Name:

Matricule number:

End-term test
Business Mathematics 2
Group 6
Winter 2014

example	max.pts.	pts.
1	3	\cdots
2	3	\cdots
3	3	\cdots
4	3	\cdots
total $:$	12	\cdots

Instructions:

- No documents, no calculators
- Write your answers for an example in the corresponding indicated blank spaces
- All the answers must be justified
- The clarity and readability of the copy will be taken into account in the final mark

1) a) Let $f(x, y)=x^{3}-y^{3}+x y$. Find two critical points of f. (You do not have to determine their nature).
b) Let $f(x, y)=e^{x^{2}+1}-e^{y^{2}+1}$. Then $(0,0)$ is a critical point of f (you do not have to show it). What is the nature of the critical point $(0,0)$?
2) a) Using the graphical method, find the global maximizer for the problem

$$
\begin{array}{rc}
\max & y \\
\text { s.t. } & x^{2}+y^{2}=1 .
\end{array}
$$

(No points will be given if you do not use the graphical method).
b) Using the method of your choice, find a local maximizer for the problem

$$
\begin{array}{rc}
\max & x y \\
\text { s.t. } & x+y=1 .
\end{array}
$$

3) a) Show that the function $f(x, y, z)=e^{x}+z^{2}+(1+y)^{2}$ is convex on \mathbb{R}^{3}.
b) Show that the set $\left\{(x, y) \in \mathbb{R}^{2} ; x^{2} \leq 1, x \leq 2-y^{2}\right\}$ is convex.
4) a) Consider the problem

$$
\begin{array}{cc}
\text { min } & x \\
\text { s.t. } & x \geq 0 \\
& x^{2}+y^{2} \leq 1 .
\end{array}
$$

Can $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ be a local minimizer for this problem?
b) Consider the problem

$$
\begin{array}{cc}
\text { min } & (x+1)^{2}+y^{2} \\
\text { s.t. } & x \leq 0 \\
& y \leq 0 .
\end{array}
$$

Find a point $\left(x^{*}, y^{*}\right)$ that satisfies the KKT conditions and show that no other points can satisfy the KKT conditions. Which constraints are active at the point $\left(x^{*}, y^{*}\right)$.

Answer to 1) a):

Answer to 1) b):

Answer to 2) a):

Answer to 2) b):

Answer to 3) a):

Answer to 3) b):

Answer to 4) a):

Answer to 4) b):

