
Context and notation Short literature review Nested Kriging Models Methods consistency Parameter estimation Application to a case study

Nested Kriging models for large data-sets

François Bachoc, Nicolas Durrande, Didier Rullière

Based on joint work with Clément Chevalier

Mines Saint-Etienne – Chaire OQUAIDO meeting – May 2016

OQUAIDO meeting – May 2016 Nested Kriging Models 1 / 41



Context and notation Short literature review Nested Kriging Models Methods consistency Parameter estimation Application to a case study

outline :
1. Context and notation
2. Litterature review
3. Nested Kriging models
4. Methods consistency
5. Parameter estimation
6. Application to a case study

OQUAIDO meeting – May 2016 Nested Kriging Models 2 / 41



Context and notation Short literature review Nested Kriging Models Methods consistency Parameter estimation Application to a case study

Context and notation
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The conditional distribution of GP (or the BLUE of a second order process) writes

m(x) = E [Y (x)|Y (X)=F ] = k(x , X)k(X , X)−1F

c(x , x ′) = Cov
[

Y (x), Y (x ′)|Y (X)=F
]

= k(x , x ′)− k(x , X)k(X , X)−1k(X , x ′)

It can be represented as a mean function with confidence intervals.
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If we denote by n the number of observation points, the complexity of building such
models is

O(n2) in space (storing k(X ,X))
O(n3) in time (inverting k(X ,X)−1)

Furthermore, hyperparameter estimation requires to do this many times...

In practice,
space complexity is often more limiting than time complexity
the maximum number of observations that can be handled lies in the range
[1000, 10000].
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Various methods have been introduced to deal with a large number of observations :
methods based on inducing points (sparse GPs)
methods based on aggregating sub-models
low rank approximations
kernels with compact support
random kitchen sink
...

See Rasmussen and Williams, GPML, Chap. 8.
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Short literature review
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Inducing points (Sparse GPs)

Sparse GPs are based on an approximation of the covariance structure of
(Y (X),Y (x)) that relies on some inducing variables U.

The general principle of is to learn U from Y (X) and then to predict Y (x) from U.

Example :
A naive approach is to consider U as a subset of the observations : U = Y (XSoD) :
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Inducing points (Sparse GPs)

First, let’s assume that the location of the inducing points is known. In order to create
a Sparse GP model, one need to specify :

the covariance between U and Y (X)
the covariance between U and Y (x)

Various methods have been proposed :
Subset of Regressors minimize the MSE on all dataset → Linear regression
Deterministic training conditional Learning the u with linear regression,
prediction with Kriging. → Same mean as SoR, more realistic variances.
Fully Independent Training Conditional (FITC) same as DTC but with non
homogeneous noise variance.

Ref : Quiñonero-Candela and Rasmussen, JLMR 2005
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Inducing points (Sparse GPs)

Let n be the number of datapoints and m be the number of inducing points. The
complexity is :

Method Storage Computation
full GPR O(n2) O(n3)
SoD O(m2) O(m3)
SoR O(mn) O(m2n)
DTC O(mn) O(m2n)
FITC O(mn) O(m2n)

Ref : GPML, chap. 8
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Inducing points (Sparse GPs)

The remaining questions is : What should be the location of the inducing ?

In all the methods above, the inducing points can be chosen :

Among the set of observation points
randomly
clustering
greedy methods
as the test points

As new points
maximizing the likelihood
greedy methods
variational inference (Titsias AISTATS 2009, Hensman CUAI 2013)

To put it in a nutshell, these methods are based on the fact that lots of data doesn’t
mean lots of information.
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merging sub-models

Another approach is to make many sub-models based on subset of data, and then to
find a way to merge these models together
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if the number of points per sub-model is fixed to c, there are p = n/c sub-models so
the sub-models storage footprint is O(pc2) = O(nc). Similarly, the complexity is
O(nc2). Note that this is just for the sub-models and not the aggregation procedure.
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merging sub-models
Let fMi (x) be the predictive density of model i at x and fM(x) denote the aggregated
prediction :
Various methods have been proposed in the litterature :

Product of Experts (PoE)

fM(x) ∝
∏

fMI (x)

Generalised PoE
fM(x) ∝

∏
f βi
MI

(x)

Bayesian Commitee Machine (BCM)

fM(x) ∝
∏

fMI (x)

f (N−1)
Y (x)

robust BCM

fM(x) ∝

∏
f βi
MI

(x)

f
(
∑

βi−1)
Y (x)

Ref : Deisenroth and Wei Ng, ICML proceedings 2015
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Nested Kriging Models
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Framework - Sub-models

Inputs :
One prediction point : x ∈ D.
Initial random field : Y(x) ∈ R.
Sub-models vector : M(x) = (M1(x), . . . ,Mp(x)) ∈ Rp .
Sub-models are typically functions of a random vector of observations Y (X).

Known covariances :
we assume that (Y (x),M(x)) is centred with (1 + p)× (1 + p) covariance matrix :

Cov [(Y (x),M(x))] =
(

k(x , x) kM(x)t

kM(x) KM(x)

)
(1)

kM(x) is a p × 1 vector with entries kM(x)i = Cov [Y (x),Mi (x)],
KM(x) is a p × p matrix with entries (KM(x))i,j = Cov [Mi (x),Mj (x)].

In particular :
We assume the existence of the first two moments of (Y (x),M1(x), . . . ,Mp(x))
No other assumption on the joint distribution of (Y (x),M1(x), . . . ,Mp(x))
M(x) are covariates that are not necessarily a linear combinations of Y (X)
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Framework - Case of Kriging submodels
Let X1, . . . , Xp be matrices corresponding to subsets of points of X .
Define p associated Kriging sub-models (or experts) :
Mi(x) = E [Y (x)|Y (Xi )] = k(x ,Xi )k(Xi ,Xi )−1Y (Xi )(

kM(x)
)

i
= Cov [Y (x),Mi (x)] = k(x ,Xi )k(Xi ,Xi )−1k(Xi , x)(

KM(x)
)

i,j
= Cov [Mi (x),Mj (x)] = k(x ,Xi )k(Xi ,Xi )−1k(Xi ,Xj )k(Xj ,Xj )−1k(Xj , x).
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Main questions

Classical kriging outputs (Gaussian case) :
pointwise :

Kriging mean E [Y (x)|Y (X)]
Kriging variance V [Y (x)|Y (X)]

cross-points :
Kriging covariances Cov [Y (x),Y (x ′)|Y (X)]
Conditional sample paths

Corresponding questions when aggregating models :
pointwise :

Aggregation M1⊕...⊕p(x) of M1(x), . . . ,Mp(x), in order to estimate Y (x) ?
Variance v1⊕...⊕p(x) of the error M1⊕...⊕p(x)− Y (x) ?

cross-points :
Covariances between M1⊕...⊕p(x), M1⊕...⊕p(x ′) ?
Conditional sample paths (Gaussian case) ?
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Proposed pointwise aggregation
Definition (sub-models aggregation)
For a given point x ∈ D, we define the aggregation of the sub-models (or mixture of
experts) by

M1⊕...⊕p(x) = kM(x)tKM(x)−1M(x). (2)

Some properties for pointwise estimation
Optimal : M1⊕...⊕p(x) is the BLUE of Y (x) that writes

∑
i αi (x)Mi (x).

Square error :
v1⊕...⊕p(x) = E

[
(Y (x)−M1⊕...⊕p(x))2

]
= k(x , x)− kM(x)tKM(x)−1kM(x)

Conditional distribution : If (Y (x),M(x)) is a Gaussian random vector, then the
conditional distribution of Y (x) given M(x) is normal with moments

E [Y (x)|M1(x), . . . ,Mp(x)] = M1⊕...⊕p(x)
V [Y (x)|M1(x), . . . ,Mp(x)] = v1⊕...⊕p(x).

Full model recovery : if M(x) writes M(x) = Λ(x)Y (X), and if Λ(x) is an
invertible matrix, then M1⊕...⊕p(x) = k(x ,X)k(X ,X)−1Y (X)
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Example 1 - linear regressions
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Figure: Example 1 : aggregation of two linear regression models. The left panel shows the
sub-models and the right one the merged one in blue as well as the full model in red lines.
Exhibited confidence bands corresponds to a difference to mean value of two standard deviation.
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Example 2 - kriging submodels
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Figure: Example 2 : aggregation of two Gaussian process regression models. The left panel shows
the sub-models and the right one the merged one in blue as well as the full model in red lines.
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Example 3 - fully informative submodels
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Figure: Example of merging sub-models without loss of information. The four submodels are
shown on the left panels. As it can be seen on the right panel, the merged model (blue lines and
shaded area) as well as the full model (red dashed lines) cannot be distinguished.
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Aggregated process

We now focus on the case where (Y ,M) is a centred Gaussian process with given
covariances

Cov
[

(Y (x),M(x)), (Y (x ′),M(x ′))
]

=
(

k(x , x ′) kM(x , x ′)t

kM(x ′, x) KM(x , x ′)

)
. (3)

Definition (aggregated process)
We define the process Y1⊕...⊕p as

Y1⊕...⊕p = M1⊕...⊕p + ε′1⊕...⊕p (4)

where ε′1⊕...⊕p is an independent replicate of Y −M1⊕...⊕p .
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Some properties for aggregated process
known distribution : Y1⊕...⊕p is centred with known covariances

k1⊕...⊕p(x , x ′) = k(x , x ′) + 2kM(x)tk−1M (x)k−1M (x , x ′)k−1M (x ′)kM(x ′)

− kM(x)tk−1M (x)kM(x ′, x)− kM(x ′)tk−1M (x ′)kM(x , x ′).
(5)

optimality : If M1⊕...⊕p(x) writes M1⊕...⊕p(x) = λ1⊕...⊕p(x)tY (X) and if
M1⊕...⊕p(X) = Y (X) then

M1⊕...⊕p(x) = E [Y1⊕...⊕p(x)|Y1⊕...⊕p(X)]
v1⊕...⊕p(x) = V [Y1⊕...⊕p(x)|Y1⊕...⊕p(X)] .

full model recovery : If M(x) = Λ(x)Y (X) where Λ(x) is an invertible matrix,
then

Y1⊕...⊕p
law= Y and thus Y1⊕...⊕p |Y1⊕...⊕p(X) law= Y |Y (X). (6)
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Figure: Interpretation of the results from Example 2 as a posterior Gaussian process distribution.
The left panel shows the prior Y1⊕...⊕p and the right one the conditional distribution given
Y1⊕...⊕p(X) = Y (X).
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Iterative model

From

{ (Mν (x))i = Mνi (x)
(kν (x))i = Cov

[
Y (x),Mνi (x)

]
(Kν (x))ij = Cov

[
Mνi (x),Mνj (x)

] get


(Mν+1(x))i = αν+1

i (x)t
(

Mν (x)[Iν+1
i ]

)
(kν+1(x))i = αν+1

i (x)t
(

kν (x)[Iν+1
i ]

)
(Kν+1(x))ij = αν+1

i (x)t

(
Kν

[Iν+1
i ,Iν+1

j ]

)
αν+1

j (x)

with vectors of optimal weights αν+1
i (x) =

(
Kν

[Iν+1
i ,Iν+1

i ]

)−1 (
kν(x)[Iν+1

i ]

)
.
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Algorithm 1: Iterative kriging algorithm
inputs : M1, vector of length n1 (sub-models evaluated at x)

k1, vector of length n1 (covariance between Y (x) and sub-models at x)
K1, matrix of size n1 × n1 (covariance between sub-models at x)
I, a list describing the tree structure

outputs: Mνmax , Kνmax

for ν = 2, . . . , νmax do
for i = 1, . . . , nν do

M ← subvector of Mν−1 on Iνi
K ← submatrix of Kν−1 on Iνi
if ν = 2 then k ← k1 else k ← Diag(K)
αi ← K−1k
Mν [i]← (αi )t M
Kν [i, i]← (αi )t k
for j = 1, . . . , i − 1 do

K ← submatrix of Kν−1 on Iνi × Iνj
Kν [i, j]← (αi )t Kαj
Kν [j, i]← Kν [i, j]

Under some conditions : Algorithm complexity O(npn2). Storage footprint O(n2
1).

n number of observations, np number of prediction points, n1 number of submodels.
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Methods consistency
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Deisenroth and Ng 2015, Cao and Fleet 2014 and Van Stein et al 2015 propose
aggregations of the form

M1⊕...⊕p(x) =
p∑

k=1

αk (x)Mk (x),

where αk (x) increases with 1/vk (x)
=⇒ The aggregation cost is negligible !
=⇒ However, we show the following negative result

Proposition
Let the observation domain X be fixed and bounded, let x0 ∈ X be fixed and let
N, p →∞. For a standard class of covariance functions, with the aggregation methods
above, there exists a dense triangular array of observation points so that

lim inf
N,p→∞

E
(
{Y (x0)−M1⊕...⊕p(x0)}2

)
> 0

=⇒ On the contrary, our proposed aggregation method yields a consistent predictor.
(Note that many simple predictors are consistent !)
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Parameter estimation
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Parametric covariance model

Set of covariance functions
{σ2kθ, σ2 ≥ 0, θ ∈ Θ}

with Θ ⊂ Rm

Yields predictors and predictive variances

m1⊕...⊕p,θ(x)

and
v1⊕...⊕p,σ2,θ(x)

Goal : θ̂ and σ̂2

OQUAIDO meeting – May 2016 Nested Kriging Models 30 / 41



Context and notation Short literature review Nested Kriging Models Methods consistency Parameter estimation Application to a case study

Stochastic gradient for θ̂
Let M1⊕...⊕p,θ,−i (xi ) be the Leave One Out prediction of yi based on the n − 1
remaining points

We want to use the Leave One Out estimator

θ̂ ∈ argmin
θ∈Θ

1
n

n∑
i=1

{
M1⊕...⊕p,θ,−i (xi )− yi

}2
Computing q Leave One Out errors costs O(qn2) flops =⇒ stochastic gradient :

θk+1 = θk−

akh

{
1
εk

(
1
q

∑
i∈I

(
M1⊕...⊕p,θ+εk h,−i (xi )− yi

)2
−

1
q

∑
i∈I

(
M1⊕...⊕p,θ−εk h,−i (xi )− yi

)2)}
where I is a random sample of size q and h is a random direction

=⇒ Stochastic gradient is not worth it for the exact Gaussian process prediction
(O(n3) cost for q error computations) but is useful with our aggregation method
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Comments on stochastic gradient

A few hours with n = 10, 000 and d = 10 for one descent (q = 100, 500
iterations)
Convergence guaranteed theoretically (and verified numerically) for some step size
sequences
Some other sequences with less theoretical guarantees can work well in practice
With n large, the impact of the starting point could be limited
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Estimation of σ2

σ̂2 =
1
n

n∑
i=1

(
yi −m1⊕...⊕p,−i,θ̂(xi )

)2
v1⊕...⊕p,−i,1,θ̂(xi ),

which is equivalent to

1
n

n∑
i=1

(
yi −m1⊕...⊕p,−i,θ̂(xi )

)2
v1⊕...⊕p,−i,σ̂2,θ̂(xi )

= 1.
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Application to a case study
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The case study

Data provided by EDF (Geraud Blatman)
10, 000 input-outputs (xi , f (xi )), with d = dim(xi ) = 6 and

f (xi ) = log

[
m∑

j=1

(F (xi , cj )−mj )2
]

with
cj : experimental condition
F : code
xi : code parameter
mj experimental value
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Settings of the case study

n = 9000 data points in the learning base
nt = 1000 data points in the test base
One aggregation by our method or the “sum-based” aggregation methods
p = 20 or p = 90 aggregated subsamples
Subsamples chosen with K-means or randomly
Covariance functions : exponential, Matérn 3/2, Matérn 5/2. Ordinary Kriging
Covariance parameters chosen by our proposed stochastic gradient method or by
minimizing the sum of the likelihoods over the subsamples
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Prediction criteria
MSE (should be minimal)

MSE =
1
nt

nt∑
i=1

(m1⊕...⊕p,θ̂(xt,i )− f (xt,i ))2,

MNSE (should be close to 1)

MSNE =
1
nt

nt∑
i=1

(m1⊕...⊕p,θ̂(xt,i )− f (xt,i ))2

v1⊕...⊕p,σ̂2,θ̂(xt,i )
,

CIR (should be close to 0.9)

CIR =
1
nt

nt∑
i=1

1
{
|m1⊕...⊕p,θ̂(xt,i )− f (xt,i )| ≤ 1.645

√
v1⊕...⊕p,σ̂2,θ̂(xt,i )

}
,

MNLP (should be minimal)

=
1
nt

nt∑
i=1

(
1
2
log(2πv1⊕...⊕p,σ̂2,θ̂(xt,i )) +

(m1⊕...⊕p,θ̂(xt,i )− f (xt,i ))2

2v1⊕...⊕p,σ̂2,θ̂(xt,i )

)
,
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Prediction results (1/3)

SPV PoE gPoE1 gPoE2 BCM rBCM Opt
MSE (log lik) 0.0068 0.00455 0.00456 0.00455 0.00467 0.00456 0.00459
MNSE (log lik) 343 382 1780 19.1 384 1780 372
CIR (log lik) 0.482 0.224 0.177 0.636 0.193 0.197 0.36

MNLP (log lik) 167 186 884 6.22 187 884 181
MSE (loo) 0.00394 0.00741 0.00276 0.00741 0.0471 0.00832 0.00283
MNSE (loo) 0.602 1.26 2.38 0.0632 7.09 4.88 0.687
CIR (loo) 0.939 0.894 0.851 1.00 0.224 0.546 0.936

MNLP (loo) −1.38 −1.31 −1.31 −0.409 1.61 −0.0511 −1.53

Table: p = 20 aggregated subsamples selected with the K means algorithm. Matérn 5/2
covariance function.
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Prediction results (2/3)

SPV PoE gPoE1 gPoE2 BCM rBCM Opt
MSE (log lik) 0.00815 0.0105 0.00561 0.0105 0.00811 0.00487 0.00567
MNSE (log lik) 139 339 802 3.77 259 723 206
CIR (log lik) 0.509 0.031 0.037 0.74 0.047 0.153 0.259

MNLP (log lik) 65.3 165 396 −0.242 125 357 98.9
MSE (loo) 0.00695 0.0448 0.00681 0.0448 0.0648 0.0083 0.00452
MNSE (loo) 0.614 6.92 4.14 0.0769 9.78 4.57 0.937
CIR (loo) 0.951 0.262 0.703 1.00 0.106 0.623 0.922

MNLP (loo) −1.05 1.63 −0.299 0.461 3.07 −0.0764 −1.3

Table: p = 90 aggregated subsamples selected with the K means algorithm. Matérn 5/2
covariance function.
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Prediction results (3/3)
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Figure: Box plot of 20 values of MSE and log(MNSE) where 20 learning and test sets are
randomly generated. p = 20 subsamples obtained from the K means algorithm ; Matérn 5/2
covariance function. Covariance parameters estimated by log lik for SPV, PoE, gPoE1, gPoE2,
BCM and rBCM and by LOO for our aggregation procedure.
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Thank you for your attention !
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