Nested Kriging models for large data-sets

François Bachoc, Nicolas Durrande, Didier Rullière

Based on joint work with Clément Chevalier

Mines Saint-Etienne - Chaire OQUAIDO meeting - May 2016

outline :

- 1. Context and notation
- 2. Litterature review
- 3. Nested Kriging models
- 4. Methods consistency
- 5. Parameter estimation
- 6. Application to a case study

Context and notation			

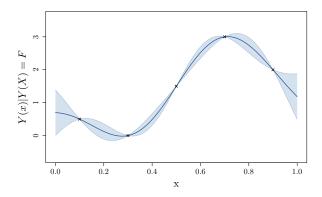
Context and notation

Context and notation			
000			

The conditional distribution of GP (or the BLUE of a second order process) writes

$$\begin{split} m(x) &= \mathbb{E}\left[Y(x)|Y(X)=F\right] = k(x,X)k(X,X)^{-1}F\\ c(x,x') &= \mathbb{Cov}\left[Y(x),Y(x')|Y(X)=F\right] = k(x,x') - k(x,X)k(X,X)^{-1}k(X,x') \end{split}$$

It can be represented as a mean function with confidence intervals.



Context and notation			
000			

If we denote by n the number of observation points, the complexity of building such models is

- $O(n^2)$ in space (storing k(X, X))
- $O(n^3)$ in time (inverting $k(X, X)^{-1}$)

Furthermore, hyperparameter estimation requires to do this many times...

In practice,

- space complexity is often more limiting than time complexity
- the maximum number of observations that can be handled lies in the range [1000, 10000].

Context and notation			
000			

Various methods have been introduced to deal with a large number of observations :

- methods based on inducing points (sparse GPs)
- methods based on aggregating sub-models
- Iow rank approximations
- kernels with compact support
- random kitchen sink
- ...

See Rasmussen and Williams, GPML, Chap. 8.

Short literature review		

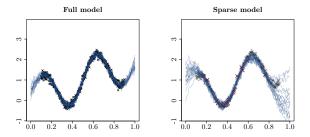
Short literature review

Sparse GPs are based on an approximation of the covariance structure of (Y(X), Y(x)) that relies on some inducing variables U.

The general principle of is to learn U from Y(X) and then to predict Y(x) from U.

Example :

A naive approach is to consider U as a subset of the observations : $U = Y(X_{SoD})$:



First, let's assume that the location of the inducing points is known. In order to create a Sparse GP model, one need to specify :

- the covariance between U and Y(X)
- the covariance between U and Y(x)

Various methods have been proposed :

- \blacksquare Subset of Regressors minimize the MSE on all dataset \rightarrow Linear regression
- **Deterministic training conditional** Learning the u with linear regression, prediction with Kriging. \rightarrow Same mean as SoR, more realistic variances.
- **Fully Independent Training Conditional (FITC)** same as DTC but with non homogeneous noise variance.

Ref : Quiñonero-Candela and Rasmussen, JLMR 2005

Short literature review		

Let n be the number of datapoints and m be the number of inducing points. The complexity is :

Method	Storage	Computation
full GPR	$O(n^2)$	$O(n^3)$
SoD	$O(m^2)$	$O(m^3)$
SoR	O(mn)	$O(m^2n)$
DTC	O(mn)	$O(m^2n)$
FITC	O(mn)	$O(m^2n)$

Ref: GPML, chap. 8

The remaining questions is : What should be the location of the inducing?

In all the methods above, the inducing points can be chosen :

Among the set of observation points

- randomly
- clustering
- greedy methods
- as the test points

As new points

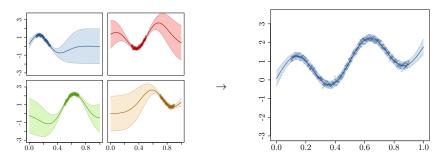
- maximizing the likelihood
- greedy methods
- variational inference (Titsias AISTATS 2009, Hensman CUAI 2013)

To put it in a nutshell, these methods are based on the fact that lots of data doesn't mean lots of information.

Short literature review		
•0		

merging sub-models

Another approach is to make many sub-models based on subset of data, and then to find a way to merge these models together



if the number of points per sub-model is fixed to c, there are p = n/c sub-models so the sub-models storage footprint is $O(pc^2) = O(nc)$. Similarly, the complexity is $O(nc^2)$. Note that this is just for the sub-models and not the aggregation procedure.

Short literature review		
0.		

merging sub-models

Let $f_{M_i}(x)$ be the predictive density of model *i* at x and $f_M(x)$ denote the aggregated prediction :

Various methods have been proposed in the litterature :

Product of Experts (PoE)

$$f_M(x) \propto \prod f_{M_l}(x)$$

Generalised PoE

$$f_M(x) \propto \prod f_{M_l}^{\beta_i}(x)$$

Bayesian Commitee Machine (BCM)

$$f_M(x) \propto rac{\prod f_{M_I}(x)}{f_Y^{(N-1)}(x)}$$

robust BCM

$$f_M(x) \propto rac{\prod f_{M_l}^{eta_i}(x)}{f_Y^{(\sum eta_i-1)}(x)}$$

Ref : Deisenroth and Wei Ng, ICML proceedings 2015

	Nested Kriging Models		

Nested Kriging Models

	Nested Kriging Models		
	• 00 0000		

Framework - Sub-models

 $\begin{array}{l} \mbox{Inputs:} \\ \mbox{One prediction point}: x \in D. \\ \mbox{Initial random field}: & Y(x) \in R. \\ \mbox{Sub-models vector}: & M(x) = (M_1(x), \ldots, M_p(x)) \in R^p. \\ \mbox{Sub-models are typically functions of a random vector of observations } Y(X). \end{array}$

Known covariances :

we assume that (Y(x), M(x)) is centred with $(1 + p) \times (1 + p)$ covariance matrix :

$$\operatorname{Cov}\left[\left(Y(x), M(x)\right)\right] = \begin{pmatrix} k(x, x) & k_M(x)^t \\ k_M(x) & K_M(x) \end{pmatrix}$$
(1)

 $k_M(x)$ is a $p \times 1$ vector with entries $k_M(x)_i = \operatorname{Cov} [Y(x), M_i(x)], K_M(x)$ is a $p \times p$ matrix with entries $(K_M(x))_{i,j} = \operatorname{Cov} [M_i(x), M_j(x)].$

In particular :

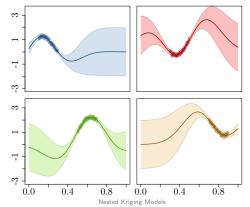
- We assume the existence of the first two moments of $(Y(x), M_1(x), \dots, M_p(x))$
- No other assumption on the joint distribution of $(Y(x), M_1(x), \dots, M_p(x))$
- M(x) are covariates that are not necessarily a linear combinations of Y(X)

	Nested Kriging Models ○●○ ○○○ ○○○		
	/ 00		

Framework - Case of Kriging submodels

Let X_1, \ldots, X_p be matrices corresponding to subsets of points of X. Define p associated Kriging sub-models (or *experts*) :

$$\begin{cases} \mathsf{M}_{i}(\mathsf{x}) &= \mathrm{E}[Y(x)|Y(X_{i})] = k(x,X_{i})k(X_{i},X_{i})^{-1}Y(X_{i}) \\ \left(\mathsf{k}_{\mathsf{M}}(\mathsf{x})\right)_{i} &= \mathrm{Cov}\left[Y(x),M_{i}(x)\right] = k(x,X_{i})k(X_{i},X_{i})^{-1}k(X_{i},x) \\ \left(\mathsf{K}_{\mathsf{M}}(\mathsf{x})\right)_{i,j} &= \mathrm{Cov}\left[M_{i}(x),M_{j}(x)\right] = k(x,X_{i})k(X_{i},X_{i})^{-1}k(X_{i},X_{j})k(X_{j},X_{j})^{-1}k(X_{j},x). \end{cases}$$



	Nested Kriging Models		
	000		

Main questions

Classical kriging outputs (Gaussian case) : pointwise :

- Kriging mean E[Y(x)|Y(X)]
- Kriging variance V[Y(x)|Y(X)]

cross-points :

- Kriging covariances Cov[Y(x), Y(x')|Y(X)]
- Conditional sample paths

$Corresponding \ questions \ when \ aggregating \ models:$

pointwise :

- Aggregation $M_{1\oplus\ldots\oplus p}(x)$ of $M_1(x),\ldots,M_p(x)$, in order to estimate Y(x)?
- Variance $v_{1\oplus\ldots\oplus p}(x)$ of the error $M_{1\oplus\ldots\oplus p}(x) Y(x)$?

cross-points :

- Covariances between $M_{1\oplus\ldots\oplus p}(x)$, $M_{1\oplus\ldots\oplus p}(x')$?
- Conditional sample paths (Gaussian case)?

	Nested Kriging Models		
	000 ●000		

Proposed pointwise aggregation

Definition (sub-models aggregation)

For a given point $x \in D$, we define the aggregation of the sub-models (or mixture of experts) by

$$\mathsf{M}_{1\oplus\ldots\oplus p}(\mathsf{x}) = \mathsf{k}_{\mathsf{M}}(\mathsf{x})^{\mathsf{t}}\mathsf{K}_{\mathsf{M}}(\mathsf{x})^{-1}\mathsf{M}(\mathsf{x}). \tag{2}$$

Some properties for pointwise estimation

- **Optimal** : $M_{1 \oplus ... \oplus p}(x)$ is the BLUE of Y(x) that writes $\sum_{i} \alpha_i(x) M_i(x)$.
- Square error :

$$v_{1\oplus\ldots\oplus p}(x) = \mathbb{E}\left[(Y(x) - M_{1\oplus\ldots\oplus p}(x))^2\right] = k(x,x) - k_M(x)^t \mathcal{K}_M(x)^{-1} k_M(x)$$

Conditional distribution : If (Y(x), M(x)) is a Gaussian random vector, then the conditional distribution of Y(x) given M(x) is normal with moments

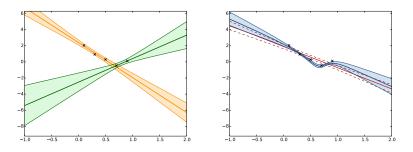
$$E[Y(x)|M_1(x),\ldots,M_p(x)] = M_{1\oplus\ldots\oplus p}(x)$$

$$V[Y(x)|M_1(x),\ldots,M_p(x)] = v_{1\oplus\ldots\oplus p}(x).$$

Full model recovery : if M(x) writes $M(x) = \Lambda(x)Y(X)$, and if $\Lambda(x)$ is an invertible matrix, then $M_{1\oplus\ldots\oplus\rho}(x) = k(x,X)k(X,X)^{-1}Y(X)$

	Nested Kriging Models		
	000 0000 000		

Example 1 - linear regressions



 $\label{eq:Figure: Example 1 : aggregation of two linear regression models. The left panel shows the sub-models and the right one the merged one in blue as well as the full model in red lines. Exhibited confidence bands corresponds to a difference to mean value of two standard deviation.$

	Nested Kriging Models		
	000		
	0000		

Example 2 - kriging submodels

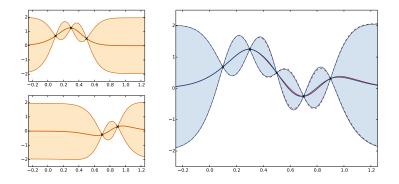


FIGURE: Example 2: aggregation of two Gaussian process regression models. The left panel shows the sub-models and the right one the merged one in blue as well as the full model in red lines.

	Nested Kriging Models		
	000 000● 000		

Example 3 - fully informative submodels

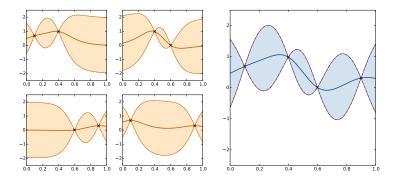


FIGURE: Example of merging sub-models without loss of information. The four submodels are shown on the left panels. As it can be seen on the right panel, the merged model (blue lines and shaded area) as well as the full model (red dashed lines) cannot be distinguished.

	Nested Kriging Models		
	000		

Aggregated process

We now focus on the case where (Y, M) is a centred Gaussian process with given covariances

$$\operatorname{Cov}\left[(Y(x), M(x)), (Y(x'), M(x'))\right] = \begin{pmatrix} k(x, x') & k_M(x, x')^t \\ k_M(x', x) & K_M(x, x') \end{pmatrix}.$$
 (3)

Definition (aggregated process)

We define the process $Y_{1\oplus\ldots\oplus p}$ as

$$\mathbf{Y}_{1\oplus\ldots\oplus\mathbf{p}} = \mathbf{M}_{1\oplus\ldots\oplus\mathbf{p}} + \varepsilon'_{1\oplus\ldots\oplus\mathbf{p}} \tag{4}$$

where $\varepsilon'_{1\oplus\ldots\oplus p}$ is an independent replicate of $Y - M_{1\oplus\ldots\oplus p}$.

	Nested Kriging Models		
	000		

Some properties for aggregated process

known distribution : $Y_{1 \oplus ... \oplus p}$ is centred with known covariances

$$k_{1\oplus\ldots\oplus p}(x,x') = k(x,x') + 2k_M(x)^t k_M^{-1}(x) k_M^{-1}(x,x') k_M^{-1}(x') k_M(x') - k_M(x)^t k_M^{-1}(x) k_M(x',x) - k_M(x')^t k_M^{-1}(x') k_M(x,x').$$
(5)

• optimality : If $M_{1\oplus\ldots\oplus\rho}(x)$ writes $M_{1\oplus\ldots\oplus\rho}(x) = \lambda_{1\oplus\ldots\oplus\rho}(x)^t Y(X)$ and if $M_{1\oplus\ldots\oplus\rho}(X) = Y(X)$ then

$$M_{1\oplus\ldots\oplus p}(x) = \mathbb{E}\left[Y_{1\oplus\ldots\oplus p}(x)|Y_{1\oplus\ldots\oplus p}(X)\right]$$

$$v_{1\oplus\ldots\oplus p}(x) = \mathbb{V}\left[Y_{1\oplus\ldots\oplus p}(x)|Y_{1\oplus\ldots\oplus p}(X)\right].$$

u full model recovery : If $M(x) = \Lambda(x)Y(X)$ where $\Lambda(x)$ is an invertible matrix, then

$$Y_{1\oplus\ldots\oplus p} \stackrel{l_{aw}}{=} Y \text{ and thus } Y_{1\oplus\ldots\oplus p} | Y_{1\oplus\ldots\oplus p}(X) \stackrel{l_{aw}}{=} Y | Y(X).$$
(6)

	Nested Kriging Models		
	000		

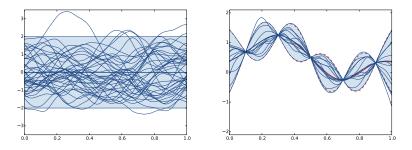
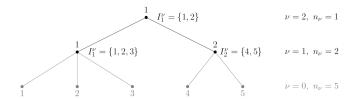


FIGURE: Interpretation of the results from Example 2 as a posterior Gaussian process distribution. The left panel shows the prior $Y_{1\oplus\ldots\oplus p}$ and the right one the conditional distribution given $Y_{1\oplus\ldots\oplus p}(X) = Y(X)$.

	Nested Kriging Models		
	•0		

Iterative model



$$\begin{split} & \operatorname{From} \left\{ \begin{array}{l} (M^{\nu}(\mathbf{x}))_{i} &= M_{i}^{\nu}(\mathbf{x}) \\ (k^{\nu}(\mathbf{x}))_{i} &= \operatorname{Cov} \begin{bmatrix} Y(\mathbf{x}), M_{i}^{\nu}(\mathbf{x}) \end{bmatrix} \\ (K^{\nu}(\mathbf{x}))_{ij} &= \operatorname{Cov} \begin{bmatrix} M_{i}^{\nu}(\mathbf{x}), M_{j}^{\nu}(\mathbf{x}) \end{bmatrix} \end{array} \right. & \operatorname{get} \left\{ \begin{array}{l} (M^{\nu+1}(\mathbf{x}))_{i} &= \alpha_{i}^{\nu+1}(\mathbf{x})^{t} \left(M^{\nu}(\mathbf{x})_{[l_{i}^{\nu+1}]} \right) \\ (k^{\nu+1}(\mathbf{x}))_{ij} &= \alpha_{i}^{\nu+1}(\mathbf{x})^{t} \left(k^{\nu}(\mathbf{x})_{[l_{i}^{\nu+1}, l_{j}^{\nu+1}]} \right) \\ (K^{\nu+1}(\mathbf{x}))_{ij} &= \alpha_{i}^{\nu+1}(\mathbf{x})^{t} \left(K_{i}^{\nu}(\mathbf{x})_{i} \right) \\ (K^{\nu+1}(\mathbf{x}))_{ij} &= \alpha_{i}^{\nu+1}(\mathbf{x})^{t} \left(K_{i}^{\nu}(\mathbf{x})_{i} \right) \\ (K^{\nu+1}(\mathbf{x}))_{ij} &= \alpha_{i}^{\nu+1}(\mathbf{x})^{t} \left(K_{i}^{\nu}(\mathbf{x})_{i} \right) \\ \end{array} \right. \\ & \text{with vectors of optimal weights } \alpha_{i}^{\nu+1}(\mathbf{x}) &= \left(K_{i}^{\nu}(\mathbf{x})_{i} \right)^{-1} \left(k^{\nu}(\mathbf{x})_{i} \right) \\ \end{array} \right. \\ & \left(k^{\nu}(\mathbf{x})_{i} \right)^{-1} \left(k^{\nu}(\mathbf{x})_{i} \right) \\ & \left(k^{\nu}(\mathbf{x})_{i} \right)^{-1} \left(k^{\nu}(\mathbf{x})_{i} \right) \\ \end{array} \right. \\ & \left(k^{\nu}(\mathbf{x})_{i} \right)^{-1} \left(k^{\nu}(\mathbf{x})_{i} \right) \\ & \left(k^{\nu}(\mathbf{x})_{i} \right)^{-1} \left(k^{\nu}(\mathbf{x})_{i} \right)^{-1} \left(k^{\nu}(\mathbf{x})_{i} \right) \\ & \left(k^{\nu}(\mathbf{x})_{i} \right)^{-1} \left(k^{\nu}(\mathbf{x}$$

	Nested Kriging Models		
	0.		

Algorithm 1: Iterative kriging algorithm

inputs : M_1 , vector of length n_1 (sub-models evaluated at x) k_1 , vector of length n_1 (covariance between Y(x) and sub-models at x) K_1 , matrix of size $n_1 \times n_1$ (covariance between sub-models at x) I, a list describing the tree structure outputs: $M_{\nu max}$, $K_{\nu max}$ for $\nu = 2, \ldots, \nu_{max}$ do for $i = 1, ..., n_{i'}$ do $M \leftarrow \text{subvector of } M_{\nu-1} \text{ on } I_i^{\nu}$ $K \leftarrow \text{submatrix of } K_{\nu-1} \text{ on } I_i^{\nu}$ if $\nu = 2$ then $k \leftarrow k_1$ else $k \leftarrow \text{Diag}(K)$ $\alpha_i \leftarrow K^{-1}k$ $M_{\nu}[i] \leftarrow (\alpha_i)^t M$ $K_{ij}[i, i] \leftarrow (\alpha_i)^t k$ for j = 1, ..., i - 1 do $\begin{cases} K \leftarrow \text{submatrix of } K_{\nu-1} \text{ on } I_i^{\nu} \times I_j^{\nu} \\ K_{\nu}[i, j] \leftarrow (\alpha_i)^t K \alpha_j \\ K_{\nu}[j, i] \leftarrow K_{\nu}[i, j] \end{cases}$

Under some conditions : Algorithm complexity $O(n_p n^2)$. Storage footprint $O(n_1^2)$. *n* number of observations, n_p number of prediction points, n_1 number of submodels.

	Methods consistency	

Methods consistency

	Methods consistency	

Deisenroth and Ng 2015, Cao and Fleet 2014 and Van Stein et al 2015 propose aggregations of the form

$$M_{1\oplus\ldots\oplus p}(x) = \sum_{k=1}^{p} \alpha_k(x) M_k(x),$$

where $\alpha_k(x)$ increases with $1/v_k(x)$

 \implies The aggregation cost is negligible!

 \implies However, we show the following negative result

Proposition

Let the observation domain \mathcal{X} be fixed and bounded, let $x_0 \in \mathcal{X}$ be fixed and let $N, p \to \infty$. For a standard class of covariance functions, with the aggregation methods above, there exists a dense triangular array of observation points so that

$$\liminf_{N,p\to\infty}\mathbb{E}\left(\left\{Y(x_0)-M_{1\oplus\ldots\oplus p}(x_0)\right\}^2\right)>0$$

 \implies On the contrary, our proposed aggregation method yields a consistent predictor. (Note that many simple predictors are consistent!)

Parameter estimation

Parametric covariance model

Set of covariance functions

$$\{\sigma^2 k_\theta, \sigma^2 \ge 0, \theta \in \Theta\}$$

with $\Theta \subset \mathbb{R}^m$ Yields predictors and predictive variances

 $m_{1\oplus\ldots\oplus p,\theta}(x)$

 and

 $v_{1\oplus\ldots\oplus p,\sigma^2,\theta}(x)$

 $\mathsf{Goal}: \hat{\theta} \mathsf{ and } \hat{\sigma}^2$

Stochastic gradient for $\hat{\theta}$

Let $M_{1\oplus...\oplus p,\theta,-i}(x_i)$ be the Leave One Out prediction of y_i based on the n-1 remaining points

We want to use the Leave One Out estimator

$$\hat{\theta} \in \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \left\{ M_{1 \oplus \ldots \oplus p, \theta, -i}(x_i) - y_i \right\}^2$$

Computing q Leave One Out errors costs $O(qn^2)$ flops \Longrightarrow stochastic gradient :

$$\theta_{k+1} = \theta_k - a_k h \left\{ \frac{1}{\epsilon_k} \left(\frac{1}{q} \sum_{i \in I} \left(M_{1 \oplus \dots \oplus p, \theta + \epsilon_k h, -i}(x_i) - y_i \right)^2 - \frac{1}{q} \sum_{i \in I} \left(M_{1 \oplus \dots \oplus p, \theta - \epsilon_k h, -i}(x_i) - y_i \right)^2 \right) \right\}$$

where I is a random sample of size q and h is a random direction

 \implies Stochastic gradient is not worth it for the exact Gaussian process prediction $(O(n^3) \text{ cost for } q \text{ error computations})$ but is useful with our aggregation method

Comments on stochastic gradient

- A few hours with n = 10,000 and d = 10 for one descent (q = 100, 500 iterations)
- Convergence guaranteed theoretically (and verified numerically) for some step size sequences
- Some other sequences with less theoretical guarantees can work well in practice
- With *n* large, the impact of the starting point could be limited

Estimation of σ^2

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \frac{\left(y_i - m_{1 \oplus \ldots \oplus p, -i, \hat{\theta}}(x_i)\right)^2}{v_{1 \oplus \ldots \oplus p, -i, 1, \hat{\theta}}(x_i),}$$

which is equivalent to

$$\frac{1}{n}\sum_{i=1}^{n}\frac{\left(y_{i}-m_{1\oplus\ldots\oplus p,-i,\hat{\theta}}(x_{i})\right)^{2}}{v_{1\oplus\ldots\oplus p,-i,\hat{\sigma}^{2},\hat{\theta}}(x_{i})}=1.$$

		Application to a case study

Application to a case study

		Application to a case study

The case study

- Data provided by EDF (Geraud Blatman)
- 10,000 input-outputs $(x_i, f(x_i))$, with $d = dim(x_i) = 6$ and

$$f(x_i) = \log\left[\sum_{j=1}^m (F(x_i, c_j) - m_j)^2\right]$$

with

- F : code
- *x_i* : code parameter
- *m_i* experimental value

		Application to a case study

Settings of the case study

- n = 9000 data points in the learning base
- $n_t = 1000$ data points in the test base
- One aggregation by our method or the "sum-based" aggregation methods
- p = 20 or p = 90 aggregated subsamples
- Subsamples chosen with K-means or randomly
- Covariance functions : exponential, Matérn 3/2, Matérn 5/2. Ordinary Kriging
- Covariance parameters chosen by our proposed stochastic gradient method or by minimizing the sum of the likelihoods over the subsamples

		Application to a case study

Prediction criteria

MSE (should be minimal)

$$MSE = \frac{1}{n_t} \sum_{i=1}^{n_t} (m_{1 \oplus \ldots \oplus p, \hat{\theta}}(x_{t,i}) - f(x_{t,i}))^2,$$

MNSE (should be close to 1)

$$MSNE = \frac{1}{n_t} \sum_{i=1}^{n_t} \frac{(m_{1 \oplus ... \oplus p, \hat{\theta}}(x_{t,i}) - f(x_{t,i}))^2}{v_{1 \oplus ... \oplus p, \hat{\sigma}^2, \hat{\theta}}(x_{t,i})},$$

CIR (should be close to 0.9)

$$CIR = \frac{1}{n_t} \sum_{i=1}^{n_t} \mathbf{1} \left\{ |m_{1 \oplus \ldots \oplus p, \hat{\theta}}(x_{t,i}) - f(x_{t,i})| \leq 1.645 \sqrt{v_{1 \oplus \ldots \oplus p, \hat{\sigma}^2, \hat{\theta}}(x_{t,i})} \right\},$$

MNLP (should be minimal)

$$=\frac{1}{n_t}\sum_{i=1}^{n_t}\left(\frac{1}{2}\log(2\pi \mathsf{v}_{1\oplus\ldots\oplus \mathsf{p},\hat{\sigma}^2,\hat{\theta}}(\mathsf{x}_{t,i}))+\frac{(m_{1\oplus\ldots\oplus \mathsf{p},\hat{\theta}}(\mathsf{x}_{t,i})-f(\mathsf{x}_{t,i}))^2}{2\mathsf{v}_{1\oplus\ldots\oplus \mathsf{p},\hat{\sigma}^2,\hat{\theta}}(\mathsf{x}_{t,i})}\right),$$

OQUAIDO meeting - May 2016

		Application to a case study

Prediction results (1/3)

	SPV	PoE	gPoE1	gPoE2	BCM	rBCM	Opt
MSE (log lik)	0.0068	0.00455	0.00456	0.00455	0.00467	0.00456	0.00459
MNSE (log lik)	343	382	1780	19.1	384	1780	372
CIR (log lik)	0.482	0.224	0.177	0.636	0.193	0.197	0.36
MNLP (log lik)	167	186	884	6.22	187	884	181
MSE (loo)	0.00394	0.00741	0.00276	0.00741	0.0471	0.00832	0.00283
MNSE (loo)	0.602	1.26	2.38	0.0632	7.09	4.88	0.687
CIR (loo)	0.939	0.894	0.851	1.00	0.224	0.546	0.936
MNLP (loo)	-1.38	-1.31	-1.31	-0.409	1.61	-0.0511	-1.53

TABLE: p = 20 aggregated subsamples selected with the K means algorithm. Matérn 5/2 covariance function.

		Application to a case study

Prediction results (2/3)

	SPV	PoE	gPoE1	gPoE2	BCM	rBCM	Opt
MSE (log lik)	0.00815	0.0105	0.00561	0.0105	0.00811	0.00487	0.00567
MNSE (log lik)	139	339	802	3.77	259	723	206
CIR (log lik)	0.509	0.031	0.037	0.74	0.047	0.153	0.259
MNLP (log lik)	65.3	165	396	-0.242	125	357	98.9
MSE (loo)	0.00695	0.0448	0.00681	0.0448	0.0648	0.0083	0.00452
MNSE (loo)	0.614	6.92	4.14	0.0769	9.78	4.57	0.937
CIR (loo)	0.951	0.262	0.703	1.00	0.106	0.623	0.922
MNLP (loo)	-1.05	1.63	-0.299	0.461	3.07	-0.0764	-1.3

TABLE: p=90 aggregated subsamples selected with the K means algorithm. Matérn 5/2 covariance function.

		Application to a case study

Prediction results (3/3)

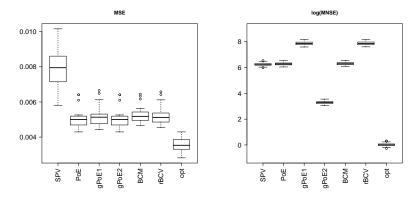


FIGURE: Box plot of 20 values of MSE and log(MNSE) where 20 learning and test sets are randomly generated. p = 20 subsamples obtained from the K means algorithm; Matérn 5/2 covariance function. Covariance parameters estimated by log lik for SPV, PoE, gPoE1, gPoE2, BCM and rBCM and by LOO for our aggregation procedure.

		Application to a case study

Thank you for your attention !