-1} y$$
.

Predictive variance

The predictive variance is

$$\left[Y(x_{new})|Y(x_1),...,Y(x_n)\right) = \mathbb{E}\left[(Y(x_{new}) - \hat{Y}(x_{new}))^2\right] = var(Y(x_{new})) - r^t \mathbf{R}^{-1}r.$$

Illustration of prediction



April 2014 11 / 28

Computer model

A computer model, computing a given variable of interest, corresponds to a deterministic function $\mathbb{R}^d \to \mathbb{R}$. Evaluations of this function are time consuming

• Examples : Simulation of a nuclear fuel pin, of thermal-hydraulic systems, of components of a car, of a plane...

Kriging model for computer experiments

Basic idea : representing the code function by a realization of a Gaussian process

Bayesian framework on a fixed function

What we obtain

- metamodel of the code : the Kriging prediction function approximates the code function, and its evaluation cost is negligible
- Error indicator with the predictive variance
- Full conditional Gaussian process ⇒ possible goal-oriented iterative strategies for optimization, failure domain estimation, small probability problems, code calibration...

(D) (A) (A) (A)

Kriging models :

- The covariance function characterizes the Gaussian process
- It is estimated first. Here we consider Maximum Likelihood and Cross Validation estimation
- Then we can compute prediction and predictive variances with explicit matrix vector formulas
- Widely used for computer experiments

Kriging models with Gaussian processes

Asymptotic analysis of covariance function estimation and of spatial sampling impact

Estimation

We do not make use of the distinction σ^2 , θ . Hence we use the set $\{K_{\theta}, \theta \in \Theta\}$ of stationary covariance functions for the estimation.

Well-specified model

The true covariance function K of the Gaussian Process belongs to the set $\{K_{\theta}, \theta \in \Theta\}$. Hence

$$K = K_{\boldsymbol{\theta}_0}, \boldsymbol{\theta}_0 \in \Theta$$

Objectives

- Study the consistency and asymptotic distribution of the Cross Validation estimator
- Confirm that, asymptotically, Maximum Likelihood is more efficient
- Study the influence of the spatial sampling on the estimation

- Spatial sampling : initial design of experiments for Kriging
- It has been shown that irregular spatial sampling is often an advantage for covariance parameter estimation

Stein M, Interpolation of Spatial Data : Some Theory for Kriging, *Springer, New York,* 1999. Ch.6.9.

- Zhu Z, Zhang H, Spatial sampling design under the infill asymptotics framework, Environmetrics 17 (2006) 323-337.
- Our question : can we confirm this finding in an asymptotic framework

Asymptotics (number of observations $n \to +\infty$) is an active area of research (Maximum-Likelihood estimator)

Two main asymptotic frameworks

• fixed-domain asymptotics : The observation points are dense in a bounded domain

● increasing-domain asymptotics : A minimum spacing exists between the observation points → infinite observation domain.

Comments on the two asymptotic frameworks

- fixed-domain asymptotics From 80'-90' and onwards. Fruitful theory
 - Stein, M., Interpolation of Spatial Data Some Theory for Kriging, *Springer, New York, 1999.*

However, when convergence in distribution is proved, the asymptotic distribution does not depend on the spatial sampling \longrightarrow Impossible to compare sampling techniques for estimation in this context

• increasing-domain asymptotics :

Asymptotic normality proved for Maximum-Likelihood (under conditions that are not simple to check)

Sweeting, T., Uniform asymptotic normality of the maximum likelihood estimator, *Annals of Statistics 8 (1980) 1375-1381*.

 Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance in spatial regression, *Biometrika 71 (1984) 135-146*.
 (no results for CV)

We study increasing-domain asymptotics for ML and CV under irregular sampling

The randomly perturbed regular grid that we study

• Observation point *i* :

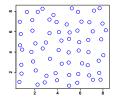
 $\mathbf{v}_i + \epsilon X_i$

- (𝔥_i)_{i∈ℕ*} : regular square grid of step one in dimension d
- (X_i)_{i∈ℕ*} : *iid* with symmetric distribution on [−1, 1]^d
- $\epsilon \in \left(-\frac{1}{2}, \frac{1}{2}\right)$ is the regularity parameter of the grid.
 - $\epsilon = 0 \longrightarrow \text{regular grid.}$
 - $|\epsilon|$ close to $\frac{1}{2} \longrightarrow$ irregularity is maximal

Illustration with $\epsilon = 0, \frac{1}{8}, \frac{3}{8}$

80 -	0	0	0	0	0	0	0	0
~	0	0	0	0	0	0	ο	0
9	0	0	0	0	0	0	0	0
ŝ	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
е.	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
-	o	<u> </u>	o	<u> </u>	<u> </u>	ò	o	o
	1	ż	3	4	5	6	Ż	8

		2		4		6		8
	0	0	0	0	0	0	0	0
~	0	0	0	0	0	0	0	0
	0	0	0	0 0 0 0 0 0	0	0	0	0
4 -	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
φ-	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
∞ -	0	0	0	0	0	0	0	0



Under general summability, regularity and identifiability conditions, we show

Proposition : for ML

a.s convergence of the random Fisher information : The random trace

 $\frac{1}{2n} \operatorname{Tr} \left(\mathbf{R}_{\boldsymbol{\theta}_0}^{-1} \frac{\partial \mathbf{R}_{\boldsymbol{\theta}_0}}{\partial \theta_i} \mathbf{R}_{\boldsymbol{\theta}_0}^{-1} \frac{\partial \mathbf{R}_{\boldsymbol{\theta}_0}}{\partial \theta_i} \right) \text{ converges a.s to the element } (\mathbf{I}_{ML})_{i,j} \text{ of a } p \times p \text{ deterministic}$ matrix I_{MI} as $n \to +\infty$

• asymptotic normality : With
$$\Sigma_{ML} = I_{ML}^{-1}$$

$$\sqrt{n}\left(\hat{\boldsymbol{ heta}}_{ML}-\boldsymbol{ heta}_{0}
ight)
ightarrow\mathcal{N}\left(0,\boldsymbol{\Sigma}_{ML}
ight)$$

Proposition : for CV

Same result with more complex expressions for asymptotic covariance matrix Σ_{CV}

- A central tool : because of the minimum distance between observation points : the eigenvalues of the random matrices involved are uniformly lower and upper bounded
- For consistency : bounding from below the difference of M-estimator criteria between θ and θ_0 by the integrated square difference between K_{θ} and K_{θ_0}
- For almost-sure convergence of random traces : block-diagonal approximation of the random matrices involved and Cauchy criterion
- For asymptotic normality of criterion gradient : almost-sure (with respect to the random perturbations) Lindeberg-Feller Central Limit Theorem
- Conclude with classical M-estimator method

The asymptotic covariance matrices $\Sigma_{ML,CV}$ depend only on the regularity parameter ϵ . in the sequel, we study the functions $\epsilon \to \Sigma_{ML,CV}$

Matérn model in dimension one

$$K_{\ell,\nu}(x_1, x_2) = \frac{1}{\Gamma(\nu)2^{\nu-1}} \left(2\sqrt{\nu} \frac{|x_1 - x_2|}{\ell} \right)^{\nu} K_{\nu} \left(2\sqrt{\nu} \frac{|x_1 - x_2|}{\ell} \right),$$

with Γ the Gamma function and ${\it K}_{\nu}$ the modified Bessel function of second order

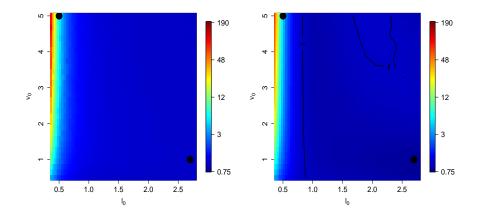
We consider

- The estimation of ℓ when ν_0 is known
- The estimation of ν when ℓ_0 is known

 \implies We study scalar asymptotic variances

Results for the Matérn model (1/2)

Estimation of ℓ when ν_0 is known. Level plot of $[\Sigma_{ML,CV}(\epsilon = 0)] / [\Sigma_{ML,CV}(\epsilon = 0.45)]$ in $\ell_0 \times \nu_0$ for ML (left) and CV (right)



Perturbations of the regular grid are always beneficial for ML

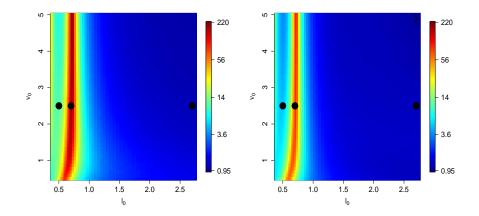
			2.40
François Bachoc	Kriging models	April 2014	23 / 28

イロト イロト イモト イモト

-

Results for the Matérn model (2/2)

Estimation of ν when ℓ_0 is known. Level plot of $[\Sigma_{ML,CV}(\epsilon = 0)] / [\Sigma_{ML,CV}(\epsilon = 0.45)]$ in $\ell_0 \times \nu_0$ for ML (left) and CV (right)



Perturbations of the regular grid are always beneficial for ML and CV

François Bachoc	Kriging models	April 2014	24 / 28

- CV is consistent and has the same rate of convergence as ML
- We confirm (not presented here) that ML is more efficient
- Strong irregularity in the sampling is an advantage for covariance function estimation
 - With ML, irregular sampling is more often an advantage than with CV
 - We show that, however, regular sampling is better for prediction with known covariance function motivation for using space-filling samplings augmented with some clustered observation points
 - Z. Zhu and H. Zhang, Spatial Sampling Design Under the Infill Asymptotics Framework, *Environmetrics 17 (2006) 323-337*.
 - L. Pronzato and W. G. Müller, Design of computer experiments : space filling and beyond, Statistics and Computing 22 (2012) 681-701.

For further details :

F. Bachoc, Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes, *Journal of Multivariate Analysis 125 (2014) 1-35.*

Ongoing work

• Asymptotic analysis of the case of a misspecified covariance function model with purely random sampling

Other potential perspectives

- Designing other CV procedures (LOO error weighting, decorrelation and penalty term) to reduce the variance
- Start studying the fixed-domain asymptotics of CV, in the particular cases where it is done for ML

French community

- GDR MASCOT-NUM www.gdr-mascotnum.fr
- consortium ReDICE www.redice-project.org

Thank you for your attention !

-

・ロト ・日 ・ ・ ヨ ・ ・