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0 Kriging models with Gaussian processes

e Asymptotic analysis of covariance function estimation and of spatial sampling impact
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Kriging model with Gaussian processes

Kriging model

Study of a single realization of a Gaussian process Y/(x) on a domain X € RY

Predicting the continuous realization function, from a finite number of observation points \
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The Gaussian process

The Gaussian process

@ We consider that the Gaussian process is centered, Vx, E(Y(x)) =0
@ The Gaussian process is hence characterized by its covariance function

v

The covariance function

@ The function K : X2 — R, defined by K(xy, xo) = cov(Y(xy), Y(x2))

In most classical cases :
@ Stationarity : K(xq, X2) = K(x1 — X2)
@ Continuity : K(x) is continuous = Gaussian process realizations are continuous
@ Decrease : K(x) is a decreasing function for x > 0 and limx— .o K(x) =0
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Example of the Matérn 3 covariance function on R

1.0

The Matérn % covariance function, for a Gaussian
process on R is parameterized by

@ A variance parameter 2 > 0
@ A correlation length parameter ¢ > 0
It is defined as

— |x1—Xo|
C2 o(X1,%2) = 0° (1 + Ve =%l 7 Xz‘) e VoI

0.8
.

cov
0.4

0.0
.

Interpretation

@ Stationarity, continuity, decrease

@ o2 corresponds to the order of magnitude of the functions that are realizations of the
Gaussian process

@ ¢ corresponds to the speed of variation of the functions that are realizations of the Gaussian
process

= Natural generalization on RY
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Covariance function estimation

Parameterization
Covariance function model {02K9,02 >0,0 e e} for the Gaussian Process Y.

@ o2 is the variance parameter
@ 0 is the multidimensional correlation parameter. Kj is a stationary correlation function.

Observations
Y is observed at x4, ..., X € X, yielding the Gaussian vector y = (Y(x1), ..., Y(Xn)).

Objective : build estimators 62(y) and d(y)
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Maximum Likelihood for estimation

Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood

Define Ry as the correlation matrix of y = (Y(x1), ..., Y(xn)) with correlation function Ky and
o2 =1.
The Maximum Likelihood estimator of (o2, 0) is

2 A o1 1 _
(a,%”_,GML) € argmin — (In (\02R9|) 4L —2th0 1y>
02>0,0c0 o

= Numerical optimization with O(n®) criterion
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Cross Validation for estimation
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Leave-One-Out criteria we study
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We show that Cross Validation can be preferable to Maximum Likelihood when the covariance
function model is misspecified

@ Bachoc F, Cross Validation and Maximum Likelihood estimations of hyper-parameters of
Gaussian processes with model misspecification, Computational Statistics and Data Analysis
66 (2013) 55-69

v
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Virtual Leave One Out formula

Let Ry be the covariance matrix of y = (4, ..., ¥n) With correlation function Ky and o2 = 1

Virtual Leave-One-Out

1

Yi—Voi—i= —
b (R, "),

1 —1 B _
oy, (Fay), e =

@ O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, Mathematical Geology,
1983.

Using the virtual Cross Validation formula :
~ 1
dov € argmin —y'R, " diag(R, ') 2R,y
oco N

and

1
~2 te—1 A —1\—1p—1
= —y'R} R’ R’
Tev ny fcv diag( 9cv) 9cvy

= Same computational cost as ML
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Prediction with fixed covariance function

Gaussian process Y observed at xq, ..., X, and predicted at xpew
y=(Y(x),..., Y(xn))!

Once the covariance function has been estimated and fixed

@ R is the covariance matrix of Y at xq, ..., Xn
@ ris the covariance vector of Y between x, ..., Xn and Xnew

Prediction

The prediction is ¥(xnew) := E(Y (Xnew)| Y(X1); ..., Y (xn)) = rlR~1y.

Predictive variance

The predictive variance is
var(Y (Xnew)| Y (x1), .., Y(xn)) = E [( Y (Xnew) — V(x,,ew))Z] = var(Y (xnew)) — r'R=r.
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lllustration of prediction
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Application to computer experiments

Computer model

A computer model, computing a given variable of interest, corresponds to a deterministic function
R? — R. Evaluations of this function are time consuming

@ Examples : Simulation of a nuclear fuel pin, of thermal-hydraulic systems, of components of a
car, of a plane...

v
Kriging model for computer experiments
Basic idea : representing the code function by a realization of a Gaussian process
@ Bayesian framework on a fixed function

What we obtain

@ metamodel of the code : the Kriging prediction function approximates the code function, and
its evaluation cost is negligible

@ Error indicator with the predictive variance

@ Full conditional Gaussian process = possible goal-oriented iterative strategies for
optimization, failure domain estimation, small probability problems, code calibration...

A,
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Conclusion

Kriging models :
@ The covariance function characterizes the Gaussian process
@ |tis estimated first. Here we consider Maximum Likelihood and Cross Validation estimation
@ Then we can compute prediction and predictive variances with explicit matrix vector formulas
@ Widely used for computer experiments
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e Asymptotic analysis of covariance function estimation and of spatial sampling impact
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Framework and objectives

We do not make use of the distinction o2, 8. Hence we use the set {Kg, 0 € ©} of stationary
covariance functions for the estimation.

Well-specified model

The true covariance function K of the Gaussian Process belongs to the set {Kg, 0 € ©}. Hence

K= Kgo, 6y € ©
Objectives
@ Study the consistency and asymptotic distribution of the Cross Validation estimator

@ Confirm that, asymptotically, Maximum Likelihood is more efficient
@ Study the influence of the spatial sampling on the estimation
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Spatial sampling for covariance parameter estimation

@ Spatial sampling : initial design of experiments for Kriging

@ It has been shown that irregular spatial sampling is often an advantage for covariance
parameter estimation

@ Stein M, Interpolation of Spatial Data : Some Theory for Kriging, Springer, New York,
1999. Ch.6.9.

@ Zhu Z, Zhang H, Spatial sampling design under the infill asymptotics framework,
Environmetrics 17 (2006) 323-337.

@ Our question : can we confirm this finding in an asymptotic framework
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Two asymptotic frameworks for covariance parameter estimation

Asymptotics (number of observations n — +o0) is an active area of research
(Maximum-Likelihood estimator)

Two main asymptotic frameworks

@ fixed-domain asymptotics : The observation points are dense in a bounded domain

@ increasing-domain asymptotics : A minimum spacing exists between the observation points
— infinite observation domain.




Choice of the asymptotic framework

Comments on the two asymptotic frameworks

o fixed-domain asymptotics
From 80’-90’ and onwards. Fruitful theory

@ Stein, M., Interpolation of Spatial Data Some Theory for Kriging, Springer, New York,
1999.
However, when convergence in distribution is proved, the asymptotic distribution does not
depend on the spatial sampling — Impossible to compare sampling techniques for
estimation in this context
@ increasing-domain asymptotics :

Asymptotic normality proved for Maximum-Likelihood (under conditions that are not simple to
check)

@ Sweeting, T., Uniform asymptotic normality of the maximum likelihood estimator, Annals
of Statistics 8 (1980) 1375-1381.

@ Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance
in spatial regression, Biometrika 71 (1984) 135-146.
(no results for CV)

We study increasing-domain asymptotics for ML and CV under irregular sampling
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rbed regular grid that we s

@ Observation point i :
Vi +eX;

@ (Vvj)ien* : regular square grid of step one in dimension d
o (Xi)ien~ : iid with symmetric distribution on [—1, 1]°
@ ¢ € (—3, %) is the regularity parameter of the grid.

e ¢ =0 — regular grid.
o || close to } — irregularity is maximal
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Consistency and asymptotic normality

Under general summability, regularity and identifiability conditions, we show

Proposition : for ML

@ a.s convergence of the random Fisher information : The random trace
AR oR
1 —1970g p—196g o inisti
o5 17 <Reo 56, Fit90 70, ) converges a.s to the element (I ); ; of a p x p deterministic

matrix Iy as n — +oo
@ asymptotic normality : With X = IA‘/,Z

vn (éML = 90) — N (0, 2mL)

Proposition : for CV

Same result with more complex expressions for asymptotic covariance matrix ¢y
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Main ideas for the proof

@ A central tool : because of the minimum distance between observation points : the
eigenvalues of the random matrices involved are uniformly lower and upper bounded

@ For consistency : bounding from below the difference of M-estimator criteria between 6 and
6 by the integrated square difference between Kg and Kg,

@ For almost-sure convergence of random traces : block-diagonal approximation of the random
matrices involved and Cauchy criterion

@ For asymptotic normality of criterion gradient : almost-sure (with respect to the random
perturbations) Lindeberg-Feller Central Limit Theorem

@ Conclude with classical M-estimator method
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Analysis of the asymptotic covariance matrices

The asymptotic covariance matrices >y cv depend only on the regularity parameter e.
in the sequel, we study the functions e — Xy cv

Matérn model in dimension one

Kz,y(xhxz):r(y;zuq(f|X1 le) (f|x1 x2|)7

with I the Gamma function and K, the modified Bessel function of second order

We consider
@ The estimation of £ when vy is known
@ The estimation of v when ¢; is known

—> We study scalar asymptotic variances
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Results for the Matérn model (1/2)

Estimation of £ when vy is known.
Level plot of [Zp,cv(e = 0)] / [Zm,cv(e = 0.45)] in £y x vg for ML (left) and CV (right)
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Perturbations of the regular grid are always beneficial for ML
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Results for the Matérn model (2/2)

Estimation of v when ¢; is known.
Level plot of [Zp,cv(e = 0)] / [Zm,cv(e = 0.45)] in £y x vg for ML (left) and CV (right)
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Perturbations of the regular grid are always beneficial for ML and CV
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Conclusion on covariance function estimation and spatial sampling

@ CV is consistent and has the same rate of convergence as ML
@ We confirm (not presented here) that ML is more efficient

@ Strong irregularity in the sampling is an advantage for covariance function estimation
o With ML, irregular sampling is more often an advantage than with CV
o We show that, however, regular sampling is better for prediction with known covariance function —-
motivation for using space-filling samplings augmented with some clustered observation points

@ Z.Zhu and H. Zhang, Spatial Sampling Design Under the Infill Asymptotics Framework,
Environmetrics 17 (2006) 323-337.

@ L. Pronzato and W. G. Miller, Design of computer experiments : space filling and beyond,
Statistics and Computing 22 (2012) 681-701.

For further details :

@ F. Bachoc, Asymptotic analysis of the role of spatial sampling for covariance parameter
estimation of Gaussian processes, Journal of Multivariate Analysis 125 (2014) 1-35.
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Some perspectives

Ongoing work
@ Asymptotic analysis of the case of a misspecified covariance function model with purely
random sampling

Other potential perspectives

@ Designing other CV procedures (LOO error weighting, decorrelation and penalty term) to
reduce the variance
@ Start studying the fixed-domain asymptotics of CV, in the particular cases where it is done for
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French community

French community
@ GDR MASCOT-NUM www.gdr-mascotnum.fr
@ consortium ReDICE www.redice-project.org

Frangois Bachoc Kriging models April 2014 27/28



Thank you for your attention !
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