Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case

François Bachoc

University Paul Sabatier, Toulouse

CLAPEM 2016

Covariance function estimation for Gaussian processes

2 Maximum Likelihood and Cross Validation for covariance function estimation

Asymptotic analysis of the misspecified case

Gaussian process regression (Kriging model)

Study of a single realization of a Gaussian process Y(x) on a domain $\mathcal{X} \subset \mathbb{R}^d$

- Goal : predicting the continuous realization function, from a finite number of **observation points**
- Widely applied in machine learning, geostatistics, computer experiments...

François Bachoc

The Gaussian process

- We consider that the Gaussian process is centered, ∀x, E(Y(x)) = 0
- The Gaussian process is hence characterized by its covariance function $K_0(x_1, x_2) = \text{Cov}(Y(x_1), Y(x_2))$

Covariance function parameterization

Covariance function model $\{K_{\theta}; \theta \in \Theta\}$ for the Gaussian process *Y*.

• $\theta \in \Theta \subset \mathbb{R}^{p}$ is the multidimensional covariance parameter. K_{θ} is a covariance function

Observations

Y is observed at $x_1, ..., x_n \in \mathcal{X}$, yielding the Gaussian vector $y = (Y(x_1), ..., Y(x_n))^t$

Estimation

Objective : build estimator $\hat{\theta}(y)$

Gaussian process Y observed at $x_1, ..., x_n$ and predicted at $x y = (Y(x_1), ..., Y(x_n))^t$

Once the covariance parameters have been estimated and fixed to $\hat{ heta}$

- $\mathbf{R}_{\hat{\theta}}$ is the covariance matrix of Y at $x_1, ..., x_n$ under covariance function $K_{\hat{\theta}}$
- $r_{\hat{\theta}}(x)$ is the covariance vector of Y between $x_1, ..., x_n$ and x under covariance function $K_{\hat{\theta}}$

Prediction

The prediction is
$$\hat{Y}_{\hat{ heta}}(x) := \mathbb{E}_{\hat{ heta}}(Y(x)|Y(x_1),...,Y(x_n)) = r_{\hat{ heta}}^t(x)\mathbf{R}_{\hat{ heta}}^{-1}y$$

Predictive variance

The predictive variance is
$$var_{\hat{\theta}}(Y(x)|Y(x_1),...,Y(x_n)) = K_{\theta}(x,x) - r_{\hat{\theta}}^t(x)\mathbf{R}_{\hat{\theta}}^{-1}r_{\hat{\theta}}(x)$$

Illustration of prediction

François Bachoc

Covariance function estimation for Gaussian processes

2 Maximum Likelihood and Cross Validation for covariance function estimation

Asymptotic analysis of the misspecified case

Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood

Define \mathbf{R}_{θ} as the covariance matrix of $y = (Y(x_1), ..., Y(x_n))$ with covariance function K_{θ} The Maximum Likelihood estimator of θ is

$$\hat{\theta}_{ML} \in \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{n} \left(\ln \left(|\mathbf{R}_{\theta}| \right) + y^{t} \mathbf{R}_{\theta}^{-1} y \right)$$

⇒ Most standard estimation method

•
$$\hat{y}_{\theta,i,-i} = \mathbb{E}_{\theta}(Y(x_i)|y_1,...,y_{i-1},y_{i+1},...,y_n)$$

Leave-One-Out criteria we study

$$\hat{\theta}_{CV} \in \operatorname*{argmin}_{\theta \in \Theta} \sum_{i=1}^{n} (y_i - \hat{y}_{\theta,i,-i})^2$$

⇒ Alternative method used by some authors

Covariance function estimation for Gaussian processes

2 Maximum Likelihood and Cross Validation for covariance function estimation

Asymptotic analysis of the misspecified case

Two main asymptotic frameworks

• fixed-domain asymptotics : As $n \to \infty$ the observation points are dense in a bounded domain (e.g. book Stein 99)

 increasing-domain asymptotics : As n → ∞ the observation point density is constant and the observation domain is unbounded (e.g. Mardia and Marshall 83, Cressie and Lahiri 93, Bachoc 14)

We address increasing-domain asymptotic here

• Well-specified case : The covariance function $K_0 = K_{\theta_0}$ of Y belongs to

$$\{K_{\theta}, \theta \in \Theta\}$$

- Estimators are evaluated w.r.t. the estimation error $|\hat{ heta}- heta_0|$
- Maximum Likelihood is preferable over Cross Validation (e.g. Bachoc 14)
- Misspecified case : The covariance function K₀ of Y does not belong to

$$\{K_{\theta}, \theta \in \Theta\}$$

 \Longrightarrow There is no true covariance parameter but there may be optimal covariance parameters for difference criteria :

- prediction mean square error
- confidence interval reliability
- multidimensional Kullback-Leibler distance
- ...

 \Longrightarrow Cross Validation can be more appropriate than Maximum Likelihood for some of these criteria

 \implies We aim at providing asymptotic results supporting this last point

Impact of the spatial sampling

 For irregularly spaced observations points, prediction for new points can be similar to Leave-One-Out prediction → the Cross Validation criterion can be unbiased

• For regularly spaced observations points, prediction for new points is different from Leave-One-Out prediction \implies the Cross Validation criterion is biased

 \implies we aim at supporting this interpretation in an asymptotic framework

Assumptions

- The observation points X₁,..., X_n are *iid* and uniformly distributed on [0, n^{1/d}]^d
- We use a parametric noisy Gaussian process model with stationary covariance function

$$\{K_{\theta}, \theta \in \Theta\}$$

with stationary K_{θ} of the form

$$\mathcal{K}_{\theta}(x_1 - x_2) = \underbrace{\mathcal{K}_{c,\theta}(x_1 - x_2)}_{\text{continuous part}} + \underbrace{\delta_{\theta} \mathbf{1}_{x_1 = x_2}}_{\text{noise part}}$$

where $K_{c,\theta}(x)$ is continuous in x and $\delta_{\theta} > 0$

 $\implies \delta_{\theta}$ corresponds to a measure error for the observations or a small-scale variability of the Gaussian process

• The true covariance function is also of the form

$$K_0(x_1 - x_2) = K_{c,0}(x_1 - x_2) + \delta_0 \mathbf{1}_{x_1 = x_2}$$

- The model satisfies regularity and summability conditions
- The true covariance function K_0 is also stationary and summable

Cross Validation asymptotically minimizes the integrated prediction error (1/2)

Let $\hat{Y}_{\theta}(t)$ be the prediction of the Gaussian process *Y* at *t*, under covariance function K_{θ} , from observations $Y(x_1), ..., Y(x_n)$

Integrated prediction error :

$$E_{n,\theta} := \frac{1}{n} \int_{[0,n^{1/d}]^d} \left(\hat{Y}_{\theta}(t) - Y(t) \right)^2 dt$$

Intuition :

The variable *t* above plays the same role as a new observation point X_{n+1} , uniform on $[0, n^{1/d}]^d$ and independent of $X_1, ..., X_n$

So we have

$$\mathbb{E}\left(E_{n,\theta}\right) = \mathbb{E}\left(\left[Y(X_{n+1}) - \mathbb{E}_{\theta|X}(Y(X_{n+1})|Y(X_1), ..., Y(X_n))\right]^2\right)$$

and so when n is large

$$\mathbb{E}\left(E_{n,\theta}\right) \approx \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}(\mathbf{y}_{i}-\hat{\mathbf{y}}_{\theta,i,-i})^{2}\right)$$

 \Longrightarrow This is an indication that the Cross Validation estimator can be optimal for integrated prediction error

Cross Validation asymptotically minimizes the integrated prediction error (2/2)

We show

Theorem With $E_{n,\theta} = \int_{[0,n^{1/d}]^d} \left(\hat{Y}_{\theta}(t) - Y(t) \right)^2 dt$ we have $E_{n,\hat{\theta}_{CV}} = \inf_{\theta \in \Theta} E_{n,\theta} + o_p(1).$

Comments :

- Same Gaussian process realization for both covariance parameter estimation and prediction error
- The optimal (unfeasible) prediction error inf_{θ∈Θ} E_{n,θ} is lower-bounded ⇒ CV is indeed asymptotically optimal

イロト イヨト イヨト

Let $KL_{n,\theta}$ be 1/n times the Kullback-Leibler divergence $d_{KL}(K_0||K_{\theta})$, between the multidimensional Gaussian distributions of y, given observation points $X_1, ..., X_n$, under covariance functions K_{θ} and K_0

We show

Theorem

$$KL_{n,\hat{\theta}_{ML}} = \inf_{\theta \in \Theta} KL_{n,\theta} + o_p(1).$$

Comments :

- In increasing-domain asymptotics, when $K_{\theta} \neq K_0$, $KL_{n,\theta}$ is usually lower-bounded \Longrightarrow ML is indeed asymptotically optimal
- Maximum Likelihood is optimal for a criterion that is not prediction oriented

A numerical illustration

- Dimension d = 2
- The true covariance function is isotropic Matérn with $\sigma_0^2 = 1$, $\ell_0 = 4$ and $\nu_0 = 10$
- The true noise variance is $\delta_0 = 0.25^2$
- The model covariance function is isotropic Matérn with known $\nu = 10$ and with $\theta = (\sigma^2, \ell)$ estimated by $\hat{\theta} = (\hat{\sigma}^2, \hat{\ell})$
- The noise variance δ_{θ} is enforced
 - to 0.25² in the well-specified case
 - to 0.1² in the misspecified case

п	Specification	Estimation	Average	Standard deviation	Average	Average
			of $\hat{\ell}$	of $\hat{\ell}$	of $E_{n,\hat{\sigma}^2,\hat{\ell}}$	of $KL_{n,\hat{\sigma}^2,\hat{\ell}}$
100	Well-specified	ML	4.014	0.600	0.021	0.026
	Well-specified	CV	4.525	1.564	0.024	0.123
	Misspecified	ML	1.279	0.385	0.112	1.120
	Misspecified	CV	4.637	1.754	0.024	3.725
500	Well-specified	ML	3.990	0.244	0.016	0.004
	Well-specified	CV	4.158	0.698	0.016	0.031
	Misspecified	ML	1.216	0.122	0.104	1.076
	Misspecified	CV	4.167	0.727	0.016	3.477

TABLE: Monte Carlo simulations with 2000 samples. For each sample, we generate the data, compute $\hat{\sigma}^2$ and $\hat{\ell}$ by ML and CV, and compute the corresponding $E_{n,\hat{\sigma}^2,\hat{\ell}}$ and $KL_{n,\hat{\sigma}^2,\hat{\ell}}$.

- For well-specified models, ML generally appears to be optimal
- In the misspecified case with random observation points, CV is optimal for the integrated square prediction error
- In the misspecified case, a comparison of ML and CV would be criterion-dependent
- In practice, significantly different estimates between ML and CV can be a sign of model misspecification

Some potential perspectives

- Extension to other CV estimators
- Obtaining Central Limit Theorems
- Non-Gaussian case

The manuscript :

F. Bachoc, "Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case", *Bernoulli, in press.*

Thank you for your attention !

э