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ﬁ Covariance function estimation for Gaussian processes

e Maximum Likelihood and Cross Validation for covariance function estimation

e Asymptotic analysis of the misspecified case
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Gaussian process regression

Gaussian process regression (Kriging model)

Study of a single realization of a Gaussian process Y(x) on a domain X C R?

@ Goal : predicting the continuous realization function, from a finite number of observation
points
@ Widely applied in machine learning, geostatistics, computer experiments...
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Covariance function parametrization

The Gaussian process

@ We consider that the Gaussian process is centered, Vx, E(Y(x)) =0

@ The Gaussian process is hence characterized by its covariance function
Ko(X1 9 X2) = COV( Y(X1 ), Y(Xg))

Covariance function parameterization

Covariance function model {Kj; 6 € ©} for the Gaussian process Y.
@ 0 € © C RP is the multidimensional covariance parameter. Ky is a covariance function

Observations

Y is observed at xy, ..., xn € X, yielding the Gaussian vector y = (Y(x1), ..., Y(xn))!

Objective : build estimator 4(y)
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Prediction with estimated covariance function

Gaussian process Y observed at xq, ..., Xn and predicted at x
y=(Y(x1), -, Y(xn))!

Once the covariance parameters have been estimated and fixed to 4

@ Rj; is the covariance matrix of Y at x, ..., x» under covariance function K
@ rs(x) is the covariance vector of Y between Xy, ..., x» and x under covariance function Kj

Prediction
The prediction is Vé(x) =Ey(Y(X)|Y(X1), ..., Y(xn)) = ré(x)R?y

Predictive variance

The predictive variance is varg(Y(x)|Y(x1), ..., Y(Xn)) = Ko (X, X) — ré(x)F{eT1 5(x)
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lllustration of prediction

— Gaussian process realization
1.07 prediction
- 95 %confidence interval
observations
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e Maximum Likelihood and Cross Validation for covariance function estimation
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Maximum Likelihood (ML) for estimation

Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood

Define Ry as the covariance matrix of y = (Y(xy), ..., Y(Xn)) with covariance function Kp
The Maximum Likelihood estimator of 6 is

o 1
6 in— (In(|R Ry
i€ argmin-— (In (Rol) + ¥Ry ')

= Most standard estimation method
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Cross Validation (CV) for estimation

° .)79,1',7/' = ]E@(Y(X,‘)'}ﬁ o Yie1s Vi1, ---7}’n)

Leave-One-Out criteria we study

n
Ocy € argmin Z(y; = }79,i,—i)2
[

= Alternative method used by some authors
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a Asymptotic analysis of the misspecified case
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ymptotic framework
Two main asymptotic frameworks

@ fixed-domain asymptotics : As n — oo the observation points are dense in a bounded domain
(e.g. book Stein 99)
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@ increasing-domain asymptotics : As n — oo the observation point density is constant and the
observation domain is unbounded (e.g. Mardia and Marshall 83, Cressie and Lahiri 93,

Bachoc 14)
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We address increasing-domain asymptotic here
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Well-specified and misspecified case

@ Well-specified case : The covariance function Ko = Ky, of Y belongs to

{K9,9 S @}

o Estimators are evaluated w.r.t. the estimation error |§ — 6|
e Maximum Likelihood is preferable over Cross Validation (e.g. Bachoc 14)

@ Misspecified case : The covariance function Ky of Y does not belong to
{K97 AS e}
= There is no true covariance parameter but there may be optimal covariance parameters

for difference criteria :

@ prediction mean square error

e confidence interval reliability

o multidimensional Kullback-Leibler distance

o ..
— Cross Validation can be more appropriate than Maximum Likelihood for some of these
criteria

= We aim at providing asymptotic results supporting this last point
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Impact of the spatial sampling

@ For irregularly spaced observations points, prediction for new points can be similar to
Leave-One-Out prediction —> the Cross Validation criterion can be unbiased

™!
OO0 O OO

@ For regularly spaced observations points, prediction for new points is different from
Leave-One-Out prediction = the Cross Validation criterion is biased

/_\Dﬁq

O O 0O OO0

= we aim at supporting this interpretation in an asymptotic framework
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@ The observation points X, ..., X, are iid and uniformly distributed on [0, n'/9]¢
@ We use a parametric noisy Gaussian process model with stationary covariance function

{KGa S e}
with stationary Kj of the form
Ko(x1 — X2) = Kco(X1 — X2) + do1x=x
N e N —
continuous part noise part

where K¢ ¢(x) is continuous in x and g > 0
— Jy corresponds to a measure error for the observations or a small-scale variability of the
Gaussian process

@ The true covariance function is also of the form
Ko(x1 — x2) = Ko o(x1 — X2) + do1xy=x,

@ The model satisfies regularity and summability conditions
@ The true covariance function Kj is also stationary and summable
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Cross Validation asymptotically minimizes the integrated prediction

error (1/2)

Let ¥,(t) be the prediction of the Gaussian process Y at t, under covariance function Ky, from
observations Y(x1), ..., Y(xn)

Integrated prediction error :

E ! o0t — (1) dt
me = E/[Q,ﬂ/d]d ( 9( )_ ( ))

Intuition :
The variable t above plays the same role as a new observation point X1, uniform on [0, n'/9]¢
and independent of Xy, ..., Xn

So we have ,
E (Eno) = E ([Y(Xn11) = Eopx(YXar )l Y (X)), s YOX0)]?)

and so when niis large
= (600) == (530050,

— This is an indication that the Cross Validation estimator can be optimal for integrated
prediction error
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Cross Validation asymptotically minimizes the integrated prediction

error (2/2)

We show

With X )
Eno = /[o,m/u]d (%o(t) — v(0) et
we have
En,éov = Gigg Epo + 0p(1).
Comments :
@ Same Gaussian process realization for both covariance parameter estimation and prediction
error

@ The optimal (unfeasible) prediction error infoce Ep g is lower-bounded = CV is indeed
asymptotically optimal
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Maximum Likelihood asymptotically minimizes the multidimensional

Kullback-Leibler divergence

Let KLj,¢ be 1/ntimes the Kullback-Leibler divergence dk. (Ko||Kp), between the
multidimensional Gaussian distributions of y, given observation points X, ..., X, under covariance
functions Ky and Ky

We show

KLn gy = Jf Klno +0p(1).

Comments :
@ Inincreasing-domain asymptotics, when Ky # Ko, KLy ¢ is usually lower-bounded = ML is
indeed asymptotically optimal
@ Maximum Likelihood is optimal for a criterion that is not prediction oriented
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A numerical illustration

@ Dimension d =2
@ The true covariance function is isotropic Matérn with og =1,0=4andry =10
@ The true noise variance is 6, = 0.252
@ The model covariance function is isotropic Matérn with known v = 10 and with 9 = (o2, £)
estimated by § = (62, 4)
@ The noise variance §y is enforced
e to 0.252 in the well-specified case
@ to 0.12 in the misspecified case

n Specification | Estimation | Average | Standard deviation | Average Average
of £ of ¢ of E 527 | OfKL, 525

Well-specified ML 4.014 0.600 0.021 0.026

100 Well-specified CcVv 4.525 1.564 0.024 0.123
Misspecified ML 1.279 0.385 0.112 1.120
Misspecified Ccv 4.637 1.754 0.024 3.725
Well-specified ML 3.990 0.244 0.016 0.004

500 Well-specified cv 4.158 0.698 0.016 0.031
Misspecified ML 1.216 0.122 0.104 1.076
Misspecified cv 4.167 0.727 0.016 3.477

TABLE: Monte Carlo simulations with 2000 samples. For each sample, we generate the data, compute 62 and ?
by ML and CV, and compute the corresponding £, ;> ; and KL, ;> ;.
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Conclusion

@ For well-specified models, ML generally appears to be optimal

@ In the misspecified case with random observation points, CV is optimal for the integrated
square prediction error

@ In the misspecified case, a comparison of ML and CV would be criterion-dependent

@ In practice, significantly different estimates between ML and CV can be a sign of model
misspecification

Some potential perspectives
@ Extension to other CV estimators
@ Obtaining Central Limit Theorems
@ Non-Gaussian case

The manuscript :

@ F. Bachoc, “Asymptotic analysis of covariance parameter estimation for Gaussian processes
in the misspecified case”, Bernoulli, in press.
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Thank you for your attention !
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