Spatial blind source separation

François Bachoc

Institut de Mathématiques de Toulouse
Université Paul Sabatier

Joint work with Marc Genton (KAUST), Klaus Nordhausen
(Vienna), Anne Ruiz-Gazen (Toulouse) and Joni Virta (Turku)

CMStatistics 2019
London
December 2019

Outline

1 The spatial blind source separation problem

2 A solution by co-diagonalization of two local covariance matrices

3 An improved solution by approximate diagonalization of several local covariance matrices

4 Asymptotic results

5 Numerical results

Mixing of independent sources

Consider p unobserved independent stationary random fields

- $Z_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- $Z_{p}: \mathbb{R}^{d} \rightarrow \mathbb{R}$
called the sources.
Assume that we observe the mixed random fields
- $X_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- $X_{p}: \mathbb{R}^{d} \rightarrow \mathbb{R}$
with

$$
\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{p}
\end{array}\right)=\Omega\left(\begin{array}{c}
Z_{1} \\
\vdots \\
Z_{p}
\end{array}\right)
$$

where Ω is the $p \times p$ unknown mixing matrix.

Illustration $(d=1)$

Unobserved source fields Z_{1}, Z_{2}. Observed mixed fields X_{1}, X_{2}.
Here

$$
\Omega=\left(\begin{array}{cc}
1 & 0.3 \\
1 & -0.4
\end{array}\right) .
$$

Application examples

- Sound signal registered at p sensors \longrightarrow we want to recover p speakers ($d=1$, signal processing).
- p pollutant concentrations measured over a region \longrightarrow we want to recover p main independent sources of pollution ($d=2$, spatial statistics).
- Determining main drivers for time series ($d=1$, finance).
- Recovering neuron sources in EEGs ($d=1$, neurosciences).

A reference:
國 Comin, P. \& Jutten, C., Handbook of Blind Source Separation: Independent component analysis and applications, Academic press, 2010.

Objective

\Longrightarrow Knowing the unmixing matrix Ω^{-1} would be useful.

- Recovery of the independent sources with

$$
\left(\begin{array}{c}
Z_{1} \\
\vdots \\
Z_{p}
\end{array}\right)=\Omega^{-1}\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{p}
\end{array}\right)
$$

- Interpretation of the independent sources by subject experts.
- Modeling the distribution of $\left(X_{1}, \ldots, X_{p}\right)$ (complex) \Longrightarrow modeling independently the distributions of Z_{1}, \ldots, Z_{p} (simpler).
- Predicting X_{1}, \ldots, X_{p} by multivariate Kriging (cost $\left.O\left(p^{3} n^{3}\right)\right) \Longrightarrow$ predicting independently Z_{1}, \ldots, Z_{p} by univariate Kriging (cost $O\left(p n^{3}\right)$).
\Longrightarrow We want to estimate Ω^{-1}.

Identifiability aspects

- In

$$
\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{p}
\end{array}\right)=\Omega\left(\begin{array}{c}
Z_{1} \\
\vdots \\
Z_{p}
\end{array}\right),
$$

the observed X_{1}, \ldots, X_{p} are unchanged if

- column i of Ω multiplied by $\lambda>0$,
- Z_{i} multiplied by $1 / \lambda$.
\Longrightarrow We assume that

$$
\operatorname{Var}\left(Z_{1}(s)\right)=1, \ldots, \operatorname{Var}\left(Z_{p}(s)\right)=1
$$

for $s \in \mathbb{R}^{d}$.

- Still now

■ Z_{i} can not be distinguished from $-Z_{i}$,

- the order of Z_{1}, \ldots, Z_{p} can not be estimated.
\Longrightarrow We want to estimate Z_{1}, \ldots, Z_{p} up to signs and order of the components.
\Longrightarrow We want to estimate Ω^{-1} up to signs and order of the rows.

1. The spatial blind source separation problem

2 A solution by co-diagonalization of two local covariance matrices

3 An improved solution by approximate diagonalization of several local covariance matrices

4 Asymptotic results

5 Numerical results

Observations and local covariance matrices

■ Observations: We observe X_{1}, \ldots, X_{p} at the observation points

$$
s_{1}, \ldots, s_{n} \in \mathbb{R}^{d}
$$

Our observations are thus

- $X_{1}\left(s_{1}\right), \ldots, X_{1}\left(s_{n}\right)$
-
- $X_{p}\left(s_{1}\right), \ldots, X_{p}\left(s_{n}\right)$.
$■$ Local covariance matrices:
- let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a kernel,
- let

$$
x=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{p}
\end{array}\right)
$$

- let

$$
\widehat{M}(f)=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} f\left(s_{i}-s_{j}\right) X\left(s_{i}\right) X\left(s_{j}\right)^{\top}
$$

$(p \times p)$
(assume X_{1}, \ldots, X_{p} centered for simplicity).

Different types of kernels

- Let $f_{0}(s)=\mathbf{1}\{s=0\}$.
\Longrightarrow We have

$$
\widehat{M}\left(f_{0}\right)=\frac{1}{n} \sum_{i=1}^{n} X\left(s_{i}\right) X\left(s_{i}\right)^{\top}
$$

(empirical covariance matrix).
■ Ball kernel:

$$
f(s)=\mathbf{1}\{\|s\| \leq h\} .
$$

- Ring kernel:

$$
f(s)=\mathbf{1}\left\{h_{1} \leq\|s\| \leq h_{2}\right\} .
$$

- Gaussian kernel:

$$
f(s)=e^{-\|s\|^{2} / h^{2}}
$$

Co-diagonalization

Unmixing matrix estimator

Estimator $\widehat{\Gamma}(f)$ by co-diagonalization of $\widehat{M}\left(f_{0}\right)$ and $\widehat{M}(f)$:

$$
\widehat{\Gamma}(f) \widehat{M}\left(f_{0}\right) \widehat{\Gamma}(f)^{\top}=I_{p}
$$

and

$$
\widehat{\Gamma}(f) \widehat{M}(f) \widehat{\Gamma}(f)^{\top}=\widehat{\Lambda}(f)
$$

where $\widehat{\Lambda}(f)$ is a diagonal matrix.

- $\widehat{\Gamma}(f)$ estimates Ω^{-1}.
- Intuition: Can show that $\widehat{\Gamma}(f)=\Omega^{-1}$ would make the above matrices diagonal in expectation.
- Similar method exists for independent observations and time series ($d=1$) (see e.g. Belouchrani et a. 1997).
■ Method suggested in the spatial setting $(d \geq 2)$ in Nordhausen et al (2015).

Co-diagonalization: pros and cons

$+\widehat{\Gamma}(f)$ can be computed explicitly by diagonalization of

$$
\widehat{M}\left(f_{0}\right)^{-1 / 2} \widehat{M}(f) \widehat{M}\left(f_{0}\right)^{-1 / 2}
$$

$(p \times p)$.

+ No need to model the random fields X_{1}, \ldots, X_{p} (the estimator is semi-parametric).
- The estimation quality strongly depends on the choice of f.

1. The spatial blind source separation problem

2 A solution by co-diagonalization of two local covariance matrices

3 An improved solution by approximate diagonalization of several local covariance matrices

4 Asymptotic results

5 Numerical results

Approximate diagonalization

Consider k kernels $f_{1}, \ldots, f_{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Unmixing matrix estimator

Estimator $\widehat{\Gamma}\left(f_{1}, \ldots, f_{k}\right)=\widehat{\Gamma}$ satisfies

$$
\begin{equation*}
\hat{\Gamma} \in \underset{\substack{\Gamma_{i} \\ \Gamma \hat{M}\left(f_{0}\right) \Gamma^{\top}=l_{o}}}{\operatorname{argmax}} \sum_{l=1}^{k} \sum_{j=1}^{p}\left[\left(\left\ulcorner\hat{M}\left(f_{f}\right) \Gamma^{\top}\right)_{j, j}\right]^{2} .\right. \tag{1}
\end{equation*}
$$

- $\widehat{\Gamma}(f)$ estimates Ω^{-1}.
- Intuition: Same principle as before but we want all the matrices

$$
\hat{\Gamma} \hat{M}\left(f_{0}\right) \hat{\Gamma}^{\top}, \hat{\Gamma} \widehat{M}\left(f_{1}\right) \hat{\Gamma}^{\top}, \ldots, \hat{\Gamma} \hat{M}\left(f_{k}\right) \hat{\Gamma}^{\top}
$$

to be approximately diagonal.

- Similar method exists for independent observations and time series $(d=1)$ (see e.g. Belouchrani et a. 1997).
- Here we extend to the spatial setting.

Approximate diagonalization: comments

- No explicit solution of the optimization problem.
- The cost function has complexity $O\left(k p^{3}\right)$.

■ Efficient algorithms exist, e.g. Given's rotations (Clarkson, 1988).

+ We have more flexibility to choose f_{1}, \ldots, f_{k} for a better estimation.
- Typically, a mix of different types of kernels is recommended.

1 The spatial blind source separation problem

2 A solution by co-diagonalization of two local covariance matrices

3 An improved solution by approximate diagonalization of several local covariance matrices

4 Asymptotic results

5 Numerical results

Asymptotic framework

- We let $n \rightarrow \infty$ and p be fixed.

Increasing-domain asymptotics: Infinite sequence $\left(s_{i}\right)_{i \in \mathbb{N}}$ of observation locations covering an infinite domain.

\Longrightarrow Asymptotic weak dependence between observations.

Gaussianity: We assume that Z_{1}, \ldots, Z_{p} are Gaussian random fields.

- Technical conditions on the covariance functions of Z_{1}, \ldots, Z_{p}.

Some notation

■ Consider kernels f_{1}, \ldots, f_{k} satisfying some technical conditions (allows balls, rings and Gaussian).

- Let d_{w} be a distance between probability distributions such that

$$
\mathcal{L}_{n} \underset{n \rightarrow \infty}{d} \mathcal{L}_{\infty} \Longleftrightarrow d_{w}\left(\mathcal{L}_{n}, \mathcal{L}_{\infty}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

(Dudley, 2002).

- Let $\operatorname{vect}(A)$ be the column vector obtained by row vectorization of a matrix A.

Central limit theorem

We show: Theorem

- Let $\left(\hat{\Gamma}_{n}\right)$ be any sequence of matrices that approximately diagonalizes

$$
\widehat{M}\left(f_{0}\right), \widehat{M}\left(f_{1}\right), \ldots, \widehat{M}\left(f_{k}\right) .
$$

- Then there exists a sequence $\left(\check{\Gamma}_{n}\right)$ such that for all $n \in \mathbb{N}$

$$
\check{\Gamma}_{n}=\hat{\Gamma}_{n}
$$

up to order of the rows and multiplication of the rows by ± 1.

- Furthermore, let \mathcal{L}_{n} be the distribution of

$$
\sqrt{n} \operatorname{vect}\left(\check{\Gamma}_{n}-\Omega^{-1}\right) .
$$

- Then we have

$$
d_{w}\left(\mathcal{L}_{n}, \mathcal{N}\left[0, V_{n}\left(f_{1}, \ldots, f_{k}\right)\right]\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

- The sequence of matrices $V_{n}\left(f_{1}, \ldots, f_{k}\right)$ is bounded. See paper.

1 The spatial blind source separation problem

2 A solution by co-diagonalization of two local covariance matrices

3 An improved solution by approximate diagonalization of several local covariance matrices

4 Asymptotic results

5 Numerical results

Results on simulated data

- y-axis: mean error criterion.

As n increases, asymptotic and empirical error criteria get closer.
\Longrightarrow Ring is better than ball. Using both is robust.

Results on simulated data

- Empirical (black) and asymptotic (red) distributions of error criterion.

Results on simulated data

- x-axis: Ball (B), ring (R), Gaussian (G) and joint kernels.
- y-axis: mean error criterion.

\Longrightarrow Using combinations of kernels is robust.

Real data example

- $n=594$ samples of terrestrial moss in Finland, Norway, Russia.
- $p=31$ concentrations of chemical elements.
- (Nordhausen et al, 2015).

Real data example

- Left, gold standard: 2 most important estimated sources in Z by
- co-diagonalization of $\widehat{M}\left(f_{0}\right)$ and $\widehat{M}\left(f_{1}\right)$,
- f_{1} is the ball kernel with radius 50 km ,
- chosen carefully by hand with a subject expert.
- Middle: f_{0} and f_{1}; ball kernel with radius 100 km .
- Right: f_{0} and f_{1}, f_{2}, f_{3}; ring kernels with varying radii.

Conclusion

- Unmixing the random fields for easier modeling, easier prediction, interpretation.
- Algorithms are semi-parametric and scale well with dataset size.
- Approximate joint diagonalization with multiple kernels is more robust.
- We have extended procedures and asymptotic results from time series to random fields.
- Multiple open questions: Fixed-domain asymptotics? Data driven selection of kernels? Dimension reduction?

The paper:
國 F. Bachoc, M. G. Genton, K. Nordhausen, A. Ruiz-Gazen and J. Virta, Spatial blind source separation, Biometrika, forthcoming, 2019. arxiv.org/abs/1812.09187.

Thank you for your attention!

Bibliography

國 Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F. \& Moulines, E., A blind source separation technique using second-order statistics, IEEE Transactions on Signal Processing, 45, 434-444, 1997.
國 Nordhausen, K., Oja, H., Filzmoser, P. \& Reimann, C., Blind source separation for spatially correlated compositional data, Mathematical Geosciences, 47, 753-770, 2015.

- Clarkson, D. B., Algorithm AS 211: The F-G Diagonalization Algorithm, Journal of the Royal Statistical Society. Series C (Applied Statistics), 37, 147-151, 1988.
Dudley, D. B., Real Analysis and Probability, Cambridge University Press., 2002.

