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Why this talk ?

Sequential procedures for costly black-box functions

Gaussian processes : widely used sequential procedures (Efficient Global
Optimization (EGO), Stepwise Uncertainty Reduction (SUR),...)
[Jones et al., 1998, Chevalier et al., 2014].

Theory : open questions remain despite existing work
[Vazquez and Bect, 2010, Bull, 2011, Srinivas et al., 2012, Bect et al., 2019].

"Machine learning" : theoretical results tend to be more refined, exponential rates,
instance-dependent rates,... [Munos, 2011, de Freitas et al., 2012].

But are these latter algorithms as "practical" for costly black-box functions ?

This talk
Presentation of two contributions in "machine learning".

F. Bachoc, T. Cesari and S. Gerchinovitz, “The sample complexity of level set
approximation” AISTATS 2021 - oral presentation

F. Bachoc, T. Cesari and S. Gerchinovitz, “Instance-dependent bounds for
zeroth-order Lipschitz optimization with error certificates” NeurIPS 2021

=⇒ Can be bridged with Gaussian processes ?
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1 Non-certified level set estimation

2 Certified optimization
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Problem, motivations, related work

Problem
Approximating {x : f (x) = a} ⊂ [0, 1]d .

f : [0, 1]d → R unknown in some known smoothness class.

a ∈ R a fixed known threshold.

Motivation
Determining parameters that result in a given outcome (computer experiments,
uncertainty quantification, nuclear engineering, coastal flooding, etc).

Related work

Gaussian process models : [Chevalier et al., 2014], [Azzimonti et al., 2021],
[Gotovos et al., 2013].

Global optimization algorithms : [Munos, 2011], [Bubeck et al., 2011].
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Protocol and objective

Online protocol

For n = 1, 2, . . . :

1 pick the next query point xn,

2 observe the value f (xn),

3 output an approximating set Sn.

Our goal

Quantifying the sample complexity, i.e., smallest number of evaluations of f needed to

{x : f (x) = a} ⊂ Sn ⊂
{

x : |f (x)− a| ≤ ε
}
.

For some error level ε > 0.
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A hard problem

Definition
The packing number of a non-empty set E is

N (E , ε) := sup
{

k ∈ N : ∃ x1, . . . , xk ∈ E , min
i 6=j

∥∥x i − x j
∥∥
∞ > ε

}
.

Theorem
If f is a non-constant continuous function, for any min(f ) < a < max(f ),

N
(
{f = a}, ε

)
&

1
εd−1

as ε→ 0.

Not surprising, the level set is defined by a single equation in d unknowns.
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A general solution

Bisect and Approximate (BA)

1 Bisect the current family of cells.

2 Query f at some point(s) in each new cell.

3 Compute a local approximator gC of f on each cell C.

4 Remove a cell C if |gC(x)− a| is large for all x ∈ C.
× ×

× ×

Theorem
If the gC ’s are “accurate approximations” of f on the C’s,

sample complexity of BA .
i(ε)∑
i=1

N
({
|f − a| ≤ ci

}
, di

)
where i(ε) ∼ log(1/ε), c1 > c2 > . . . , d1 > d2 > . . . depend on the gC ’s and their
error bounds.

Instance-dependent bound (depends on f , not only on smoothness class).
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Sketch of proof for Lipschitz functions

Query f only at center of C. Predict constantly by observed value.

Prediction error ≤ Const/2i after i bisections.

=⇒ Level set estimation error ≤ ε when Const/2i ≤ ε =⇒ after Const log(1/ε)
bisections.

Query points at bisection i are in
{

x : |f (x)− a| ≤ Const/2i} and are a packing
with radius Const/2i .

Hence

Total number queried points ≤
const log(1/ε)∑

i=1

N
({
|f − a| ≤

Const
2i

}
,

Const
2i

)
.
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Consequence for γ-Hölder functions

γ-Hölder functions

f is γ-Hölder :
∣∣f (x)− f (y)

∣∣ ≤ c ‖x − y‖γ , with γ ∈ (0, 1].

Local approximator for BAH

For a cell C (hypercube), we query the center and take the local approximator gC
as constant.

The error of gC on C is . Diam(C)γ .

Theorem (upper and lower bound)

The worst-case optimal sample complexity is attained by BAH and

sample complexity of BAH .
1

εd/γ
.

For lower bound counter example functions are “flat + local bump” (classical).
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Consequence for functions with γ1-Hölder gradients

Functions with γ1-Hölder gradients

∇f is γ1-Hölder.

Local approximator for BAG

For a cell C (hypercube), we query the 2d vertices and take the local approximator
gC as multilinear interpolating.

The error of gC on C is . Diam(C)1+γ1 .

Theorem (upper and lower bound)

The worst-case optimal sample complexity is attained by BAG and

sample complexity of BAG .
1

εd/(1+γ1)
.

For lower bound counter example functions are “flat + local bump” (classical).
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Convexity helps a little : d 7→ d − 1

Theorem
When f has γ1-Hölder gradient and is convex (+ quantitative conditions), then the
worst-case optimal sample complexity is attained by BAG and

sample complexity of BAG .
1

ε(d−1)/(1+γ1)
.

Follows from geometric arguments on level sets of convex functions.

Theorem
If f is convex (+ quantitative conditions), there exists a constant C∗ > 0 such that

∀r ∈ (0, 1) , N
({
|f − a| ≤ r

}
, r
)
≤ C∗

(
1
r

)d−1
.
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1 Non-certified level set estimation

2 Certified optimization
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Setting

Goal
Determine and certify a near-maximizer for a black-box function f : X ⊂ Rd → R that
is L-Lipschitz w.r.t. a norm ‖·‖.

L is a known upper bound on the smallest possible Lipschitz constant Lip(f ).

Certified Algorithm

For n = 1, 2, . . .

1 query xn ∈ [0, 1]d ,

2 observe f (xn),

3 output a recommendation x?n ∈ [0, 1]d , with the goal of minimizing max(f )− f (x?n ),
4 output an error certificate ξn ≥ 0 such that max(f )− f (x?n ) ≤ ξn.
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Upper bound

FL is the set of all L-Lipschitz functions with Lip(f ) < L.

Sample complexity of an algorithm A

σ(A, f , ε) is the smallest n such that ξn ≤ ε.

We introduce the algorithm c.DOO (certified Deterministic Optimistic Optimization),
extending DOO from [Munos, 2011].

Proposition

c.DOO is a certified algorithm and for all f ∈ FL,

σ(c.DOO, f , ε) . SC(f , ε)

where

SC(f , ε) :=N
(
{x ;max f − f (x) ≤ ε},

ε

L

)
+

Const log(1/ε)∑
k=1

N
(
{x ; εk < max f − f (x) ≤ εk−1},

εk

L

)
with εConst log(1/ε) = ε, εConst log(1/ε)−1 > ε, and then εi−1 = 2εi ,
i = Const log(1/ε)− 1, . . . , 1 and with ε0 = L.
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Integral characterization and lower bound

Theorem

Under a mild assumption on X , SC(f , ε) ∼
∫
X

dx(
f (x?)− f (x) + ε

)d .

=⇒ The constant function is the hardest for certified optimization.

Theorem
For all f ∈ FL, the sample complexity of any certified algorithm A satisfies

σ(A, f , ε) ≥
Const

(
1− Lip(f )/L

)d · SC(f , ε)
log(1/ε)

.

This instance-dependent lower bound makes sense only in the certified setting.

Extends the one-dimensional analysis of [Hansen et al., 1991].
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Thank you for your attention !
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