
Spatial blind source separation

François Bachoc
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Université Paul Sabatier

Joint work with Marc Genton (KAUST), Klaus Nordhausen
(Vienna), Anne Ruiz-Gazen (Toulouse) and Joni Virta (Turku)

CMStatistics 2019
London

December 2019

François Bachoc Spatial blind source separation 1 / 27



Outline

1 The spatial blind source separation problem

2 A solution by co-diagonalization of two local covariance matrices

3 An improved solution by approximate diagonalization of several local
covariance matrices

4 Asymptotic results

5 Numerical results

François Bachoc Spatial blind source separation 2 / 27



Mixing of independent sources

Consider p unobserved independent stationary random fields

Z1 : Rd → R
...

Zp : Rd → R
called the sources.

Assume that we observe the mixed random fields

X1 : Rd → R
...

Xp : Rd → R
with X1

...
Xp

 = Ω

Z1

...
Zp


where Ω is the p × p unknown mixing matrix.
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Illustration (d=1)
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Unobserved source fields Z1,Z2. Observed mixed fields X1,X2.

Here

Ω =

(
1 0.3
1 −0.4

)
.
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Application examples

Sound signal registered at p sensors −→ we want to recover p
speakers (d = 1, signal processing).

p pollutant concentrations measured over a region −→ we want to
recover p main independent sources of pollution (d = 2, spatial
statistics).

Determining main drivers for time series (d = 1, finance).

Recovering neuron sources in EEGs (d = 1, neurosciences).

A reference:

Comin, P. & Jutten, C., Handbook of Blind Source Separation:
Independent component analysis and applications, Academic press,
2010.
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Objective

=⇒ Knowing the unmixing matrix Ω−1 would be useful.

Recovery of the independent sources withZ1

...
Zp

 = Ω−1

X1

...
Xp

 .

Interpretation of the independent sources by subject experts.

Modeling the distribution of (X1, . . . ,Xp) (complex) =⇒ modeling
independently the distributions of Z1, . . . ,Zp (simpler).

Predicting X1, . . . ,Xp by multivariate Kriging (cost O(p3n3)) =⇒
predicting independently Z1, . . . ,Zp by univariate Kriging (cost
O(pn3)).

=⇒ We want to estimate Ω−1.
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Identifiability aspects

In X1

...
Xp

 = Ω

Z1

...
Zp

 ,

the observed X1, . . . ,Xp are unchanged if
column i of Ω multiplied by λ > 0,
Zi multiplied by 1/λ.

=⇒ We assume that

Var(Z1(s)) = 1, . . . ,Var(Zp(s)) = 1

for s ∈ Rd .

Still now
Zi can not be distinguished from −Zi ,
the order of Z1, . . . ,Zp can not be estimated.

=⇒ We want to estimate Z1, . . . ,Zp up to signs and order of the
components.

=⇒ We want to estimate Ω−1 up to signs and order of the rows.
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Observations and local covariance matrices

Observations: We observe X1, . . . ,Xp at the observation points

s1, . . . , sn ∈ Rd .

Our observations are thus
• X1(s1), . . . ,X1(sn)

•
...

• Xp(s1), . . . ,Xp(sn).

Local covariance matrices:
• let f : Rd → R be a kernel ,
• let

X =

X1

...
Xp

 ,

• let

M̂(f ) =
1

n

n∑
i=1

n∑
j=1

f (si − sj)X (si )X (sj)
>

(p × p)
(assume X1, . . . ,Xp centered for simplicity).
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Different types of kernels

Let f0(s) = 1{s = 0}.
=⇒ We have

M̂(f0) =
1

n

n∑
i=1

X (si )X (si )
>

(empirical covariance
matrix).

Ball kernel:

f (s) = 1{||s|| ≤ h}.

Ring kernel:

f (s) = 1{h1 ≤ ||s|| ≤ h2}.

Gaussian kernel:

f (s) = e−||s||
2/h2

.
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Co-diagonalization

Unmixing matrix estimator

Estimator Γ̂(f ) by co-diagonalization of M̂(f0) and M̂(f ):

Γ̂(f )M̂(f0)Γ̂(f )> = Ip

and
Γ̂(f )M̂(f )Γ̂(f )> = Λ̂(f ),

where Λ̂(f ) is a diagonal matrix.

Γ̂(f ) estimates Ω−1.

Intuition: Can show that Γ̂(f ) = Ω−1 would make the above
matrices diagonal in expectation.

Similar method exists for independent observations and time series
(d = 1) (see e.g. Belouchrani et a. 1997).

Method suggested in the spatial setting (d ≥ 2) in Nordhausen et al
(2015).
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Co-diagonalization: pros and cons

+ Γ̂(f ) can be computed explicitly by diagonalization of

M̂(f0)−1/2M̂(f )M̂(f0)−1/2

(p × p).

+ No need to model the random fields X1, . . . ,Xp (the estimator is
semi-parametric).

- The estimation quality strongly depends on the choice of f .

François Bachoc Spatial blind source separation 12 / 27



1 The spatial blind source separation problem

2 A solution by co-diagonalization of two local covariance matrices

3 An improved solution by approximate diagonalization of several local
covariance matrices

4 Asymptotic results

5 Numerical results

François Bachoc Spatial blind source separation 13 / 27



Approximate diagonalization

Consider k kernels f1, . . . , fk : Rd → R.

Unmixing matrix estimator

Estimator Γ̂(f1, . . . , fk) = Γ̂ satisfies

Γ̂ ∈ argmax
Γ:

ΓM̂(f0)Γ>=Ip

k∑
l=1

p∑
j=1

[(
ΓM̂(fl)Γ>

)
j,j

]2

. (1)

Γ̂(f ) estimates Ω−1.

Intuition: Same principle as before but we want all the matrices

Γ̂M̂(f0)Γ̂>, Γ̂M̂(f1)Γ̂>, . . . , Γ̂M̂(fk)Γ̂>

to be approximately diagonal.

Similar method exists for independent observations and time series
(d = 1) (see e.g. Belouchrani et a. 1997).

Here we extend to the spatial setting.
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Approximate diagonalization: comments

- No explicit solution of the optimization problem.

The cost function has complexity O(kp3).

Efficient algorithms exist, e.g. Given’s rotations (Clarkson, 1988).

+ We have more flexibility to choose f1, . . . , fk for a better estimation.

Typically, a mix of different types of kernels is recommended.
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Asymptotic framework

We let n→∞ and p be fixed.

Increasing-domain asymptotics: Infinite sequence (si )i∈N of observation
locations covering an infinite domain.
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=⇒ Asymptotic weak dependence between observations.

Gaussianity: We assume that Z1, . . . ,Zp are Gaussian random fields.

Technical conditions on the covariance functions of Z1, . . . ,Zp.
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Some notation

Consider kernels f1, . . . , fk satisfying some technical conditions
(allows balls, rings and Gaussian).

Let dw be a distance between probability distributions such that

Ln
d−→

n→∞
L∞ ⇐⇒ dw (Ln,L∞) −→

n→∞
0

(Dudley, 2002).

Let vect(A) be the column vector obtained by row vectorization of a
matrix A.
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Central limit theorem

We show: Theorem

Let (Γ̂n) be any sequence of matrices that approximately diagonalizes

M̂(f0), M̂(f1), . . . , M̂(fk).

Then there exists a sequence (Γ̌n) such that for all n ∈ N

Γ̌n = Γ̂n

up to order of the rows and multiplication of the rows by ±1.

Furthermore, let Ln be the distribution of

√
n vect

(
Γ̌n − Ω−1

)
.

Then we have

dw
(
Ln,N [0,Vn(f1, . . . , fk)]

)
−→
n→∞

0.

The sequence of matrices Vn(f1, . . . , fk) is bounded. See paper.
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Results on simulated data

y -axis: mean error criterion.
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=⇒ As n increases, asymptotic and empirical error criteria get closer.

=⇒ Ring is better than ball. Using both is robust.
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Results on simulated data

Empirical (black) and asymptotic (red) distributions of error
criterion.

0.000

0.002

0.004

0.006

0.008

0 1000 2000 3000 4000

n(p − 1)MDI(Γ̂)2

D
en

si
ty

n = 200 with B(1)

0.000

0.002

0.004

0.006

0 1000 2000

n(p − 1)MDI(Γ̂)2

D
en

si
ty

n = 400 with B(1)

0.000

0.005

0.010

0.015

0 250 500 750

n(p − 1)MDI(Γ̂)2

D
en

si
ty

n = 200 with R(1, 2)

0.000

0.005

0.010

0.015

0 250 500 750 1000

n(p − 1)MDI(Γ̂)2

D
en

si
ty

n = 400 with R(1, 2)

0.000

0.005

0.010

0.015

0 250 500 750

n(p − 1)MDI(Γ̂)2

D
en

si
ty

n = 200 with {B(1), R(1, 2)}

0.000

0.005

0.010

0.015

0 250 500 750

n(p − 1)MDI(Γ̂)2

D
en

si
ty

n = 400 with {B(1), R(1, 2)}

François Bachoc Spatial blind source separation 22 / 27



Results on simulated data

x-axis: Ball (B), ring (R), Gaussian (G) and joint kernels.

y -axis: mean error criterion.
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Real data example

n = 594 samples of terrestrial moss in Finland, Norway, Russia.

p = 31 concentrations of chemical elements.

(Nordhausen et al, 2015).
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Real data example

Left, gold standard: 2 most important estimated sources in Z by
co-diagonalization of M̂(f0) and M̂(f1),
f1 is the ball kernel with radius 50km,
chosen carefully by hand with a subject expert.

Middle: f0 and f1; ball kernel with radius 100km.

Right: f0 and f1, f2, f3; ring kernels with varying radii.
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IC2 (cor = 0.98)

> 1.16 − 1.60
> 0.78 − 1.16
> −0.62 − 0.78
> −1.99 − −0.62
   −3.55 − −1.99
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Conclusion

Unmixing the random fields for easier modeling, easier prediction,
interpretation.

Algorithms are semi-parametric and scale well with dataset size.

Approximate joint diagonalization with multiple kernels is more
robust.

We have extended procedures and asymptotic results from time
series to random fields.

Multiple open questions: Fixed-domain asymptotics? Data driven
selection of kernels? Dimension reduction?

The paper:

F. Bachoc, M. G. Genton, K. Nordhausen, A. Ruiz-Gazen and J.
Virta, Spatial blind source separation, Biometrika, forthcoming,
2019. arxiv.org/abs/1812.09187.

Thank you for your attention!
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