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Mixing of independent sources

Consider p unobserved independent stationary random fields
| | Zl : Rd — R
.
mZ,: RY - R

called the sources.

Assume that we observe the mixed random fields

B X; RIS R
.
-Xp:Rd—>R
with
X1 V4]
L=l
Xp Z,

where Q is the p X p unknown mixing matrix.
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Application examples

m Sound signal registered at p sensors —> we want to recover p
speakers (d = 1, signal processing).

m p pollutant concentrations measured over a region — we want to
recover p main independent sources of pollution (d = 2, spatial
statistics).

m Determining main drivers for time series (d = 1, finance).

m Recovering neuron sources in EEGs (d = 1, neurosciences).

A reference:

@ Comin, P. & Jutten, C., Handbook of Blind Source Separation:
Independent component analysis and applications, Academic press,
2010.
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Objective

— Knowing the unmixing matrix Q=1 would be useful.
m Recovery of the independent sources with
V4] X1
. = 971 .
Zy Xp
m Interpretation of the independent sources by subject experts.

m Modeling the distribution of (Xi,...,X;) (complex) = modeling
independently the distributions of Z3, ..., Z, (simpler).

m Predicting Xi,..., X, by multivariate Kriging (cost O(p3n?)) =
predicting independently 71, ..., Z, by univariate Kriging (cost
0(pr)

— We want to estimate Q1.
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Identifiability aspects

m In
X1 V4
=al ]
Xp Zy
the observed Xi,..., X, are unchanged if

m column i of Q multiplied by A > 0,
m Z; multiplied by 1/X.
— We assume that

Var(Zi(s)) =1,...,Var(Z,(s)) =1

for s € RY.
m Still now
m Z; can not be distinguished from —Z;,
m the order of Z;,..., Z, can not be estimated.
= We want to estimate Zi,...,Z, up to signs and order of the
components.

— We want to estimate Q! up to signs and order of the rows.
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A solution by co-diagonalization of two local covariance matrices



Observations and local covariance matrices

m Observations: We observe Xi, ..., X, at the observation points
S1,...,5, € R9.
Our observations are thus
L] )(1(51)7 e ,Xl(Sn)
o
o Xp(s1),...,Xp(sn).

m Local covariance matrices:
e let f:RY = R be a kernel,

o let
X1
x=1|:1,
Xp
o let
. 1 n n
Fi(F) = 505 (s — s)X(5)X(s) "
i=1 j=1
(pxp)
(assume Xi,..., X, centered for simplicity).
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Different types of kernels

m Let fo(s) = 1{s = 0}.
—> We have

1.0

M(fo) = ZX(s,

I
w | .
.. . © °
(empirical covariance .
matrix). , |

m Ball kernel:

0.6

0.4

f(s) = HlIsll < h}.

. N ° :
m Ring kernel: S .
o o

(s) = 1{hy < |Isl| < ha}. R

0.2 0.4 0.6 0.8

m Gaussian kernel:

f(s) = e llsIF/
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Co-diagonalization

Unmixing matrix estimator

Estimator T (f) by co-diagonalization of M(fy) and M(f):
T(AMB)T(F)" =1y
and L R
F(HMFT(F) T = (),

where K(f) is a diagonal matrix.

m T(f) estimates Q1.
m Intuition: Can show that F(f) = Q! would make the above
matrices diagonal in expectation.

m Similar method exists for independent observations and time series
(d =1) (see e.g. Belouchrani et a. 1997).

m Method suggested in the spatial setting (d > 2) in Nordhausen et al
(2015).
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Co-diagonalization: pros and cons

F(f) can be computed explicitly by diagonalization of
M(fo)~ /2 M(F)M(fo) />

(pxp).
No need to model the random fields X, ..., X, (the estimator is
semi-parametric).

- The estimation quality strongly depends on the choice of f.
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An improved solution by approximate diagonalization of several local
covariance matrices
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Approximate diagonalization

Consider k kernels fi, ..., f : R — R.

Unmixing matrix estimator

Estimator F(ﬂ, o) = T satisfies

Te argI{naX i Z [(F/\ﬁ(fl)r‘r)j,j] 2 . (1)

FR(R) T =1,

m T(f) estimates Q1.
m Intuition: Same principle as before but we want all the matrices

FM(&)ET, EM(A)ET, .. EM(f)FT

to be approximately diagonal.
m Similar method exists for independent observations and time series
(d =1) (see e.g. Belouchrani et a. 1997).

m Here we extend to the spatial setting.
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Approximate diagonalization: comments

- No explicit solution of the optimization problem.

The cost function has complexity O(kp?).
m Efficient algorithms exist, e.g. Given's rotations (Clarkson, 1988).

We have more flexibility to choose fi, ..., f for a better estimation.

Typically, a mix of different types of kernels is recommended.
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Asymptotic framework

m We let n — oo and p be fixed.

Increasing-domain asymptotics: Infinite sequence (s;);en of observation

locations covering an infinite domain.

h h - o0 0O O 0O O O O

° ° © [e] o [e] o [e] o [e]

’ ’ 0O O O O O ° o0 0O O 0O O O O

N N [e] o [e] o [e] N [e] o [e] o o o o

” o O O ? 0O O O O O ? o0 0O O 0O O O O

h o o [e] h [e] o [e] o [e] h [e] o [e] o o o o

b o O O o o0 O 0O o0 ©o o 0 0O 0O 0O O O o
— Asymptotic weak dependence between observations.
Gaussianity: We assume that Zi, ..., Z, are Gaussian random fields.

m Technical conditions on the covariance functions of Z3, ..., Z,.
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Some notation

m Consider kernels f, ..., fx satisfying some technical conditions
(allows balls, rings and Gaussian).

m Let d, be a distance between probability distributions such that

Lo -2 Loo <= dy(Lp Lo) — O

n— oo n—oo

(Dudley, 2002).

m Let vect(A) be the column vector obtained by row vectorization of a
matrix A.
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Central limit theorem
We show: Theorem
m Let (I',) be any sequence of matrices that approximately diagonalizes
M(fo), M(f),. .., M().
m Then there exists a sequence (I,) such that for all n € N

N
n:rn

—xK

up to order of the rows and multiplication of the rows by +1.

m Furthermore, let £, be the distribution of
v veet (I, —Q71).
m Then we have

dw(cn,N[o, V,,(fl,...,fk)]) —s 0

n—oo

m The sequence of matrices V,(fi, ..., f) is bounded. See paper.
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Results on simulated data

B y-axis: mean error criterion.
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As n increases, asymptotic and empirical error criteria get closer.
Ring is better than ball. Using both is robust.
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Results on simulated data

m Empirical (black) and asymptotic (red) distributions of error
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Results on simulated data

m x-axis: Ball (B), ring (R), Gaussian (G) and joint kernels.
m y-axis: mean error criterion.
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——> Using combinations of kernels is robust.
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Real data example

m n = 594 samples of terrestrial moss in Finland, Norway, Russia.
m p = 31 concentrations of chemical elements.
m (Nordhausen et al, 2015).
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Real data example

m Left, gold standard: 2 most important estimated sources in Z by
m co-diagonalization of M(f) and M(f),
m fi is the ball kernel with radius 50km,
m chosen carefully by hand with a subject expert.

m Middle: fy and f; ball kernel with radius 100km.

m Right: fy and f1, £, f3; ring kernels with varying radii.
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Conclusion

m Unmixing the random fields for easier modeling, easier prediction,
interpretation.

Algorithms are semi-parametric and scale well with dataset size.

Approximate joint diagonalization with multiple kernels is more
robust.

m We have extended procedures and asymptotic results from time
series to random fields.

Multiple open questions: Fixed-domain asymptotics? Data driven
selection of kernels? Dimension reduction?

The paper:

@ F. Bachoc, M. G. Genton, K. Nordhausen, A. Ruiz-Gazen and J.
Virta, Spatial blind source separation, Biometrika, forthcoming,
2019. arxiv.org/abs/1812.09187.

Thank you for your attention!
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