Covariance function estimation in Gaussian process regression

François Bachoc

Department of Statistics and Operations Research, University of Vienna

ENSAI - March 2015

2 Maximum Likelihood and Cross Validation for covariance function estimation

Finite-sample and asymptotic analysis of the misspecified case

Gaussian process regression (Kriging model)

Study of a **single realization** of a Gaussian process Y(x) on a domain $\mathcal{X} \subset \mathbb{R}^d$

Goal

Predicting the continuous realization function, from a finite number of observation points

The Gaussian process

- We consider that the Gaussian process is centered, $\forall x, \mathbb{E}(Y(x)) = 0$
- The Gaussian process is hence characterized by its covariance function

The covariance function

• The function $K_1 : \mathcal{X}^2 \to \mathbb{R}$, defined by $K_1(x_1, x_2) = cov(Y(x_1), Y(x_2))$

In most classical cases :

- Stationarity : $K_1(x_1, x_2) = K_1(x_1 x_2)$
- Continuity : $K_1(x)$ is continuous \Rightarrow Gaussian process realizations are continuous
- Decrease : $K_1(x)$ decreases with ||x|| and $\lim_{||x|| \to +\infty} K_1(x) = 0$

Example of the Matérn $\frac{3}{2}$ covariance function on \mathbb{R}

The Matérn $\frac{3}{2}$ covariance function, for a Gaussian process on \mathbb{R} is parameterized by

- A variance parameter $\sigma^2 > 0$
- A correlation length parameter $\ell > 0$

It is defined as

$$K_{\sigma^{2},\ell}(x_{1},x_{2}) = \sigma^{2}\left(1 + \sqrt{6}\frac{|x_{1} - x_{2}|}{\ell}\right)e^{-\sqrt{6}\frac{|x_{1} - x_{2}|}{\ell}}$$

Interpretation

- Stationarity, continuity, decrease
- σ^2 corresponds to the order of magnitude of the functions that are realizations of the Gaussian process
- $\bullet \ \ell$ corresponds to the speed of variation of the functions that are realizations of the Gaussian process
- \Rightarrow Natural generalization on \mathbb{R}^d

Parameterization

Covariance function model $\{\sigma^2 K_{\theta}, \sigma^2 \ge 0, \theta \in \Theta\}$ for the Gaussian process *Y*.

- σ^2 is the variance parameter
- θ is the multidimensional correlation parameter. K_{θ} is a stationary correlation function

Observations

Y is observed at $x_1, ..., x_n \in \mathcal{X}$, yielding the Gaussian vector $y = (Y(x_1), ..., Y(x_n))$

Estimation

Objective : build estimators $\hat{\sigma}^2(y)$ and $\hat{\theta}(y)$

Prediction with estimated covariance function

Gaussian process Y observed at $x_1, ..., x_n$ and predicted at x_{new} $y = (Y(x_1), ..., Y(x_n))^t$

Once the covariance parameters have been estimated and fixed to $\hat{\sigma}$ and $\hat{\theta}$

- R_â is the correlation matrix of Y at x₁,..., x_n under correlation function K_â
- $r_{\hat{\theta}}$ is the correlation vector of Y between $x_1, ..., x_n$ and x_{new} under correlation function $K_{\hat{\theta}}$

Prediction

The prediction is
$$\hat{Y}_{\hat{\theta}}(x_{new}) := \mathbb{E}_{\hat{\theta}}(Y(x_{new})|Y(x_1),...,Y(x_n)) = r_{\hat{\theta}}^t \mathbf{R}_{\hat{\theta}}^{-1} y.$$

Predictive variance

The predictive variance is

$$\mathsf{var}_{\hat{\sigma},\hat{\theta}}(Y(x_{\mathsf{new}})|Y(x_1),...,Y(x_n)) = \mathbb{E}_{\hat{\sigma},\hat{\theta}}\left[(Y(x_{\mathsf{new}}) - \hat{Y}_{\hat{\theta}}(x_{\mathsf{new}}))^2\right] = \hat{\sigma}^2\left(1 - r_{\hat{\theta}}^t \mathbf{R}_{\hat{\theta}}^{-1} r_{\hat{\theta}}\right).$$

("Plug-in" approach)

Illustration of prediction

François Bachoc

Computer model

A computer model, computing a given variable of interest, corresponds to a deterministic function $\mathbb{R}^d \to \mathbb{R}$. Evaluations of this function are time consuming

• Examples : Simulation of a nuclear fuel pin, of thermal-hydraulic systems, of components of a car, of a plane...

Gaussian process model for computer experiments

Basic idea : representing the code function by a realization of a Gaussian process

Bayesian framework on a fixed function

What we obtain

- Metamodel of the code : the Gaussian process prediction function approximates the code function, and its evaluation cost is negligible
- Error indicator with the predictive variance
- Full conditional Gaussian process ⇒ possible goal-oriented iterative strategies for optimization, failure domain estimation, small probability problems, code calibration...

・ロト ・同ト ・ヨト ・ヨ

Gaussian process regression :

- The covariance function characterizes the Gaussian process
- It is estimated first (main topic of the talk, cf below)
- Then we can compute prediction and predictive variances with explicit matrix vector formulas
- Widely used for computer experiments

2 Maximum Likelihood and Cross Validation for covariance function estimation

Asymptotic analysis of the well-specified case

Finite-sample and asymptotic analysis of the misspecified case

Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood

Define \mathbf{R}_{θ} as the correlation matrix of $y = (Y(x_1), ..., Y(x_n))$ with correlation function K_{θ} and $\sigma^2 = 1$

The Maximum Likelihood estimator of (σ^2, θ) is

$$(\hat{\sigma}_{ML}^2, \hat{\theta}_{ML}) \in \operatorname*{argmin}_{\sigma^2 > 0, \theta \in \Theta} \frac{1}{n} \left(\ln \left(|\sigma^2 \mathbf{R}_{\theta}| \right) + \frac{1}{\sigma^2} y^t \mathbf{R}_{\theta}^{-1} y \right)$$

- \Rightarrow Numerical optimization with $O(n^3)$ criterion
- \Rightarrow Most standard estimation method

•
$$\hat{y}_{\theta,i,-i} = \mathbb{E}_{\theta}(Y(x_i)|y_1,...,y_{i-1},y_{i+1},...,y_n)$$

• $\sigma^2 c_{\theta,i,-i}^2 = var_{\sigma^2,\theta}(Y(x_i)|y_1,...,y_{i-1},y_{i+1},...,y_n)$

Leave-One-Out criteria we study

$$\hat{\theta}_{CV} \in \operatorname*{argmin}_{\theta \in \Theta} \sum_{i=1}^{n} (y_i - \hat{y}_{\theta,i,-i})^2$$

and

$$\frac{1}{n}\sum_{i=1}^{n}\frac{(y_i-\hat{y}_{\hat{\theta}_{CV},i,-i})^2}{\hat{\sigma}_{CV}^2c_{\hat{\theta}_{CV},i,-i}^2} = 1 \Leftrightarrow \hat{\sigma}_{CV}^2 = \frac{1}{n}\sum_{i=1}^{n}\frac{(y_i-\hat{y}_{\hat{\theta}_{CV},i,-i})^2}{c_{\hat{\theta}_{CV},i,-i}^2}$$

⇒ Alternative method used by some authors

Virtual Leave One Out formula

Let \mathbf{R}_{θ} be the correlation matrix of $y = (y_1, ..., y_n)$ with correlation function K_{θ}

Virtual Leave-One-Out

$$y_i - \hat{y}_{\theta,i,-i} = rac{1}{(\mathbf{R}_{\theta}^{-1})_{i,i}} \left(\mathbf{R}_{\theta}^{-1} y\right)_i \quad ext{and} \quad c^2_{\theta,i,-i} = rac{1}{(\mathbf{R}_{\theta}^{-1})_{i,i}}$$

 O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, Mathematical Geology, 1983.

Using the virtual Cross Validation formula :

$$\hat{\theta}_{CV} \in \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{n} y^t \mathbf{R}_{\theta}^{-1} diag(\mathbf{R}_{\theta}^{-1})^{-2} \mathbf{R}_{\theta}^{-1} y$$

and

$$\hat{\sigma}_{CV}^2 = \frac{1}{n} y^t \mathbf{R}_{\hat{\theta}_{CV}}^{-1} diag(\mathbf{R}_{\hat{\theta}_{CV}}^{-1})^{-1} \mathbf{R}_{\hat{\theta}_{CV}}^{-1} y$$

 \Rightarrow Same computational cost as ML

2 Maximum Likelihood and Cross Validation for covariance function estimation

Asymptotic analysis of the well-specified case

Finite-sample and asymptotic analysis of the misspecified case

Estimation of θ only

For simplicity, we do not distinguish the estimations of σ^2 and θ . Hence we use the set $\{K_{\theta}, \theta \in \Theta\}$ of stationary covariance functions for the estimation.

Well-specified model

The true covariance function K_1 of the Gaussian process belongs to the set $\{K_{\theta}, \theta \in \Theta\}$. Hence

$$K_1 = K_{\theta_0}, \theta_0 \in \Theta$$

 \implies Most standard theoretical framework for estimation

 \Longrightarrow ML and CV estimators can be analyzed and compared w.r.t. estimation error criteria (based on $|\hat{\theta}-\theta_0|)$

Two asymptotic frameworks for covariance parameter estimation

- Asymptotics (number of observations $n \to +\infty$) is an active area of research
- There are several asymptotic frameworks because they are several possible location patterns for the observation points

Two main asymptotic frameworks

• fixed-domain asymptotics : The observation points are dense in a bounded domain

• increasing-domain asymptotics : number of observation points is proportional to domain volume — unbounded observation domain.

- From 80'-90' and onward. Fruitful theory for interaction estimation-prediction.
 - Stein M, Interpolation of Spatial Data : Some Theory for Kriging, Springer, New York, 1999.
- Consistent estimation is impossible for some covariance parameters (identifiable in finite-sample), see e.g.
 - Zhang, H., Inconsistent Estimation and Asymptotically Equivalent Interpolations in Model-Based Geostatistics, *Journal of the American Statistical Association (99)*, 250-261, 2004.
- Proofs (consistency, asymptotic distribution) are challenging in several ways
 - They are done on a case-by-case basis for the covariance models
 - They may assume gridded observation points
- No impact of spatial sampling of observation points on asymptotic distribution
- (No results for CV)

Existing increasing-domain asymptotic results

- Consistent estimation is possible for all covariance parameters (that are identifiable in finite-sample). [More independence between observations]
- Asymptotic normality proved for Maximum-Likelihood
 - Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance in spatial regression, *Biometrika 71 (1984) 135-146*.
 - N. Cressie and S.N Lahiri, The asymptotic distribution of REML estimators, *Journal of Multivariate Analysis 45 (1993) 217-233.*
 - N. Cressie and S.N Lahiri, Asymptotics for REML estimation of spatial covariance parameters, *Journal of Statistical Planning and Inference 50 (1996) 327-341*. Under conditions that are
 - · General for the covariance model
 - Not simple to check or specific for the spatial sampling
- (No results for CV)
- \implies We study increasing-domain asymptotics for ML and CV

We study a randomly perturbed regular grid

• Observation point X_i :

 $v_i + \epsilon U_i$

- $(v_i)_{i \in \mathbb{N}^*}$: regular square grid of step one in dimension d
- $(U_i)_{i \in \mathbb{N}^*}$: *iid* with symmetric distribution on $[-1, 1]^d$
- $\epsilon \in (-\frac{1}{2}, \frac{1}{2})$ is the regularity parameter of the grid.
 - $\epsilon = 0 \longrightarrow \text{regular grid.}$
 - $|\epsilon|$ close to $\frac{1}{2} \longrightarrow$ irregularity is maximal

Illustration with $\epsilon = 0, \frac{1}{8}, \frac{3}{8}$

÷.	<u>e</u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	위	
~	0	0	0	0	0	0	0	0	
е.	0	0	0	0	0	0	0	0	
4 -	0	0	0	0	0	0	0	0	
ŝ	0	0	0	0	0	0	0	0	
φ.	0	0	0	0	0	0	0	0	
~ •	0	0	0	0	0	0	0	0	
∞ -	0	0	0	0	0	0	0	0	

		2		á.		6		8
	0	0	0	0	0	0	0	0
~ ~	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
4 -	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
φ-	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
æ -	0	0	0	0	0	0	0	0

- Realizations car correspond to various sampling techniques for the observation points
- In the corresponding paper, one main objective is to study the impact of the irregularity (regularity parameter ϵ) :
 - F. Bachoc, Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes, *Journal of Multivariate Analysis 125 (2014) 1-35.*
- Note the condition |ϵ| < 1/2 → minimum distance between observation points → technically convenient and appears in aforementioned publications</p>

Recall that \mathbf{R}_{θ} is defined by $(R_{\theta})_{i,j} = K_{\theta}(X_i - X_j)$. (Family of random covariance matrices) Under general summability, regularity and identifiability conditions, we show

Proposition : for ML

• a.s. convergence of the random Fisher information : The random trace

 $\frac{1}{2n} \operatorname{Tr} \left(\mathbf{R}_{\theta_0}^{-1} \frac{\partial \mathbf{R}_{\theta_0}}{\partial \theta_i} \mathbf{R}_{\theta_0}^{-1} \frac{\partial \mathbf{R}_{\theta_0}}{\partial \theta_j} \right) \text{ converges a.s to the element } (\mathbf{I}_{ML})_{i,j} \text{ of a } p \times p \text{ deterministic matrix } \mathbf{I}_{ML} \text{ as } n \to +\infty$

• asymptotic normality : With $\Sigma_{ML} = I_{ML}^{-1}$

$$\sqrt{n}\left(\hat{ heta}_{ML}- heta_{0}
ight)
ightarrow\mathcal{N}\left(0,\Sigma_{ML}
ight)$$

Proposition : for CV

Same result with more complex expressions for asymptotic covariance matrix Σ_{CV}

Based on applying M-estimator methods to the criteria functions

$$\frac{1}{n}\left(\ln\left(|\sigma^2 \mathbf{R}_{\theta}|\right) + \frac{1}{\sigma^2}y^t \mathbf{R}_{\theta}^{-1}y\right) \text{ and } \frac{1}{n}y^t \mathbf{R}_{\theta}^{-1} diag(\mathbf{R}_{\theta}^{-1})^{-2} \mathbf{R}_{\theta}^{-1}y$$

with

- observation vector $y : y_i = Y(X_i)$
- random covariance matrix \mathbf{R}_{θ} : $(\mathbf{R}_{\theta})_{i,j} = K_{\theta}(X_i X_j)$

Then :

- A central tool : because of the minimum distance between observation points : the eigenvalues of the random matrices involved are uniformly lower and upper-bounded
- For consistency : bounding from below the difference of M-estimator criteria between θ and θ_0 by the integrated square difference between K_{θ} and K_{θ_0}
- For almost-sure convergence of random traces : block-diagonal approximation of the random matrices involved and Cauchy criterion
- For asymptotic normality of criterion gradients : almost-sure (with respect to the random perturbations) Lindeberg-Feller Central Limit Theorem

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

In this expansion-domain asymptotic framework

- ML and CV are consistent and have the standard rate of convergence \sqrt{n}
- (not presented here) in the paper we study numerically the impact of irregularity of spatial sampling on asymptotic variance irregular sampling is beneficial to estimation

2 Maximum Likelihood and Cross Validation for covariance function estimation

Asymptotic analysis of the well-specified case

Finite-sample and asymptotic analysis of the misspecified case

The covariance function K_1 of Y does not belong to

$$\left\{\sigma^{2}\textit{K}_{ heta},\sigma^{2}\geq0, heta\in\Theta
ight\}$$

 \Longrightarrow There is no true covariance parameter but there may be optimal covariance parameters for difference criteria :

- prediction mean square error
- confidence interval reliability
- multidimensional Kullback-Leibler distance
- ...

⇒ Cross Validation can be more appropriate than Maximum Likelihood for some of these criteria

We proceed in two steps

- When covariance function model is $\{\sigma^2 K_2, \sigma^2 \ge 0\}$, with K_2 a fixed correlation function, and K_1 is the true covariance function : explicit expressions and numerical tests
- In the general case : numerical studies

Bachoc F, Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification, *Computational Statistics and Data Analysis 66 (2013) 55-69.*

Case of variance parameter estimation

- \hat{Y}_{new} : prediction of $Y_{new} := Y(x_{new})$ with fixed misspecified correlation function K_2
- $\mathbb{E}\left[\left(\hat{Y}_{new} Y_{new}\right)^2 \middle| y\right]$: conditional mean square error of the prediction \hat{Y}_{new}
- One estimates σ^2 by $\hat{\sigma}^2$. $\hat{\sigma}^2$ may be $\hat{\sigma}^2_{ML}$ or $\hat{\sigma}^2_{CV}$
- Conditional mean square error of \hat{Y}_{new} predicted by $\hat{\sigma}^2 c_{x_{new}}^2$ with $c_{x_{new}}^2$ fixed by K_2

Definition : the Risk

We study the Risk criterion for an estimator $\hat{\sigma}^2$ of σ^2

$$\mathcal{R}_{\hat{\sigma}^{2}, x_{\textit{new}}} = \mathbb{E}\left[\left(\mathbb{E}\left[\left(\hat{Y}_{\textit{new}} - Y_{\textit{new}}\right)^{2} \middle| y\right] - \hat{\sigma}^{2} \mathcal{C}_{x_{\textit{new}}}^{2}\right)^{2}\right]$$

Explicit expression of the Risk

T

Let, for i = 1, 2:

- r_i be the covariance vector of Y between $x_1, ..., x_n$ and x_{new} with covariance function K_i
- \mathbf{R}_i be the covariance matrix of Y at $x_1, ..., x_n$ with covariance function K_i

Proposition : formula for quadratic estimators

When $\hat{\sigma}^2 = y^t \mathbf{M} y$, we have

$$\mathcal{L}_{\hat{\sigma}^{2}, x_{new}} = f(\mathbf{M}_{0}, \mathbf{M}_{0}) + 2c_{1}tr(\mathbf{M}_{0}) - 2c_{2}f(\mathbf{M}_{0}, \mathbf{M}_{1}) \\ + c_{1}^{2} - 2c_{1}c_{2}tr(\mathbf{M}_{1}) + c_{2}^{2}f(\mathbf{M}_{1}, \mathbf{M}_{1})$$

with

$$f(\mathbf{A}, \mathbf{B}) = tr(\mathbf{A})tr(\mathbf{B}) + 2tr(\mathbf{AB})$$

$$\mathbf{M}_{0} = (\mathbf{R}_{2}^{-1}r_{2} - \mathbf{R}_{1}^{-1}r_{1})(r_{2}^{t}\mathbf{R}_{2}^{-1} - r_{1}^{t}\mathbf{R}_{1}^{-1})\mathbf{R}_{1}$$

$$\mathbf{M}_{1} = \mathbf{M}\mathbf{R}_{1}$$

$$c_{i} = 1 - r_{i}^{t}\mathbf{R}_{j}^{-1}r_{i}, \quad i = 1, 2$$

Corollary : ML and CV are quadratic estimators \implies we can carry out an exhaustive numerical study of the Risk criterion

Definition : Risk on Target Ratio (RTR)

$$RTR(x_{new}) = \frac{\sqrt{\mathcal{R}_{\hat{\sigma}^{2}, x_{new}}}}{\mathbb{E}\left[(\hat{Y}_{new} - Y_{new})^{2}\right]} = \frac{\sqrt{\mathbb{E}\left[\left(\mathbb{E}\left[\left(\hat{Y}_{new} - Y_{new}\right)^{2} \middle| y\right] - \hat{\sigma}^{2} c_{x_{new}}^{2}\right)^{2}\right]}}{\mathbb{E}\left[(\hat{Y}_{new} - Y_{new})^{2}\right]}$$

Definition : Bias on Target Ratio (BTR)

$$BTR(x_{new}) = \frac{\left|\mathbb{E}\left[(\hat{Y}_{new} - Y_{new})^{2}\right] - \mathbb{E}\left(\hat{\sigma}^{2}c_{x_{new}}^{2}\right)\right|}{\mathbb{E}\left[(\hat{Y}_{new} - Y_{new})^{2}\right]}$$

Integrated versions over the prediction domain $\ensuremath{\mathcal{X}}$

$$IRTR = \sqrt{\int_{\mathcal{X}} RTR^2(x_{new}) dx_{new}}$$

and

$$IBTR = \sqrt{\int_{\mathcal{X}} BTR^2(x_{new}) dx_{new}}$$

François Bachoc

For designs of observation points that are not too regular (1/6)

70 observation points on $[0, 1]^5$. Mean over LHS-Maximin samplings. K_1 and K_2 are power-exponential covariance functions,

$$\mathcal{K}_i(x,y) = \exp\left(-\sum_{j=1}^5 \left(\frac{|x_j-y_j|}{\ell_j}\right)^{p_j}\right),$$

with $\ell_1 = \ell_2 = 1.2$, $p_1 = 1.5$, and p_2 varying.

For designs of observation points that are not too regular (2/6)

70 observations on $[0, 1]^5$. Mean over LHS-Maximin samplings. K_1 and K_2 are power-exponential covariance functions,

$$\mathcal{K}_i(x,y) = \exp\left(-\sum_{j=1}^5 \left(\frac{|x_j-y_j|}{\ell_j}\right)^{p_j}\right),$$

with $\ell_1 = \ell_2 = 1.2$, $p_1 = 1.5$, and p_2 varying.

For designs of observation points that are not too regular (3/6)

70 observations on $[0, 1]^5$. Mean over LHS-Maximin samplings. K_1 and K_2 are Matérn covariance functions,

$$\mathcal{K}_{i}(x,y) = \frac{1}{\Gamma(\nu_{i})2^{\nu_{i}-1}} \left(2\sqrt{\nu_{i}}\frac{||x-y||_{2}}{\ell_{i}}\right)^{\nu_{i}} \mathcal{K}_{\nu_{i}}\left(2\sqrt{\nu_{i}}\frac{||x-y||_{2}}{\ell_{i}}\right),$$

with Γ the Gamma function and K_{ν_i} the modified Bessel function of second order. We use $\ell_1 = \ell_2 = 1.2$, $\nu_1 = 1.5$, and ν_2 varying.

For designs of observation points that are not too regular (4/6)

70 observations on $[0, 1]^5$. Mean over LHS-Maximin samplings. K_1 and K_2 are Matérn covariance functions,

$$\mathcal{K}_{i}(x,y) = \frac{1}{\Gamma(\nu_{i})2^{\nu_{i}-1}} \left(2\sqrt{\nu_{i}}\frac{||x-y||_{2}}{\ell_{i}}\right)^{\nu_{i}} \mathcal{K}_{\nu_{i}}\left(2\sqrt{\nu_{i}}\frac{||x-y||_{2}}{\ell_{i}}\right),$$

with Γ the Gamma function and K_{ν_i} the modified Bessel function of second order. We use $\ell_1 = \ell_2 = 1.2$, $\nu_1 = 1.5$, and ν_2 varying.

For designs of observation points that are not too regular (5/6)

70 observations on $[0, 1]^5$. Mean over LHS-Maximin samplings. K_1 and K_2 are Matérn covariance functions,

$$K_{i}(x,y) = \frac{1}{\Gamma(\nu_{i})2^{\nu_{i}-1}} \left(2\sqrt{\nu_{i}}\frac{||x-y||_{2}}{\ell_{i}}\right)^{\nu_{i}} K_{\nu_{i}}\left(2\sqrt{\nu_{i}}\frac{||x-y||_{2}}{\ell_{i}}\right),$$

with Γ the Gamma function and K_{ν_i} the modified Bessel function of second order. We use $\nu_1 = \nu_2 = \frac{3}{2}$, $\ell_1 = 1.2$ and ℓ_2 varying.

For designs of observation points that are not too regular (6/6)

70 observations on $[0, 1]^5$. Mean over LHS-Maximin samplings. K_1 and K_2 are Matérn covariance functions,

$$\mathcal{K}_i(x,y) = \frac{1}{\Gamma(\nu_i)2^{\nu_i-1}} \left(2\sqrt{\nu_i}\frac{||x-y||_2}{\ell_i}\right)^{\nu_i} \mathcal{K}_{\nu_i}\left(2\sqrt{\nu_i}\frac{||x-y||_2}{\ell_i}\right),$$

with Γ the Gamma function and K_{ν_i} the modified Bessel function of second order. We use $\nu_1 = \nu_2 = \frac{3}{2}$, $\ell_1 = 1.2$ and ℓ_2 varying.

François Bachoc

Case of a regular grid (Smolyak construction) (1/4)

Projections of the observations points on the first two base vectors :

Case of a regular grid (Smolyak construction) (2/4)

For the power-exponential case. $p_1 = 1.5$ and p_2 varying

François Bachoc

Case of a regular grid (Smolyak construction) (3/4)

For the Matérn case. $\nu_1 = 1.5$ and ν_2 varying

Case of a regular grid (Smolyak construction) (4/4)

For the Matérn case. $\ell_1 = 1.2$ and ℓ_2 varying

François Bachoc

For variance parameter estimation

- For not-too-regular designs : CV is more robust than ML to misspecification
 - Larger variance but smaller bias for CV
 - The bias term becomes dominant in the model misspecification case
- For regular designs : CV is more biased than ML

 \implies (not presented here) in the paper, a numerical study based on analytical functions confirms these findings for the estimation of correlation parameters as well

Interpretation

- For irregular samplings of observations points, prediction for new points is similar to Leave-One-Out prediction ⇒ the Cross Validation criterion can be unbiased
- For regular samplings of observations points, prediction for new points is different from Leave-One-Out prediction ⇒ the Cross Validation criterion is biased

 \implies we now support this interpretation in an asymptotic framework

Context :

- The observation points $X_1, ..., X_n$ are *iid* and uniformly distributed on $[0, n^{1/d}]^d$
- We use a parametric noisy Gaussian process model with stationary covariance function model

$$\{K_{\theta}, \theta \in \Theta\}$$

with stationary K_{θ} of the form

$$\mathcal{K}_{\theta}(t_1 - t_2) = \underbrace{\mathcal{K}_{c,\theta}(t_1 - t_2)}_{\text{continuous part}} + \underbrace{\delta_{\theta} \mathbf{1}_{t_1 = t_2}}_{\text{noise part}}$$

where $K_{c,\theta}(t)$ is continuous in *t* and $\delta_{\theta} > 0$

 \implies δ_{θ} corresponds to a measure error for the observations or a small-scale variability of the Gaussian process

- The model satisfies regularity and summability conditions
- The true covariance function K_1 is also stationary and summable

Cross Validation asymptotically minimizes the integrated prediction error (1/2)

Let $\hat{Y}_{\theta}(t)$ be the prediction of the Gaussian process *Y* at *t*, under correlation function K_{θ} , from observations $Y(x_1), ..., Y(x_n)$

Integrated prediction error :

$$E_{n,\theta} := \frac{1}{n} \int_{[0,n^{1/d}]^d} \left(\hat{Y}_{\theta}(t) - Y(t) \right)^2 dt$$

Intuition :

The variable *t* above plays the same role as a new observation point X_{n+1} , uniform on $[0, n^{1/d}]^d$ and independent of $X_1, ..., X_n$

So we have

$$\mathbb{E}\left(E_{n,\theta}\right) = \mathbb{E}\left(\left[Y(X_{n+1}) - \mathbb{E}_{\theta|X}(Y(X_{n+1})|Y(X_1), ..., Y(X_n))\right]^2\right)$$

and so when n is large

$$\mathbb{E}\left(\mathsf{E}_{n,\theta}\right) \approx \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}(\mathsf{y}_{i}-\hat{\mathsf{y}}_{\theta,i,-i})^{2}\right)$$

 \Longrightarrow This is an indication that the Cross Validation estimator can be optimal for integrated prediction error

Cross Validation asymptotically minimizes the integrated prediction error (2/2)

We show in

F. Bachoc, "Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case", ArXiv preprint http://arxiv.org/abs/1412.1926, Submitted.

Theorem

With

$$E_{n,\theta} = \int_{[0,n^{1/d}]^d} \left(\hat{Y}_{\theta}(t) - Y(t) \right)^2 dt$$

we have

$$E_{n,\hat{\theta}_{CV}} = \inf_{\theta \in \Theta} E_{n,\theta} + o_p(1).$$

Comments :

- Same Gaussian process realization for both covariance parameter estimation and prediction error
- The optimal (unreachable) prediction error inf_{θ∈Θ} E_{n,θ} is lower-bounded ⇒ CV is indeed asymptotically optimal

Image: Image:

Purely random sampling \Longrightarrow potential clusters of observation points \Longrightarrow

- This situation has not been studied in the literature
- If we do not consider noisy Gaussian processes, the eigenvalues of the random covariance matrices are not lower-bounded
- These eigenvalues are not upper-bounded

As a consequence, with the proof techniques we have used, it is not clear how to

- Treat Gaussian process models without noise
- Study asymptotic distribution of estimators

We show that the following criteria are close to their mean values, uniformly in θ

$$\frac{1}{n}y^{t}\mathbf{R}_{\theta}^{-1}diag(\mathbf{R}_{\theta}^{-1})^{-2}\mathbf{R}_{\theta}^{-1}y \quad \text{and} \quad \int_{[0,n^{1/d}]^{d}} \left(\hat{Y}_{\theta}(t) - Y(t)\right)^{2} dt$$

with

- observation vector $y : y_i = Y(X_i)$
- random covariance matrix \mathbf{R}_{θ} : $(\mathbf{R}_{\theta})_{i,j} = K_{\theta}(X_i X_j)$

For uniformity in θ

- We show that supremums of derivatives are bounded in probability
- Sobolev embedding theorem for removing the sup_θ at the cost of adding derivative orders
- After a conditioning step, and after exploiting the lower-bound on eigenvalues of \mathbf{R}_{θ} , we show by induction that terms of the form $(1/n)\mathbb{E}\left[Tr\left(\mathbf{M}_{1}...\mathbf{M}_{k}\right)\right]$ are bounded, with

$$|(\boldsymbol{M}_k)i,j| \leq \frac{1}{1+|X_i-X_j|^2}$$

Let C_{θ} be one of the two aforementioned criteria and let θ be fixed.

 \Longrightarrow Approximation of the Gaussian process distribution by a partition of independent Gaussian processes.

Bounding $\mathbb{E}_X(var(C_{\theta}|X))$

- is simple for the CV criterion
- is achieved thanks to the partition approximation for the integrated mean square error criterion

Bounding $var_X(\mathbb{E}(C_{\theta}|X))$

- is also achieved thanks to the partition approximation
- Main difference compared to the randomly perturbed regular grid : number of observation points in each independent domain is random (binomial distribution)
- (we show that) the variance goes to 0 when the partition cardinality is large : Binomial distributions are almost independent
- \implies This step is until now limiting for addressing asymptotic distributions

Let $KL_{n,\theta}$ be 1/n times the Kullback-Leibler divergence $d_{KL}(K_1||K_{\theta})$, between the multidimensional Gaussian distributions of *y*, given observation points $X_1, ..., X_n$, under covariance functions K_{θ} and K_1 . We show

Theorem

$$KL_{n,\hat{\theta}_{ML}} = \inf_{\theta \in \Theta} KL_{n,\theta} + o_{\rho}(1).$$

Comments :

- In increasing-domain asymptotics, when $K_{\theta} \neq K_0$, $KL_{n,\theta}$ is usually lower-bounded \Longrightarrow ML is indeed asymptotically optimal
- Maximum Likelihood is optimal for a criterion that is not prediction oriented

The results shown support the following general picture

- For well-specified models, ML would be optimal
- For regular designs of observation points, the principle of CV does not really have ground
- For more irregular designs of observation points, CV can be preferable for specific prediction-purposes (e.g. integrated prediction error). (But its variance can be problematic)

Some potential perspectives

- Designing other CV procedures (LOO error weighting, decorrelation and penalty term) to reduce the variance
- Start studying the fixed-domain asymptotics of CV, in the particular cases where this is done for ML

Thank you for your attention !

< □ > < @

э