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Gaussian process regression

Gaussian process regression (Kriging model)

Study of a single realization of a Gaussian process Y (x) on a domain X ⊂ Rd
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Goal : predicting the continuous realization function, from a finite number of observation
points
Widely applied in machine learning, geostatistics, computer experiments...
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Covariance function parametrization

The Gaussian process
We consider that the Gaussian process is centered, ∀x ,E(Y (x)) = 0

The Gaussian process is hence characterized by its covariance function
K0(x1, x2) = Cov(Y (x1),Y (x2))

Covariance function parameterization
Covariance function model {Kθ; θ ∈ Θ} for the Gaussian process Y .

θ ∈ Θ ⊂ Rp is the multidimensional covariance parameter. Kθ is a covariance function

Observations
Y is observed at x1, ..., xn ∈ X , yielding the Gaussian vector y = (Y (x1), ...,Y (xn))t

Estimation

Objective : build estimator θ̂(y)
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Prediction with estimated covariance function

Gaussian process Y observed at x1, ..., xn and predicted at x
y = (Y (x1), ...,Y (xn))t

Once the covariance parameters have been estimated and fixed to θ̂

Rθ̂ is the covariance matrix of Y at x1, ..., xn under covariance function Kθ̂
rθ̂(x) is the covariance vector of Y between x1, ..., xn and x under covariance function Kθ̂

Prediction

The prediction is Ŷθ̂(x) := Eθ̂(Y (x)|Y (x1), ...,Y (xn)) = r t
θ̂

(x)R−1
θ̂

y

Predictive variance

The predictive variance is varθ̂(Y (x)|Y (x1), ...,Y (xn)) = Kθ(x , x)− r t
θ̂

(x)R−1
θ̂

rθ̂(x)
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Illustration of prediction
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Maximum Likelihood (ML) for estimation

Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood
Define Rθ as the covariance matrix of y = (Y (x1), ...,Y (xn)) with covariance function Kθ
The Maximum Likelihood estimator of θ is

θ̂ML ∈ argmin
θ∈Θ

1
n

(
ln (|Rθ|) + y t R−1

θ y
)

⇒ Most standard estimation method
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Cross Validation (CV) for estimation

ŷθ,i,−i = Eθ(Y (xi )|y1, ..., yi−1, yi+1, ..., yn)

Leave-One-Out criteria we study

θ̂CV ∈ argmin
θ∈Θ

n∑
i=1

(yi − ŷθ,i,−i )
2

=⇒ Alternative method used by some authors

François Bachoc Asymptotic misspecified San José - December 2016 9 / 20



1 Covariance function estimation for Gaussian processes

2 Maximum Likelihood and Cross Validation for covariance function estimation

3 Asymptotic analysis of the misspecified case

François Bachoc Asymptotic misspecified San José - December 2016 10 / 20



Asymptotic framework

Two main asymptotic frameworks
fixed-domain asymptotics : As n→∞ the observation points are dense in a bounded domain
(e.g. book Stein 99)
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increasing-domain asymptotics : As n→∞ the observation point density is constant and the
observation domain is unbounded (e.g. Mardia and Marshall 83, Cressie and Lahiri 93,
Bachoc 14)
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We address increasing-domain asymptotic here
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Well-specified and misspecified case

Well-specified case : The covariance function K0 = Kθ0 of Y belongs to

{Kθ, θ ∈ Θ}

Estimators are evaluated w.r.t. the estimation error |θ̂ − θ0|
Maximum Likelihood is preferable over Cross Validation (e.g. Bachoc 14)

Misspecified case : The covariance function K0 of Y does not belong to

{Kθ, θ ∈ Θ}

=⇒ There is no true covariance parameter but there may be optimal covariance parameters
for difference criteria :

prediction mean square error
confidence interval reliability
multidimensional Kullback-Leibler distance
...

=⇒ Cross Validation can be more appropriate than Maximum Likelihood for some of these
criteria

=⇒We aim at providing asymptotic results supporting this last point
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Impact of the spatial sampling

For irregularly spaced observations points, prediction for new points can be similar to
Leave-One-Out prediction =⇒ the Cross Validation criterion can be unbiased

For regularly spaced observations points, prediction for new points is different from
Leave-One-Out prediction =⇒ the Cross Validation criterion is biased

=⇒ we aim at supporting this interpretation in an asymptotic framework
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Assumptions

The observation points X1, ...,Xn are iid and uniformly distributed on [0, n1/d ]d

We use a parametric noisy Gaussian process model with stationary covariance function

{Kθ, θ ∈ Θ}

with stationary Kθ of the form

Kθ(x1 − x2) = Kc,θ(x1 − x2)︸ ︷︷ ︸
continuous part

+ δθ1x1=x2︸ ︷︷ ︸
noise part

where Kc,θ(x) is continuous in x and δθ > 0
=⇒ δθ corresponds to a measure error for the observations or a small-scale variability of the
Gaussian process

The true covariance function is also of the form

K0(x1 − x2) = Kc,0(x1 − x2) + δ01x1=x2

The model satisfies regularity and summability conditions

The true covariance function K0 is also stationary and summable
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Cross Validation asymptotically minimizes the integrated prediction
error (1/2)

Let Ŷθ(t) be the prediction of the Gaussian process Y at t , under covariance function Kθ , from
observations Y (x1), ...,Y (xn)

Integrated prediction error :

En,θ :=
1
n

∫
[0,n1/d ]d

(
Ŷθ(t)− Y (t)

)2
dt

Intuition :
The variable t above plays the same role as a new observation point Xn+1, uniform on [0, n1/d ]d

and independent of X1, ...,Xn

So we have
E
(
En,θ

)
= E

([
Y (Xn+1)− Eθ|X (Y (Xn+1)|Y (X1), ...,Y (Xn))

]2)
and so when n is large

E
(
En,θ

)
≈ E

(
1
n

n∑
i=1

(yi − ŷθ,i,−i )
2

)
=⇒ This is an indication that the Cross Validation estimator can be optimal for integrated
prediction error
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Cross Validation asymptotically minimizes the integrated prediction
error (2/2)

We show

Theorem
With

En,θ =

∫
[0,n1/d ]d

(
Ŷθ(t)− Y (t)

)2
dt

we have
En,θ̂CV

= inf
θ∈Θ

En,θ + op(1).

Comments :

Same Gaussian process realization for both covariance parameter estimation and prediction
error

The optimal (unfeasible) prediction error infθ∈Θ En,θ is lower-bounded =⇒ CV is indeed
asymptotically optimal
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Maximum Likelihood asymptotically minimizes the multidimensional
Kullback-Leibler divergence

Let KLn,θ be 1/n times the Kullback-Leibler divergence dKL(K0||Kθ), between the
multidimensional Gaussian distributions of y , given observation points X1, ...,Xn, under covariance
functions Kθ and K0

We show

Theorem

KLn,θ̂ML
= inf
θ∈Θ

KLn,θ + op(1).

Comments :

In increasing-domain asymptotics, when Kθ 6= K0, KLn,θ is usually lower-bounded =⇒ ML is
indeed asymptotically optimal

Maximum Likelihood is optimal for a criterion that is not prediction oriented
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A numerical illustration

Dimension d = 2
The true covariance function is isotropic Matérn with σ2

0 = 1, `0 = 4 and ν0 = 10
The true noise variance is δ0 = 0.252

The model covariance function is isotropic Matérn with known ν = 10 and with θ = (σ2, `)

estimated by θ̂ = (σ̂2, ˆ̀)
The noise variance δθ is enforced

to 0.252 in the well-specified case
to 0.12 in the misspecified case

n Specification Estimation Average Standard deviation Average Average
of ˆ̀ of ˆ̀ of En,σ̂2, ˆ̀ of KLn,σ̂2, ˆ̀

100

Well-specified ML 4.014 0.600 0.021 0.026
Well-specified CV 4.525 1.564 0.024 0.123
Misspecified ML 1.279 0.385 0.112 1.120
Misspecified CV 4.637 1.754 0.024 3.725

500

Well-specified ML 3.990 0.244 0.016 0.004
Well-specified CV 4.158 0.698 0.016 0.031
Misspecified ML 1.216 0.122 0.104 1.076
Misspecified CV 4.167 0.727 0.016 3.477

TABLE: Monte Carlo simulations with 2000 samples. For each sample, we generate the data, compute σ̂2 and ˆ̀

by ML and CV, and compute the corresponding En,σ̂2, ˆ̀ and KLn,σ̂2, ˆ̀.

François Bachoc Asymptotic misspecified San José - December 2016 18 / 20



Conclusion

For well-specified models, ML generally appears to be optimal

In the misspecified case with random observation points, CV is optimal for the integrated
square prediction error

In the misspecified case, a comparison of ML and CV would be criterion-dependent

In practice, significantly different estimates between ML and CV can be a sign of model
misspecification

Some potential perspectives

Extension to other CV estimators

Obtaining Central Limit Theorems

Non-Gaussian case

The manuscript :

F. Bachoc, “Asymptotic analysis of covariance parameter estimation for Gaussian processes
in the misspecified case”, Bernoulli, in press.
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Thank you for your attention !
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