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Algebra






CHAPTER 1

Linking pairings and finite quadratic functions

1. e-symmetric bilinear pairings

Let S, T and U be three sets. A pairing between S and T with values in U
isamap p: S xT — U. The left and right adjoint map associated to p are
respectively the maps S — U7, s+ p(s,—) and T — U®, t — p(—,t). A
pairing p is left (resp. right) nondegenerate if the left (resp. right) adjoint
map is injective. A pairing is left (resp. right) nonsingular if its left (resp.
right) adjoint map is bijective. A pairing p: S x S — U is said symmetric
if p(z,y) = p(y,x) for all z,y € S. Assume that U is an abelian group.
The pairing p : S x S — U is said antisymmetric (resp. symplectic) if
p(x,y) = —p(y,z) for all x,y € S (resp. if p(z,z) = 0 for all x € S). Let
e € {£1}. A pairing is an e-symmetric pairing if it is either symmetric
(e = 1) or antisymmetric (¢ = —1).

LEMMA 1.1. A symplectic pairing p : S x S — U is antisymmetric.

PROOF. 0 = p(z +y,z +y) = p(z,z) + p(z,y) + p(y,z) + ply,y) =
p(z,y) + ply, ). u

Conversely if p : S xS — U is antisymmetric, then 2p(z,z) = 0 for all z € S.
In particular, if U has no 2-torsion, then p is symplectic.

Clearly a e-symmetric pairing is nondegenerate (resp. nonsingular) if and
only if one of its adjoint maps is injective (resp. bijective). If p is symmetric
then the left adjoint map coincides with the right adjoint map and we denote
it p: S — US. If p is antisymmetric then the left adjoint map, still denoted
D, is the opposite to the right adjoint map.

Let p: S x S — U be an e-pairing. The orthogonal V* of a subset V < S
is defined as the set

Vi={seS|p(s,v)=0foralveV}.

For any subset V, V. < (VH)L, If V. € W < S then W+ < VL. Two
subsets V, W of S are orthogonal if p(v,w) = 0 for all v € V and w € W.
Equivalently V < W+,

Suppose that S, T and U are abelian groups. A pairing p: S xT — U is
bilinear if p(s + §',t) = p(s,t) + p(s',t) and p(s,t +t') = p(s,t) + p(s,t’) for
all 5,8’ € S and t,t' € T. Tt follows that the left (resp. right) adjoint map is
a homomorphism S — Hom(7,U) (resp. T'— Hom(S,U)).

9



10 1. LINKING PAIRINGS AND FINITE QUADRATIC FUNCTIONS

Two bilinear pairings p: S xS — U and q: T x T — V are isomorphic if
there exists an isomorphism ¢ : S — T such that ¢(p(s),¢(s")) = p(s,s)
for all s,s" € S. We write: ¢*q = p.

If p: S xS — U is an e-symmetric bilinear pairing, then V= is a subgroup of
S for any subset V € S. It is also the orthogonal of the subgroup generated
by V. For any subgroups V, W of S,

(1.1) ViAawt = (v +w)t

Since S+ = Ker p, an e-symmetric bilinear pairing p : S x S — U is
nondegenerate if and only if S+ = 0. A subgroup V of S is said isotropic
if V. V1. A subgroup V of S is a Lagrangian if V = V1. Any isotropic
subgroup V induces a quotient e-symmetric bilinear pairing p : V+/V x
VYV - Ubyp(s+V,t +V) =p(s,t), se V*

LEMMA 1.2. Let V be a Lagrangian in S and let W be an isotropic subgroup
in S. The following statements are equivalent:

(1) W is a Lagrangian and V@ W = S;
2) S=VeWwW=VeWw.

PROOF. (1) = (2) is clear. Conversely, we want to show that W =
W+, Let x € W+, There is a unique decomposition = v + w with v € V
and w e W. Since z € W+, for any y € W,

0 =p(x,y) = p(v+w,y) = p(v,y) + p(w,y) = p(v,y).
Thus v € W+. But v wasin Vsove VAWt =0 Hencez =0+w =
w e W. [

The opposite of a bilinear pairing p : S x T' — U is the bilinear pairing
—p: S x T — U defined by (—p)(s,t) = —p(s,t).

Let p: Sx S — U and p' : §' x S — U be two bilinear pairings, both
symmetric (resp. both antisymmetric). The orthogonal sum of p and p’ is the
symmetric (resp. antisymmetric) bilinear pairing p@p’ : (S®S’) x (S®S’) —
U defined by
pop) @+ y+y) =pxy) +0'(.y), zyes 2’y es.

Clearly S = S@®0 and S’ = 0@ S are mutually orthogonal in S @ 5, i.e.
S+ = 5" and St = S. If the pairings on S and S’ are implicitly understood,
then we denote the orthogonal sum of the pairings (S,p) and (S’,p’) by
S@oS.

Conversely if p” : §” x §” — U is an e-symmetric pairing such that there
exist subgroups S and S’ such that S+ = S’ and S't = S, then p” splits as
an orthogonal sum

P’ = Dplsxs Oplsxs-

LEMMA 1.3. Let p: S xS — U be a nonsingular e-symmetric pairing. Let
V' be a subgroup of S. The following statements are equivalent:

(1) plyxv : V xV — U is nonsingular;
(2) S=VaVtand plyiyyr : VI x VE— U is nonsingular.
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A subgroup V satisfying one of the properties stated in Lemma 1.3 is an
orthogonal summand of S.

PROOF. See [97, Lemma (1)]. [ |

Let p: SxS - Uand q: T xT — V be two bilinear pairings. The
respective adjoint maps p : S — Hom(S,U) and ¢ : T — Hom(T, V') induce
a homomorphism

(12) ST 2% Hom(S,U) ® Hom(T, V) —&~ Hom(S @ T, U @ V).

DEFINITION 1.1. The tensor product of p and ¢ is the bilinear pairing
PR®q: (SRT) x (S®T) -URV

whose left adjoint map is the homomorphism above.

Alternatively, the tensor product of p and ¢ can be regarded as the bilinear
pairing induced by the multilinear map px ¢: (S xT) x (SxT) ->U®V
defined by (p x q)(s,t;8',t') = p(s,s') ®q(t,t'), s,s" € S, t,t' e T.

If p and ¢ are both symmetric or both antisymmetric, then p® g is symmet-
ric. If p is symmetric (resp. antisymmetric) and ¢ is antisymmetric (resp.
symmetric), then p ® ¢ is antisymmetric.

The tensor product of two bilinear pairings take value in the tensor product
U ® V of the groups where the respective pairings take their values. Here
are two examples.

EXAMPLE 1.1. The tensor product of an antisymmetric bilinear pairing p :
S xS — 7Z on a free abelian group S and a symmetric bilinear pairing
q:T xT — Q/Z on a torsion group T is an antisymmetric bilinear pairing
PRq: (SRT) x (S®T) — Q/Z. The tensor product is induced by pointwise
product Z x Q/Z — Q/Z:

P®q)(zy,2' ®Y) =plx,2') - q(y,y).

EXAMPLE 1.2. Let 7, s be positive integers and let ¢ be their greatest common
divisor. There is a canonical isomorphism

Z)rZ QL)L ~ ZJtZ, (1 mod r, 1 mod s) — 1 mod ¢.

The tensor product of two symmetric bilinear pairings p : S x S — Z/rZ
and g : T x T — 7Z/sZ on torsion groups S and T respectively is a symmetric
bilinear pairing p® ¢ : (S®T) x (S®T) — Z/tZ. In the particular case
r = s, the tensor product is induced by pointwise product.

REMARK 1.1. It is sometimes convenient to simplify the notation and write
S for an e-symmetric bilinear pairing A : S x § — U when the underlying
pairing A is implicitly understood. In this case, we write —S for the opposite
pairing, S @ T for orthogonal sum, etc.
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2. e-linking pairings on finite abelian groups
Let G be a finite abelian group. The dual group G* of G is Hom(G,Q/Z).
Let € € {+1}.

DEFINITION 1.2. An e-linking pairing is an e-symmetric bilinear pairing on
a finite abelian group. A finite abelian together with a e-linking pairing on
it will be called a e-linking group.

REMARK 1.2. The ¢ shall be dropped when the context is clear.
The definition forces the value group to be a finite subgroup of Q/Z. So
a linking (resp. finite symplectic) pairing can be defined as a symmetric

(resp. symplectic) bilinear pairing A : G x G — Q/Z. Alternatively, A can
be defined via its left adjoint map as a homomorphism A : G — G*.

It is sometimes convenient to take a smaller subgroup of values rather than
the whole group Q/Z. For any integer n, the cyclic group Z/nZ canonically
embeds in Q/Z by the map

1
Jn + Z/nZ — Q/Z, (1 mod n) — — mod 1.
n

For a finite group G, let eq € N* be the period of G, that is the smallest
positive integer n such that n x = 0 for all z € G.

LEMMA 2.1. Any e-linking pairing A : G x G — Q/Z factors through an

e-linking pairing N : G x G — Z/eqZ:

o
Z)ecZ

A

GxG Q/Z

LEMMA 2.2. An e-linking pairing is nonsingular if and only if it is nonde-
generate.

ProOF. It suffices to see that nondegenerate implies nonsingular. The
adjoint map G — G* is injective. Since G is finite, the dual group G* is
also finite with |G*| = |G|. Hence the adjoint map is bijective. [ |

LEMMA 2.3. Let A : Gx G — Q/Z be a nondegenerate e-linking pairing. For
any subgroup H of G,

(2.1) |G| =|H|-|HY| and (HY)' = H.
PrRoOOF. There is a short exact sequence

A
0—mgt— g Mg g

where by definition A|g(h) = A(h, —) € H* for all h € H. Hence G/H' ~
H*. Therefore
|G| = [H|-|H|.
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This equality is true for any subgroup H of G. Applying this equality to the
subgroup H', we obtain |G| = |H*|-|(H)*|. It follows that |(H1)*| = |H]|.
Since H < (H')*, the equality follows. [ |

We define a tensor product for e-linking pairings. The general definition
1.22 does not apply here since Q/Z ® Q/Z = 0. However, since subgroups
of Q/Z distinct from Q/Z are all cyclic, note the following observation.

LEMMA 2.4. Let A, B subgroups of Q/Z both Sdistinct from Q/Z. The fol-
lowing assertions are equivalent:

(1) A® B = 0;

(2) AnB=0;
(3) ea and ep are coprime.

This leaves nontrivial cases of nonzero tensor products and suggests to resort
to the ideas of Lemma 2.1 and of Example 1.2.

Set G = Hom(G, Z/egZ). Let A: G — G and X : &' — G’ be two e-linking
pairings given by their left adjoint maps. They induce a homomorphism

(2.2) o: G0 LGt -2-aaa.
Observe that egger is the g.c.d. of eq and eq, so Z/egZ ® LleqZ =

Z/6G®G’Z'

DEFINITION 1.3. The tensor product A ® X' of two e-linking pairings A :
G x G —> Z/egZ and N : G' x G' — ZJecZ is the bilinear pairing defined
by

A®XN)(z,y) = 2(x)(y), 2,yeGRG"
Alternatively, A ® )\ is the linking pairing defined on G ® G’ defined by

(A ® )\/)(1' ®.%'/, y®y/) = )\(I’, y) ® A(Z’/, y/) € Z/6G®G’Z~

The tensor product is symmetric if both pairings are symmetric or both
pairings are antisymmetric. The tensor product is antisymmetric (resp.
symplectic) if one of the pairings is symmetric and the other one is antisym-
metric (symplectic).

The natural map GG’ — Cj@\G’, f®f — f(—)®f'(—) is an isomorphism.
As a consequence of this and functoriality, we record

LEMMA 2.5. If X and N are nondegenerate, then A @ X\ is nonsingular.

3. Decomposition of ¢-linking pairings

Let A : A x A — Q/Z be an e-linking pairing on a finite abelian group A.
We assume throughout this section that X\ is nondegenerate. Recall that this
is equivalent to A+ = 0.

LEMMA 3.1. For any subgroup B € A, |B| - |B*| = |A| and (B*)* = B.
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PROOF. By definition, B is the kernel of the surjective map
A — Hom(B,Q/Z), a— Aa)|p.

Thus |A/Bt| = |Hom(B,Q/Z)| = |B|, the first equality follows. Apply-
ing the first equality to B and B* respectively yields |B||B*| = |A| =
|BL||BY+|, so |B| = |BY*|. Since B < B**, the second equality follows.

|

LEMMA 3.2. There exists a canonical orthogonal splitting

(A7>\): @ (Ap’Ap)
p prime

where A, = {x € A | pNo = 0 for some N € N}. In particular, each
orthogonal summand A, is a p-group.

DEFINITION 1.4. Each linking pairing (Ap, A,) is the p-primary component
of (A, \).

Proor. Let A, denote the subgroup of all elements in A of order a
power of p. Clearly, A = @, primeAdp. We claim that A(A,, A;) = 0 for
any two distinct primes p,q. Let x € A, and y € A,. By definition, we
have 0 = A(p*z,y) = p* A(z,y) for some integer k. Similarly, we have
0 = M, q'y) = ¢ Ma,y). Thus A(z,y) is annihilated in Q/Z by both p*
and ¢! which are coprime. It follows that Az,y) = 0. | |

LEMMA 3.3. Let x € A and let B the subgroup generated by x. Let n be the
order of B. The following assertions are equivalent:

(1) Mx,z) has order n in Q/Z;
(2) ABxB is nonsingular;
(3) A= B® B! and gL, . is nonsingular.

PROOF. The equivalence (2) <= (3) follows from Lemma 1.3. Let us
prove (1) <= (2). Suppose that \(x,z) has order n. Let y = k = € B.
The equation 0 = A(z,y) = k A(x, z) implies that & is a multiple of n hence
y = 0. Thus A\|p«p is nondegenerate, hence nonsingular. Conversely, let m
be the order of A(z,x). Since nA(z,z) = A(nz,z) = 0, m divides n. Now
0 = Az,mx) so 0 = A(kxz,mz) = 0 for all k£ = 0. Thus mz € Ker . Since
A Bxp is nonsingular, mz = 0. This implies that n divides m. Therefore
m=n. |

COROLLARY 3.4. Let x € A. Suppose that X\ is antisymmetric. The following
assertions are equivalent:

(1) x generates a nontrivial orthogonal summand;
(2) x generates an orthogonal summand of order 2;
(3) Mx,z) has order 2 in Q/Z.

PROOF. (2) = (1) is clear and (2) <= (3) follows from Lemma 3.3.
Suppose (1) holds. By Lemma 3.3, = generates a nontrivial subgroup B of
the same order as the order of A(z,z) in Q/Z. Since 2\(x,x) = 0, B has
order 2. |
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3.1. Symmetric linking pairings. The paragraph is devoted to sym-
metric linking pairings.

PROPOSITION 3.5 (Symmetric linkings). Let (A, \) be a nondegenerate sym-
metric linking pairing on a finite p-group. There exists an orthogonal split-
ting (A, \) = Ok(Ag, \x) where each (Ag, \;) is a nondegenerate bilinear
pairing such that Ay is

(i) either a cyclic p-group,
(i) or a direct sum of two copies of a cyclic group of order 2™. In this

—-n
case, A\ 1is represented by a matriz of the form [ 29n 20 ] or
21—n 9—n
[ 9" 21—n ]
REMARK 1.3. If p is odd, only the case (i) of Prop. 3.5 may occur.

PROOF. The proof goes by induction on |A|. If |A| = p then A is cyclic
and the assertion holds. Let now p™ denote the period of A. We distinguish
two cases:

p odd: we claim that there exists z € A such that \(x,z) has order exactly
p" in Q/Z. Otherwise, the order of \(z, ) divides p"~! for all x; then the
order of 2 A(z,y) = Mz +y,z +y) — Mz,2) — A(y, y) also divides p"~1 (for
all z,y); thus p" 1A c AL, contradicting nondegeneracy. So pick up z € A
so that the order of \(x, ) is p™. The cyclic subgroup B generated by x has
order p". By Lemma 3.3, B is an orthogonal summand of A: A = B& B+,
We apply the induction hypothesis to B+ ¢ A.

p even: if an element x exists such that A\(z,z) has order 2", the argument
above applies. Consider the case when no such elements exists in A. Then
nondegeneracy of A ensures that there exist x,y € A, both of order 2", such
that A(z,y) has order exactly 2". So there exist even integers r and s such
that A(z,z) = 57 (mod 1) and A(y,y) = 5% (mod 1). Let B denote the
subgroup generated by = and y. Let a  + b y € B n B+. We have

b
0 = Aaz + by, x) = a(z,z) + bA(z,y) + g—: = ;LZ +5n mod 1.
It follows that ar + b = 0 mod 2". Similarly the equality A(az + by,y) = 0
leads to a+bs = 0 mod 2". We deduce that a = b = 0 mod 2". Therefore, B
is the direct sum of the cyclic groups generated by x and y and B n B+ = 0.

We conclude by again applying induction to B+.

The statement about the matrix representatives of Ay is a consequence of
Lemma 3.6 below. n

Denote by Syms(Z/2"Z) the algebra of two by two matrices with coefficients
in Z/2"7Z and by GL2(Z/2"Z) the group of two by two matrices with coef-
ficients in Z/2"Z that are invertible over Z/2"Z. For 1 < k < n, define an
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equivalence relation ~ in Sym,(Z/2"Z) by A ~ B if there exists C €
z/2%7 Z/2k7

GLy(7/2%7) such that 'CAC = M mod 2F.

LEMMA 3.6. Let n > 1. We have
2r wu 2 1 . 0 1
u 28 [zpn| 1 2 © 1 0

for any r,s,u € Z with u odd.

PRrROOF. Note that for all n > 1,

2r u 2r —u
(3.1) [ u  2s ] Z/;"Z [ —u  2s }
and

2r u 2s u
(32) [ u 28 ] Z/;nz { u 2r ]

We proceed inductively on n. For n = 1, the result is trivial.
For n = 2:

- If 2r £ 2s mod 4, then by (3.2), we may assume that 2r = 0 mod
4 and 2s = 2 mod 4. Then

0 u 0 u 10 u 01
uw 2 |zuaz|uw 242u | | uw 0 |zuz| 1 O

(the last relation is either an equality or follows from (3.1.)
- If 2r = 2s mod 4, then applying (3.1) if necessary, we have

7 u 2r 1] [2 1 0 1
w 2 |gaz| 1 25| |1 2| % |1 o]

Now the result follows by repeated applications of the lemma 3.7. |
|

LEMMA 3.7 (A version of Hensel’s lemma). Letn > 2 and A, B € Symy(Z/2"7Z)N

GL2(Z/2"Z). Suppose that A /«;C B for some 2 < k < n—1. Then
z/2+z

7/2k+17,

PRrOOF. There is M}, € GLo(Z/2%) such that ‘M, AM;, = B mod 2*. We
expect a solution My to the equation

(3.3) 'Mj 1AMy = B mod 2F+L,

We look for a solution of the form My,; = My + Xpy1 where Xi 1 is a
matrix with coefficients in Z/2"*1 such that X,,; = 0 mod 2. Plugging
this expression in (3.3) and expanding, we find that a necessary condition
is that

(3.4) ‘MpAXyi1 + ' Xp1 AMy, = B — "M, AM;, mod 2F+1.

This equation is of the form UX + Y(UX) = H, with U = 'M;A and
H = B — 'M,AM,. A formal solution is X = %UﬁlH. Note that U is
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invertible over Z/2*Z, hence over Z/2¥+*17Z. Further, H = B — 'MyAM}, is
0 mod 2* by hypothesis. Thus, X1 = %U*IH is a solution of (3.4) and
M1 = My, + Xj41 is a solution of (3.3). Since My is invertible mod 2%,
it is also invertible mod 2¢*!, which concludes the proof. [ ] |

The proof of Lemma 3.7 contains more than the statement of Proposition

3.5. Denote by > the same equivalence relation but defined over the 2-adic
2

integers Zo.

COROLLARY 3.8. Any symmetric matriz M with coefficients in Zs is equiv-
alent (for Z) to a block-diagonal matriz with each block of one of the three
2

[a] (aez2),[(1’ H[; f]

REMARK 1.4. Although Proposition 3.5 is fundamental and will be used sys-
tematically, in practice one needs to know how to deal with linking pairings
that are not canonically split.

following types:

ExaMPLE 1.3. Let p,q,r be three pairwise coprime integers. Consider the
cyclic linking pairing (qu) defined on Z/pq sending (1,1) to r/pg mod 1. By
Proposition 3.5, this linking pairing must be isomorphic to an orthogonal
sum of two cyclic pairings on Z/p and Z/q respectively. Let (o, 3) € Z? be a
Bezout pair for (p,q) so that Sp + ag = 1. There is an isomorphism

Z]p x Z]q — Z/pq, (u,v) — uaq + vBp mod pq
whose inverse is
Z/pq — Z/p x Z/q, x — (x mod p, y mod q).
Using the fact that ag + Bp = 1, we see that
(uaq + vBp)? = vaq + v2Bp mod pq.
It follows that

& ()= (F)e ()
Applying (3.5) to (57) for instance, we obtain
()=(F)e(F)-()=()

More generally, let pq,...,p, be pairwise coprime integers. For each 1 <
i < n,set M; = Hj#i p; and let p; be an integer such that p;M; = 1 mod
p;. The map

n n n
HZ/pz' - Z/sz', (Ut un) — Z w; M i
i=1 i=1 i=1

is an isomorphism whose inverse is

n n
Z/le - HZ/pZ> €= (1’ mod pi, ...,z mod pn)
i=1 i=1
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Using the fact that u;M; = 1 mod p;, we see that

n 2 n n
(Z UiMin) = Z u? M;p; mod Hpi-
i=1 i—1 i1

It follows that

55 ()~ ()

For instance, applying (3.6) to (%) (861 = 3 x 7 x 41) yields

(1) ~ () (7) (&)

DEFINITION 1.5. Let A : Ay x As — Q/Z be an e-linking pairing on a 2-group
Ay of period 2%. The summand evaluation map is the map e : Ay — Z/27
defined by e(x) = 1 if 2 generates an orthogonal summand of order 2* in A
and ex(x) = 0 otherwise.

LEMMA 3.9. The summand evaluation map is a homomorphism.

PROOF. Let [ : Ay x Ay — Z/2FZ be the bilinear pairing defined by

l(x,x)

o mod 1.

Mz, x) =
Then by Lemma 3.3, e¢(z) = I(z,x) mod 2. Hence € is a homomorphism.

COROLLARY 3.10. If X is antisymmetric, the summand evaluation map is
nontrivial only on groups of period 2.

Proor. Apply Cor. 3.4. [ |

The summand evaluation map extends to a map A x A — Z/27 for any
e-linking pairing.

LEMMA 3.11. The summand evaluation map is an invariant of isomorphism
classes of e-linking pairings.

The precise meaning of the Lemma is the following. If A : G x G — Q/Z and
N G'x G — Q/Z are two e-linking pairings related by an isomorphism
¢ : G — G’ such that X 0¢®2 = ), then the respective summand evaluation
maps are related by ey o ¢ = €.

PROOF. |

3.2. Antisymmetric linking pairings. This paragraph is devoted to
the decomposition of antisymmetric linking pairings. According to Lemma
1.1 and the remark thereafter, the only difference between symplectic and
antisymmetric linking pairings occurs on 2-groups. We begin with three
examples of antisymmetric linking pairings: the first one is symplectic, the
last two are antisymmetric nonsymplectic.
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EXAMPLE 1.4 (symplectic linking pairing). Let p be a prime number and &
a positive number. Let A and B be two copies of a cyclic group of order
p¥. Choose a generator x € A and a generator y € B. There is a uniquely
defined symplectic linking pairing H = H, ;, defined on A® B by

1
H(z,y) = & mod 1, H(z,z) = H(y,y) =0.
p
ExAMPLE 1.5. The assignment

1
(1 mod 2,1 mod 2) — B mod 1

determines an antisymmetric linking pairing Z/2Z x Z/27 — Q/Z. Tt is
both symmetric and antisymmetric, but not symplectic. We denote it by
G2 = (3)-

EXAMPLE 1.6 (a noncyclic antisymmetric nonsymplectic linking pairing).
Let k£ be a positive number. Let A and B be two copies of a cyclic group
of order 2¥. Choose a generator = € A and a generator y € B. There is a
uniquely defined antisymmetric linking pairing E}, defined on A @ B by

1 1
Ey(z,z) =0, Eg(x,y) = o mod 1, Fx(y,y) = 3 mod 1.

With respect to the system of generators (z,y) for A® B, E, is represented

: 0 —1/2k
by the matrix [ 12k 1/2 ] .

It turns out that any symplectic linking pairing occurs as a finite orthogonal
sum of pairings of the type of Example 1.4.

PROPOSITION 3.12 (Symplectic linking pairings). Let A be a nondegenerate
finite linking p-group. There exists an orthogonal splitting A = O, A where
each Ay is a an orthogonal sum of a finite number of copies of Hp .

ProOOF. We proceed by induction on the exponent p™ of A. Let x € A
have maximal order p”. Let G be the subgroup generated by z. Since A
is nondegenerate, there exists y € A such that A(z,y) = ]% mod 1. In
particular, y has also order p™. Since A is symplectic, the subgroup H
generated by y does not intersect nontrivially G. Thus G and H form a
direct sum B in A. We claim that A|pxp is nondegenerate. Indeed, let
z=a z+b ye Bsuchthat AN(a x+by,z) =0 for all a,b e Z. We find that

, , abl —a'b
0=MXNax+by,z)=ab\x,y) +ba'\y,x) = T mod 1.
Hence ab/ — a’b = 0 mod p" for all a,b € Z. This implies that ' = b =
mod p", thus z = 0. We conclude by Lemma 1.3 that A = B@ BL. The
proof is now completed by applying the induction to B*. |

COROLLARY 3.13. Let A be a finite Abelian p-group. There exists a nonde-
generate symplectic linking pairing A on A if and only if the p-rank of A is
even. If this is the case then \ is unique up to isomorphism.

PrROOF. By the previous proposition, A is isomorphic to an orthogonal
sum of copies of H), ; whose rank is 2. [ |
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The following corollary will be used in the theory of the Weil representation.

COROLLARY 3.14. Given a symplectic linking pairing A : A x A — Q/Z,
there exists a bilinear pairing B : A x A — Q/Z such that

(3.7) AMz,y) = B(z,y) — B(y,x), for any z,y € A.

PROOF. Decompose (A,\) = ©(Ag, \) where each component is a
symplectic linking pairing of the form described in Prop. 3.12. It suffices to
construct a form [ satisfying (3.7) on A = A. Let x,y be two generators
of Aj. Define

B(x,y) = A(xay;

Bly,z) = 0
and extend S to a bilinear map on Ay. [ |

DEFINITION 1.6. A pairing satisfying the condition (3.7) of Cor. 3.14 will
be called a Seifert pairing with respect to the symplectic form A.

For a motivation for this terminology, see

COROLLARY 3.15. Given a symplectic form A, the set of Seifert pairings
with respect to A is acted on freely and transitively by the set of symmetric
linking pairings.

PROPOSITION 3.16 (Antisymmetric linking pairings). Let A be a nondegen-
erate (—1)-linking 2-group. Then A splits orthogonally as an orthogonal sum
of copies of Co, Hyy, and E,.

Proor. We follow Wall [97, §4]. Since (A, \) is nonsingular and =z —
A(z, x) is a homomorphism, there is a € A such that A(z,z) = Mo, x) for
all z € A. If « = 0, Prop. 3.12 applies. So we may from now on assume
that o # 0. Since « has order 2, A\(«, @) has order at most 2. If the order of
Ao, «) is exactly 2, then by Cor. 3.4, « generates an orthogonal summand
of order 2 in A which is Cy. Hence A = Cy @ Cy, and furthermore, Cy- is
symplectic and Prop. 3.12 again applies. It remains to consider the case
when A(a, ) = 0. Let r be the greatest integer such that a = 2" !z for
some z € A (the height of ). If r = 1 then A(z,z) = 0. For r > 1,
since A(z,7) = Ma,x) = 2"~ A\(z,2), we have (2"~ — 1) A(x,2) = 0 hence
A(z,z) = 0. Since « has order 2, = has order 2" in A. By nondegeneracy
of (A, \), there is y € A such that A(z,y) = 3 mod 1. This implies that
y has order 2" and the subgroups respectively generated by x and y do not
intersect nontrivially, hence form a direct sum G in A. We claim that Mg«
is nondegenerate. Indeed, suppose that for any o,V € Z,

0 = Max + by,d'z + b'y) = ad’X(z,x) + ab' A\(x,y) + ba’' Xy, z) + bb'\(y,y)
=0+ (ab' — ba" )Mz, y) + bU'A(2 2, y)
abl —ba’  bY
= o + 5 mod 1.
It follows that a = b = 0 mod 2" and the claim follows. By Lemma 1.3, G
is an orthogonal summand of A and A = G @ G*+. Remark that (G, M| gxq)
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identifies to the antisymmetric (—1)-linking pairing F, (see Example 1.6).
Since z € G, A(x) vanishes on Gt 50 ALy is symplectic and Prop. 3.12
applies on G. This completes the proof. |

REMARK 1.5. The proof is a bit more precise than the statement of the
proposition: it provides a unique normal form for each antisymmetric linking
pairing. With the notation of the proof above, if A(a, ) £ 0 then A splits
as the orthogonal sum of C5 and a symplectic linking pairing; if A(a, ) = 0,
then A splits as the orthogonal sum of E, (where r is the height of «) and
a symplectic linking pairing.

4. Classification results for linking pairings

The set 991° of isomorphism classes of e-linking pairings has a monoid struc-
ture for the orthogonal sum. First we review the description of these monoids
and their invariants. Then we generalize them to monoids of pointed linking
pairings. All pairings are assumed to be nondegenerate.

The p-primary decomposition (Lemma 3.2) induces a decomposition

me = P,
p

over all primes, where 97 denotes the monoid of isomorphism classes of
e-linking pairings over p-groups. It is therefore sufficient to describe each
monoid 9 separately.

We begin with the description of 9.

4.1. The monoid M.

THEOREM 4.1. Let p be an odd prime number. The monoid M, is freely
generated by Hyp, k > 1.

PROOF. An antisymmetric linking pairing on a p-group with p odd must
be symplectic (cf. §1). Then the decomposition of symplectic linking pair-
ings (Prop. 3.12) implies the result. |

The case when p = 2 is due to C.T.C. Wall[97, §4].

THEOREM 4.2. The monoid My is generated by generators Co, Ey, and Hy
k =1 and relations

(4.1) Cy+Cy = Ey, Co+ Ep = Cs + Hyyp, Eyp+ By = Ep+ Hay for k <1.

Proor. By Prop. 3.16 and Remark 1.5, any element in 91, has a
unique normal form. Any element in 91, that consists of the sum at least
two generators has a summand which identifies to the left side of one of the
relations above. Writing the normal form for the left side of each of the
relations yields the three relations as stated. The proof follows. |
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4.2. The monoid M*. Let a,n € Z*. We denote by (2) the cyclic
linking pairing defined on Z/nZ that sends (1 mod 1, 1 mod 1) to % mod
1. We begin with linking pairings on p-groups with p odd.

The following result is due to C.T.C. Wall [97, §5].

THEOREM 4.3. Let p be an odd prime number. Let n, € Z denote an integer
that is not a square mod p. The monoid S)ﬁ; splits as the orthogonal sum

im; = @zm;k

k=1

where zm;k is the monoid of isomorphism classes of linking pairings on direct

sums of copies of Z/p*7Z. Each Sﬁ;k is generated by two generators (#)
and (Z—ﬁ) The only relation is

w R

PrOOF. Lemma 3.5 implies the orthogonal splitting. A little more at-
tention reveals that the splitting of Lemma 3.5 is unique (for p odd) in the
sense that each component in Sﬁgk is uniquely determined. Furthermore

ﬁﬁ;k is generated by cyclic linking pairings. Let Cp = Z/p*Z. Given a
cyclic linking pairing (ﬁ), an automorphism z — fz of Cpx will change a
by af? and hence, the quadratic residue or quadratic nonresidue character

of a is preserved. It follows that Dﬁ;k is generated by (ﬁ) ) (Z—ﬁ) Con-

sider (A, \) € Dﬁ;k. Choose a system (z1,...,x,) of generators for A. Let
Mg, xj) = % mod 1. The determinant

{ +1 if it is a square mod p;

o(A) = det(ay)i<ij<r = -1 otherwise

€ ;)c /Czk )
up to multiplication by a square mod p is an invariant of A. Furthermore,
it is multiplicative on orthogonal sums.

We shall use repeatedly a corollary of Hensel’s lemma, namely the fact that
x € 7 is a square mod p if and only if 2 is a square mod p* for all k& > 1 (see
for instance [88, Chap. 2, § 2.2, Corollary 2]).

LEMMA 4.4. Let n, be a nonsquare in Z/p*Z. There exist x1,z2 € Z/p7Z
such that 23 + x3 = n,,.

Proor. Suppose k = 1. Note that —n, — z? takes % distinct values

as w1 runs over Z/pZ. Since there are % distinct squares mod p (see
for instance [88, Chap. 1, § 3.1, Theorem 4|, we deduce that the equation
2% + 23 = n, has a solution (x1, x3) in Z/pZ. The general statement follows

from Hensel’s lemma. |
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ry 22

The matrix & = {
—Xr2 X1

] defines an automorphism Z/p*Z ® Z/p*7 —
7)o" D ZpF 7. Set Q = (ﬁ) o (ﬁ) Then

(x1 4+ x2 y)2 i (—z2 4+ 21 9)2

Q@) = L o
(2% + 23)2? N (a3 +a3)y®  npa® N npy?
" v

This is the desired identity (4.2). It follows that if the rank of A (as a
free Z/p*Z-module) is r, then there are exactly two isomorphism classes of
linking pairings on A, namely

()t e () + ()

In particular, the rank of A and the determinant o (\) are complete invariants
for (A, \) € zm;k. [

Consider (A, \) € M with orthogonal decomposition (4, \) = By, (Ax, Ar)
with (Ag, Ag) € im;k. For k > 1, let pi(A) be the rank of A as a free

Z/p*Z-module. Set p(\) to be the collection of ranks (pp(A))x=1. Set
oik(A) = o(\;) € {£1} (as defined in the proof of Th. 4.3) and o(A,\) =
(0% (A, A))k=1-

COROLLARY 4.5. The isomorphism class (A,\) € MY is determined by
o), (V).

DEFINITION 1.7. Let 9,[n] be the set of linking pairings of order p™ for
n = 1. For n =0, M,[n] = 0.

We give a combinatorial description of 9,[n]. First, we need a few classical
definitions.

DEFINITION 1.8. A partition of an integer n is a nonincreasing sequence
¢ = (c1,¢2,...,¢) of integers such that ¢; + c2 + ... + ¢ = n. Each ¢
is called a part of the partition c¢. The multiplicity of an integer k is the
number of occurrences of the integer k£ in the sequence, i.e., the number of
parts c; such that ¢; = k. The total number [ of parts is called the length
of the partition. The set of partitions of n is denoted A[n].

ExaMPLE 1.7. ¢ = (5,5,3,3,2,1) is a partition of 19. The multiplicity of
the part 5 is 2. The length of the partition is 6.

EXAMPLE 1.8. Any permutation 7 € &,, determines, via its cycle decompo-
sition, a partition of n: order the cycles in weakly decreasing lengths and
collect the lengths of the respective cycles. Conversely, a partition of n
determines a conjugacy class of &,.

According to the classification of abelian groups, any finite p-group of order
p™ is a finite sum of cyclic p-groups, whose product of orders equals p”.
Thus the isomorphism classes of finite p-groups of order p™ are in bijective
correspondence with partitions of n. From Theorem 4.3 we deduce what
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needs to be added in order to classify isomorphism classes of linking pairings
on p-groups of order p™.

DEFINITION 1.9. An overpartition of an integer n is a nonincreasing sequence
¢ = (c1,c,...,¢) of integers such that ¢; + c2 + ...+ ¢, = n and such that
each last occurrence of an integer may be overlined. The set of overpartitions
of n is denoted A[n].

EXAMPLE 1.9. ¢ = (5,5,3,3,2,1) is an overpartition of 19. Note also that
any partition of n is an overpartition of n, thus A[n] € A[n].

PROPOSITION 4.6. There is a bijective correspondence between I, [n]| and

K[n], extending the bijective correspondence between the set of isomorphism
classes of finite p-groups of order p™ and A[n].

PROOF. Let (A, \) € M, [n]. We associate to (A, ) an overpartition as
follows. The sequence (pg(A))g=1 is finite and verifies

Zpk(/\) =n.
k

Drop all zeros in this sequence. This yields a sequence (pg;()));>1 of nonzero
natural integers. Reorder this sequence so that k1 = ko = k3 = ---. (This
step is needed only to conform to the definition of a partition as a nonin-
creasing sequence of integers.) Consider the following partition: each k; is a
part with multiplicity pg,(A) = 1. Overline the last occurrence of the part &
if and only if o (\) = —1. This yields an overpartition of n. Conversely, to
an overpartition ¢, we associate the isomorphism class of a linking pairing A
as follows. By Corollary 4.5, it suffices to specify the invariants pg(A) and
(Tk()\) Set

multiplicity of k£ in the partition ¢
—1 if the last occurrence of k is overlined
+1 otherwise.

Pr(A)
and  op(\) = {

It is easy to verify that these two maps, at the level of isomorphism classes
of linking pairings, are inverse to each other. |

We consider now the case p = 2. For k > 1, we define two linking pairings
Fi(k = 1),Gi(k = 2) on Z/2"7Z x Z,/2*Z by the two matrices of Prop. 3.5,
(ii), respectively. These linking pairings are pairwise nonisomorphic since
|Fk‘ = |Gk‘ = 2%k for all k > 1 and O'k(Fk) = +1 and O'k(Gk) = —1 for all
k> 2.

REMARK 1.6. Let k > 3. Let n,n’ be two odd integers. The linking pairings
(%) (k = 3) and (;—;) are isomorphic if and only if n = n’ mod 8 (see

[96, Chap. 5, §4]). In particular, there are 4 pairwise nonisomorphic linking
pairings on a cyclic group of order 2%.

A. Kawauchi and S. Kojima [51, Th. 0.1] give the presentation below of
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THEOREM 4.7. The monoid M is generated by the following generators

, . 1 *1 *1 +3
(i) cyclic generators: (2>, <4> and <2k> (k= 3) and <2k) (k=3).

(ii) noncyclic generators: Fy, (k> 1), Gy (k= 2)

and the following relations:

ay () (5)-

(

(4.4) (2%) +2 <2:) - (;) v F (k=1
1)~ (
2

(4.5) (2% - _”2:4> +Gr (k=2)

(4.6) o2F, = 2G; (k> 2)

an (5 + (o) = (M) + (M) =)
(4.8) (2%) 4 Floyr = ("2:4) G (k=1)

(4.9) Fy + (%) — Gy + ("2:4> (k = 2)

w0 () ) - () (55) e

PRrOOF. That (i) and (ii) form a system of generators follows from Prop.
5.30. The eight relations can be verified by explicitly finding an isomorphism
of linking pairings (Prop. 1.3 is useful for identifying orthogonal summands).
The fact that the eight relations form a complete system of relations (i.e.
generate any relation between linking pairings) is proved in [51]. |

Further study of the monoid 9] is pursued in [67] (construction of a normal
form) and [20] (alternative presentation of M5 using Gauss invariants). We
mention one open problem. In accordance with the previous paragraph, let
My [n] denote the set of isomorphism classes of linking pairings on 2-groups
of order 2". Can one explicit a combinatorial construction of Msy[n] in the
same spirit as that of 9M,[n] for p + 2 ? We do not know a complete
answer to that question. Here are a few remarks in that direction. From
the presentation of 915, one observes that there is a natural embedding
M, — M. The sequence of numbers p, = [My[n]| of isomorphism classes
of linking pairings on 2-groups of order 2" does not seem to identify to a
known integer sequence. The program based on [20] that we wrote [21]
computes recursively u, for any n. The first fifteen values are

n1 = 17:“2 = 4):“’3 = 67#4 = 14—7:“’5 = 207:“6 = 437“7 = 59):“’8 = 1087
py = 158, 1o = 265, p11 = 373, p12 = 600, p13 = 838, p14 = 1301, py5 = 1797.

A combinatorial construction involves a generalization of the partition num-
bers.
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5. Quadratic functions on Abelian groups

5.1. General quadratic functions.

DEFINITION 1.10. Let A,U be abelian groups. A quadratic function on A
isamap ¢q: A — U such that

by : (2, y) = by(x,y) = q(x +y) — q(x) —q(y)

is Z-bilinear on A. The (symmetric) linking pairing b, is called the linking
pairing associated to g; the map g is said to be a quadratic function over by,.

REMARK 1.7. An additive map is a quadratic map with trivial associated
linking pairing. The associated linking pairing b, may be regarded as the
2-cocycle (akin to the “additivity defect”) of the quadratic map gq.

Note that a quadratic function ¢ verifies ¢(0) = 0 (take z = y = 0 in the
definition) and by(x, x) = ¢(z) 4+ g(—=x) for all z (since 0 = g(z — x)).

ExaMPLE 1.10 (Cyclic group). Let m > 1 and A = Z/mZ. Let 5 € Z. The

map q: A —> Q/Z, y — g—fj mod 1 defines a quadratic function if and only
if B or m is even. [Proof: 0 = ¢(0) = ¢(m) = % = BTm mod 1.]
DEFINITION 1.11. It will be convenient to denote —¢ the map defined by
(—¢)(z) = —q(x) and ¢~ the map defined by ¢~ (z) = q(—=x).

LEMMA 5.1. If q is a quadratic function then —q, ¢~ and q+q~ are quadratic
functions.

DEFINITION 1.12. The group of quadratic functions from A to U (for addi-
tion) is denoted Quad(A,U). If the value group U is understood, we write

Quad(A).

REMARK 1.8. For applications in this monograph, either A will be a finitely
generated free Abelian group (a lattice) and U = Z, or A will be a finitely
generated Abelian group and U = Q/Z.

DEFINITION 1.13. A quadratic function ¢ : A — U is said to be nondegen-
erate if the associated bilinear pairing b, : A x A — U is nondegenerate.

ExaMpPLE 1.11. Consider the example 1.10 above. The quadratic func-
2

tion ¢ : Z/mZ — Q/Z, y — % mod 1 is nondegenerate if and only if

{ 8 and m are coprime if m is odd;

£ and 2m are coprime if m is even.

There are several motivations, from algebra as well as from topology, for
studying possibly degenerate quadratic functions. For one possible moti-
vation, see below Remark 1.16. We record a class of degenerate quadratic
functions that canonically induce nondegenerate quadratic functions. See,
however, Remark 1.10 below.

LEMMA 5.2. Let ¢ : A — U be a quadratic function that g(A*+) = 0. Then q
induces a nondegenerate quadratic function q: AJA+ — U by q([z]) = q(z),
reA.
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REMARK 1.9. Quadratic functions satisfying the hypothesis of Lemma 5.2
are studied in §5.4. Lemma 5.2 is generalized in Chap. 77, §.

DEFINITION 1.14. Two quadratic functions ¢ : A — U and ¢ : A’ - U
are isomorphic if there exists a group isomorphism ¢ : A — A’ such that
¢ (¢p(x)) = g(x) for all z € A.

ExAMPLE 1.12. The quadratic functions ¢ and ¢~ are isomorphic.

EXAMPLE 1.13. Consider the example 1.10 above. If 3 = a® mod m, then

quadratic functions defined on Z/mZ respectively by ¢(y) = ’g—i/j mod 1 and

¢'(z) = §+ mod 1 are isomorphic.

LEMMA 5.3. If two quadratic functions are isomorphic, then their associated
linking pairings are isomorphic.

EXERCISE 1.1. The converse does not hold in general. For instance, ¢(z) =

% mod 1 and ¢/(z) = % mod 1 define two nonisomorphic quadratic forms
on Z/4Z with the same associated linking pairing (since by(z,y) = by (x,y) =
L mod 1).

DEFINITION 1.15. Given two quadratic functions ¢ : A — Q/Z and ¢ :
A" — Q/Z, their orthogonal sum (A,q) & (A’,¢") is defined as the quadratic
function ¢ & ¢ : A® A" — Q/Z by

@od)(z+y)=qlx)+q(y), zcA yeA.

Let B be a subgroup of A. A quadratic function ¢’ : B — Q/Z is an
orthogonal summand of q : A — Q/Z if

(Aa q) = (Bv q/) S (BLaq,BJ-)'

The following result is an immediate consequence of the definition.

LEMMA 5.4. If a quadratic function (A, q) splits orthogonally (A, q) = (B, q)®
(C,q"), then the associated linking pairing splits accordingly:

(A, bg) = (B, by) & (C,by).
REMARK 1.10. Lemma 5.2 does not state that the original quadratic func-

tion splits as the orthogonal sum of the induced quadratic function (A/A*, §)
and the trivial quadratic function (A*,0). In fact, the extension 0 —
At - A - A/At — 0 may not split. (The quadratic function defined

by q(z) = 2/8 mod 1, x € A = Z/8Z, provides such an example.)

DEFINITION 1.16. A quadratic function ¢ on A is homogeneous if g(n =) =
n? q(z) for all z € A. A homogeneous quadratic function shall also be called
a quadratic form. The set of quadratic forms form a subgroup, denoted
QuadO(A, U), in the group of quadratic functions Quad(A,U). As before,
we shall write simply Quad®(A) if the value group U is understood.

LEMMA 5.5. A quadratic function q is homogeneous if and only if ¢ = q—.

PROOF. Necessity is clear. Conversely the identity g(nz) = n?q(x) is
proved by induction on n > 1 by noticing that ¢((n + 1)z) = q(nz + x) =
q(nx) + q(z) + n by(z,z) = nq(z) + q(z) + 2n q(z) = (n + 1) g(z). [ |
ExaMPLE 1.14. For any quadratic function ¢, the quadratic function ¢+ ¢~
is homogeneous.
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5.2. Quadratic refinements.

DEFINITION 1.17. Given a symmetric bilinear pairing A : A x A — U, a
quadratic refinement (or enhancement) of X is a quadratic function ¢ : A —
U such that b; = A. The set of quadratic refinements of A will be denoted

Quad(\).

A fairly general condition for a quadratic refinement to exist is given below
(Proposition 5.6).

Let A: Ax A — U be a linking pairing. Why would one consider quadratic
refinements of A 7 Here is a possible algebraic motivation. (A motivation
from topology will arise later.) Form the set A x U and define a new addition
law by

(a,t) - (d,t") = (a+d,t +1' + Na,d'), a,d’ €A, t,1'eU.

It is readily verified that this defines an abelian group structure on A x U.
Furthermore, as both the injection U — A x U, t — (0,t) and the natural
projection A x U — A are group homomorphisms, this group fits into the
short exact sequence

(5.1) 0-U—>AxU—-A—D0.

Assume either that U is injective (for instance U = Q/Z) or that A is
projective (for instance A is a lattice). Then the short exact sequence above
is split (as a sequence of Z-modules). Hence there exists a section s : A —
A xQ/Z, x — (x,qs(x)) that is a group homomorphism. It follows that gs
is a quadratic refinement of A. In particular, quadratic refinements exist.
Conversely, given a quadratic refinement ¢ of A, the map s, : z — (z, ¢(x))
defines a section A — A x U. Hence we have proved:

PROPOSITION 5.6. If the short exact sequence (5.1) splits, then the set
Quad(\) of quadratic refinements of a linking pairing A are in bijective cor-
respondence with sections of (5.1).

If ¢ is a homogeneous quadratic refinement of a linking pairing A : A x A —
U, then 2q(z) + Az, z) = q(2z) = 4q(x), so 2q(z) = A(z,z) for all z € A.
We deduce the following observation:

LEMMA 5.7. ?? If U has no 2-torsion, then there is at most one homogeneous
quadratic refinement of a nonsingular linking pairing. If multiplication by 2
in tnvertible in U, a homogeneous quadratic refinement of a linking pairing
exists and is unique.

ExXAMPLE 1.15. Let A(x,y) = x y, z,y € Z. This is a symmetric bilinear
pairing on A = Z with values in U = Z that has no homogeneous quadratic
refinement. Note that in accordance with Proposition 5.6, b does have a
(nonhomogeneous) quadratic refinement, for instance

2+

q(x): 5 x €L,

defines a quadratic refinement Z — Z of .
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The set Quad(\) of quadratic refinements over \ is freely and transitively
acted on by Hom(A,U) by addition. Thus, if A is nondegenerate, then
Quad(\) is freely and transitively acted on by A via the formula

(5.2) g x=q+Nz,—)=q+ X(az) € Quad()), ¢e€ Quad()), ze A.

The set Quad®()\) of homogeneous quadratic refinements over \ is freely and
transitively acted on by Hom(A4, ). If X is nondegenerate, then Quad®()\) is
freely and transitively acted on by Ay = {z € A | 2z = 0} via the formula

(53) ¢-x=q+ Nzx,—)=q+ /A\(ac) e Quad’()\), ¢eQuad()), ze€ As.

5.3. The groups Aauad apg Aauad,

DEFINITION 1.18. Let A be an Abelian group. Let QA be the abelian group
freely generated by generators t,,t,, (z,y € G). The group Aauad g the
quotient of QA by the subgroup I generated by relations

tz,y = ty,xa ta:-i—y = ta:tx,ytyv tx,y+z = t:c,ytzz:,Z7 tx,O =1, xz,9,2€G.

Since top = tooto, (third relation), too = 1. Since ty = toto,oto (second
relation), tg = 1. Since 1 = t,0 = ty 4ty —y, we have t, _, = t;}} Hence
1=ty =tz = taty —pt—z 50 typ = t,t_, for all z € G.

We keep the same notation for an element in QA and its image in Aquad (if
this does not seem to cause confusion). Although A9 is abelian, it will
be useful to keep the multiplicative notation.

Recall the definition of the tensor product A ® B of two Abelian groups A
and B. The tensor product of A and B is an Abelian group A ® B and
a bilinear map h : A x B — A ® B which solves the following “universal
mapping problem”:

For every Abelian group C and every bilinear map b : A x B — C, there
exists a unique homomorphism b : A ® B — C making the diagram above
commutes. The solution is unique up to an unique isomorphism.

The group Aauad possesses a similar property.

ProposiTION 5.8. The group Adquad together with the quadratic function
t:A— Awmad gt solves the following universal mapping problem:

A t Aquad
s

For every quadratic function q : A — U, there exists a unique homomor-
phism G : A% - U such that the diagram above commutes.
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PRrOOF. The map g — t, defines a quadratic function (written multi-
plicatively) since ty4y = tytyt, for all ,y € A. Since QA is free, there is
a unique homomorphism QA — U sending t, to ¢(x) and t;, to by(x,y)
for all z,y € A. Since ¢ is a quadratic function and b, is the associated
symmetric linear pairing, this homomorphism vanishes on the subgroup I,
hence induces a map q : Aaad _, 7 Thys q = qot. This proves existence
of (Aquad, d). Uniqueness follows as usual from universality. |

LEMMA 5.9. The map
q—q
is an isomorphism Quad(A,U) — Hom(A®d 7).

PROOF. The map ¢ — ¢ is clearly additive. The inverse map is f —
fot. |

COROLLARY 5.10. The quadratic map t : A — A™ad g s ¢ s injective.
PRroOOF. The identity map A — A is an additive map, hence a quadratic

map q : A — A, such that if ¢ + y then §(¢,) = ¢(z) =z + y = q(y) = §(t).
It follows that t, + ¢, in Aquad [ |

PROPOSITION 5.11. The assignment A — A9 defines an additive faithful
endofunctor of the category of abelian groups with homomorphisms.

ProoF. Let ¢ : A — B be a homomorphism between abelian groups.
We define a map @duad ; gauad _, pauad a4 fo]lows:

quuad(tx,y) = tgo(z),go(y)a quuad(tx) = tcp(a:) z,y€ A

It follows from the definition that the assignment is a homomorphism and
preserves additivity, composition and the identity. For faithfulness, let ¢, €
Hom(A, B) such that @84 = ¢ydauad - This implies Lo(a) = ty(e) for all z € A.
It follows from Cor. 5.10 that ¢ = . |

In particular, given a pair of abelian groups A, B and a homomorphism
¢ : A — B, there is a commutative diagram

Quad(B,U) —— Hom (B4, /)
© l (wquad)*

AV
Quad(A, U) — Hom (A4 1))

PROPOSITION 5.12. The group ﬁq“ad, together with the quadratic map A —
Aauad g st also solves the following universal mapping problem:

)

Ax A Aquad

{ a.
e

U
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For every quadratic map q : A — U with associated symmetric bilinear
pairing by : A x A — U, there exists a unique homomorphism q : Aavad _, 1y
such that the diagram above commutes, i.e. qot_ _ = bg.

PrOOF. The map defined by (x,y) — t, is symmetric bilinear since in

/Alq“ad, the relations t,, = ty, and ¢4y . = t; .ty . hold for all z,y,z € A.
The rest of the proof is similar to that of Prop. 5.8. |

REMARK 1.11. The group Aauad does not solve the following universal prob-
lem: for every symmetric bilinear pairing b : A x A — U, there exists a
unique homomorphism ¢ : Awad _, 7 such that got__ =b. Indeed, if
a homomorphism ¢ : Aauad _, 7 exists, then it must specify ¢(¢,) and not
only ¢(tz,). In other words, the data of g(z) (for each x € A), namely of
the quadratic function, and not only by(z,y) (for all z,y € A), namely the
associated symmetric bilinear pairing, is required. Not every symmetric bi-
linear pairing b determines uniquely a quadratic function ¢ such that b = b,,.
We shall return to this important feature a little later.

The next result is the “quadratic relation”.

LEMMA 5.13. The following relation holds in Aauad - pop any finite sequence
wl,...,xneA,

(5-4) Lottty = H ta; H twmﬁj'

1<isn 1<i<j<n

PRrooF. Induction on n from the relation ¢, , = t;ty t5 . |

LEMMA 5.14. The following relation holds in Aaad - o any integer n and
r€EA,

n(n—1)
(55) tnx = t; t:r:,x2
ProoF. The identity for n € N is the particular case z; = -+ = 2, in

Lemma 5.13. Then 1 =ty ne = tuat—nat—none = tnot—naty s SO

n(n—1) n(—n—1)

_—1n2_—n_2 n2_—n_2
t—nu’ﬂ - tnr tr,x - tx tl“,m tz,w - tw tﬂC,I

The identities above will be used several times in the sequel.

COROLLARY 5.15. The following properties holds in A:

(1) If x € A is a torsion element of order m, then t, € Amad s g torsion
element of order dividing m (resp. dividing 2m) if m is odd (resp. if m is
even).

(2) If x,y € A are torsion elements of order m and n respectively then
oy € Aad s 4 torsion element of order dividing ged(x,y).

(3) If A is torsion, then so is A4
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PRrROOF. (1) Since 1 =to, = tmga =t
 k(k+1)
Lemma 5.14, t'; =trgtzz ° . In particular, for k = 2m,

ty. has order dividing m. By

m
z,x)

£2m = tg, t; ) = 1,

Hence the order of t, divides 2m. If m is odd, then for k = m,

_ m(m+1) _ m(m+1)
t? =to t:p,x 2 = tm,x ? =1
since ™M) — 0 mod m if and only if m is odd. Hence the order of ¢,

divides m if m is odd.

(2) Since t') = tmay = 1 = teny = ty,, the order of ¢, , divides both m
and n, hence divides their ged.

(3) follows from (1) and (2). [ |

COROLLARY 5.16. The following properties holds in A:

(1) If x € A is a torsion element of order m and generates a direct summand
of A, then t, € A js q torsion element of order m (resp. 2m) if m is odd
(resp. if m is even).

(2) If z,y € A are torsion elements of order m and n respectively generating

direct summands of A such that Zx n Zy = 0 or Zx = Zy then t, , € Aauad
is a torsion element of order ged(x,y).

PROOF. (1) Let ¢ : Zz — Q/Z be a quadratic function such that
q(kx) = % mod 1 where 8 = é i z z (1) Egg g’ (Cf. example 1.10.)
It is readily verified that the order of ¢(x) is m (resp. 2m) if m is odd (resp.
if m is even). Moreover, ¢ is nondegenerate, hence nonsingular on Zz. Con-
sider any extension ¢’ on A. By the universal property of Aauad (Prop. ?77),
¢ (tz) = ¢'(z) . Thus the order of t, is a multiple of m (resp. 2m) if m is
odd (resp. if m is even). By Corollary 5.15, the conclusion follows.

(2) Consider the case Zx n Zy = 0 first. Let ¢ : Zx ® Zy — Q/Z be

the quadratic function defined by q(kx,ly) = % mod 1. We have

be(x,y) = m mod 1. Extend ¢ to a quadratic function ¢’ to A. By the

universal property of A1 (Prop. 5.8), ¢ (tey) = by (x,y) = by(z,y). Thus
the order of t, , is a multiple of ged(m, n). By Corollary 5.15, the conclusion
follows.

In the remaining case, Zx = Zy so there exists k € Z such that y = kx with
ged(m,n) = 1. Consider the same quadratic functions ¢, ¢ introduced in
the proof of (1). Then by(x,k z) = % mod 1 has order m. By the universal
property of Aduad (Prop. 5.12), ¢/(ts,) = by (x,y) = by(x,y) = by(x, k).
Hence the order of t,, is a multiple of m. Conclude by applying again
Corollary 5.15. |

EXERCISE 1.2. Complete the proof of (1)-(2) above by justifying the exis-
tence of the claimed extensions of the quadratic functions on A. [Hint: use
Lemma 3.3 and orthogonality.]
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EXERCISE 1.3. Suppose that (z;)ie; is a minimal set of generators for A.
Deduce a set of generators for A9 Deduce that if rank(A) = k then
rank(Adwad) > kkED  Prove that the functor of Prop. 5.11 is not a full

2
functor.
EXERCISE 1.4. Prove that Z4wd ~ 7, x 7,

EXERCISE 1.5. Prove that

quad  f Z/nZ x Z/nZ if n is odd;
T | Z)2nZ x Z/nZ if n is even.

(5.6) Z/nZ

The symmetric tensor product S?(A) is defined as the quotient of A ® A
by the subgroup generated by x ® y — y ® =, =,y € A. The symmetric
tensor product S?(A), together with the symmetric bilinear map A x A —
S2(A), (z,y) — [r ®y], satisfies the following universal property: for every
symmetric bilinear pairing b : A x A — U, there exists a unique homomor-
phism b : S2(4) — U such that the following diagram is commutative:

Ax A

In view of Prop. 5.12, the similarity with the symmetric tensor product
is clear. The next result clarifies the relationship between the symmetric
tensor product S%(A) and the group Aduad,

PROPOSITION 5.17. There is a nonsplit short exact sequence

0— S%(A) > A1ad 4 0.

PROOF. The assignment ¢t : (z,y) — t,, from A x A — Amad ig 5
Z-bilinear map, hence factors through A x A. Since ¢_ _ is symmetric, it
factors further through S?(A). The corresponding map j : S?(A4) — Aduad
is injective.

It remains to identify the cokernel A9%d /5(S2A). For this, note the identities
(5.7) taty = topytey = tosytoay, taty =te—ylea—y.

It follows that t, t, = t;4, modulo Im(j) and ¢, t;l = ty—y modulo Im(j).
Hence the map p : A% 5 A that assigns p(tzy) = 0 and p(ty) =
for all z,y € A is a well-defined epimorphism. Clearly Ker p contains the
image j(A® A). Conversely, let w € Ker p. By the relations above, w is a
mixed product of elements of the (first) form t;—% = t+4, and elements of
the (second) form tij:, with e; = £1, j = 1,...,7. So p(w) = p(t3!---t77) =
€121 + -+ + &2z, = 0. We need to show that the product £5!---25" can be
rewritten as a product of elements of the first form only. This will be a
consequence of the following lemma.

LEMMA 5.18. Ife121 + -+ + &2, = 0 then t5l -- -t = 1 mod j(A® A).
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ProOOF. For r = 1, tg = 1. For r = 2, this follows from the relations
(5.7). For the general case, up to reordering, we may assume that for 1 <
it<m<r,gj=+landform+1<j<r,ej=—-1 Setu=2z+---+2z,
and v = z,41 + -+ + 2. Applying twice the quadratic relation (5.4), we

have
H t., =ty ]_[ L

1<i<m 1<i<jsm
-1 _ ;-1
[T &r=at 1] tae
m+1<i<r m+1<i<j<r

By the relation (5.7) above,
27 t;1 =ty—v tu—v,v = t(]t(),v =1-1=1.
We deduce that
ro_ -1 _ -1
tretr =[]t J1 = 11 2 1] tes
1<is<m m+1<i<r 1<i<jsm m+1<i<j<r

In particular, ¢3! ---t5" € j(A® A) as desired. [ |

s b

Finally, it is easy to see that the epimorphism p : Aavad _, A has no section
that is a homomorphism. |

For the rest of this paragraph, A is a finite Abelian group and the quadratic
functions take values in U = Q/Z.

LEMMA 5.19. Let g : A — U be a quadratic function. For any x € A and
nez,
n(n—1)

(5.8) q(n ) =n q(x) + 5

by(x, x).

PROOF. Apply ¢ to the relation (5.5) of Lemma 5.14. |
LEMMA 5.20. If x has odd (resp. even) order n in A, then the order of q(x)
divides n (resp. divides 2n) in Q/Z.

PRrOOF. Apply ¢ to the first assertion of Cor. 5.15. |

DEFINITION 1.19. The group A9 is defined as the quotient of A9ad by
the relation t; ;, = ti, for all z € A.

The group A9"®d satisfies also a universal property for homogeneous qua-
dratic functions.

PROPOSITION 5.21. The group A4 together with the homogeneous qua-
dratic function t : A — A9 g ¢ solves the following universal map-
ping problem.:

A t Aquad

X g -
&

U

For every homogeneous quadratic function q: A — U, there exists a unique
homomorphism § : A% — U such that the diagram above commutes.
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PROOF. The proof is similar to that of Prop. 5.8. |

COROLLARY 5.22. The isomorphism q — ¢, Quad(A,U) — Hom(Aawd | [])
restricts to an isomorphism Quad®(A,U) — Hom (A9 U7) making the fol-
lowing diagram commutative:

Quad®(A,U) — Hom(A™d 7))

incll p* l

Quad(A, U) — Hom(Aad ),

where p : Aavad _, pgavad gepotes the canonical projection.

EXERCISE 1.6. An isomorphism ¢ : A — A’ between two quadratic functions
q: A— Uand ¢ : A— U such that ¢ = ¢’ o ¢ induces an isomorphism
¢ Awad _, fravad guch that § = ¢ o ¢. A similar statement is true for
homogeneous quadratic functions and the group A9, Hint: complete the

diagram

Aquad

U
/ /quad

A
Y
A A

EXERCISE 1.7. Prove that

Z/nZ if nis odd;
quad ’
(5.9) (Z/nZ) - { Z)2nZ if n is even.

The next proposition sums up the various relationships between the groups
Aauad - gauad 5nd symmetrized tensor products.

ProproSITION 5.23. The following diagram has exact rows and columns and
18 commautative:

0 0 0
0 (r@x | ze A {A2th | v e A) 24 0
0 S2(A) Aduad A 0
0—=S2(A) xRz | z € A) Aauad AJ2A ——=0
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PRrROOF. The nontrivial groups of the top row are all seen to be sub-
groups of the corresponding groups below in the middle row, so all columns
are exact. The nontrivial maps of the top row are the restrictions of the
corresponding nontrivial maps below in the middle row respectively. From
this, the exactness of the top row, as well as that of the lower row, follows.
The commutativity of the top two squares also follows, hence the lower two
squares are commutative as well. The definition and exactness of the middle
row is given by Prop. 5.17. |

REMARK 1.12. None of the short exact sequences in Prop. 5.23 is split.

5.4. Tame and nontame quadratic functions. The following defi-
nition is specific to the setting of finite Abelian groups.

DEFINITION 1.20. A quadratic function ¢ : A — Q/Z such that ¢(At) = 0
will be called tame.

The terminology is due to R. Taylor [92]; one finds also the term “non
defective” (find references) in the litterature. Obviously a nondegenerate
quadratic function is tame; but there are others. The following two lemmas
determine tame quadratic functions.

LEMMA 5.24. A nontame quadratic function q : A — Q/Z determines a
nontrivial homomorphism q| 4. of order dividing the exponent of A+. If
moreover q is homogeneous, then q| 4o has order two. In particular, if A+
has odd order, then any quadratic form on A is tame.

PROOF. Let z,y € A+. Then q(z +y) = q(z) + q(y) + by(z,y) = q(z) +
q(y)+0 = q(z) +q(y). Furthermore, q(nx) = ng(x)+ n("2_1)bq(m, x) = nq(x)
for n € Z. Hence ¢| 41 is a nontrivial homomorphism of order dividing the
exponent of AL, Since ¢ is moreover homogeneous, ¢(z) = ¢(—z) = —q(z)

so 2q(z) = 0. n

PROPOSITION 5.25. A quadratic function q : A — Q/Z is nontame if and
only if it has a cyclic orthogonal summand B such that q|p is a nontrivial
homomorphism.

PRrROOF. If ¢|p is a nontrivial homomorphism then /l;q(B) =0,s0 B <
At so q is nontame. Conversely, suppose that ¢ is nontame. Then g| 4.
is a nontrivial homomorphism. Without loss of generality, we may assume
that A is a p-group. Let x € Al such that ¢(x) has maximal order p"
in Q/Z. Then g(a x) = a q(z) for all a € Z. To complete the proof,
we have to show that x generates an orthogonal summand in A. First we
claim that = generates a direct summand in A. Let x1,...,2, be a minimal
complete system of generators for A so that z = a1 1 + as 2 + -+ - + a,x,
where ay,...,a, € Z. Note that = ¢ pA for otherwise, ¢(z) would not have
maximal order. Hence at least one aj, say ap, is coprime with p. It follows
that y1 = a1 x1, 2, -+ ,x, is another complete system of generators for A
and x = y; + a2 x2 + -+ + a, x,. The subgroup H generated by za,..., x,
in A verifies

(5.10) A=Zz®H.
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Next, since 2 € A, x is orthogonal to H, so the decomposition (??) is
orthogonal. [ ]

ExaMPLE 1.16. Let p be a prime number and 1 < k& < n be two positive
integers. The homomorphism NT’I;’n on Z/p"Z defined by

1
(5.11) NTI;n(l mod p") = — mod 1,
' p
defines a nontame quadratic function. Any nontame quadratic function on
a cyclic p-group is isomorphic to some NT’;m

COROLLARY 5.26. A quadratic function q : A — Q/Z is nontame if and only
if it has a cyclic orthogonal summand NT’;’n for some prime p and integers
1<k<n.

REMARK 1.13. Any nontrivial group A carries a nontame quadratic function
on it.

Because of homogeneousness, the description of nontame quadratic forms is
simpler.

ExXAMPLE 1.17. Let n = 1. There is exactly one quadratic form NT,, on
Z,/2"Z that is nontame. It is given by

1
(5.12) NT, (1 mod 2°) = 3 mod 1.

Note that NT,, = NT} ..

COROLLARY 5.27. A homogeneous quadratic function is nontame if and only
it has a orthogonal summand NT,,, n > 1.

PRrOOF. In view of Prop. 5.25 and Cor. 5.26, it suffices to observe that
the only nontrivial order 2 homomorphisms on cyclic 2-groups are precisely
the ones described in Example 1.17. |

PROPOSITION 5.28. Let q : A — Q/Z be a quadratic function. There is a
unique orthogonal decomposition of quadratic functions

(5.13) (A,q) = (At qt) © (Ant, qnt)
such that

1) g : Ay — Q/Z is tame;

2) At

3) Gut = 0 Zf tmd only if q is tame;

4) (Ant, qnt) s an orthogonal sum of nontame cyclic summands.

(

Furthermore, there are nonnegative integers a >0, where 1 < k <n and
p Tuns over the primes, such that
(514) (An’m qm:) @p @n @1<k<nap n NTk

If q is homogeneous, then there exist 1 < ny < --- < n, such that

(5.15) (Ant, gnt) = a1 NTy, Sag NT,,, ---Sa, NT,, .
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PROOF. We make an inductive use of the proof of the Prop. 5.25, split-
ting each time an orthogonal summand of maximal order. The process is
finite and stops when the remaining summand is nontame. We obtain the
desired decomposition (5.13) with the prescribed collection (5.14) of non-
tame cyclic summands if ¢ is homogeneous (by Prop. ??). By construction,
q splits on the annihilator as

qlar = qlarna, ©qlarna, =00 q|a,

since g(A+ N Ay) = 0 and Ay © A+, An isomorphism between quadratic
functions q : A — Q/Z and ¢’ : A’ — Q/Z sends isometrically A+ onto A,
so the orthogonal summands are preserved. In particular it preserves each
nontame cyclic orthogonal summand of the decomposition. The statement
about uniqueness follows. |

DEFINITION 1.21. In the decomposition (5.13) of Prop. 5.28, the tame
quadratic function (A¢,q) is called the tamed quadratic function or the
tame part of (A, q). The quadratic function (Ayg, gnt) is called the absolute
nontame quadratic function or the absolute nontame part of (A, q). We shall
also say that a quadratic function is absolutely nontame or linear if it is an
orthogonal sum of nontame cyclic summands.

REMARK 1.14. The absolute nontame part of a quadratic function is linear.
However, a linear term may occur in a (nonorthogonal) decomposition of a
nontame quadratic form. For instance, the quadratic form on Z/47 defined
by

2z 2

x
q(w)zz+§=—zmod1

is tame. An absolute nontame quadratic function is an orthogonal sum of
linear summands.

COROLLARY 5.29. Two quadratic functions are isomorphic if and only if
their tame parts are isomorphic and their absolute nontame parts are iso-
morphic. In particular, the integers a];m are invariants of the isomorphism
class of the quadratic function.

5.5. Quadratic functions and associated linking pairings. The
set Quad(A) of all quadratic functions (including degenerate quadratic func-
tions) defined on A is an additive group for the operation defined by

(¢ +d) (@) = qlz) +d(z), z € A.
(This operation is not to be confused with the orthogonal sum.) The map
q — by defines a projection onto the additive group Link(A) of all linking
pairings defined on A. Note that Quad(A) contains as a subgroup the group
Quad®(A) of all homogeneous quadratic functions. These groups fit into the
following diagram with exact rows

(5.16) 0 —— Hom(A,Q/Z) —— Quad(A) —— Link(

J ]

A) —=0
0 — Hom(A, 17/7) — Quad®(A) — Link(A4) — 0.
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We shall use repeatedly the following basic result.
PROPOSITION 5.30. The following assertions are equivalent:

(1) A has odd order.

(2) Multiplication by 2 in A is an automorphism.
(3) The second row of (5.16) is split.

(4) The first row of (5.16) is split.

PROOF. (1) = (2): Since the finite homomorphism A — A,z — 2z
has trivial kernel, it must be an automorphism.

(2) = (3): The map s : Link(A) — Quad’(A), X — s()\) defined by

s\ (z) = %)\(:L",x), red

is a section.

(3) = (4): Any section Link(A) — Quad®(A) composed with the inclusion
Quad®(A) c Quad(A) is a section.

(4) = (1): Assume that A has even order. We show that there exists no
section for the first row of (5.16). Let 2 € A of order 2¥ with k maximal (i.e.,
the 2-valuation of the order of z is maximal among those of all elements of
A). Then z generates a direct summand {(x) of A, say A = (x)@® B. Let
A:Ax A— Q/Z be the (degenerate) linking pairing defined by

mn

ok mod 1, for m,ne€Z and A(z,B) = A\(B,B) = 0.

A(mz,nz) =
Since A is the orthogonal sum of a cyclic linking pairing and a trivial linking
pairing, the decomposition A = {(z) @ B is an orthogonal decomposition.
Suppose by contradiction that there does exist a section s : Link(A) —
Quad(A) splitting the first row (5.16). Then there exists h € Hom(A, Q/Z)
such that

s(A)=q+h

where
2

gim x +b) = % mod 1, for any me Z, be B.
But

0 =s(0) = s(2F X) = 2% s(\) = 2% + 2Fh.
Hence 2h = —2F¢ &+ 0 and 28*'h = —2F+1g = 0. It follows that h has
order 2+1 exactly. This contradicts that the 2-valuation of the order of z
is maximal. ]

In the remainder of this section, all quadratic functions are assumed to be
nondegenerate.

The set 90 of isomorphism classes of quadratic functions has a monoid
structure for the orthogonal sum. The set MMQ of isomorphism classes of
homogeneous quadratic functions is a submonoid of 9Q.
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The decomposition results for quadratic functions on a finite abelian group
parallel those for linking pairings. In particular, there are decompositions

mMA = PM,, M’ =Pma),
p p

where 9019, and ?J)T}Qg are the submonoids of quadratic functions and ho-
mogeneous quadratic functions on finite p-groups.

LEMMA 5.31. The map q — by induces a surjective monoid homomorphism
?))?Dg — ,‘Jﬁ; for any prime p. For p & 2, it is an isomorphism.

PRrOOF. The first statement follows from the remarks at the end of §77?.
The second statement follows from Prop. 5.30. |

5.6. Tensor product. The following construction of quadratic forms
will appear frequently in topological applications.

LEMMA 5.32. Let ¢ : A — Q/Z be a quadratic form and letb: L x L — 7 be
a symmetric bilinear pairing on a free abelian group L. There is a unique
quadratic form q®b on A® L determined by

(q®b)(z®y) = q(z)b(y,y), € A, ye L.

PROOF. Let {y;}; be a Z-basis for L. Then
(q®b)(z; ®y5) = Y a(a;)b(y;,y;) + Y balwj, )b(y;, y)-

J J<k
|

REMARK 1.15. The fact that ¢ is a quadratic form (i.e. is homogeneous) is
crucial to the fact that ¢ ® b is well-defined. This fact was overlooked in my
article [15, Lemma 1].

DEFINITION 1.22. The quadratic form ¢ ® b determined by Lemma 5.32 is
the tensor product of ¢ and b.

REMARK 1.16. The nondegeneracy is not preserved by tensor product: the
tensor product of a nondegenerate homogeneous quadratic function and a
nondegenerate bilinear lattice may be degenerate. For instance, consider
the tensor product of the nondegenerate quadratic form defined by ¢ : z —
2?/4 mod 1, r € Z/2 and the nondegenerate bilinear lattice defined by
b: (z,y) — 2xy, © € Z. It is the quadratic form ¢ ® b defined on Z/2Z =

7.)27.® 7 by
2

(¢ ®b)(x mod 2) = % mod 1.

Clearly ¢ ® b is degenerate, in fact nontame.



CHAPTER 2

The discriminant construction

Theee discriminant construction is a classical construction (that dates back
at least to Puppe and Burger) that measures the defect of unimodularity of
a lattice. The defect consists of a linking group. The construction has nice
properties: it is natural, surjective (any linking group can be realized in this
fashion) and preserves orthogonal sums. The behavior on tensor products
is more involved and is the main interest of this chapter, in view of the
reciprocity formula.

1. Lattices

A lattice is a finitely generated free abelian group.

DEFINITION 2.1. An e-symmetric bilinear lattice is an e- symmetric bilinear
form f:V xV — Z on a lattice V.

REMARK 2.1. We will use the short term e-lattice, or even lattice, if the
e-symmetric bilinear pairing is implicit.

A lattice V' generates over Q a vector space Vo = V ®Q. An e-lattice (V, f)
extends to an e-symmetric bilinear form fg : Vo ® Vg — Q. The form fy
is nonsingular if and only if f is nondegenerate. An e-lattice (V, f) is said
unimodular if f is nonsingular. The dual lattice is defined as

Vie{zeVy| folz,V) <z}

A subgroup of a lattice V is finitely generated and free abelian and is called
a sublattice of V. More generally, given a sublattice S € V, the dual lattice
is defined as
S*={xeVy| fo(z,S) c z}.

The map .]?Q . — fo(z,—) restricts to a map between S* and S* =
Homy(S,Z). This map is an isomorphism if f is nondegenerate. It follows
that S# = S for any sublattice S of V if and only if f is nondegenerate.
One observes that if S,T < V are sublattices, then

(1.1) SCT = TP c S (S+T) =5 nTh

A sublattice S € V' is primitive if the quotient group V /S is a lattice. Let
(V, f) be a bilinear lattice.

EXAMPLE 2.1. The annihilator Ker f € V is a primitive sublattice of V.
This is equivalent to

LEMMA 1.1. The quotient V =V /Ker f is a lattice.

41
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PROOF. Clearly V is finitely generated. Let [z] = z + Ker f eV such
that n [z] = 0. Then n z € Ker f. Thus

0=f(nz,V)=n f(z,V).

Since f(z,V) € Z and Z has no torsion, it follows that f(x,V) = 0. Hence
x € Ker f and [z] = 0. [ |

For a given sublattice S € V, there is smallest primitive sublattice Scv
containing S. This lattice is called the primitive hull of S. The primitive
hull of S has the same rank as S. The following observation is useful.

REMARK 2.2. An isomorphism ¢ : S — S’ between sublattices of V and V'
does not necessarily extend to an isomorphism @ : S — S between their
respective primitive hulls. For instance, take V =V’ = Z®Z, S =Z®0
and S’ = 2Z @ 0. Clearly the map x — 2z defines an isomorphism between
S and S’. However, this map does not extend to an isomorphism between
S=8=Zand §' =7

LEMMA 1.2. An isomorphism ¢ : S — S’ between primitive sublattices of V
extends to an automorphism of V.

PROOF. Since V/S is free, the short exact sequence
0-5—->V->V/S—-0
splits. Choose a section s: V /S — V so that the map
P S@V/S >V, (2,y) — (2,5())
is an isomorphism. Similarly there is a section s’ : V /S’ — V such that
Y (x,y) — (z,5(y)) is an isomorphism from S’ @ V/S" onto V.

Since S and S’ are isomorphic primitive sublattices, there is an isomorphism

g:V/S ~V/S of lattices.
Then ' o (f @ g) o1~ ! is an automorphism of V extending ¢. |

COROLLARY 1.3. An isomorphism ¢ : S — S’ between sublattices of V
extends to an automorphism of V' if and only if it extends to an isomorphism
S — 5" between their primitive hull.

PROOF. In one direction, use Lemma 1.2. For the converse, let ¢ : V —
V be the automorphism extending ¢. We have to show that $(5) = 3.
An element y lies in S if and only if there is some n € Z such that ny € S.
Let y € S such that = ny € S. We have o(x) = @(ny) = np(y) € 5.
Thus ¢(y) € S'. It follows that $3(S) = §. The reverse inclusion is proved
similarly using ¢~ |

Let G be a finitely generated abelian group. The quotient group FG =
G/Tors G is a lattice. Let S < FG be a lattice. A partial section s : S — G
(that is, a map s : S — F'G such that p o s|g = idg) does not necessarily
extend to a full section F'G — G.
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LEMMA 1.4. If S is primitive, then any partial section s : S — G extends to
a section s : S — G.

PROOF. Since V/S is free, the short exact sequence 0 — S — V —
V/S — 0 gives rise to an exact sequence

0 — Hom(V/S,G) — Hom(V, G) — Hom(S,G) — 0.

2. Discriminant e-linking pairings

An e-lattice (V, f) is unimodular if f is nonsingular. It follows from the
previous paragraph that (V, f) is unimodular if and only if V# = V. We are
interested in studying the failure of f to be unimodular. A natural invariant
is provided by the following

DEFINITION 2.2. To an e-lattice (V, f), one associates an e-linking pairing,
called the discriminant pairing, Ay : Gy x Gy — Q/Z by the formula:

(2.1) Gy = V4V, A([a]. ) = fole,y) mod L.

The discriminant pairing (G, Af) is symmetric (resp. antisymmetric, resp.
symplectic) if and only if (V, f) is symmetric (resp. antisymmetric, resp.
symplectic). The discriminant construction arises from a particular class of
free resolutions of length 1.

LEMMA 2.1. (Gy, Ay) is nonsingular if and only if (V, f) is nondegenerate.

A basic result asserts that almost any nondegenerate e-linking pairing can
be produced by this construction [97, Theorem (6)]:

THEOREM 2.2. The assignment (V, f) — (G, \f) is surjective onto the
monoid of nondegenerate symmetric (resp. symplectic) linking pairings on
finite abelian groups.

As an example, any unimodular lattice (VF = V) yields the trivial linking
pairing. Clearly the discriminant construction preserves (orthogonal) sum.
It follows from these two observations that the discriminant pairing is unaf-
fected by adding orthogonal summands of unimodular lattices. A converse
is known since the work of Puppe. To state it in our setting, it is convenient
to introduce some definitions about maps between lattices.

A bilinear lattice map between two bilinear lattices (V) f) and (W, g) is
amap a : V. — W such that g(a(z),a(y)) = f(z,y) for all z,y € V.
This is also denoted a*g = f in the sequel. If « is injective, then we say
that « is an embedding of bilinear lattices. If « is bijective, then « is an
isomorphism of bilinear lattices. Two bilinear lattices (V) f) and (W, g)
are stably equivalent if there exist unimodular bilinear lattices (U, h) and
(U', 1) such that (V, f)® (U, h) and (W, g)® (U’, h') are isomorphic bilinear
lattices. Any bilinear lattice map « extends in a unique fashion to a map
ag : Vg — Wy and thus restricts to a map V# — W# and therefore induces
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amap [a] : Gy = VE/V — WHW = G,. It follows that a stable equivalence
induces an isomorphism on the induced discriminant linking pairings. The
converse is also true:

THEOREM 2.3. Two nondegenerate linking pairings are isomorphic if and
only if they lift to stably isomorphic bilinear lattices.

For a proof, see e.g., [23].

Our goal consists in recovering the product of two linking pairings from the
discriminant of their lattices.

Let (V, f) and (W, g) be nondegenerate bilinear lattices. Set Z = V@ W
and define a (symmetric nondegenerate) bilinear pairing f®g: Z x Z —> Z
by

(f®9)(z®y, 2’ @y) = f(z,2') g(y,y/) forz,a’ eV, y,y' eW.
LEMMA 2.4. There is a natural isomorphism Vi@ W — Zt.

There are also natural inclusion maps VEQW — (V@ W)f and V@ Wt —
(V@ W)# (where the dual lattice of the target space refers to the bilinear
pairing f®g) which we shall use freely without further notice. In particular,
we verify directly the fact that

(2:2) (fo®g0)(VEQ W,V @WF) c 2.

More precisely:

LEMMA 2.5.

(2.3) (VEQWlF=VW! and (VOWH=ViQW.

The inclusion V@ Wt < (VE @ W)* is just the equality (2.2). The lemma
asserts that this is an equality.

ProoOF. It suffices to prove the first equality since one deduces the sec-
ond one by using the fact that Z# = Z (since f ® g is nondegenerate). The
desired equality will result from the following commutative diagram:

VW (Vti W)t
f@@ﬁ@i lf@Q
Homy(V*¥, Z) ® Homy (W, Z) == Homy (V¢ @ W, Z).

The top horizontal arrow is the natural inclusion. The vertical arrows are the
tensor product of adjoint maps and the adjoint map of the tensor product of
pairings respectively (and they can be identified once Vi ® Wy is identified
to (V® W)g). We claim that the vertical arrows are bijective maps. Since
the map adjoint to fo ® gg is bijective, it is sufficient to check that

(fo®Go)(V ® W#) = Homy(V¥, Z) ® Homy (W, Z)

and
fo®go(VE@W)F) = Homy (VE @ W, 7).
Both identities follow from the nondegeneracy of fg and gg. |
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We now consider the linking pairing
Afwg : Grgg * Grag = Q/Z.
The natural inclusion map V@ W — (V ® W)* induces a homomorphism
Jjr: Gr®@W — Gygg by
Jf (@ (mod V)®y) = z®y (mod 2)

where z € V¥ y € W. Similarly, define a homomorphism Jg 1 VG, — Ggyg
by

Jg(x®y(mod W)) = 2®y (mod 2)
where z € V,y e W

LEMMA 2.6. We have
Af®g Ojj(?z =Ar®yg
and
)\f®g Ojg®2 = f@ Ag.
The following observation is a consequence of f, g being nondegenerate.

LEMMA 2.7. The maps j; and j, are injective.

Set A ij(Gf®W) c Gf®g and B = jg(V®Gg) o= Gf®g.

LEMMA 2.8. The subgroups A and B are mutually orthogonal in G fgg: Al =
B.

Proor. Consequence of definitions and (2.3). n

Let H = A n At. We record the following consequence:

COROLLARY 2.9. A¢gq|mxr = 0.

Assume that f and g are both nondegenerate. We now describe H in more
details.

LEMMA 2.10. There are exact sequences

Jg

OH‘/@Gg Gf®g Gf@WﬂHO

and
Jr

0—=GrW ey Vi® G, —0.

PRrOOF. Let us identify Coker j:

f
. Gre z VA Vig Wt U
Cok - 9 _ _Z ~ ~ Vig— = ViQa,.
FEN T Ve, T vew T Vigw © Vigw O =V
The identification of Coker j, is similar. |

LEMMA 2.11. There is a natural isomorphism H* ~ Gy ® G, and a short
exact sequence

0—=H+ o Grgy—= G @Gy —0.
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PROOF. On the one hand, there is a short exact sequence
0— H' — Gygy — H* — 0.
On the other hand, H+ = (A n AL = A + AL, Thus
H* = Gjge/(A + AL).

There remains to see that the latter group is isomorphic to Gy ® G4. There
is a natural epimorphism

Grog — Gy ® Gy
Indeed, this map can be defined in two ways
p2oPp1 =q0q1

as the following commutative diagram with exact rows and columns indi-
cates:

0 0

V®G, VR®G,—>0
0—= G QW —— Gy ——=VI®Gy —=0
0—=G W —G W 2> G, 06, —0

0 0
It follows that the kernel of the epimorphism is
Ker(pzopr) = pi* (jg(V®Gy)) = 5 (Gr@W)+jy(VRG,) = 41 ' (1 (G;®W)) = Ker(gz0q1).
Thus the quotient map
(2.4) Vi Grgg/(A+AT) S Gr®G,

is an isomorphism. |

Remark. The isomorphism between Gy ® G4 and H * is the composition

! 1y ! *
GrR®Gy = Gygy/(A+ A7) = HY,
where the isomorphism on the right is
l:zmod (VW) — Agg(x, —)|H.
Here is an alternative argument to show that Gy ® Gy and Gyg,/(A + A1)
are isomorphic. Define a natural map
G ®Gy — Grgg/(A+ A%)

by
( mod V) ® (y mod W) — [(z®y) mod (VR W)]
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where [—] denotes the element in Gjg, considered modulo A + A+, It
follows also from A = Im j; and At = Im Jjg that this map is injective.
(Suppose that u € Gy ® G, is sent to 0 € Gg,/(A + AL). Then the image
of u is represented by a sum of elements in A + A+. Since A = Im j 7 and
At =Tm jg, all these elements are of the form (z ® y) mod (V ® W) where
either x € V or y € W. Therefore u = 0 € Gy®G,.) Surjectivity also follows
from the definitions. It is easily seen to be 1~

LEMMA 2.12. The map j: Gy @ W — Gjgq restricts to an isomorphism

Hliae : Kery ©9) > 1.

Similarly, the map j, : W & Gy — Grgy restricts to an isomorphism

jg|KeI‘(f®X;) :Ker(f® M) 5 H.

Proor. We prove the first isomorphism — the second one is similar.
Since j; is injective, it suffices to prove that jf(Ker(A\f ®9)) = H.

First jf(Ker(X; ®9)) < jr(Gr@W) = A. Next, let u € Ker(X} ® g) and
Jr(v) € A. We have
Areg(if(w),jf(v)) = Apgg © jy(u,v) = (Af ® g)(u,v) = 0.
Hence j f(Ker(X} ®¢)) and A are orthogonal, that is,
jr(Ker(\; ®3)) < A%
Therefore,
jr(Ker(\; ®9)) € An AT = H.

Conversely, let j¢(z) = jg(y) € An AL = H. Let z € Gy ®@W. Then

(Ar ®9)(x, 2) = Aog(ir(x),5(2)) = Asog) (g (y), Jf(2)) = 0.

(The first equality results from Lemma 2.6 and the third one from Lemma

2.8.) This proves that z € Ker(X} ® g). Hence H < jf(Ker(X; ®9)). This
achieves the proof. |

Remark. The following diagram with exact rows and columns is commuta-
tive:

Ker(f @ idw) = Ker(A; @ idy+) Ker(f ®idg, )
r r Q
| I |
\ Y \
VoWwWe—m7 M7 - VW* VG,
V*Q®

W= V*QW* V*®Gy
‘ |

\

\

! N !
Coker(f ® idy )~ Coker(\; ® idy* ) —= Coker(f ®idg,)
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According to the “snake lemma”, there is a Bockstein map

B Ker(f@idgg) — Coker(f@idw)
connecting Athe exact sequence made of the maps of the first and the last row.
Since Ker(Af ® idy+) = 0, the Bockstein map 3 is injective. Hence there is
an exact sequence 0 — Ker( f@id@g) — Coker(f®idy) — Coker(X F®idyy+).
Since G ® W = Coker( f ®idy ),  induces an isomorphism

B Ker(f ®Xg) = Ker(f ®idg,) — Ker(idg, ® §) = Ker(A; ® 9).

It follows from definitions that

> 1 .
6 :‘]f ’Hojg’Ker(f(@ing)'
3. Tensor product of linkings

The previous section described (Lemma 2.11) an isomorphism G QG4 — H*
that splits as the composition of two isomorphisms. The bilinear pairing
G/H* x H — Q/Z defined by

l([l’],y) = Af@y(x’y>7 T € G7y € H7
is nonsingular, so its left adjoint is an isomorphism G/H* ~ H*. The second
isomorphism is the map v : Ggqe/H L@ + ® Gy induced by the quotient
map Grgy — Gy ® Gy. The composition [ o L Gr®Gy — H* is an
isomorphism. In this section we relate [ : G/H* x H — Q/Z to the tensor
product of discriminant linkings Ay ® A4 (defined in §2).
We first define a map

Vi@ Wy

VIQW +V @ Wt

Vix W —
by the assignment
w
m:(gw)— €@,
where n is the smallest nonnegative integer such that n £ e V.

LEMMA 3.1. This map induces a homomorphism m : Gy @ W — K.

PROOF. We show that m is Z-bilinear. Note that any element ¢ € V* can
be written as £ = % where ¢’ € V and n € Z. We further require & to be
indivisible: & ¢ k V for all kK > 1. This condition is equivalent to n being
the smallest nonnegative integer such that n £ € V. We have

(e) =55
m|l=—w)]=|——].
n n

It follows that

/ ! /
m <§,w —i—w/) =m <§,w> +m <§,w’) )
n n n
We now verify linearity on the left: let ¢ € V* that we write as ¢ = % where

¢ € V is indivisible. Write
n=*k-n', p==k-p, with k = ged(n,p).
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Then
¢ ¢ N_ (PE€ ¢ N\ _[WE+n)@u
m<n+p’w -m n’p’k+n/p’k’w 1 n'p'k
__p/€/®w n/CI®w
- I n'p'k n'p'k
_ ‘»:'@w] N {c’m:]
n p

=m<€/,w> +m<</,w>.
n p

(We used in the second equality the fact that n’ and p’ are coprime, so
that p’ ¢ + n' ¢’ is again indivisible in V.) Therefore m induces a group
homomorphism (still denoted m) V!@W — K. It follows from the definition
that VW < Ker(m). Hence m induces a homomorphism Gy@W — K. R

LEMMA 3.2. Ker(s\f@)@) = Ker(idg,®g) is generated by all elements r@w €
Gy ®W such that g(w) e nW* and n x =0 for some n € Z.

PROOF. The subgroup identifies to Tory(Gf, Gy). In particular, it de-
pends only on Gy and Gg4. The result is clear if Gy is a finite cyclic group.
In the general case, G is a sum of finite cyclic groups and we use the fact

that Tor] (A ® B, G,) ~ Tor{(A, Gy) @ Tor}(B,Gy). [ |
LEMMA 3.3. The map m : Gy @ W — K restricts to a map m|Ker(ide®§)
whose image lies in G gy/H* = %

PROOF. Let [{] ® w be a generator of Ker(idg, ® g) as in Lemma 3.2:
there is n € Z such that g(w) e n W* and n { € V. Thus go(3) = %ﬁ@(w) €
W*, that is I € W, Hence £ ® S Vi@ Wt and

w Vi W N
m(lel@w) = |60 | ¢ et e = Cred/H -
|
Set M, = /j’/f = m|Ker(ide®§)'
LEMMA 3.4. The map i is an isomorphism
Vi@ W?

. o~ J__
Ker(ide, ®9) = Grao/H™ = 15 oy s v ot

PROOF. The two groups are finite and isomorphic (Lemma 2.11 and
Lemma 2.12). Hence it suffices to prove that u’ is onto. Choose orthogonal
bases e = (e1,...,ep) and € = (g1, ...,¢&p) for (Vi, fo) and (Wy, gg) respec-
tively, so that there exist a;,b; € Z — {0} (1 < i < n, 1 < j < p), such

that
1 1
Vi=@ —Ze, W=P—Ze,.
i i j b
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We have
VEeW +Ve Wt =@ “z+ 2 (ei®ej) =P : (ei ®ej)
7] a; bj J i lcm(ai,bj) J
Therefore
Vi Wt D all Z(e; ®¢€j)
ViQW + Ve WE i - —@ Cda b)Z/Z[ei@)gj]_
Dij Temparpy Llei ® €5) ged(aj,

Now we verify the identity:

¥[ ®¢;] = €i ® €j (& Qe
ged(ai, bj) el = ged(ai, by) — ged(ai, b)) ks ged(ai, bj) 7]

We define an isomorphism spf : H — Ggqe/H 1 as the composition
1

J o~ M
vp = iy oj;1|H : H#Ker(idgf ®9) —f>G/HJ—.

There is a similar isomorphism v, : H — G g,/H" defined as the composi-
tion
—1 R v
Vg = Hy ojg_1|H : HLKer(f(@idgg) —~G/H*.
It follows from definitions that
Vi = Ug.

Recall the isomorphism ¢ : G/H+ — G t ® G4 we defined in the previous
paragraph. We are now ready to define an isomorphism p: H — Gy ® G
as the composition

w=1vou.

THEOREM 3.5. For all x € Gf®g/Hi,y €H,

Wz,y) = (Ar @ Ag) (), ¥ o v(y)) = (Af ® Ag) (¥(), u(y))-

PROOF. Let z = [£], 2/ = [¢]1 € Gy = V¥ /Vand y =[], ¥ = [(] €
G, = W#/W. We have to show the equality [(¥ 1 (z ®y),p 1 (z' ®y')) =
Ar®A)(z®y, ¢’ ®y'). We have v (z®y) = [[€®(]] = [€®(] mod H*.

With no loss of generality, we may assume that 2’ generates a cyclic (direct)
summand of Gy of order n. Hence we may assume that 2/ ®y’ = 2’ ®y"” with
y" = [¢"] of order dividing n. Thus p~ ' (2/®y) = u(@'®y") = jr(a'@n(") =
[¢' ®nc"].
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We compute
[ z@y), 1 (@ ®y)) = ([[E® ][ ®n"])
= Aeg([§® ], [€ ®@n"])
= (fe®90)(§ ®(, & ®nc”) mod 1
= fo(&€) - 90(¢,n¢") mod 1
= Ap(@,2) - go(¢n(”) -
T

On the other hand, using again the fact that
(ﬁ modl)@(b mod1> :g-bmodlza—bmodl
n n n n

in 17/2Q® 17/7 = 17/7, we see that
()\f ® )\9)('% ® Y, wl ® y/) = )‘f ($, xl) ®)‘g(y7 y/)
—_—  ——
elz/z elz/z
= Ap(z,2") ® (g0(¢, ¢") mod 1)
= )‘f(xv 1‘/) "n gQ(C: CN)
= )\f(l’, x/) ’ gQ(C? néﬂ)'
This finishes the proof. |
COROLLARY 3.6. The isomorphism class of | : G/H* x H — Q/Z does not

depend on the particular presentations (V, f) and (W, g) and depends only
on the linking pairings (Gf,Af) and (Gg, \g) respectively.

4. Wu classes and quadratic functions

We keep notations from the previous paragraph. We extend the discriminant
construction to lattices endowed with a special element called a Wu class.

DEFINITION 2.3. A Wu class v e V¥ is any element v € V¥ such that
f(z,z) — folx,v) €2Z, forallzeV.

A Wu class is integral if it lies in V. A bilinear lattice (V, f) is said to be
even if 0 € Wu(f).

LEMMA 4.1. Any bilinear lattice (V, f) has an integral Wu class.

PROOF. The map = — f(z,2) mod 2 is a homomorphism. Assume
that the discriminant of f is odd. Then f induces a nonsingular symmetric
bilinear pairing on W = V/2V by f(z + 2V,y + 2V) = f(z,y) mod 2.
Hence there exists [v] € V/2V such that f([z],[v]) = f([z],[z]). Lift [v]
to some representative v € V. Then v is a Wu class for (V, f). Suppose
the discriminant of f is even. Then f has discriminant 0 and its annihilator
A = {[z] e W | f([x], W) = 0} is nonzero. Then f induces a nondegenerate,
and hence nonsingular, linking pairing on f’ : W/A x W/A — Fs. The
previous argument yields a [v] € W /A such that f'([z],[v]) = f'([z], [z])
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for all [z] € W/A. Lifting [v] to a representative v € V yields an integral
Wu class. n

The set Wu(f) of Wu classes is freely and transitively acted on by V. The
action is given by the formula
z-s=2+2s, zeWu(f), se V.

This action restricts to an action of V on the set Wu" (f) of integral Wu
classes.

LEMMA 4.2. The map
Wu(f) x Wu(g) - Wu(f&yg), (v,w) »v+w
is an affine isomorphism over the isomorphism
Viawt - (Ve w)h

DEFINITION 2.4. To a bilinear lattice (V, f,v) equipped with a Wu class,

one associates a quadratic function ¢y, : Gy — Q/Z over the linking pairing
Ar by

(4.1) ero(T+V) == (fo(z,2) — folz,v)) mod 1, ze V™

DO | =

This quadratic function is the discriminant quadratic function.

The following two properties are immediate from the definition.

LEMMA 4.3. The discriminant quadratic function @y, is homogeneous if and
only if v is an integral Wu class.

This property has a particular importance for the algebraic description of
spin and spin®-structures on closed 3-manifolds.

LEMMA 4.4. If (V, f) is nondegenerate, then ¢y, is nondegenerate.

REMARK 2.3. A direct computation yields

(4.2) Cfvt2s = gof,v—xf([s]), ve Wu(f), se VE

LEMMA 4.5. The discriminant construction preserves orthogonal sums:

Progutw = Lo O Pgw,
for lattices f,g and Wu classes v e Wu(f), w e Wu(g).

We now state two basic results in the theory of discriminant quadratic func-
tions.

THEOREM 4.6. The assignment (V, f,v) — (G, pyv) is surjective onto the
monoid of quadratic functions on finite abelian groups. When restricted to
even lattices, the assignement is surjective onto the monoid of homogeneous
quadratic functions on finite abelian groups.
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The equivalence relation on bilinear lattices can be extended to bilinear
lattices equipped with Wu classes as follows. Say that (V, f,v) and (W, g, w)
are strongly stably equivalent if there exist unimodular lattices (U, h,u) and
(U', W, ) equipped with Wu classes u € Wu(h) and u’ € Wu(h') respectively
and an isomorphism ¢ : U®V — U’ @ W such that (W' @ g)(v(x),¥(y)) =
(h® f)(z,y) for all z,y e UDV and ¢g(u®v) € v @w +2(U' @ W). The
relation is an equivalence relation. It is verified that two strongly stably
equivalent triples (V, f,v) and (W, g, w) give rise to isomorphic discriminant
quadratic functions. A fundamental result consists in the converse.

THEOREM 4.7. [19, Prop. 3.1] Two nondegenerate quadratic functions on
finite abelian groups are isomorphic if and only if they can be lifted to strongly
stably equivalent bilinear lattices equipped with Wu classes.

Consider the lattice Z equipped with the unimodular form +1, sending (1, 1)
to £1, and the integral Wu class 1 € Z. It is shown in [19, Cor. 3.5] that the
strong stabilization in Th. 4.6 can be realized using only these unimodular
lattices.

5. Tensor products and half-integral Wu classes

Let (V, f) and (W, g) be two nondegenerate bilinear lattices.

LEMMA 5.1. There is an injective map

Wu(f) x Wu(g) = Wu(f®y9), (v,w) —vQuw.

PROOF. Let v € Wu(f),w e Wu(g). For any x € V,y e W,
(f®9)(zQy,z®y) - (f®Y(vOW,zQY)
= f(@,2)9(y,y) — f(v,2)g(w,y)

= (J.2) = 1(0.2) g.9) + fol,) (900.) ~ g0l1)

= 0 mod 2 ez €z = 0 mod 2

0 mod 2.

>

LEMMA 5.2. The group VEQW +V @ Wt acts freely on Wu(f ® g).

PROOF. The group VIQW +V@Whis a subgroup of the group ViQWwt
acting freely on Wu(f ® g). |

This action is not transitive in general since the inclusion VIQW + VWt <
Vi ® W is proper in general. Indeed, there is equality if and only if

VEQW n VW =VIQW n (VFQW)F=VQW.
It will be convenient for our purpose to consider the action of a slightly

bigger subgroup (cf. Cor. 1.15). First we describe a special subset of Wu
classes. Consider the set S of Wu classes of the form v®w where v € Wuv( 1)
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or w e Wu" (g) (i.e, at least one of the Wu classes v or w has to be integral).
Consider first the difference A = v@w — v’ @’ of two elements in S. Then

QW —vRuw = 1Qu-—-vQu +tvuw —vQuw
= 1@ (w—w)+(v—12)Qw
= 0mod 2(VW*! +ViQW).

This suggests the following definition. Let
1
7' = 5(vﬂ®w+ VWHn (Vi Wh.

Observe that 27/ = VEQW + V @ WE.

DEFINITION 2.5. The set Wul/Q(f®g) of half-integral Wu classes consists of
all z € Wu(f®yg) such that there exist s € S and ¢t € Z’ such that z = s+ 2t.

This is a subset of Wu(f ® g). Consider a similar definition.

DEFINITION 2.6. The set Wu(l)/2(f ® g) of special half-integral Wu classes
consists of all z € Wu(f ® g) such that there exist s € S and t € 27’ such
that z = s + 2t.

This is a subset of Wu'/2(f ® g). What we have proved is the following

LEMMA 5.3. The group Z' (resp. 2Z') acts freely and transitively on Wu1/2(f®
1/2
9), resp. Wug*(f ®g), by

c-t=x+2t, xeWu(f®yg), te Z (resp. t € 22')
and

Wy (f ® g) € Wall(f ® 9) € Wu(f @ g).

As observed above the inclusions are strict in general.

Remark. Tt follows from Lemma 5.3 that for any half-integral (resp. special
half-integral) Wu class z, there exist a pair (v,w) € Wu" (f) x Wu"V(g) of
integral Wu classes such that

2z =v®w + 2t, for some unique t € Z'(resp. t € 27).

The main motivation for introducing the set of half-integral Wu class lies in
Theorem 6.6 and Corollary 1.15.

6. The discriminant and the characteristic homomorphism

We keep notation from the previous paragraph. The next lemma is mostly
a reminder of the definitions.

LEMMA 6.1. The image of VI @ W under the canonical projection Z* —
Greg = 2°/Z is A.
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As a consequence, we have

VIQW A (Vﬁ@)W)ﬁ:V@W — AnAt=o.

Let z € Z® Q be a Wu class for (Z, f ® g). The discriminant (eq. (4.1)) of
(Z, f ® g, z) produces a nondegenerate quadratic function gy . : G gy —
Q/Z where G gy = Z%/ 7.

Recall that the subgroup H in Gjg, consists in the intersection of A =
if(Gr @ W) and At = j,(V ® G,). Note that H is also the image of
VEQW n V®W?! under the canonical projection Z# — G f®g-

LEMMA 6.2. ¢fgq,:|H is a homomorphism H — Q/Z.

ProoF. By Lemma 2.9, the associated linking pairing A g, vanishes on
H x H. |

According to [19, Th. 2.10], there is an affine isomorphism
Wu(f®g)

27
over the group isomorphism

— Quad(Afgg), [2] = ¢reg.-

Grog — G;@g? [s] = =Aseq([s], —).
Here Gygy = Z %/Z acts freely and transitively on w by the formula
[2] [s] = [z +2s], zeWu(f®g), seZ

and Gg, acts freely and transitively on Quad()sgg) by the usual formula
(5.2). The isomorphism is affine in the sense that

(6.1) Prog.z [5] = Or@g ) [-s] = Prege-2s
for any s € Z*.

LEMMA 6.3. The group Gg,/(A + AL) acts freely and transitively on the
Wu(f ®g)
(VIQW + VW)’

quotient set 5

We now investigate the dependency of the homomorphism of Lemma 6.2
on the Wu class. Recall that Grg,/(A + A1) = Gge/H* acts freely and
transitively on H* = Homy(H,Q/Z) by the formula

[z] o= a+ A\gy(z,—), x€Grgy, a€ H.
LEMMA 6.4. The affine map
Wu(f ® g) — Homgz(H,Q/Z), z — ¢y,

induces an affine isomorphism

Wu(f® g)
2VEQW + VWi

H

— H*

over the isomorphism

Gieg/H — H*, [2] > =N jgy(z, —)|H.
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PRrOOF. To prove that the map is well-defined, it suffices to verify that
g0f®g,z+2[k]\H = Yr@q,:|H for k e (Vﬁ ”_W)+ (V® Wﬁ). This amounts to
verifying that for z € (VEQ W) n (V@ W),

(fo ® go) (K, x) € Z.
This follows by Lemma 2.5.

As noted before, the group Gtgy/H L acts freely and transitively on both
Wu(f®g)
VIQW + VW)

for any z € Z%, z e Wu(f ® g),

sets 5 and H*. Let us verify that the induced map is affine:

Cr@gzalH = Pregzt2elH = Oreg:lH — Aeg([z], =)o = Y1090 - [2]-

We conclude by using the fact that G ygy/H L acts freely and transitively on
both sets.

To sum up the results so far, we proved that the following diagram is com-
mutative:

PrRg,—
e & Quad()/gy)
i resH(—)
Wu(f®g) res (¢ f@g, ) 7
2(VEQW +VRWHE) ~

Here the downward left arrow is the natural epimorphism induced by the
inclusion Z c VEQW + V@ W and resy denotes the restriction to the
subgroup H.

COROLLARY 6.5. The quotient set
Wu(f®g)
2VEQW +V @ W)

has the structure of an Abelian group isomorphic to Gy @ Gg. In particular,
the zero element is the unique class [z] such that @ tgg .|H = 0.

Remark. The quotient set

Wuy*(f ®g)
2(Vﬂ®W+ V®Wﬁ)

is a singleton (that may or may not coincide with the class [z] such that
Y tq,:|/H = 0). In other words, under the affine map of Lemma 6.4, all special
half-integral Wu classes correspond to the same element in H*. Furthermore,

this element has order at most 2 since 2Wu[1)/2(f®g) C2VEQW +VRWH).

THEOREM 6.6. Let z € Wu(l)/Q(f ®g). The map @rgg:|H has order at most

2 in H* and depends only on Ay and A,.
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DEFINITION 2.7. We call this map the characteristic homomorphism asso-
ciated to (G, M) and (Gy, Ag).

The subgroup generated by ¢fgg..|r in H* therefore only depends on Af
and Ag4.

DEFINITION 2.8. We call this subgroup the characteristic subgroup associ-
ated to Ay and A,.

The characteristic subgroup is either trivial or has order 2.

COROLLARY 6.7. If Gy ®Gy has odd order, then the characteristic subgroup
is trivial.

Proor. By Lemma 2.11, H* has odd order; so has any subgroup of H*,
in particular the characteristic subgroup. By Th. 6.6, it must have order
dividing 2, hence it is trivial. |

A proof of Th. 6.6 relying on structural properties of the discriminant (§77)
is given in §8. Alternatively, an explicit expression for the characteristic
map @ ¢gg,:|H is derived in §10. (However, the proof relies partially on Th.
6.6.)

7. More on the discriminant

This paragraph is devoted to properties of the discriminant. They are used
to prove Th. 6.6 in the next paragraph.

We begin with the following observations. There is the natural right action
of the group Aut(V) of automorphisms of V' on the set of nondegenerate
symmetric bilinear pairings on V:

fra=a*f=fo(a®?), aeAut(V).

Similarly, for a finite abelian group G, the group Aut(G) of automorphisms
of G acts on the set Quad(G) of quadratic functions on G by the formula

q-B=p%¢=qopB, qe Quad(G), B € Aut(G).

There is also an action of Aut(G) on the set of all linking pairings on G by
a similar formula.

Let O(f) denote the automorphism group of f, that is, the isotropy sub-
group of Aut(V') consisting of automorphisms fixing f. Let O(Af) denote
the automorphism group of Ay, that is the isotropy subgroup of Aut(Gy)
consisting of automorphisms fixing Ay. Then O(Ay) acts on the set of qua-
dratic functions over Ay, Quad(Ay) < Quad(Gy), by the same formula as
above. Recall that any automorphism « of V' (resp. fixing f) induces an
automorphism [o] of Gy (resp. fixing Ay). Hence the assignment

a— [a]
yields natural maps
Aut(V) — Aut(Gy), O(f) — O(Ay)
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making the following diagram commutative

O(f) ——=0(%y)

| |
Aut(V) —— Aut(Gy)
where the vertical arrows are canonical inclusions.

LEMMA 7.1. For any o € Aut(V),
ve Wu(f) <= ag've Wu(a*f).

PRrOOF. Direct computation. |

Consider now the set Ly, (V) of all pairs (f,v) where f: V xV — Z is a
lattice pairing as before and v € Wu(f). As a consequence of Lemma 7.1,
the group Aut(V) acts on Lyy (V') by the formula:

(7.1) (f,v) a=(a*f, o@lv).

In particular, O(f) acts on Wu(f). Let O(fgp) denote the automorphism
group of fg. There is a restriction map on O(fg) defined by a +— alyy(s)-
Denote by O(Wu(f)) the image. The action of O(f) on Wu(f) yields a map

O(f) = O(Wu(f)).

For (f,v) € Lwu(V), let O(f,v) denote the isotropy subgroup of Aut(V)
consisting of automorphisms fixing (f,v) under the action (7.1). Observe
that there are natural embeddings

O(f,v) = O(f), Olpsw) = O(Xf)

fitting in the commutative diagram

O(f,v) —= O(pf.0)

L

O(f) ——=0(y)

Finally denote by Aut(Lwy(V)) the symmetric group over the set Ly (V),
by Aut(Quad(Af)) the symmetric group over the set Quad(Ay) and by
Aut(Quad(Gy)) the symmetric group over the set Quad(Gy).

There are natural maps between the various automorphism groups described
above. The canonical inclusions

Wu(f) = Lwa(V), v (f,v), Quad(As) € Quad(Gy)
induce maps

O(Wu(/)) — Aut(Lwa(V)), Aut(Quad(As)) — Aut(Quad(Gy))

respectively.
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THEOREM 7.2. Let G be a finite abelian group. There exists a lattice V' such
that the formula

Cfw = Q(fo)ar  (f0) € Lwa(V), ae Aut(V)
defines an action of Aut(V) on Quad(G).

PROOF. According to [71], there is a lattice V' such that the map
LWu(V) - Quad(G)’ (fa U) = Pfo

is surjective. The point that requires to be proved is that the formula for
the action is independent of the particular choice (f,v) over ¢ = ¢y,,.

Let f,g: V xV — Z be two bilinear lattices equipped with a Wu classe
v € Wu(f) and w € Wu(g) respectively. Assume that both discriminant
quadratic functions ¢y, and ¢4, lie in Quad(G). Let ¥ € Aut(G). We say
that (f,v) and (g, w) are strongly stably equivalent over 1), denoted

(fav) ;Z (ng)7

if there is a strong stable equivalence between (f, v) and (g, w) that is realized
by a lattice automorphism inducing the automorphism ¢ : G — G. (See
§?? and Th. 4.7.)

PROPOSITION 7.3. With the notation above: V*@g . = wr, if and only if
(f,U) ;Z (g?w)

A proof is easily derived from [19, Prop. 3.1].

LEMMA 7.4. For three symmetric bilinear pairings on a lattice V equipped
with Wu classes: (f,v) ~ (f',0'), (f,0) ~ (f",0") = (f,0) ~

L ¥ Y Yoy
(f",0").

PROOF. Direct computation or consequence of Prop. 7.3. |

Let K be a subgroup of Aut(G). We say that two quadratic functions
q,¢ : G —> Q/Z are K-isomorphic (written ¢ P q') if there exists ¢ € K

such that 9*¢’ = ¢. Similarly, for two bilinear lattices f,g : V xV — Z
equipped with Wu classes v, v’ respectively, we say that (f,v) and (g,v)
are K-isomorphic (written (f,v) e (g,v")) if there exists ¢ € K such that

(f,v) » (9,v"). An immediate consequence of Th. 4.7 is the following

observation.
LEMMA 7.5. Let K be a subgroup of Aut(G). We have
Pfo l? Pgo' (fav) IN( (.ga'U,)'
Recall that Aut(V) acts on Quad(V*#/V) via the natural map Aut(V) —

Aut(V*#/V). The next observation is a sufficient condition for the equivalence
relation pe to be compatible with the action of Aut(V).



60 2. THE DISCRIMINANT CONSTRUCTION

LEMMA 7.6. Let q,¢' : G — Q/Z be two quadratic functions on G and let

K < Aut(G) be a normal subgroup in Aut(G). Then g P J = q-« e

q -« for any a € Aut(V).

PROOF. Suppose ¢ P q': there exists ¢ € K such that ¢’ o1 = ¢. Since
K is normal in Aut(G), ' =aloyoae K and (¢ -a)oy/ =qoa. W

End of proof of Theorem 7.2. Let K < Aut(G). Applying Lemmas 7.5 and
7.6, we have

(fa U) ; (ng) = (fav) CQ IN(. (Q,W) O == P(fo)a Y Plgw)a

K

for any a € Aut(V). The result follows by taking K = {idg}. [ |

Remark. The proof above shows that Theorem 7.2 generalizes as follows.

THEOREM 7.7. Let G be a finite abelian group and let K < Aut(G). There
exists a lattice V' such that the formula

Ofw Q= Q(fo)yar  ([,v) € Lwu(V), ae Aut(V)

induces an action of Aut(V') on the equivalence classes in Quad(G) for the
relation P

Theorem 7.2 is the case when K is trivial and equivalence classes are sin-
gletons. The other extreme case is when K = Aut(G) and the equivalence
classes consist of isomorphic quadratic functions on G. There are other non-
trivial intermediate cases since the automorphism group of a finite abelian
group is nonsimple in general [78]. As an example, the automorphism group
of Z/3 x Z/3 is GL2(Z/3): both the subgroup SLa(Z/3) of matrices of deter-
minant 1 and the subgroup of diagonal 2 x 2 matrices with coefficients in
{£1} are normal.

Since the map
Wu(f) = Quad(Ay), 2 — ¢y,

is surjective, the action of Aut(Lwy(V)) on Quad(Gy) restricts to an action
of O(Wu(f)) on Quad(As) defined by

Oz Q= Qfo1, ZE Wu(f), ae O(Wu(f)).

Compeatibility of the various actions is expressed by the commutative dia-
gram
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Aut(V) Aut(Lwy,(V))

Aut(Gy) Aut(Quad(Gy))

O(\f) Aut(Quad(Ay))

To verify that the cube is indeed commutative, the main point consists in
verifying that for a € O(f),

Pfz© [a] = Parfalz = P(f2)a = Pfz &

which follows from our discussion above. In particular, there is an isomor-
phism

gpfzz Q= ()Of,Z'

Next, we consider the tensor product f ® g. The group Aut(V) acts on
Ly (V ® W) via the natural map

Aut(V) = Aut(VO W), a— (a® ly).
Explicitly, the action is given by
(k,2)-a=((a®1lw)*k (a®@1y) 12), (k 2)e Lwa(VOW), ac Aut(V).
It follows that Aut(V') acts on Quad(Gy).

Similarly, there is a natural inclusion map

O(f) ~ 0(f®g), a—a® lw.
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It follows that O(f) acts on O(Wu(f ® g)) and on O(Asg,). Finally, the
composition

—-®1 1
G 2L G oW =Gy,

enables to define an action of Aut(G¢) on Quad(Gyggy). This action restricts
to an action of O(Ay) on Quad(Agg).

The cube above is still commutative if we replace f by f®g in all occurrences
of f in the right face.

We note that Aut(V') also acts on the set of subgroups of G yg, via the map
Aut(V) — Aut(V ® W). Explicitly,

K- o= [a@ 1w]71(K)7 o€ Aut(V), Kc Gf@g,

where [a ® 1] denotes the automorphism on Gyg, induced by the map
a® ly € Aut(V ® W). (The action is a right action so as to be consistent
with the previous actions.)

LEMMA 7.8. The subgroup H = js(Gy@W) N js(V®Gy) introduced in §77
is invariant under the action of Aut(V').
PROOF. Let v € Aut(V). Let
[z@w] = js([z] @w) € jr (G @W),
with z € V¥, w e W. We have
[0 ® Ly][z @ w] = [agz ® ] = j;([agz] ® w) € j5(Gr @ W),

Hence j¢(Gy ® W) is invariant under . A similar argument shows that
Jg(V ® Gy) is invariant under a. The lemma follows. |

8. Proof of Theorem 6.6

We already know that ¢rgg .|m has order at most 2 for z € Wu(l)/ 2( f®g)

and that it is independent of the particular choice of z € Wu(l)/ 2( f®g). For
a fixed bilinear lattice g, we shall prove that ¢ g, .|m only depends on Af.
(The argument is completely symmetric in g.)

First step: action of Aut(V') and O(f) on the homomorphism ¢rg, .|#-

Recall the (right) action of Aut(V') on Quad(Gy) and on subgroups of Gy.
Let o € Aut(V) act on ¢rgg. and H. We have

(Preg. - Mo = (¢reg, - )|H,
according to Lemma 7.8. Thus if a € O(f), then

Pi@g.e " AlHa = PfggealH-
Second step: if z € Wué/2(f ® g) then @fgg..|m is invariant under O(f).

The subset Wu[l)/ 2( f®g) is invariant under the action of O(f) on Wu(f®g).
The claim follows.

Third step: stabilization of f.
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Let (U, u) be an unimodular lattice. We show that replacing f by f@wu does
not affect the homomorphism ¢ g - |H-

First, Af@u = )\f@)\u = )\f ®0 = )\f and A(f@u)@g = Af@g@)\u(@g' Next,
the monomorphism jtg, : Gy @ W — Grgy ® Gugy factors through the
monomorphism j¢ : Gy ® W — G g, and the canonical inclusion Gygy —
Greg @ Gugy sending € G gy to (x,0). In particular, the images of j gy
and j coincide and are contained in Grgy @ 0 S Grgy ® Gugy. Denote
by H' the new subgroup when f is replaced by f @ w. It follows that
H' € Ggg®0 S Grgy®Gugy and is equal to H once G g, @0 is identified
to Gygg. Let 2’ be an arbitrary Wu class of (f®u)®g = (f®9)® (u®g)
such that its restriction on V® W is z. Then

90(f®ﬂ)®972’|H’ = P(fe9)d(u®g),z' |H' = 90f®gvz|H ®0.

Therefore, we have proved that g, .| is invariant under O(f) and stabi-
lization of f by unimodular lattices. It follows from [?] (see also [71] [23])
that ¢ gy -|mr only depends on Ay as claimed. o

9. Remarks and useful formulas

Another proof of Theorem 6.6 results from the following observations. First,
for all ve Wu" (f), P Rg00w O Jf = Pro @ g

and similarly
for all w e Wu" (g), P @g,00w © Jg = f @ Pgw-

Second, let z € Wu'/2(f ® g) written as z = v @ w + 25 with v € Wu"' (f) or
we Wu"(g), and s e VEQ W + V @ W Then

PfRg,z Ojg|jg—1H = f®§0g,w|j;1H = Pfo ®g|];1H = Pf®g,z O]f|J;1H

A slightly more explicit expression is given by the formula:
(9.1) Pregueuw—2t°Jf = Pre®g+ (Ar ®go)([t])lc,ew,

where v € Wu" (f), t € VE®@ W, [t] € Gy ® W Here the map (Xf ®
90)([t])|c;ew denotes the homomorphism induced by the map adjoint to
the bilinear pairing

A ® galwow : (Gr@WF) x (Gr@W) — Q/Z
at [t] € Gy @ WH(D).
Similarly,

(9.2) ¢ @ge@u—2t°Jg = F @ ¢guw + (fa®A) ([t Ives,

10ne should note at this point that the bilinear pairing (A\; ® 90)lc oWt xa ow 18

well defined, as gg(W* W) € Z acts by multiplication on A\y(Gy,Gy) < Q/Z. A similar
observation applies to the bilinear pairing (fg ® Ag)|viga, xvee, considered below.
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where w € WuW(g), te VIQW?, [t] € Vﬁ®Gg. The map (f@®3\g)([t])h/®gg
denotes the homomorphism induced by the map adjoint to the bilinear pair-
ing

folvixy ®Ag : VEQ Gy x VR Gy — Q/Z
at [t} e VI®G,.

In the cases when ¢ lies in the smaller subgroup VA®W, the formula simplifies

(9:3) Pf@g@w—2t 0 Jf = 9o @9+ (Ar®@g)([t], —),
where v e Wu" (f), te VEQ W, [t] € G, ® W. Similarly,
(9.4) Pr@gv@w—2t °Jg = [ ® pguw + (f @ A)([t], —),

where w e Wu''(g), te V@ W¥, [t] e V@ Gy.

10. The characteristic homomorphism: explicit form

Let (G, ) and (G, X') two (nondegenerate) linking pairings on finite abelian
groups G and G’ respectively. We define a map

X:GxG —17/2

as follows: we set x(x,y) = 1 if x and y both generate an orthogonal sum-
mand of the same even order in G and G’ respectively; we set x(z,y) = 0
otherwise. Note that the map x depends on the linking pairings A and ).

ExXAMPLE 2.2. If G or G’ has odd order, then x = 0.

ExXAMPLE 2.3. If G and G’ are both cyclic of order a power of 2, then
X(z,y) = 1 if and only if both z and y are generators.

PROPOSITION 10.1. The map x : G x G — Z/27 is bilinear.

Therefore x induces a homomorphism G ® G’ — Z /27, still denoted .

PRrROOF. Although the proof is a consequence of the general theory of
linking pairings in torsion Dedekind modules (cf. [22, Chap. 2]), we give an
elementary proof based on the easy observation (cf. Lemma 3.3).

LEMMA 10.2. Let A : G x G — Q/Z be a linking pairing and let x € G. The
subgroup generated by x in G is an orthogonal summand if and only if  and
Az, ) have the same order in G and Q/Z respectively.

First, it is obvious that y only depends on unordered pairs (x,y) € G x G'.
Secondly, it is not hard to see that it is sufficient to consider 2-groups. Let
x,y € G and z € G'. Suppose first x(z,2) = x(y,z) = 1. We have to prove
that x(x + y,z) = 0. By hypothesis, both x and y generate an orthogonal
summand of even order 2¥ in G and similarly z in G’. By Lemma 10.2,
the order of A(z,z) and the order of A\(y,y) in Q/Z coincide with the order
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of # (resp. of y) in G. Thus there are odd integers a,b € Z such that
Az, z) = 55 mod 1 and A(y,y) = % mod 1. Hence for some c € Z,

Mz +y,x+y) = Mz,z)+2Mz,y) + Ay, y)
a 2c b
2k TR T ok
2c+b
- % mod 1.
Since a + 2c + b is even, A(z + y,z + y) is of order strictly less than 2. By
Lemma 10.2 again, we conclude that x 4+ y does not generate an orthogonal
summand of order 2¥. Hence x(z + ¥, z) = 0.

Suppose next that x(z, z) = x(y, z) = 0. We have to show that x(z+y, z) =
0. Suppose the contrary. Then x + y generates an orthogonal summand of
order 2¥ in G. So Az +y,z +y) = o mod 1 for some odd integer a. By
our hypotheses, there are even integers b, ¢, d € 2Z such that

a
A(w+y,x+y):27 = Mz,z) +2-AMz,9) + My, )
b c d
TR T T
b+c+d
- T ok

Since b+ ¢ + d is even, \(x + y, z + y) is of order strictly less than 2. This
is a contradiction. Hence x(z + y, z) = 0.

Suppose finally that x(z,z) = 1 and x(y, z) = 0. Assume that the order of
y divides the order of z. By Lemma 10.2, there exists an odd integer a € Z

and integers b, ¢ € 27 such that A(z,r) = 5% mod 1, A(y,y) = 3—2 mod 1 and
A(z,y) = 57 mod 1. Hence
Az +y,z+y) = AMz,x)+2- Mz, y) + My, y)
a c 2
20 + 2
- % mod 1.

Since a + 2b + 2c¢ is odd, we conclude that the order of A(z + y,z + y) in
Q/Z equals the order of x + y in G, hence by Lemma 10.2, x + y generates
an orthogonal summand of order 2* in G, as z does in G’. This implies
x(+y,2) =1 L

EXAMPLE 2.4. Let (G, \) be a linking pairing. Let n be a positive integer
and (Z/n, \,) be a cyclic linking pairing. Denote by G[n] the subgroup of
elements of order dividing n. Let

h:Gn] > GRZ/nZ
be the isomorphism defined by h(x) = z ® (1 mod n). The characteristic

homomorphism x : GQZ/nZ — L7Z/Z ~ 7/2 associated to A and A, is given
by

(10.1) x(x) = =Ah 7 Hz),h Hz)), zeGQZ/NZ.

n
2
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This result provides a way to compute x for any pair (A, \') of linking pair-
ings: decompose )\ into an orthogonal sum of indecomposable linking pair-
ings; disregard the noncyclic ones and the cyclic ones of odd order; using the
remark above, the homomorphism Yy is the orthogonal sum of the restriction
of x to the remaining components which is computed by the example above.

DEFINITION 2.9. A characteristic element associated to a pair (A, \') of
linking pairings is an element § € G ® G’ verifying

X = )T’@)\X(G).

ProOPOSITION 10.3. The characteristic element is unique and has order at
most 2 in GRG".

PROOF. Since A and )" are nondegenerate, so is A® N. Being a linking
pairing, A® )’ is nonsingular. Thus there is a unique § € G ® G’ of order at
most 2 such that x = A® N(0) € Hom(G ® G',Z/27Z) < (G® G')*. [ |

We now relate our previous construction (§?7?) to the characteristic homo-
morphism. Recall the isomorphism p : H — Gy ® G4 defined in §77.

THEOREM 10.4. Let z € Wu(l)/Q(f ®g). Then ¢fgq.|H = x o 1 where x is
the characteristic homomorphism associated to Ay and A4.

Proor. It is sufficient to verify the statement with z = v ® w where
v and w are integral Wu classes of f and g respectively. Then we verify
that they coincide on the generators of the orthogonal summands of an
orthogonal splitting of (G, As) and (Gg, Ay). [

We can now write down a general formula for the homomorphism g . |H
for an arbitrary Wu class z = zg + 2t, 2 € Wu(l)/2(f ®g), te 7t

(10.2) Prog.zlr = x o (=) = (A @A) (¢ ([]), (=),

where ¢ : G/H+ - G + ® Gy is the natural isomorphism defined in §2. We
deduce

THEOREM 10.5. With the notation above, the homomorphism ¢ fgg o+2t|H
s zero if and only if

X = (A ®@Ag)(¥([t]), —)-
In other words, ¢ fgg,-,+2t|H s zero if and only if ¥ ([t]) is the characteristic
element in Gy ® Gg4 of the pair (A, A\g).



CHAPTER 3

The classification of pointed quadratic functions

This chapter deals with the classification of pointed quadratic functions
and linking groups. A pointed quadratic function is essentially a quadratic
function with distinguished elements. The ideas in this chapter do not lead
to a description of the monoid of isomorphism classes as in the case of linking
pairings, but to a complete system of invariants.

1. The quadratic ring and Gauss sums

Let A be a finite Abelian group. It will be convenient to use the group Aauad
introduced in Chap. 1, §5. Recall that A9%d is generated by symbols ¢, tey
and “quadratic relations” (see Def. 1.18).

DEFINITION 3.1. The Gauss element associated to A is the element

(1.1) g4 = ) 1o € Z[AM],
TEA

REMARK 3.1. The Gauss element plays a distinguished réle in Abelian Topo-
logical Quantum Field Theory.

It follows from the definition of Z[A92d] that the Gauss element g4 is
nonzero. In view of applications (...), it is convenient to introduce a ring
closely related to Z[A9"d] in which g4 is invertible.

DEFINITION 3.2. Consider the quotient @ of Z[flquad] by the two-sided ideal
generated by the elements Y, _, t;, for all y & 0. The quadratic ring QR(A)
is the localization of Q) with respect to the multiplicative set {1, |A|,|A[?,...}.

In other words, QR(A) is the ring obtained from a certain quotient ring
of Z[Am24] by inverting all powers of |A|. The extra relations imposed in
Z[ A1) are natural (with respect to a morphism) and sufficient to make
the Gauss element invertible.

Recall that the group algebra Z[ﬁquad] has an involution defined by #, = ¢!,
toy = t;é (z,y € A) and linear extension. The ideal and the multiplica-
tive set in the definition 3.2 are invariant under this involution. Hence the
involution induces an involution in QR(A), denoted the same way.

PROPOSITION 1.1. The Gauss element g4 is invertible in QR(A) and

1
1.2 =3
( ) gA ‘A| ga

67
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Proor. We observe that

044 = 2 D twts! = X tuatews = D tytay
weA zeA z,w Y
= Z (Z tx,y) ty:Z (2 tw’y> ty+‘A‘1

yeA \z€eA y+0 \z€A
=0+ |A] = |A].

Let A4 _, U(1) be a character of A% Since U(1) = C*, the universal
property of the group ring Z[/Alq“ad] ensures that the character determines a
unique ring homomorphism Z[ﬁquad] — C (which is a Z-algebra map). We
are interested in characters of a special kind, namely those coming from a
quadratic function ¢ : A — U(1). Recall that any such quadratic function
gives rise (by the universal property of ﬁquad) to a character ¢ : Aavad _,
U(1). Since A is finite, it will be convenient to consider, as usual, a quadratic
function ¢ : A — Q/Z and post-compose it with a character x : (Q/Z,+) —
(U(1), x). Any character of A with values in U(1) is a composition x o g,
for some x and ¢ as above. We sum up these observations as follows.

LEMMA 1.2. A pair (x,q) as above determines a unique Z-algebra map ev, 4 :
Z[A1ad] s C,

The notation for the map is meant to suggest an “evaluation” using the pair
(x,q), but ev, 4 can be regarded as well as a substitution map. Whenever
there is no need to emphasize the dependency on the character y, we shall
write evy or even simply ev.

REMARK 3.2. The map ev, 4 sends ¢, to x o ¢(x) and t,, to x o by(z,y) for
all x,y € A. In particular, the map is induced by the substitution (algebra)
map Z[QA] — C where QA is the abelian group freely generated by t,,t,,
x,y € A.

DEFINITION 3.3. A pair (x,¢) that consists of a character x : Q/Z — U(1)
and a quadratic function ¢ : A — Q/Z will be called nondegenerate if x o g
is nondegenerate.

REMARK 3.3. A pair (Y, ¢) is nondegenerate if and only if y is injective and
¢ is nondegenerate.

PROPOSITION 1.3. If the pair (x,q) is nondegenerate, then it induces a
unique Z-algebra map evy 4 : QR(A) — C.

Proor. By Lemma. 1.2, there is an induced Z-algebra map ev,, :

Z[A2d] — C. This map induces the desired map if and only if eVyq 18
zero on the ideal generated by >, 4 ts., for all y + 0. We have

€Vx,q (2 tﬂc,y> = Z X(bg(,y)).

TeA TEA
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Denote by S the latter sum. We wish to prove that S = 0 if y + 0. This
will be a consequence of the following observation.

LEMMA 1.4. The following relation holds in Z[;lquad] s forally,ze A,

(1'3) (2 tx,y) ’ (1 - tz,y) = 0.

€A

Proor or LEMMA. Write

Z tiﬂvy = Z tJE-‘rZ,y = Z tx7ytz,y = (Z tx,y) tz,y.
zeA zeA zeA zEA

Applying ev, 4 to the relation (1.3), we find that S - (1 — x(be(2,y)) = 0.
Suppose y + 0. Since b, is nondegenerate, there exists z € A such that
be(z,y) + 0. Since y is injective, it follows that 1 — x(bg(2,v)) # 0 hence
S =0. |

The following exercises are intended to highlight some differences between
the group ring Z[A9"*] and the quadratic ring QR(A). They also illustrate
the need of introducing the quadratic ring QR(A).

EXERCISE 3.1. Prove that for any y € A, 3 _, t., + 0 in Z[A9d]. [Hint:
apply ev, 4 for a suitable pair (x, ¢).]

EXERCISE 3.2. Prove the following result. Let ¢ : A — Q/Z a nondegenerate
quadratic function. There exists an element a = a(q) € Z[A9] with the
following properties:

(1) gagaa =|A4|a.
(2) evyq(a) £ 0 for any injective character x : Q/Z — U(1).

(3) a is a zero divisor in Z[A9uad].

Since a(q) is a zero divisor in Z[A9%4], the result (1) does not imply that g

is invertible in the localization of Z[Aquad] with respect to the multiplicative
set {1, |A],|A]?,...}.

DEFINITION 3.4. Let ¢ : A — Q/Z be a quadratic function on a finite
abelian group and x : (Q/Z, +) — (U(1), x) a character. The image in C of
the Gauss element by ev, 4, denoted

Dy(4,q) = evyq(aa) = Y, (x 0 9)(2)
zeA

is called the unnormalized Gauss sum associated to (A, g, x). It is convenient
to define also

1 _1
(A, q) = |A|"2|AY| 72T (A, q)

as the normalized Gauss sum associated to q. Whenever the character is
understood from the context, we shall suppress it from the notation.
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EXAMPLE 3.1. The map x : Q/Z — U(1) defined by x(t) = exp(2wit) is
a character. The corresponding Gauss sum is called the “classical” Gauss

' I'(A,q) = Z exp(2mig(x)).
€A

The original “Gauss sum” was introduced by C.F. Gauss in 1801: it is the
sum of the example above for A = Z/pZ where p is an odd prime and q is
the quadratic form defined by q(z) = x?/p mod 1. Gauss proves in [34] that

I'(A,q)% = (—1)% p. The applications of Gauss sums in number theory are
ubiquitous. See for instance [5] for a survey. For a recent application, see
[3].

1.1. Basic properties of Gauss sums. We begin with elementary
and fundamental properties. The first one is the invariance of the Gauss
sum of ¢ under an isomorphism of q. The second one is the behaviour of the
Gauss sum under orthogonal sum and sign reversal of quadratic functions.
The third one is the behaviour of the Gauss sum under translation of the
quadratic function by the action of the group of homomorphisms.

We consider the Gauss element first.

LEMMA 1.5. A homomorphism o : A — B induces a homomorphism o4 :
Z[AWd] s Z[ BW] sych that 1% (g4) = |Ker(p)| " Bp(A)-

COROLLARY 1.6. An isomorphism of quadratic ¢ : (A,q) — (A',q') func-
~ ~quad
tions such that ¢' o p = q induces an isomorphism ¢ : Z[A44] — Z[A’qua ]

such that $(ga) = gar and evy o = ev,.

Hence the Gauss element is toAbe seen as a kind of characteristic element as
the level of the group ring Z[ A9uad].

COROLLARY 1.7. If ¢ : A —> Q/Z and ¢’ : A — Q/Z are isomorphic qua-
dratic functions, then v(A,q) = v(A',q').

The next properties, immediate from the definition, are the behavior with
respect to the orthogonal sum of quadratic functions and the natural invo-
lution (opposite) of quadratic functions:

LEMMA 1.8.
(1.4) Y(A,9) © (A, q) = (A, q) - v(A, ),
(15) 7(‘47 _Q) = ’7(147 Q)‘

These properties shall be used in the classical context of the Witt group of
quadratic functions (See Chap...) and of the reciprocity.

Another useful property is the behaviour of the Gauss sum when a homo-
morphism is added to the quadratic function:

LEMMA 1.9.
(1.6) YA, q + b)) = ¥(4,q) x(—a(a)).
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PROOF. One “completes the square”

Q(x) + bq(Oé,l‘) = Q(aj + O[) - q(Oé),
apply x and sum over x € A. |

By summing over all elements in A the identity (1.6), we obtain the following
corollary:

COROLLARY 1.10.

(1.7) D IT(A, q+by(a)) = [T(A4, )
acA

The next classical property is the computation of the absolute value of the
Gauss sum.

PropoOSITION 1.11. |y(A,q)| = 1 if and only if gl 40 = 0; v(A,q) =0 if and
only if ql 41 + 0.

In particular, the nullity of the Gauss sum detects whether the quadratic
function is tame or not.

FIRST PROOF. Set A’ = A/A* and denote by p the canonical projection
A — A, By Lemma 1.5, pd%d(g,) = |A+| - ga. Suppose first that the
quadratic function is tame. Then it induces a nondegenerate quadratic
function ¢’ : A/A+ — Q/Z such that ¢’ o p = ¢ (Lemma 5.2). Hence by
Prop. 1.3, we can apply evy to the identity gaga = |A| and find that

DA, ¢))? = T(A,¢)-T(A,q¢) = |A|. Let pad . QR(A) — QR(A)
denote the ring map induced from the projection p. Then
(A, q) = evg(ga) = evy 0 p™*U(ga) = evy (|[A*|gar) = [AT[T(A',q).
Hence
1 1 1

ID(A, @) = [AH|D(A, ¢)| = [AM][A']2 = |AY]2 |A]2,
which is the desired result. It remains to see that if ¢ is nontame, then
['(A,q) = 0. Let A/AL = {[z1],...,[®n]}. We compute in Z[Ad1ad]:

n n
gaA = Z Z txi-i-x = Z Z txit:ctxi,x-

i=1geAl i=1zecAl

Applying ev, 4, we find that

1=1geAl i=1geAl
= (Z x(q(xi))> (Z x(g(x))
i=1 ze AL

Now observe that ¢| 41 is a nontrivial homomorphism, hence the right sum
on the right hand side is zero. |

SECOND PROOF. The proof uses twice the following classical argument:
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LEMMA 1.12. Let w : A — U(1) be a homomorphism on a finite group A.

Then A
B if w=0;
2 w(z) = { 0 otherwise.

TreA

PROOF OF LEMMA. Let y € A. Since x — yz is bijective,
Dw(x) = Y wyz) = > wly) w(x).
TEA TEA TEA
Therefore,
(1 —u(y) 3 w) =0,
z€A

If there is some y such that w(y) # 0, the identity above implies } ., w(z) =
0. Otherwise, the sum equals 1 +--- + 1 = |A].

By Cor. 1.10,
(A, ) = > > x(a(@) + byl a)).

acA zeA
Exchanging the sums, we find that

T4, 9P = Y x(a(@) Y] x(by(z,a)).

zeA acA
By Lemma 1.12,

Z X(bq(x,a)) = { |A| if bq(x) = 0;

= 0 otherwise.
Therefore,
ID(A,q)* = |A]- ) &™),
zeALl

Note that g| 4. : At — Q/Z is a homomorphism. By Lemma 1.12 again,
Z 627riq(az) _ { |AJ_’ if Q‘AJ- = 0;

0 otherwise.
e AL

Therefore, [T'(G, q)|> = |A| - |A*| or 0 according to whether g| 4. = 0 or not.
The result follows. |

1.2. Gauss sums and the discriminant.

LEMMA 1.13. Let q: A — Q/Z be a homogeneous quadratic form and let o
be an element of order 2 in A. Let f :V xV — Z be a symmetric bilinear
lattice. For any integral Wu class w € Wu" (f),

(1.8) VARV, (- a)® f) =v(A®V,q¢® f) x(—(¢® [)(a®w)).

Proor. We observe that

(q-a)(x) f(y.y) = (a(z) + be(@)(@) f(y,y)
q(z) f(y,y) +bg(a,z) f(y,y)
= q(z) f(y,y) + by(a,z) f(w,y)
9(@) F(y,y) + (b ® [a@w,z®y).
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Here in the third equality we used the fact that f(w,y) = f(y,y) mod 2 for

any Wu class w € Wu" (f). Hence (¢-a)® f = q® f + by ® f(a®@w). The
result follows by applying Lemma 1.9 to ¢ ® f with element o ® w. |

Let f: VXV - Zand g: W x W — Z be two nondegenerate bilinear
lattices. Recall that the subgroups A = j;(Gy ® W) and B = j,(V ® G)
are mutually orthogonal in G g, with respect to the discriminant linking
pairing Argg (See §2, Lemma 2.8). As before, we set H = AnB = An AL
Recall also the natural isomorphism 9 : Gygg /H— G F®Gy.

THEOREM 1.14. Let z € Wu(f ®g) be a Wu class. The following assertions
are equivalent:

NG @ W, gy, 0 jy) + 0.
’V(V ® va PfRg,z © ]g) + 0.
P

f®g7Z|H = O'
The Wu class z € Wu(f®g) is sent to 0 under the natural projection

Wu(f®g) > Wu(f®9)/2(VI@W +V @WH.

(5) ¥([t]) is the characteristic element associated to (Ag, Ag) for a de-
composition z = zg + 2t with zg € Wu(l)/2(f ®g), t e VEQ W,
[t] € Greg/H™.

(1)
(2)
(3)
(4)

PROOF. Since jy is injective (Lemma 2.7), (Gf @ W, ¢fgqg- © jf) =~
(A, ¢fgg.2l4). The annihilator of ¢pfg,.|la is A n AL = H. Therefore,
applying Cor. 77 to the quadratic function ¢fgg |4 gives the equivalence
(1) < (3). A similar argument yields (2) <= (3). The equivalence
(3) < (4) follows from Lemma 6.4 (§4). The equivalence (3) <= (5) is
Theorem 10.5. |

COROLLARY 1.15. If a Wu class z € Wu(f ® g) satisfies @rgq.-|m = 0 then
e Wu2(f®yg).

COROLLARY 1.16. Let (v,w) € Wu" (f) x Wu" (g). The following assertions
are equivalent:

) VGr@W, 05, ®g) + 0
) Y(VRGy, f®pgw) + 0.
) Pro®g ‘Ker(f\f®§) =0.
4) f

5)

© o Iker(fes,)
The characteristic homomorphism x associated to Ay and Ay is
zero.
(6) The characteristic element associated to Ay and N\g) is zero.

(
(
(
(
(

Gauss sums play a fundamental role in the classification of pointed linking
pairings.
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2. Classification of pointed linking pairings

The use of Gauss sums in the classification of isomorphism classes of linking
pairings goes back to Minkowski; it is proved in [51, Theorem 4.1] that
Gauss sums form a complete system of invariants.

Using a different approach, we generalize this result to the classification of
isomorphism classes of pointed linking pairings.

DEFINITION 3.5. A pointed linking pairing is a pair formed by a linking
pairing (G, \) and an element ¢ = (cy,...,c,) € G™ for some natural integer
n. Two pointed linking pairings (G, A, ¢) and (G', N, ) are isomorphic if
there is an isomorphism of linking pairings that sends ¢ onto ¢’

In the sequel of this paragraph, we fix a nondegenerate pointed linking pair-
ing (G, \,¢), with ¢ = (¢1,...,¢,) € G, n > 1. Consider now a triple
(V,h,s) where h : V — Z is a homogeneous nondegenerate quadratic func-
tion on a lattice V and s = (s1,...,8,) € (V*)". We form a new quadratic
function on V ® G defined by

(2.1) h@ A+ (idyx @\ (s ®c)

where h® A is the usual tensor product of a homogeneous quadratic function
and a linking pairing and s ® ¢ = Zj 5;®cj € V*®@G. Explicitly

(h®A) (Z z; ®yj) = > B Mg, 25)+ > bn(w, ap) M), 2x), z;€V, y;€ G
J J Jj<k

where by, is the bilinear symmetric pairing associated to h. Here (idyx ®
A)(s ® ¢) is the homomorphism V ® G — Q/Z defined by

(idy = ®/A\)(s®c)(w®y) = 23i<$))\(0i73/); reV, yeG.

%

Let Ty s(A,¢) = T (V@G,h@)\ + (idy = ®3\)(s®c)> be the (unnormal-

ized) Gauss sum associated to the quadratic function defined above by (2.1).
It is convenient to consider as well the normalized Gauss sum 7y 5()A, ¢) =

7(V®G,h®/\+(idv*@)f\)(s@c)).
LEMMA 2.1. If s®c = (gh ®idg)(y) for some y eV ®G, then

(22) Ths(Ae) =1 (VR G, A® ) - e 2miheN W)

PROOF. According to the hypothesis,
ms(he) =7 (VO G @A+ (idys @ V) (s® )

—1(VeG.her+ oly)
= (VG hQN) e 2rih@)w) by Lemma 1.9.
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Also we need to define invariants extracted from the group G. Recall that
every linking pairing (G, \) splits in an orthogonal decomposition into link-

ing pairings
(G, A) = @(Gp: )\p)
P
on p-groups, where p describes a finite subset of primes. Furthermore, every
linking pairing (Gp, Ap) splits in an orthogonal decomposition into linking

pairings
(Gp, 2p) = DGy A)
k=1
where each G’; is a free Z/p*-module and hence has a well defined rank. Set

p’;()\) = rank G]; e N.

Clearly the ranks p’;()\) depend only on the underlying group G, are additive
under direct sums and only finitely many of them are non zero.

THEOREM 2.2. Two pointed linking pairings (G, \,c¢) and (G', N, ') with
distinguished n-tuples ¢ € G™ and ¢ € (G")" are isomorphic if and only if
the following conditions are satisfied:

(1) p’;()\) = ,OI;()\’) for all prime p and all k > 1;

(2) Yh,s(A ) = ys(N, ) for all triples (V, h, s) of lattices V' equipped
with a homogeneous quadratic function h and a multiform s €
(V=)

We make a few observations on Th. 2.2. Condition (1) is purely group-
theoretic and does not involve the pairings nor the distinguished elements.

In condition (2), only a finite number of Gauss sums is required. However,
it can be shown that one needs, in the most general case, to consider at least
one rank 2 lattice (V f).

If we replace the Gauss sums 7y, s(A, ¢) by unnormalized Gauss sums I'y, 5(A, ¢)
in condition (2), then condition (1) becomes redundant. Taking the absolute
value of appropriately chosen unnormalized Gauss sums yield the invariants
of condition (1).

The classification of linking pairings without distinguished point (see [51,
Th. 4.1]) is recovered from Th. 2.2 by taking n = 1 and setting ¢ and ¢
to be the zero element of G and G’ respectively. The Gauss sum 7 s(A,0)
then is just v(V® G, h® \).

PROOF. We give an abridged proof here, referring to [22] for details.
The proof is based on two lemmas.

The first lemma is a “reduction to linear algebra” based on the classification
of linking pairings. Let N > 1. Recall that n denotes the number of distin-
guished elements. Denote by Ry, (resp. Ry) the vector space of matrices
with N rows and n columns (resp. the vector space of square symmetric
matrices of size N) with entries in Q/Z. For r = (rj1)i1<jk<ny € Ry and
" € Ry n, set

Srr(Ac) ={(z1,...,2N) € GN | Mzj, k) = rjr and Az, cx) = r;k}
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This set is clearly finite and we denote its cardinality by [S,., (A, ¢)|.

LEMMA 2.3. Two pointed linking pairings (G, \,¢) and (G', N, ') with n
distinguished elements are isomorphic if and only if p';()\) = p';()\’) for all
prime p and all k =1 and |S,,+(\, ¢)| = |Sy (N, )| for all matrices r € Ry
and Ry for N large enough.

The second lemma is classical.

LEMMA 2.4. A family of distinct characters is free over C.

We interpret the unnormalized Gauss sums I'y, (), ¢) as characters and re-
lated them to the invariants |S,, (X, c)|. Fix a basis of V' and identify h
with a square symmetric matrix of size IV, each s; € V*, 1 < j < N, with a
vector (s;k)1<k<n € ZV. Then

(2.3) Lhs(Ac) = Z ISy (A, c)| exp (QWiTrace(hr + sr’)).

TER N
r/ERN’n

The sum is finite since only finitely many terms are non zero. The maps

Kryr t (h, ) — exp <2m'Trace (fr + sr’))

are distinct characters, hence the family (&, ,), - is free over C. On the other
hand, only finitely many sets S,, (), c) are non empty. Therefore there is
a finite number M of homogeneous quadratic functions equipped with multi-
forms (h',s'),..., (RM, sM) such that the matrix & = (’frj,r;. (h*, s%)) 1<) ket

is invertible over C. Set
I'= (i (A igjenrs S = ([Sr0 (X &) Dr<jcnr-
We deduce from (2.3) the identity
r=o-5.

Since ® is invertible, I' determines S and conversely. The result then follows
from Lemma 2.3. |

The Gauss sum 7y 5(A, ¢) and the quadratic function (2.1) can be interpreted
using the discriminant construction as follows. First,

(24) h®A+ (idys @\ (s®a) = (b ®q) + (g ®N(E® ¢),
where on the right hand side:
e ¢ is a homogeneous quadratic refinement of A;
e b, : V xV — Z denotes the symmetric bilinear pairing associated
to the quadratic form h : V — Z;
o £ e (V)" is defined by fo(¢;) =55, 1 <j<m
e {®c=2,§®c;
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e The map (bAhQ ® 3\)(5 ®c):V x G — Q/Z is induced by the map
adjoint to b, ® A at £ ® c. It is defined by

(bhg ® M(E® )z ®y) = (bn)g(€.2) Ae,y) z€V, yeG.

It follows from (9.2) that the quadratic function on the right hand side
identifies to ¢y, @gv@w—2t © jg Where (W, g,w) is a bilinear lattice equipped
with an integral Wu class w € Wu(g) such that (G,q) = (W#/W,p4.u),
v e Wu(by) is a Wu class for by, and t € VEQ W is a lift of ERce ViR G.
We conclude that

(2'5) Vh,s()‘a C) = 7(‘/ ® G, Pb),®g,vQw—2t © ]g)

COROLLARY 2.5. Two linking pairings (G, \) and (G',\') are isomorphic if
and only if the following conditions are satisfied:

(1) p’;()\) = ,OI;()\’) for all prime p and all k > 1;
(2) YV(VRG,h®N) =v(VRG'  h@N) for all lattices V equipped with
a homogeneous quadratic function h :V — Z.

3. The classification of pointed quadratic functions

The results of the previous paragraph are generalized to pointed quadratic
functions. A pointed quadratic function on a finite abelian group G consists
of a quadratic function ¢ : G — Q/Z equipped with ¢ = (¢, ...,¢,) € G™ for
some integer n = 0. Two pointed quadratic functions (G, ¢, ¢) and (G', ¢/, )
are isomorphic if there is an isomorphism of linking pairings that sends c;
onto ¢}, 1 < j < n.

Before stating the theorem of this paragraph, we recall two simple defini-
tions. Given a quadratic function ¢ : G — Q/Z, the difference dy(z) =
q(z) — q(—z), x € G, defines a homomorphism G — Q/Z, the homogeneity
defect. This map is zero if and only if ¢ is homogeneous. Recall that a qua-
dratic function canonically induces an associated linking pairing b,. Hence
there is a well defined surjective (“forgetful”) homomorphism

(Gv q, C) = (Gv bq7 C)

from the monoid of pointed (nondegenerate) quadratic functions (with dis-
tinguished n-tuples) to the monoid of pointed (nondegenerate) linking pair-
ings (with distinguished n-tuples). We shall use a related but distinct ho-
momorphism

(G.q,¢) — (G, bg,c®b, ' dy)

from the monoid of pointed (nondegenerate) quadratic functions with distin-
guished n-tuples to the monoid of pointed (nondegenerate) linking pairings
with distinguished (n + 1)-tuples. Here the adjoint map Bq G —> G* is
bijective hence gq_ldq is a well defined element in G and ¢ (—ng_ldq denotes
the (n + 1)-tuple obtained by adjoining the form d, € G* to the n-tuple
¢ = (c1,...,¢,) on the right. This latter map is not onto. (It is onto if we
restrict the image to pointed linking pairings with (n + 1)-tuples of distin-
guished points whose last distinguished point lies in 2G.)
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THEOREM 3.1. Two pointed quadratic functions (G, q,c) and (G',q', ") with
distinguished n-tuples are isomorphic if and only if the following conditions
are satisfied:

(1) p’;(bq) = p];(bq/) for all prime p and all k = 1;
(2) Yn,s(bg, c@b’:;ldq) = Yn,s(bg' c’@l;;ldq/) for all triples (V, h,s) of

lattices V' equipped with a homogeneous quadratic function h and a
multiform s e (V*)"+L;

(3) Y(G,q) = YG'.q) and (G, q + by(c:)) = Y(G.q + by(cl)), i =

1,...,n.
Remarks similar to those to Th. 2.2 also apply to Th. 3.1.

ProoOF. Clearly if the pointed quadratic functions are isomorphic then
the conditions are verified. Let us prove the converse. Suppose the condi-
tions are satisfied. Then the conditions of Th. 2.2 are satisfied. Therefore,
(G, by, c® Elildq) and (G', by, @ l;q\/ 1dq/) are isomorphic pointed linking
pairings. Explicitly, let ¢ : G — G’ an isomorphism such that ¢*by = b,
and ¢(c) = ¢ and ¢*dy = d,. Replacing the triple (G',¢’, ') by the isomor-
phic triple (G, ¢*¢, ¢*c’) = (G, ¢*¢, ¢), it is enough to show that (G, g, c)
and (G, ¢*¢, c) are isomorphic. Note that dgxy = ¢*dy = dg. So we may
assume that (G, ¢,c) and (G, ¢, ¢) are two pointed quadratic functions over
the same associated bilinear linking pairing, with the same homogeneity de-
fect and the same distinguished elements satisfying the conditions (1), (2)
and (3). Let us construct an isomorphism between (G, q,c) and (G, d,¢).
Since ¢ and ¢’ are quadratic functions over theAsame nondegenerate linking
pairing, they differ by some o € G: ¢ = g + by(a). The equality dy = dy
implies that 2o = 0. Since v(G,q) = Y(G,¢") = Y(G, q) ™) we deduce
that ¢(o) = 0. Define a map [n] : G — Z/27Z by by(c, x) = @ mod 1 for
all z € G. Clearly [n] is a homomorphism. Since g(a) = 0,

0 =¢q(2a) = q(a) + g(a) + by(a, a) = by(a, ),
hence [n](a) = 0. Consider the map
v:G—> G, z—x+n(r)a
where n(z) € Z is an arbitrary lift of [n](z) € Z/2Z. Since

V2 (z) = Y(z + n(z)a) r+n(x)a+n(r+n(r)a)a

z+n(z)a +n(x)a+n(z)n(a)a
r+n(z) 2a+0

z+0

:'U7

1 is an involutive automorphism of G. Furthermore,
q(¥(x)) = q(z+n(z)a) = q(x)+n(x) by(z, @) +q(n(z)a) = q(z)+by(z,a)+0 = ¢ (x)
for any = € G. Therefore ¥*q¢' = ¢. Since
1(G.q) @™ = 5(Gq +byl(ei) = 4(G.d + by (i) = (G, q) 70
= (G, q) ™),
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we deduce that ¢(¢;) = ¢'(¢;i) = q(ci) + bg(a, ¢;), hence by(av, ¢;) = 0. Hence

P(ci) = ¢ +n(c)a = ¢

for all ¢ = 1,...,n. Therefore ¢ is an isomorphism between (G, gq,c) and
(G,¢,c) as desired. [ |

REMARK 3.4. The system of invariants of Th. 3.1 is minimal in the sense
that if one equality among the equalities of conditions (1)—(3) is not satisfied
then there is a pair of nonisomorphic pointed quadratic functions satisfying
all the other equalities.

EXAMPLE 3.2. As an illustration of the previous remark, we point out that
there exist nonisomorphic pointed quadratic functions (G, ¢, ¢) and (G, ¢/, )
such that (G, q) and (G',¢) are isomorphic and the associated pointed link-
ing pairings (G, bg,c) and (G,by,c’) are isomorphic. Such an example is
provided by

2
4
(Z/16Z, q(k mod 16) = *— % 1od 1,¢ = 1 mod 16)
2
- 2
and (Z/16Z,q(k mod 16) = % mod 1,¢ = 3 mod 16).

The map = — 3x provides the isomorphism between the associated pointed
linking pairings, the map = — 5z provides the isomorphism between the
quadratic functions, but there is no isomorphism between the pointed qua-
dratic functions. In terms of invariants, one checks that v(G,q + l;l(c)) +

(G, q’—i—gq\/ (). All other equalities in the statement of Th. 3.1 are satisfied.

COROLLARY 3.2. Suppose that ¢ € (2G)". Two pointed quadratic functions
(G,q,¢) and (G', ¢, ) with distinguished n-tuples are isomorphic if and only
if the following conditions are satisfied:

(1) p’p“(bq) = p’;(bq/) for all prime p and all k > 1;

(2) Yh,s(bg, c(—D()A,;ldq) = Yh,s(bg c’@l;(;ldqz) for all triples (V, h, s) of
lattices V' equipped with a homogeneous quadratic function h and a
multiform s € (V*)"+L;

(3) v(G,q) = (G, ¢).

PRroOF. Conditions (1) and (2) imply that ¢ € (2G)™. In the proof
of Th. 3.1, the last equality of condition (3) is used only to ensure that
bg(ar, ¢;) = 0. But the condition ¢; € 2G already implies that equality for all
i=1,...,n. |

REMARK 3.5. Cor. 3.2 applies in particular if the underlying group has odd
order.

Another special case worth considering is the case of pointed homogeneous
quadratic functions: it turns out that this case is analogous to the case of
pointed linking pairings. Fix a nondegenerate pointed homogeneous qua-
dratic function (G,q,c) with a distinguished n-tuple ¢ € G. Consider a
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triple (V, f,s) where (V, f) is a bilinear lattice and s an element in (V*)".
We form the quadratic function on V ® G

F®q+ (idys ®by)(s®c)
and denote by

(3.1) 115(6:0) =1 (VO G, [ ®g + (idys @ b) (s ® ) )
the corresponding Gauss sum.

COROLLARY 3.3. Two pointed homogeneous quadratic functions (G, q,c) and
(G',q, ) with distinguished n-tuples are isomorphic if and only if the fol-
lowing conditions are satisfied:

(1) pk(bg) = pk(by) for all prime p and all k > 1;
(2) vf,s(a,¢) = v5.5(d, ) for all triples (V, f,s) of bilinear lattices
(V, f) equipped with a multiform s € (V*)".

PROOF. Since ¢ is homogeneous, d; = 0, hence v, s@s,,, (bg,c @ 0) =
Yh,s(bg, ¢) for all triples (V, h,s) of lattices V' equipped with a homogeneous
quadratic function h and a multiform s € (V*)". Observe that

h®bq:bh®q

for any homogeneous quadratic function h : V' — Z and homogeneous qua-
dratic function ¢ : G — Q/Z. Hence 7, s(bg,¢) = M,.5(¢,c). The second
observation is that v(G,q) = v7,0(q, ¢) and v(G, ¢ +5q(ci)) = 7v41(q, ¢;) with
the pointed bilinear lattice V = Z, f(1,1) = 1, s = 0 and s = 1z respectively.
The result follows from Th. 3.1. |

REMARK 3.6. It is possible to give a proof of Corollary 3.3 along the lines
of Th. 2.2. We leave it to the reader to prove directly that the isomorphism
class of (G,q,c) is classified by condition (1) and the Gauss sums 7 (g, c)
for all triples (V, f,s). Since v(G,q) = v¢0(q,c) for V. =17Z, f(1,1) = 1, this
easily implies the result. As mentioned above, this line of proof is valid for
homogeneous quadratic functions only.

As the particular case of quadratic functions with no distinguished element
(or with trivial element), we recover the classification of quadratic functions
[19, Th. 4.1].

COROLLARY 3.4. Two quadratic functions (G, q) and (G',q') are isomorphic
if and only if v(G,q) = v(G',q") and there is an isomorphism ¢ of their
associated linking pairings such that dy o ¢ = dy.

REMARK 3.7. As illustrated in Example 3.2, the classification of pointed
quadratic functions cannot be recovered by Corollary 3.4 and Theorem 2.2
alone.

4. Linking groups and pointed linking groups

We generalize the notion of linking pairings to allow non torsion elements
in the underlying group.
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Let n = 1. First we extend slightly the definition linking pairings. A linking
group is a pair (G, A) where G is a finitely generated abelian group and A :
Tors G x Tors G — Q/Z is a linking pairing. According to our terminology,
a linking pairing is a torsion linking group (i.e., the underlying group G in
the definition is a torsion group). If G has no torsion element, then the
linking group (G, \) reduces to the underlying group G. An isomorphism
between linking groups (G, A) and (G, \') is an isomorphism ¢ : G — G’ of
groups such that ¢|ros ¢ : Tors G — Tors G’ verifies (P|rors ¢)*(N) = A.
In other words, an isomorphism of linking groups is a group isomorphism
whose restriction to torsion induces an isomorphism of linking pairings.

EXAMPLE 3.3. . Any bilinear lattice (V, f) induces a linking group (Gf =
Coker f,\) by formula (??). (See §??.) This linking group is called the
discriminant linking group.

Two equivalent lattices (V, f) and (V' f’) induce isomorphic discriminant
linking pairings if and only the induced nondegenerate bilinear lattices (V/, f)
and (V’, f/) are stably equivalent; however the induced discriminant linking
groups may be non isomorphic. A simple example is provided by V = Z,
flryy) =2zyand V' =Z@®Z and f'(z @ 2",y Dy') = 2zy. We see on this
example that Coker f = 7,/27 while Coker f’ = Z@®7Z/27Z. Hence the linking
groups are not isomorphic while the linking pairings are.

A pointed linking group is a triple (G, A, ¢) where (G, \) is a linking group
and ¢ € G" is a distinguished n-tuple. (In contrast with the definition of
pointed linking pairings, G is now allowed to have non torsion - including
distinguished - elements.) An isomorphism of pointed linking groups is an
isomorphism of the underlying linking groups sending the distinguished n-
tuple to the distinguished n-tuple.

ExaMPLE 3.4. The first integral homology of a 3-manifold endowed with
distinguished elements provides a fundamental example of pointed linking

group.

We now derive a lemma in order to deal with isomorphism of pointed linking
groups.

The classification of pointed linking groups can be essentially reduced to the
classification of pointed linking pairings by means of the following lemma.
For a map f : A — B, we denote by f® : A" — B™ the n-ary cartesian
product map induced by f.

LeEMMA 4.1. Let (G, A\, ¢) and (G', N, ) be two pointed linking groups with
distinguished n-tuples ¢ € G"™ and ¢ € G respectively. The following asser-
tions are equivalent:

1) There is an isomorphism of pointed linking groups
(1) P p g group
(G, A ) ~ (G, N, )

(2) There are
(i) a group isomorphism v : G/Tors G — G'/Tors G’ such that

v ([e]) = [¢);
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(i) two retractions r : G — Tors G and r' : G' — Tors G’ of the
natural inclusions into G and G’ respectively and an isomor-
phism ¢ of pointed linking pairings

(Tors G, \,7®"(c)) ~ (Tors G', N, 7"®"(¢)).

PROOF. In order to lighten notation, since it is clear when n-ary carte-
sian product is meant, we suppress the superscript ©*. (1) = (2): clearly
a pointed linking group isomorphism ¢ induces a linking group isomor-
phism ¢|1ors ¢ between (Tors G, \) and (Tors G, \'). Choose any retraction
r: G — Tors G of i : Tors G — G. Then v’ = ¢|1os gorop ! is a retraction
of i’ : Tors G — G'. Then @|1os ¢(r(c)) =1 0p(c) =1'(). (2) = (1): let
p: G — G/Tors G, x — p(x) = [z] denote the canonical projection. Define
similarly the canonical projection p’ onto G’/Tors G'. The map

(r,p) : G — Tors G ® G/Tors G, x> (r(z),p(x) = [z])
is a group isomorphism. There is a similar isomorphism (r/,p’) : G' —
Tors G' @ G'/Tors G’'. Define an isomorphism ¢ : G — G’ by the following
composition
/o —1
G ) Tors G @ G/Tors G Y Tors ¢ @ G’ /Tors G/(% G'.

Thus ¢ = (r',p')"t o (Y ®v) o (r,p). By construction ¢|tos ¢ = ¥ and
thus it is an isomorphism of pointed linking pairings between (A, r(c)) and
(A, 7’(¢")). The isomorphism ¢ : G — G’ induces an isomorphism [¢] :
G/Tors G — G'/Tors G’ defined by [¢]([z]) = [¢(x)] for all x € G. By
construction [¢] = v. The formula s([z]) = z — r(x), = € G defines unam-
biguously a section s of the canonical projection p : G — G/Tors G. Define

similarly a section s’ of the canonical projection p’ : G' — G'/Tors G’ by
s([']) = ' = r'(2'), 2’ € G'. Then
/

pos([z]) = ez —r(x)) = p(x) = @(r(x)) = ¢(x) — "o p(x) = 5" o [¢]([x]),
thus pos = s o [p]. It follows that

p(c) = p(r(c) + c = r(c)) = @(r(e) + @(s([c])) =’

I
-

COROLLARY 4.2. Two linking groups (G,\) and (G',\) are isomorphic if
and only if the groups G/Tors G and G'/Tors G’ are isomorphic and the
linking groups (Tors G, \) and (Tors G', \') are isomorphic.

COROLLARY 4.3. Two linking groups (G,\) and (G',N') are isomorphic if
and only if the following conditions are satisfied:

(1) rank G = rank G’;
(2) pE(X) = pE(X) for all prime p and all k > 1;
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(3) Y(VRtG,h®N) = vV &tG',h®N) for all lattices V equipped
with a homogeneous quadratic function h : V — Z.

5. The isomorphism problem for pointed lattices

We now give a necessary and sufficient condition to solve the isomorphism
problem for pointed lattices (pointed linking groups with trivial linking pair-
ing and abelian free group). This is the Proposition 5.1 below. This condi-
tion will be used in the sequel to manufacture invariants of linking groups.

Let V be a lattice. The linear group GL(V') acts naturally on V' in the usual
way. Extend diagonally this action to any n-ary cartesian power of V.

PROPOSITION 5.1. Let V' be a lattice. Two n-tuples v = (x1,...,x,) € V"

and y = (Y1, ..,Yyn) € V" lie in the same orbit of GL,, (V') if and only if

(5.1)

for any N € Z, for any (a1,...,a,) € Z", Zaj zje NV < Eaj yj € N-V.
j jeJ

To prove Proposition 5.1, we need a number of lemmas.

LEMMA 5.2. Let x1,...,x, be Z-independent elements in a lattice V.. The
sublattice S generated by x1,. .., T, is primitive if and only if
(5.2)
for all (ay,...,an) € Z" with ged(aq, ..., a,) = 1, Eaixi e V\ U k-V.
7 k>1

PROOF. Suppose that thereis (a1, ...,a,) € Z"™ with ged(aq,...,a,) =1
such that ), a;x; € k-V for some k > 1. Let y = %ZZ a;x; € V. By hypothe-
sis, k-y = >, a;x; € S. We claim that y ¢ S. Otherwise since the z;’s are in-
dependent, k|a; for all ¢, which contradicts the fact that ged(ay,...,a,) = 1.
Hence S is not primitive.

Conversely, suppose that S is not primitive. There exists y € V\\S such that
k -y € S for some k > 1. Consider the smallest integer £ > 1 realizing this
condition. Then there exist bq,...,b, such that k -y = >, bjz;. Let | =
ged(by, ..., by). Since y ¢ S and by minimality of k, the integers k and [ are
coprime. Let a; = b;/l, i = 1,...,n. By construction, ged(by,...,b,) = 1.

We have
ky = ZZ a;T; .
<

esS
Since k and [ are coprime, ), a;x; € k- V. This is the desired result. |

LEMMA 5.3. Let x1,...,2y and yi,...,yn be two families of independent
elements in 'V satisfying the condition (5.1). Let S and S’ be the sublattices
generated by x1,...,x, and y1,...,Yy, respectively. Let c;; € Q be rational
numbers, 1 <1i,j < n. The primitive hull of S is generated by z;, = Zj Cij T
if and only the primitive hull of S is generated by y; = Zj cijyj, 1 <1< n.

Proor. Consequence of the previous lemma. |
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LEMMA 5.4. With the same hypothesis and notation as in the previous
lemma, there exists an automorphism ¢ : V. — V such that p(z;) = y;
for all 7.

PROOF. Define ¢(x}) = y!, 1 < i < n. This defines an isomorphism
between the respective primitive hulls S and S'. By Lemma 1.2, this iso-
morphism extends to an automorphism ¢ : V. — V. Let 2, 1 < ¢ < n,
be the generators of S. There are rational numbers ¢j (1 <i,j <n)
such that j = >};c¢;jz;. The matrix C' = (cj5)1<i,j<n Is invertible over
Q. Since some multiple of each w; lies in S, we deduce that the inverse
matrix C~! = (dij)1<ij<n has integral coefficients. By the hypothesis,
y; = 2 ¢y, 1 < i,j < n, form a Z-basis of generators for S’. There-
fore,

p(xi) = ¢ <Z dz‘jiC})
J
= > dijp(a))
j
= dijy]
j
= Yi-

This is the desired result. |

ProOOF OF PROPOSITION 5.1. Necessity is clear. Let J be a maximal
subset of {1,...,n} such that the elements z;, j € J, are independent over
Z. Then the relation for N = 0 shows that the elements y;, j € J, are also
independent over Z. Applying the previous lemma yields an automorphism
¢ € GL(V) such that ¢(x;) = y; for all i € J. Let k ¢ J. There is a relation

Eaj xj+ag x =0,

jed

for some ag + 0. Then

(5.3) Z a;j y; + ar yr = 0.
jed

Since y; = p(x;) for j € J, we deduce that
0=0¢ (Zaj xj + ay mk> = Zaj yj + ap (k).
JjeJ jedJ
Comparing this equality to (5.3), we deduce that
a yr = ar (k).

Since ay # 0 and since V' is torsion free, yr = p(zk). |
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6. The stable classification

We begin by recalling the classical results on the stable classification of
lattices. Recall from §?7 that by definition, two bilinear lattices are stably
equivalent if they become isomorphic after adding to them some unimodular
orthogonal summands. Furthermore, the map

(Vi f) = (G, Ap)

induces a bijective correspondence between stable equivalence classes of non-
degenerate bilinear lattices and isomorphism classes of nondegenerate link-
ing pairings (Th. 2.3).

The aim of this paragraph is to extend this result to the more general setting
of pointed linking groups.

A pointed bilinear lattice V is a bilinear lattice equipped with a finite ordered
collection ¢ of elements c¢1,...,¢, € V*. Pointed bilinear lattices form a
monoid for the orthogonal sum @. Let (V, f,¢) and (V, f, ¢) be two pointed
bilinear lattices. A weak isomorphism between them is an isomorphism
v (V, f) — (V') f") of bilinear lattices such that ¢*(¢’) = ¢ mod f(V). For
instance, if the bilinear lattices are isomorphic in the usual sense and if the

distinguished elements ¢ and ¢ lie in f(V') and f(V"’) respectively, then the
pointed bilinear lattices are weakly isomorphic.

EXAMPLE 3.5. Let (U, h) and (U’, h’) be unimodular bilinear lattices. If ¢ :
(U,h) — (U', k') is an isomorphism of bilinear lattices, then ¢ : (U, h,u) —
(U',h',u') is a weak isomorphism of pointed lattices for any v € U™ and any
u e U™

We say that (V, f,c) and (V', f/, ¢') are stably equivalent if there exist pointed
unimodular lattices (U, h,u) and (U, 1/, ") such that (V, f,¢)® (U, h,u) and
(V' f.d)Y® (U, W, u') are weakly isomorphic as pointed bilinear lattices.

Clearly stably equivalent pointed lattices induce isomorphic pointed link-
ing groups. The main observation of this section lies in the converse and
generalizes Th. 2.3.

THEOREM 6.1. Two pointed bilinear lattices (V, f,c) and (V', f', ) are sta-
bly equivalent if and only if there is an isomorphism

¢ : (Coker f, M, [c]) — (Coker f/, A", [c])

of the induced discriminant linking groups. In fact, any isomorphism ¢ :
(H,\,z) — (H',N,2') of linking groups lifts to a stable equivalence of
pointed bilinear lattices.

ProOOF. Let s : (V, f,¢)® (U, h,u) — (V', f',)® (U, W, u') be an ex-
plicit weak isomorphism realizing the two stable equivalence between the
pointed bilinear lattices (V, f,¢) and (V’, f’,¢). Since unimodular pointed
lattices are sent via the discriminant construction to trivial linking pairing
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(with trivial distinguished elements), this isomorphism induces an isomor-
phism
Coker (f' @ h') = Coker #/ — Coker f = Coker f@®h

whose restriction to Gf" = Tors Coker f is an isomorphism of the linking
pairings A" and M.

Conversely, it suffices to prove the last statement. Let ¢ : (H,\,z) —
(H',N,2') be an isomorphism of linking groups. Set G = Tors H and
G’ = Tors H'. Using [23, Proof of Th. 4.1], lift ¢|¢ : G — G’ to a stable
equivalence s between nondegenerate bilinear lattices (V, f) and (V' f/).
Consider the following commutative diagram of extension of abelian groups

p

0 G—>H F 0
J{MG Ei¢> i[ﬂ
0 (A & Sy 0

where i is the canonical inclusion and [¢] : F — F’ is the isomorphism
induced by ¢. The two horizontal short exact sequences are split. Choose a
section s : F'— H of p. Then s’ = ¢poso[p]™': I/ — H' is a section of p/.
Define
V=VesF)*, [=fo0

and similarly V! = V' @ §/(F')*, f' = f' ®0. We see that ¢ = s @ bls(r)
is an isomorphism between the lattices (V, f) and (V’ . // inducing the iso-
morphism ¢ : (H,\) — (H’, \'). Furthermore, let Z € V* = V* @ s(F) and
eV =V*@s (F') belifts of x € H = G@s(F) and z € H =G ®s(F)
respectively. Clearly ¢* sends 2/ to & mod f (V). Therefore, ¢ is a suitable

stable equivalence between pointed bilinear lattices lifting the isomorphism
between group linkings (H, \,z) and (H', X', z’). |

In practice, the following corollary is useful. It shows that in the process
of stabilization, one can restrict to a particular pointed unimodular lattice.
Denote by +1 the bilinear lattice on Z sending (1,1) to +1.

COROLLARY 6.2. Two n-pointed bilinear lattices (V, f,c) and V', f', ') are
stably equivalent if and only if they are related by a finite sequence

(V, fre) s oo s e V', )
of the following two operations:

(i) lattice isomorphisms;
(ii) orthogonal sum with (Z,=+1,0).

Let us state the particular case of torsion groups.

COROLLARY 6.3. Two pointed nondegenerate bilinear lattices (V, f,c) and
(V' f', ) are stably equivalent if and only if the discriminant linking pair-
ings (G, Ag) and (G, Apr) are isomorphic. Furthermore, any isomorphism
between two nondegenerate pointed linking pairings (G, \,z) and (G', N, ')
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can be lifted to a stable equivalence of pointed bilinear lattices (V, f, &) and
V', 1),

REMARK 3.8. The notion of stable equivalence generalizes the notion of
stable equivalence for bilinear lattices (without distinguished element) and
is weaker than the notion of strongly stable equivalence defined for bilinear
lattices equipped with Wu classes. It is indeed clear from the definition
that if two triples (V, f,¢) and (V' f/, ') of bilinear lattices equipped with
distinguished elements v € V* and v € V'* that happen to be image of
Wu classes (by f@ and f’@ respectively) are strongly stably equivalent, then
they are stably equivalent. See Th. 2.2 and Th. 4.7 respectively.






CHAPTER 4

Lagrangians and Witt groups

The notion of Lagrangian was introduced in the previous chapter, §1. This
chapter is devoted to the study of Lagrangians and the associated Witt
groups. The material covered here is fairly classical and is used as a building
block both towards the reciprocity formula in Chap. and the topological
quantum field theory in Chap.

1. The Lagrangian category

Throughout this section, we deal with nondegenerate e-symmetric bilinear
pairings. As is customary in order to ease notation, given an abelian group A
endowed with a bilinear pairing, we denote by —A the same group endowed
with the opposite bilinear pairing.

We are first interested in defining a suitable category of Lagrangians in
finitely generated abelian groups endowed with e-symmetric bilinear pair-
ings. Before we do so, consider the following three examples of Lagrangians.

EXAMPLE 4.1. Given any e-symmetric bilinear pairing A, the diagonal La-
grangian is defined as Diag(A) = {(a,a) | a € A} € —A D A. The antidiag-
onal Lagrangian is defined as Diag(A) = {(—a,a) |a€ A} € —AD A.

ExAMPLE 4.2 (Lagrangian associated to a bilinear pairing preserving iso-
morphism). More generally, let f : A — B be a morphism. The graph of
f, defined as Graph(f) = {(a, f(a)) | a € A} € —A @ B is isotropic (resp.
Lagrangian) if and only if f preserves the e-symmetric bilinear pairings on
A and B (resp. if and only if f is bijective and preserves the e-symmetric
bilinear pairings on A and B). The case f =id4 (resp. f = —id4) gives the
diagonal Lagrangian (resp. the antidiagonal Lagrangian).

We now define the composition of Lagrangians.

LEMMA 1.1. Let A, B, C be three nonsingular e-symmetric bilinear pairings
on finitely generated abelian groups such that the map V — V1 is involutive
on subgroups. Let A be a Lagrangian in —A® B and let A’ be a Lagrangian
in —B&C. The subset

(1.1)
N oA = {(a,c) e —A®DC | there is b € B such that (a,b) € A and (b,c) € A’}

is a Lagrangian in —A S C.

The following definition is mainly needed for the proof of Lemma 1.1.

89
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DEFINITION 4.1. Let A be a nondegenerate e-symmetric bilinear pairing and
let I < A be isotropic. Let B < A a subgroup. We define the contraction of
B along I by

(1.2) Bl = (B+I)nItcIt
EXERCISE 4.1. The following properties hold:

(1) Bl =(Bn 1Y) + 1.

(2) Contraction and orthogonal “commute”: (B)* = (B+).
(3) If I is Lagrangian then B! = I.

(4) If B is isotropic (resp. Lagrangian) then so is B’.

PROOF. Denote by a dot a e-symmetric bilinear pairing. Let (a,c) and
(d’, ) be two elements in A’ o A. There exist b, b’ € B such that (a,b) € A
and (b,c) € A, such that (a’,b') € A" and (¥',) € A’. Then

(a,c)-(d',d)=—-a-d +c-=—-a-d +b-V —-b-V+c-c
= (a,b) - (d',V') + (b,c) - (V, )
—0+0
= 0.

Hence A’ o A < (A o A)*. Let us prove the converse. We consider the
orthogonal sum —A@ B&—B@C. In this group lies the isotropic subgroup
H = 0 & Diag(B) & 0 with orthogonal Ht = Ao@ Diag(B) & C. The
canonical projection A BOBSC —» (A& B® B&C)/H restricts to
a projection p : H- — HY/H = A @ C which preserves orthogonality.
Consider the subgroup G = (A @ A’)#. We have p(G) = A’ o A. Since p
preserves orthogonality, p(G+) = (A’ o A)*. Since A @ A’ is Lagrangian, so
is G. |

EXERCISE 4.2. The composition of Lagrangians is associative. The diagonal
Lagrangian plays the role of the identity.

DEFINITION 4.2. The category of Lagrangians Lag®(U) over U is defined
as follows. An object is a nondegenerate e-symmetric bilinear pairing on a
finitely generated abelian group A with values in U. A morphism between
two objects A and B is a triple (A, A, B) where A is a Lagrangian in —A®DB.
The composition of two morphisms (A, A, B) and (A, B, C) is the morphism
(AN oA, A, C) defined by Eq. (1.1).

For more details, see for instance [46], [93, IV, §3]. It is convenient at times
to identify A to A0 and B to 0 & B respectively as subgroups of A& B.
We now fix a category of Lagrangians.

DEFINITION 4.3. A Lagrangian A in —A & B is decomposable if
A=(AnA)S(AnB).

The definition obviously depends on the fixed decomposition —A & B.

REMARK 4.1. The orthogonal sum of two Lagrangians A ¢ A and A’ ¢ B
is always decomposable in —A & B. A general Lagrangian may not be
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decomposable: for instance, the Lagrangian Graph(f) associated to a e-
symmetric bilinear pairing preserving isomorphism is not decomposable. In
particular, the diagonal Lagrangian Diag(A) ¢ —A@ A is not decomposable.

DEFINITION 4.4. Two Lagrangians L and L’ are transverse in A if
L+ L =A.

REMARK 4.2. If L and L' are two transverse Lagrangians in A then LN L' =
0.

PRrROOF. Recall that the underlying e-symmetric bilinear pairing is non-
degenerate. We have

= At = + e N L N L.
|

LEMMA 1.2. Let A, B be two objects in Lag®(U). Let L, L’ be a Lagrangian
in —A® B. If L is transverse to L' and if L' is decomposable, then L is
decomposable.

PRrOOF. The inclusion (L n A) + (L n B) < A always holds. To see the
other inclusion, let z € L. Since L + L' = —A @ B, there exists w € L'
and (a,b) € A x B such that z + w = a + b. Since L’ is decomposable,
there exists a decomposition w = w’ + w” with w’ € A,w” € B. Thus
z=(a—w)+ (b—w") is a decomposition for z. [ |

The two main cases we have in mind are U = Z (the category of Lagrangians
in e-lattices) and U = Q/Z (the category of Lagrangians in e-linking pair-
ings).

DEFINITION 4.5. A Lagrangian category is involutive if for any object A
and any subgroup V< A, V- = V.

If a Lagrangian category Lag®(U) is involutive then for any e-symmetric
bilinear pairing .S and for any subgroups V, W of S,

VAWt =vt+wt
(This identity is the result of taking the orthogonal of the identity (1.1).)

LEMMA 1.3. The Lagrangian categories Lag®(Z) and Lag®(Q/Z) are involu-
tive.

In the rest of this paragraph, we consider only involutive Lagrangians cate-
gories. First we refine our criterion to find a Lagrangian (Lemma 1.2).

DEFINITION 4.6. A Lagrangian L is split if it is a direct summand.

ExAMPLE 4.3. The diagonal (resp. antidiagonal) Lagrangian is split. Proof:
one direct summand of Diag(A) (resp. Diag(A4)) is A®0 = {(a,0) | a € A}.

REMARK 4.3. If ¢ = 41, a Lagrangian may not be split. As an example,
the cyclic symmetric linking pairing (%) on Z/9Z is Lagrangian; the only
Lagrangian A is the cyclic subgroup generated by 3 mod 1, which is not a
direct summand of Z/9Z. In particular, A does not have a Lagrangian direct
complement.
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REMARK 4.4. Let A be a split Lagrangian, it is not true that any direct
complement of A is itself Lagrangian. Consider the symmetric linking pair-
ing (1) defined on A = Z. The diagonal Diag(A) is a Lagrangian in —A@® A
which has the cyclic subgroup B generated by (0,1) € A as a complementary
subgroup: Diag(A)® B = —A® A. Then B™ is generated by (1,0), so that
B~ Bt =0 and B is not even isotropic.

The following observation is a refinement of Lemma 1.2 in our context.

LEMMA 1.4. Let L be a Lagrangian in A and let W be isotropic in A. The
following statements are equivalent:

(1) W is a Lagrangian and L and W are transverse;
(2) A=LoW.

PRrOOF. If L and L’ are transverse Lagrangians, then A splits as the
direct sum of L and L' (Remark 4.2). Conversely, suppose that there is a
direct summand W such that A@ W = A. Then

A=0" =AWt =A+Wt
Since
0=At=A+W)t =AW
A splits as the direct sum of A and W+'. Hence Lemma 1.2 applies. |

LEMMA 1.5. Two Lagrangians L and L' are transverse if and only
if L n L' = 0.

PrROOF. We have L+ L' = Lt + L't = (LA L')*. We apply the involution
property to conclude. |

We have seen that a Lagrangian may not be split. There is an elementary
and important case when this does hold automatically.

LEMMA 1.6. Suppose that A is a torsion free abelian group. Then every
Lagrangian in A is split.

PROOF. Since A is a Z-module, the hypothesis implies that A is free
over Z. ]

LEMMA 1.7. Assume that ¢ = —1. Given a set E of Lagrangians, there
exists a Lagrangian L' tranverse to each Lagrangian in E.

PRrooF. Consider the set of all isotropic subgroups intersecting trivially
with each Lagrangian L in E. This set is not empty since it contains the
trivial subgroup. Choose a maximal element L’ with respect to the inclusion.
Let L be a Lagrangian in E. Then

(1.3) A=(Lnl"V =1+ 1" =L+ 1%

We want to show that L’ is Lagrangian. Suppose first that L'* < L + L'.
Then it follows from (1.3) that A = LA L' = L &® L. Apply Lemma 1.2
to obtain the desired result. Now we claim that the inclusion L't < L + L’
necessarily holds. If not then there exists € L'+ such that = ¢ L + L.
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Let (x) be the submodule generated by . Since (z) < () (here we use
e = —1), we see that

L'+ () c L'~ @)t = (I + &)t

Hence L' + (x) is isotropic, still intersects trivially L and contains L’. This
contradicts maximality of L'. [ |

REMARK 4.5. For symmetric bilinear pairings, Lemma 1.7 does not hold
even for a single split Lagrangian. Let A be a Z-module such that multipli-
cation by 2 is not invertible endowed with any symmetric linking pairing.
The diagonal Lagrangian Diag(A) in —A @ A is split but none of the direct
complements is a Lagrangian: there does not exist a Lagrangian transverse
to Diag(A).

Given a pair of transverse Lagrangians L, L' in A, the e-symmetric bilinear
pairing on A induces a bilinear pairing L x A/L" — U.

PROPOSITION 1.8. Let A be a nonsingular e-symmetric bilinear pairing. The
group O(A) of automorphisms of A acts transitively on pairs of transverse
Lagrangians.

The following observation is a preparation for a suitable refinement of Lag®(U).

LEMMA 1.9. For an object A € Lag®(U), we denote by La a Lagrangian in
A. Let (A,L,),(B,Lp),(C,L¢c) be three pairs where A, B,C are objects in
Lag®(U). Let A be a Lagrangian in —A & B and let A’ be a Lagrangian in
—B&C. If A is transverse to Ly © Ly and if A’ is transverse to Lg & L¢,
then A o A is transverse to L4 @ L¢.

In short, the composition of transverse Lagrangians is transverse.

PROOF. We have to prove that Ayops N Lo = Ayoys N La = 0. We
prove that Anops o Lo, the other case is similar. Let x € Ayopys N Lo. Write
x = (a,c) as an element in —ASC. Since (a,c) € Lc € C,a=0and ce L¢.
Since = = (0,¢) € Anons, there exists b € B such that (b,c) € Ay. Since Ay
is transverse to the decomposable Lagrangian Lg @ L¢, by Lemma 1.2, Ay
itself is decomposable. Hence c€ Ay n C. So finally ce Ayn Lc=0. R

DEFINITION 4.7. The category of transverse Lagrangians Lag.,,.(U) over
U is defined as follows. An object in Lagg,,s(U) is a pair (A4, L4) where A
is an object in Lag®(U) and L4 is a Lagrangian in A. A morphism between
two objects A and B is a Lagrangian A in —A& B such that A is transverse
to Ly& Lpg.

There is a faithful forgetful functor Lagg,,(U) — Lag®(U) that “forgets”
the extra Lagrangians and the transversality property.

2. Lagrangian e-symmetric bilinear pairings and quadratic
functions

Let ¢ : A — U be a quadratic function on a finitely generated abelian group
A with values in an abelian group U.
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DEFINITION 4.8. A subgroup A c A is isotropic with respect to ¢ if ¢(A) = 0.

LEMMA 2.1. If A is isotropic with respect to q then A is isotropic with respect
to by.

PRrROOF. Let z,y € A. Then by(z,y) = q(x+y) —q(xz) —q(y) = 0.. Hence
A c AL |

REMARK 4.6. The converse of Lemma 2.1 does not hold. The action (5.3)
prevents this. For instance, on A = Z/47Z, consider the symmetric linking
pairing (%) Then Diag(A) is a Lagrangian in —A @ A, hence is isotropic.
The quadratic form ¢ defined by
2 2
Q(xvy):%_%+g mod 1’ (m,y)e—A@A,

is a quadratic enhancement of —A @ A but ¢(1 mod 4,1 mod 4) =
mod 1 & 0.

1
2

COROLLARY 2.2. If A is isotropic with respect to q then there is an induced
quadratic function q : A/A — U such that the following diagram is commu-
tative:

A1 Uy

e

A/A

In view of the above, the following definition is natural.

DEFINITION 4.9. A subgroup A < A is Lagrangian with respect to ¢ if
g(A) =0and A = At. A quadratic function ¢ is said to be Lagrangian (resp.
split Lagrangian) if there exists a Lagrangian (resp. a split Lagrangian) with
respect to g. The definition is similar for e-symmetric linking pairings.

REMARK 4.7. A trivial quadratic function g : A — U (i.e., such that ¢(A4) =
0) is Lagrangian.

The terms metabolizer and metabolic (instead of Lagrangian subgroup and
Lagrangian quadratic function) are also used, see for instance [83]. On lat-
tices, a quadratic function is split Lagrangian if and only if it is Lagrangian.
The property of being (split) Lagrangian is preserved by isomorphisms of
quadratic functions or e-symmetric bilinear pairings.

We now fix an involutive Lagrangian category Lag®(U). We denote by
Quadr(U) (resp. Quadr®(U)) the monoid of all tame quadratic functions
(resp. of all tame quadratic forms) defined on a finitely generated abelian
group with values in U. Similarly we denote by Symm®(U) the monoid of all
e-symmetric linking pairings defined on a finitely generated abelian group
with values in U. The operation is the orthogonal sum. These monoids can
be turned into small additive categories in the obvious way.

We are interested in determining whether an e-symmetric bilinear pairing
(or a quadratic function) is Lagrangian, in other words, in the existence of
morphisms in the category Lag®(U). We begin with elementary observations.
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LEMMA 2.3. Let A € Quadr(U).

(1) A is (split) Lagrangian if and only if —A is (split) Lagrangian.

(2) The orthogonal sum of two Lagrangians is a Lagrangian in the or-
thogonal sum.

(3) If A is torsion and is a Lagrangian then each p-primary component
is Lagrangian (for the quadratic function restricted to the p-primary
component).

The analogous statement for quadratic forms and for e-symmetric bilinear
pairings holds.

PrOOF. (1) A is a Lagrangian for A if and only it is for —A. (2) Let A
and A’ be Lagrangians for A and B respectively. We write A for A &0 and
A for 06 A’ in A® B. Then At = A® B and At = A& A’. Then

AN =At ANt =(ADB) n(AAN)=ASA.

(3) Let H be an isotropic subgroup in A. Let p be a prime and let A, denote
the p-primary component of A. Then

1L 1 1 €
HnA,cH-cH +A; =(HnA4),)
so H n A, is isotropic. Assume now that H is Lagrangian in A. We have

(Hn Ayt =H "+ Ay =H+ DA,

q¥p
=@DHnA) + DA,
q q=*p
= (Hr\Ap)@@(Hr\Aq) +@Aq
q¥p q¥p
=(HnNA)S @ A
q¥p

It follows that when restricted to the p-component,
(HnA)tnA,=Hn A,

Therefore the subgroup H n A, is a Lagrangian for the restriction 4,. W

LEMMA 2.4. Let A € Quadr(U). Then the orthogonal sum —A & A is split

Lagrangian.

The analogous statement for quadratic forms and for e-symmetric bilinear
pairings holds.

Proor. Diag(A) is a split Lagrangian. |
REMARK 4.8. If A’ ~ A then —A @ A’ is split Lagrangian.
Let (A, q) € Quad(U). Denote by I(A) the set of all g-isotropic subgroups
in A. There is a similarly defined set for a bilinear pairing. Any isotropic

subgroup H < I(A) induces a quadratic function ¢ on the subquotient
H*/H by the formula §([z]) = ¢(x) for all z € H*.
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DEFINITION 4.10. The quadratic function g defined on H+/H is called the
contraction of q relatively to H.

The definition for e-symmetric bilinear pairings is similar: b([z], [y]) =
b(z,y), z,y € H+. The quotient group H'/H will always be implicitly
endowed with the induced contraction form.

REMARK 4.9. If ¢ is nondegenerate (resp. nonsingular) then all its contrac-
tions are nondegenerate (resp. nonsingular).

It turns out that contraction is a natural tool to “split off” Lagrangian
summands.

PROPOSITION 2.5. Let A € Quadr(U). Let H € I(A). The orthogonal sum
—~ Ao H'/H

is split Lagrangian. There is an analogous statement for e-symmetric bilin-
ear pairings and quadratic forms.

Note that Lemma 2.4 is just the special case of Proposition 2.5 when A is
nondegenerate and H = 0.

Proor. In A@® H*/H, the subgroup A = {(z,[z]) | z € H'} is a split
Lagrangian. |

If the subgroup H is not isotropic then the contraction with respect to H is
not defined. However, the subgroup H+ n H is b-isotropic with respect to an
e-symmetric linking b on A since H-nH € H+H+ = (H-~nH)*. Asbefore,
b induces a quotient e-symmetric bilibnear pairing on (H+ n H)*/H' n H.

PROPOSITION 2.6. Let (A,b) € Sym®(U). Let H be any subgroup of A. The
orthogonal sum
H*+H
Ab — b
ane (f i)

1s split Lagrangian.

PROOF. Apply the previous proposition to the form on the isotropic
subgroup H+ n H. |

REMARK 4.10. The analogous statement for quadratic functions is not au-
tomatic because a quadratic function ¢ may not vanish on H+ n H. See
Proposition 3.6 below. This fact will play a crucial réle in the reciprocity
formula and the topological quantum field theory associated to a quadratic
form.

3. Witt groups

We define two basic relations in Quadr(U), Quadr®(U) and Sym®(U).
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DEFINITION 4.11. Two quadratic functions A, A" € Quadr(U) are stably
related (vesp. split stably related) if A@A is isomorphic to A’/@A’ for suitable

stable

Lagrangian (resp. split Lagrangian) A and A’ in Quadr(U). We write A
A’. There is an analogous definition for Quadr®(U) and Sym®(U).

The next definition is motivated by Lemma 2.4

DEFINITION 4.12. Two quadratic functions A, A’ € Quadr(U) are Lagrange-
related (resp. split Lagrange-related) if —A @ A’ is Lagrangian (resp. split

Lagrangian). We note A ESy

In terms of the Lagrangian category introduced in §1, A and A’ are Lagrange-
related if and only if there is a morphism between A and A’.

LEMMA 3.1. Both the stable relation and the Lagrange relation are equiva-
lence relations.

PROOF. Reflexivity and symmetry are obvious. Transitivity of the sta-
ble relation follows from the fact that the orthogonal sum of two Lagrangians
is Lagrangian (Lemma 2.3, (2)). Transitivity of the Lagrange relation is the
composition of morphisms in the Lagrangian category (Lemma 1.1). |

Our goal is to show that the two equivalence relations are the same.

PROPOSITION 3.2. A %% A if and only if A8 A,

A key point in the proof of Proposition 3.2 is the following observation
(which is a kind of a converse to Lemma 2.4). Let us temporarily call stably
Lagrangian a pairing or a quadratic function stably related to a Lagrangian
pairing.

LEMMA 3.3. If A € Quadr(U) is stably Lagrangian and nonsingular then it
is Lagrangian. The analogous statement for Quadr’(U) and Sym® (U) holds.

LEMMA. The proof is based on the observation that if N, P are two
isotropic subgroups of A, then the induced quadratic functions on N+ /N
and P1/P respectively are Lagrange-related. Indeed, by Proposition 2.5,

AN L/N and A kS PL/P. Since "8 is an equivalence relation, the
claim follows.

stable

Now suppose A A with a Lagrangian C' € Quadr(U). Then there exist
Lagrangian B and Lagrangian D in Quadr(U) such that ASC ~ D. Choose
Lagrangians A ¢ C and A’ c D respectively. The observation above applied
to A considered as a subgroup of C shows that A = AL/A (orthogonality
with respect to A@C) is Lagrange-related to the trivial pairing 0 = A"t /A’,
hence is Lagrangian. |

PROPOSITION. Assume that A 2% B. By definition, there is a La-
grangian quadratic function N such that — A& B ~ N. Then

AON~AP-ADPB~BP-APA.
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Since —A @ A is Lagrangian (Lemma 2.4), this means that A stable B Con-

stable

versely, suppose that A B. Then there exist Lagrangian subgroups
N, N’ such that A@ N ~ B@® N’. Thus by Lemma 2.4,

—A®@B®-Na@N’
is Lagrangian. Since —N @ N’ is already Lagrangian (Lemma 2.3, (2)),
—A @ B is stably Lagrangian. Therefore —A @ B is Lagrangian by Lemma
3.3, hence A e p |

The respective sets of equivalence classes of Quadr(U), Quadr’(U) and
Sym®(U) are denoted 20Q(U),WN°(U) and ¢ (U) respectively.

LEMMA 3.4. Fach set defined above is an abelian group for the operation
induced by the orthogonal sum .

PROOF. To see that there is a well defined operation induced by the
orthogonal sum, we verify that ~ is compatible with &. This is clear using
the stable relation. Lemma 2.4 implies that every element [A] has an inverse,

namely —[A] = [—A]. [ |

DEFINITION 4.13. The groups WQ(U), W (U) and W (U) are the Witt
groups of quadratic groups, homogeneous quadratic groups and e-symmetric
linking groups respectively with values in U. For simplicity, we shall denote
by 20(U) the Witt group of symmetric linking groups.

The following remark is useful in the context of torsion.

LEMMA 3.5. There is a canonical decomposition

WA(U) = P WA, (V)

where WA, (U) denotes the Witt group associated to the monoid of quadratic
functions on p-primary subgroups with values in U. The analogous statement
for other Witt groups holds.

Proor. This follows from the orthogonal decomposition of an abelian
group into its p-primary subgroups (Lemma 3.2). |

PROPOSITION 3.6 (The basic alternative). Let (A,q) € Quadr(U) and let
N < A be a subgroup.

- Either (N n N1) % 0;
- or q induces quadratic functions N/(N n N+) and N*/(N n N*t)
respectively such that in the Witt group 0Q(U),

(3.1) [A]=[NK<VNL]+[N]:iVL]'

PROOF. Let H = N n N+ and assume that ¢(H) = 0. Then by Propo-
sition 3.6, ¢ induces a quadratic function H*/H and [A] = [H*/H]. By the
involutive property,

Ht =Nty N NP N =N+ N
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Hence in Quadr(U),
H'/H~N/H @ N*/H.

Therefore in the Witt group, [A] = [HY/H] = [N/H]® [N*/H], which is
the desired result. [ |

REMARK 4.11. One can define refined Witt groups by considering only split
Lagrangians [51, §5]. The equivalence relation is considerably more restric-
tive; therefore the Witt groups obtained in this fashion are (much) larger
and sit between the monoid of isomorphism classes and the Witt groups we
have defined above.

We close this section by considering a degenerate quadratic function ¢ : A —
U. We have already seen (Lemma 5.2) that if ¢(A') = 0 then ¢ induces
a nondegenerate quadratic function § : A/A+ — U. If the short exact
sequence 0 — At — A — A/AL — 0 is split, then there is an isomorphism
of quadratic groups
(A,q) ~ (A/A*,9) & (AT, qlar),

where ¢| 41 is the trivial quadratic form identically zero on A+, hence is
Lagrangian. Therefore, at the level of the Witt group 2Q(U), [A,q] =
[A/A+,q]. But the hypothesis on the short exact sequence may not be

satisfied in general ( See Remark 1.10). Nevertheless, the equality in 20Q(U)
holds in general:

LEMMA 3.7. Let q : A — U be a tame quadratic function. Then [A,q] =
[A/AL, ] in WQU).
PROOF. Apply Prop. 2.5 to (A, q) with g-isotropic subgroup AL, [ |

It follows from Lemma 3.7 that we can restrict to nondegenerate quadratic
functions in our study of the Witt group 20Q(U). However, it is useful
to consider also nontame quadratic functions (in particular for topological
applications). We shall discuss in §4.3 the appropriate “Witt setting” for
general quadratic functions on finite Abelian groups.

4. The Witt group of finite quadratic abelian groups

4.1. Quadratic functions. Let p be a prime.

LEMMA 4.1 (Reduction Lemma). Let o, B be integers coprime with p. The
following relation holds in 2Q,(Q/Z):

ar? B ar? B
[ pn +pk:| = [W—i—pk_l] for()gmax(k,l)<n
az? B ax? P
|:2n+1 + pk] = |:2n1 + 2161] fO?” O < max(k,Q) <n

ProOOF. We treat the case when p is odd. The case p = 2 is similar. Let

g be the quadratic function defined by ¢(x) = O‘pfo + i—,f on A = Z/p"ZL.

Under the hypotheses the subgroup B = p"~'A is g-isotropic. Hence ¢ is
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Lagrangian equivalent to the contraction § on B+/B. Tt is readily verified
that (B*/B, q) is isomorphic to the quadratic function ¢’ defined on Z/p" 27

2
by ¢'(z) = &5 + 25 u

Looking at the order of the “linear part”, we deduce the following facts.

COROLLARY 4.2. If0 < k < 1, then [O‘pff2 + %] = [;‘nfi] . In particular,

if n is even then [apff + i—f] =0.

PROOF. The first assertion is a direct consequence of the lemma. Now
every nondegenerate linking pairing on a cyclic group A of order p?" has
Lagrangian p™A. The second assertion follows. |

4.2. Quadratic forms. We begin with the computation of the classical
Witt group of quadratic forms on finite abelian groups. By Lemma 3.5,

WN"(Q/Z) splits as the direct sum of WA (Q/Z), p prime.

We record a fundamental observation due to F.Connolly [12, proof of Th.
1.13].

PROPOSITION 4.3. Let g € MO°. Let p be a prime and denote by qp € imﬂg
the corresponding orthogonal summand. The following identities holds in

Mmay:
ap = —9qp ifp= 1mod 4
@+ ap = (—qp) + (—ap) if p=—1mod 4
@+e+tete=(-q¢)+ (@) +(—0)+(—g)

REMARK 4.12. The proposition applies in particular to linking pairings since
the map MNY — M™* is surjective.

Proor. We follow [92, Lemma 1.15]. First work in the ring Z, of p-adic
integers.

LEMMA 4.4. There exist x1, T2, 3,23 € Zyp such that 3 + 23+ 25+ 23 = —1.
Furthermore, if p = —1 mod 4 then one can take x5 = x4 = 0; if p = 1 mod 4
then one can take ro = x3 = x4 = 0;

PROOF. The equation 22 = a has a solution in Z, if and only if it has a
solution in Z/pZ (for p odd) or in Z/8Z for p = 2 (see [96, Chap.5, §4] and use

Hensel’s lemma). If p = 1 mod 4, then —1 is a square mod p so 22 = —1 has
a solution in Zj,. If p = —1 mod 4, then —1 is a nonsquare mod p. Therefore
Lemma 4.4 applies. For p = 2, the equation 27 + 23 + 23 + 23 = —1 has the
solution x1 = x9 = x3 = 1,24 = 2 in Z/8Z. [ |

For (z1,x9,x3,24) satisfying the condition of the lemma above, form the
matrix

1 X2 T3 T4

—Zy T1 —T4 T3

r3 —x4 —X1 X2

T4 r3 —x2 —XI1
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with coefficients in Z,. A direct computation shows that
C-CT =@} +ad+a}+27) I, = —1u.

Now as a finite abelian group, A, is a Zjy,-module: the action of Z, on A,
is the diagonal action of Z, on the direct sum of the cyclic p-groups (each
of which regarded as embedded in Z,). So C' defines an automorphism of
ApDA, DA, DAy Let ¢’ denote the quadratic form ¢ ® ¢@® q @ q. The
associated linking pairing is b/ = bSO bSO bS b.

A direct computation shows that

4

¢ (Cz) = (Z w?) q () = —q(z)
j=1

for any z lying in a summand of A, ® A, ® A, ® A,. (Here we use the fact

that ¢ is homogeneous.) Using “anti-orthonormality” of the columns of C,

we compute similarly that

bq/(0$a0y) = —bq/(:z:,y), T,y € Ap@Ap@Ap ®p -

Using ¢'(z +y) = ¢ (z) + ¢ (y) + by(x,y), we deduce that C' induces an
isomorphism between ¢’ and —¢’. [ |

PROPOSITION 4.5. Let p be a prime number. There are canonical isomor-
phisms
WAN(Q/Z) ~ Wy(Q/2Z), forp +2,
Z)27.®Z)27 if p=1 mod 4
2,(Q/Z) ~ W,(Fp) = Z/AZ if p=3 mod 4
7,27 if p=2 mod 4

where W(F,) denotes the Witt group of symmetric linking pairings on the
field IF,,.

PRrOOF. The first isomorphism is induced by the map (A,q) — (A, by)
which is an isomorphism if A has no even order element. The natural canon-
ical injection

1
F, - Q/Z, 1 — — mod 1
p

induces a monoid homomorphism M* (F,) — ?J)?; . This map induces a map
at the level of Witt groups. Provide an inverse to this map as follows ([83,
Chap. 5, §1, Theorem 1.5]). Let (A,\) € MF. If pA = 0 then A is a
[F,-vector space. In particular, A determines an element in 20(FF,). Suppose
that p"A = 0 and p"'A % 0 for some n > 2. The subgroup A; = p"~ !4
is isotropic since A(p"~lz, p"ly) = p?IA\(x,y) = A(P"p" 2z,y) = 0. Set
By = A{/A; and let X be the induced linking pairing on B;. Applying
Proposition 2.5, we have [A,A] = [By,A]. Observe that p"~!B; = 0. We
can therefore reiterate this process a finite number of times and obtain a
linking pairing (By, Ax) such that [A, A] = [Bg, A\x] and p By, = 0. Hence the
procedure assigns a well-defined element in 23(R/p). It remains to see that
it induces a map 20, — 2(R/p). First, the procedure preserves orthogonal
sums. Furthermore, we claim that Lagrangian linking pairings are sent to
Lagrangian linking pairings. It suffices to see that if A is Lagrangian, then
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sois A\. Let L < A be a Lagrangian for \. Let Ly = (L n A{)/(L n A;)
A%/Al = Bj. It follows that

(Ln At =Lt + A7t =L+ Ay
Hence
(L AD)Y A Af = (L + A1) n Al = L~ AT,
where the last equality follows from the inclusion 4; < Aj. Therefore,

L1 = L, is a Lagrangian for X\. This proves our claim. It is not hard to see
that this map is the desired inverse.

In view of Theorem 4.3, 20(FF,) has two generators b = [1/p] and b’ =
[np/p] where n, is a quadratic nonresidue mod p. If p = 1 mod 4, then
[1/p] = [-1/p] = —[1/p] hence b = —b so b and b’ have order 2. As there
is no other nontrivial extra relation (the relation (4.2) gives 2b = 2V = 0),
we deduce that the map b — (1,0), ¥ — (0,1) induces an isomorphism
W(F,) = Z/2Z2@7Z/27. If p = —1 mod 4, then —1 is a quadratic nonresidue
mod p so b = [-1/p] = —[1/p] = —b. Prop. 4.3 yields 2b = —2b hence
4b = 0. The isomorphism 20(F,) = Z/4Z follows. For p = 2, 2W(F,) is
generated by b = [1/2]. Note that [—1/2] = [1/2] so b = —b and therefore
2b = 0. The isomorphism 20(Fq) = Z/27Z follows. [ |

REMARK 4.13. For a computation of the isometry classes of forms on F,
(see [83, Chap. 2, §3]). One can derive from it (or from Theorems 4.3 and
4.7) an alternative computation of the Witt groups above.

REMARK 4.14. The Lagrangian used in the proof (to prove that the map
W,(Q/Z) — W,(F,) is well defined) is nonsplit in general.

REMARK 4.15. The refined Witt groups (see Remark 4.11) do not harbor
new torsion properties but are considerably larger. For instance, [1/p%*] = 0
in 20,(Q/Z) since p*Z/p**7Z is Lagrangian (not split), but [1/p**] is not zero
in the refined Witt group. See [51, Prop. 5.2] for a detailed computation.

The Gauss sum was introduced in Chap. 1 as an invariant of the isomor-
phism class of a quadratic function. A more precise result holds: it is actually
an invariant of WA (Q/Z).

PROPOSITION 4.6. Let (A, q) be a Lagrangian quadratic function on a finite
abelian group. Then (A, q) = 1. In particular, v induces a homomorphism

WA(Q/z) — C*

Proor. Let z1,...,x, be a complete set of coset representatives for
A/L. Then the Gauss sum associated to ¢ can be written as

(A4, q) = [A]"2 ZZ qa(z; +y))

j=lyelL

After we replace q¢(z; +y) = q(x;) + by(z;,y) + q(y) = q(x;) + bg(xj,y), the

sum becomes
Y(A4,q) = Z ) D x(bg(;,y))-
j=1 yeL
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Now for each fixed j, the map gq(a:j) : y— x(bg(zj,y)) is a homomorphism
from L to U(1). If it is a trivial map, constant equal to 1, then the sum

(4.1) 2 x(bg(5.9))

yeL
equals 1 +---+1 = |L|. This happens if and only if Bq(:cj) = 0 if and only if
xj e Lt = L. If z; ¢ L, then by(z;) is nonzero and by a classical argument

(Lemma 1.12), the sum (4.1) is zero. Since exactly one representative x; lies
in L, we conclude that that

Y(A4,q) = |A]"2 |L| = |A]"2 |A]2 = 1.

Since v is multiplicative on orthogonal sums (1.8), the second statement
immediately follows. |

COROLLARY 4.7. Let [A,q] € WAN(Q/Z). If p = 2 then y(A,q)® = 1; if
p=—1mod 4 then v(A,q)* = 1; if p=1 mod 4 then v(A,q)* = 1.

PRrROOF. Apply ~ to the quadratic forms of Prop. 4.3, use multiplicativ-
ity on orthogonal sums and the fact that y(—¢) = v(¢) (Lemma 1.8). Since
q is nondegenerate, y(g) # 0. The result follows. |

PROPOSITION 4.8. 2WAY(Q/Z) ~ Z/8Z.&® Z/27.. The generators can be rep-
resented by the cyclic quadratic forms (3) and (§) on Z/2Z and Z/AZ re-
spectively.

4.3. The Witt monoid of finite quadratic functions. For nontame
quadratic functions on finite Abelian groups, the stable relation is still an
equivalence relation; the Lagrange relation may not be reflexive.

LEMMA 4.9. If ¢ : A — Q is a Lagrangian degenerate quadratic function
then any Lagrangian contains the annihilator A+ and q is tame.
Proor. Let A c A be a Lagrangian. We have
A=At =A== A+ 4%
Hence AL < A. Since g(A) = 0, we deduce that g| 4. = 0. [ |

LEMMA 4.10. A quadratic function that has a nontame orthogonal summand
is montame. The orthogonal sum of two nontame (resp. tame) quadratic
functions is nontame (resp. tame).

ProOOF. Immediate from the definitions. |
COROLLARY 4.11. If (A,q) is nontame then (—A,q) © (4,q) is not La-

grangian.

PROOF. (—A,q) © (A, q) is nontame by Lemma 4.10, hence cannot be
Lagrangian by Lemma 4.9. |

As a consequence, the Lagrange relation is not reflexive on nontame qua-
dratic functions. Therefore, one considers the stable relation instead.
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LEMMA 4.12. The stable relation in the set of all quadratic functions is an

equivalence relation. The set Q%(Q/Z) of stable equivalence classes is an
Abelian monoid. Nontame quadratic functions represent nontrivial elements
and have no inverse.

PROOF. The proof of the first statement and second statement follows
the same lines as that of Lemmas 3.1 and 3.4. Any quadratic function that
has a nontame orthogonal summand is nontame, by Lemma 4.10, hence
cannot be Lagrangian. The last statement follows. |

DEFINITION 4.14. The monoid 20Q(Q/Z) is called the Witt monoid of qua-
dratic functions.

LEMMA 4.13. Two absolute nontame quadratic functions represent the same
element in WA(Q/Z) if and only if they are isomorphic.

PROOF. One direction is obvious. Conversely, suppose that two absolute
nontame quadratic functions verify A = A’ in 20Q(Q/Z). Then there is an
isomorphism A& A ~ A’ @ A’ of quadratic functions for some Lagrangians
A,A'. By Lemma 4.10, A& A and A’@ A’ remain nontame. By Lemma 4.9,
Ant = 0 = AL;. Therefore,

AZAnt ZAnt@OZ (A@A)nt ~ (A/@A/)nt ZA;t@O:A;t ZA/.
|

LEMMA 4.14. There is a canonical decomposition

WA(Q/Z) = P WA, (Q/2)

where Q/ﬁﬁp(Q/Z) is the Witt monoid of all quadratic functions on finite

p-groups. A similar decomposition holds for the Witt monoid %O(Q/Z) of
all quadratic forms.

The following result relates the Witt monoid to the Witt group of quadratic
forms:

PROPOSITION 4.15. Let p be a prime number. If p &+ 2, then there is a
commutative diagram

WYy (Q/Z) — > Wy(Q/Z) ® Bzt (Breren N)
W, (Q/2) ———— WAL(Q/2)
If p = 2, there is a commutative diagram

WD, (Q/Z) —> W(Q/Z) @ Drz1 (Br<r<n N)

| ¥

W (Q/Z) —— WANQ/Z) & D, -, N




4. THE WITT GROUP OF FINITE QUADRATIC ABELIAN GROUPS 105

with the following properties:

(1) all horizontal isomorphisms are induced by the orthogonal decomposition
into tame and absolute nontame parts;

(2) the p-component [Ap, q|a,] lies in the subgroup WQ,(Q/Z) (resp. in the
subgroup ?ZHQS(Q/Z)) if and only if it is represented by a tame quadratic
function (resp. a tame quadratic form);

(3) all vertical maps are induced by the natural inclusions;

(4) the monoid monomorphism i X j is induced on the first component by the
natural inclusion i : 2N (Q/Z) — WA2(Q/Z) and is defined on the second
component by j(ai,as,as,...) = (a1, (az,0), (as3,0,0),...).

PROOF. Let ¢ : A — Q/Z be a quadratic function. By Prop. 5.28,
(A,q) = (At, ) © (Ant, gnt ), where g; is tame and gy is either identically
zero (if and only if ¢ is tame) or is an absolute nontame quadratic form.
Hence in the Witt monoid, there is a decomposition

[Av Q] = [Atv Qt] + [Anta Qnt]v

where the second component lies in the Witt monoid of all absolute nontame
quadratic functions. By Lemma 4.13, the latter identifies with the monoid
of isomorphism classes of absolute nontame quadratic functions. (In par-
ticular, [An, qnt] = 0 if and only if ¢ is tame.) Therefore the top (resp.
bottom) horizontal isomorphisms in the diagrams follow from the last state-
ment of Prop. 5.28 for quadratic functions (resp. quadratic forms); the
second component of each horizontal isomorphism consists of the collection
of invariants associated to the absolute nontame part. (In particular, note
that for p odd, all quadratic forms on a p-group are tame, hence the equality

WA, — WA(Q/Z).)
|






CHAPTER 5

Reciprocity

We derive a formula in the Witt group of torsion quadratic functions; pre-
sented as an alternative, it generalizes all previously known formulas of
reciprocity. We keep notation from the previous paragraphs. The formula
can be regarded as a far-reaching generalization of the classical Van der Blij
formula. Hence we begin the Van der Blij formula first.

1. The van der Blij - Milgram formula

In 1959, F. van der Blij stated a formula relating the bilinear lattice to
its discriminant function [8]. In short, this is a computation of the Gauss
sum associated to a discriminant quadratic function. Since any quadratic
function is a discriminant quadratic function (Th 4.6), this computation
applies to any nondegenerate finite quadratic function. The computation is
explicit in terms of the bilinear lattice lying over the quadratic function and
yields a fundamental invariant of the quadratic function. The applications of
this beautiful formula, many times rediscovered, lie in algebra and topology.

THEOREM 1.1. Let ¢ : G — Q/Z be a nondegenerate quadratic function
on a finite abelian group. Let (V) f,v) be any nondegenerate bilinear lattice
equipped with a Wu class v e V such that (Gf,0f0) = (G,q). Then

(1) 1(Grop10) = exp( 2 (sign(f) — fa(w.v) ).

Recall that sign(f) denotes the signature of the lattice (V) f) ® R. Van der
Blij’s original formula is the case v = 0 (for even lattices) and det f = 1
mod 2.

As hinted above, the applications in algebra and topology are just too nu-
merous to list. We shall content ourselves with a few obvious observations
and consequences. Define

(1.2) B(q) = sign(f) — fo(v,v) mod 8.

COROLLARY 1.2. The rational residue $(q) € Q/8Z is an invariant of the
isomorphism class of (G,q). Furthermore,

1. B(q) is in fact an invariant of the Wu class of (G,q).
2. If q is homogeneous then [(q) € Z/8Z.
3. If (V. f) is unimodular then B(q) =0, i.e.,

sign(f) = f(v,v) mod 8, for any Wu class v e Wu(f).

107
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2. Proof of the van der Blij — Milgram formula

There are several proofs of the van der Blij formula. It is pointed out by
C. T. C. Wall [98] that the original proof given by van der Blij has an
analytical gap!. The proof below is inspired from that of J. Milnor and M.
Husemoller [66, Appendix 4] (see also J. Lannes and F. Latour, [56]).

In order to lighten the notation, we drop the notation for the symmetric
bilinear pairing in this section. Let V' be a nondegenerate symmetric bilinear
lattice V' equipped with a Wu class v. Any sublattice U inherits a structure
of a symmetric bilinear lattice by restriction. Furthermore, since U € V <
vVt < U*, one has the inclusion Wu(V) € Wu(U). Hence the sublattice U
is also a symmetric bilinear lattice equipped with Wu class v. In particular,
(V,v) and (U,v) induce discriminant quadratic functions, which we denote
VE/V and U*/U respectively.

LEMMA 2.1. If U is a sublattice of index k > 0 in V, then
[UF/U] = [VF/V]

in the Witt group WQ(Q/Z). In particular, the Witt class of the discrimi-
nant quadratic function is computable from any finite index sublattice.

PROOF. (Compare with [66, Appendix 4].) Consider the subgroup H =
V/U in U*/U. Then H* = V#/U. Thus H € H*. Furthermore, since v is
a Wu class for v, the discriminant quadratic form on U* /U vanishes on H.
Therefore Proposition 2.5 applies: [U*/U] = [HY/H] = [V#/V]. [

Consider a lattice U in V ® Q such that U® Q = V ® Q. Then both U and
V' contain the sublattice U n V' that has finite index in each of them. Hence
by Lemma 2.1, [U*/U] = [V*/V].

The symmetric bilinear form over the Q-vector space V ® Q is isomorphic
to an orthogonal sum of 1-dimensional spaces (through the Gram-Schmidt
procedure). Therefore it contains a lattice U which is an orthogonal sum
of 1-dimensional spaces. By choosing a sublattice if necessary (for instance
twice the previous one), we can suppose that U is even. We choose the Wu
class 0 for U. By Lemma 4.2, each orthogonal 1-dimensional summand is
also even. Since + is an invariant of Witt groups, it suffices to verify the
identity for a 1-dimensional even lattice V' = Z. Such a bilinear lattice
is of the form (2m) : (z,y) — 2may for some nonzero integer m. We
endow it with the Wu class 0 € Z. The associated discriminant quadratic
function is pg(z) = % mod 1, z € Z/mZ, with associated linking pairing
Mz,y) = 3%, x,y € Z/mZ. Assume that m > 0. We are left to compute

2
viv. = omi
’7( / 7%00) \/W xe;mz €Xp < 7Tl2m)
= exp <7Z> = exp <2m,s1gn8(m)> .

IThis analytical gap can be possibly removed by means of Nikulin’s theory.

(2.1)
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Hence this agrees with the stated formula. If m < 0 then the Gauss sum
is the conjugate of the previous one (2.1) so the stated formula is again
verified. It remains to verify that the formula is verified if we change the
Wu class. The set of Wu classes is Wa(V) = 2V# =2 x ;LZ = L7 Let
v = % € Wu(V), k € Z. The associated discriminant quadratic function is

x2 kx

©u(x) = @o(x) — Ay (2, k mod 2m) = T om mod 1, x € Z/mZ.

Then
’y(Vﬁ/V, Yy) = 'y(Vﬁ/V, ©o) - exp (2mipo(k mod 2m)) by Lemma 1.9

: 2
= exp (ZWiSIgIlg(m)> - exp <2m’f>
m

: _ 2
= exp (27Ti Slgn(m)8 2m k > .

This is the desired identity and this concludes the proof.

3. The reciprocity identity

The reciprocity is a general identity involving tensor products and the dis-
criminant construction. Let f : V xV — Zand g : W x W — Z be two
nondegenerate bilinear lattices. Endow f® g with a Wu class z € (V@ W)L
Recall that there are natural maps jr : GyQW — Ggy and VRG, — G rgq
respectively. The subgroups A = j;(Gy® W) and B = j4(V ® G4) are mu-
tually orthogonal in G g, with respect to the discriminant linking pairing

Af@g-
THEOREM 3.1 (Reciprocity). The following identity holds in %(Q/Z):
(3-1)  [Gr@W,¢rgy-0dr] = [Grog Preg:l + [V @Gy, —¢ iy, © gl

This is the most general version of reciprocity, expressed in the Witt monoid
WA (Q/Z) of all quadratic functions on finite abelian groups.

ProoFr. Apply Prop. 3.6 to the quadratic group (G rgg,¢f@g,-) With
respect to the subgroup A = j(GRW): either ¢ gg .| 4~ is not identically
Zero or

[Gf®gv@f®g,2] = [A/AQAJU ¢f®g,Z|A/AmAL]+[AL/AmAL7@f@g,z‘Al/AmAi]a

where, abusing notation, we denote by the same letter the quadratic function
on A (resp. Al) and the induced quadratic function on A/A n A+ (resp.
AtJA A AL). Consider the quadratic function pfgg.|a on A. Let H =
An At Then H' = (A4 At) n A = A (orthogonality with respect to the
associated linking pairing Aygg|axa). It follows from Prop. 2.5 applied to
the ¢ tgg,:|a-isotropic subgroup H that

[A, @f@g,z|A] =[4/An AL, @f@g,z|A/AmAi]'

Similarly,

[Ala @f®g7z|Al] = [AL/A N Alv @f®97z|Ai/AmAi]'
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But
(A7 §0f®g,Z|A) = (Gf ® W7 PfRg,z © jf)
and similarly

(Grog Progzlat) = (V ® Gy, ©rg,: © Jg)-
The result follows. n
A corollary of Th. 3.1 is the following reciprocity formula [94, 1.3]. Below
bar denotes complex conjugation.
COROLLARY 3.2.

(3.2) Y(Gr@W,0sq.:071) = V(Grog Pieg:) YV ® Gy, 0igg.= © Jg)-

Proof of Corollary 3.2. We apply Theorem 3.1, considering first the case
when ¢ g4 .| i is not identically zero on H. Since the annihilator of ¢ g .| a
is A n AL = H, Corollary ?? implies that

0 =7(A4, preg.:la) = 1(Gr@W, 05y, 0 jf)-
A similar argument shows that v(V ® Gy, ¢fgq,- © jg) = 0. Therefore the
identity (3.2) is verified.

Suppose next that ¢fg, .|n is identically zero. Then by Corollary ??, the
three Gauss sums appearing in (3.2) are nonzero. Applying the homomor-
phism v : WQ(Q/Z) — U(1) to the relation (??) yields the desired relation.
|

COROLLARY 3.3. Let v e Wu(f) and w € Wu(g). For any vo € Wu" (f) and
wo € Wu(g),

(3.3)
7<Gf®w,sof,m®g+ <Xf®g><[”°2”]®w>) -

7<Gf®g,v®w) ’Y(V ® va f® Pgwe + (J?® Xg)(v ® [WD) :

Proor. Apply Cor. 3.2 to the case z = v ® w. Noting that
VRW=v9@w+ (v—19) Qw =vR®wy + v & (w— wp)
with v — vg € 2V* and w — wy € 2W*, we have, according to (9.1),
P f@g0@w 0 Jf = Pru ® 9 — (A ® 9)([*F2] ®w, —)|cew
and, according to (9.2),
P @g.0@w 0 Jg = f ® Pguwo — (f®XAf)(v® [*F2], —)lvec,-
This yields the desired result. |

COROLLARY 3.4. [13, Th. 3] For any vo € Wu" (f) and wo € Wu" (g),
(3'4) V(Gf W, P fo ® g) = V(Gf®g,v®w) 7(V ® Gg7 f® (pg,wo)'

Proor. Cor. 3.3 with integral Wu classes v = vy and w = wy. |



CHAPTER 6

The Weil representation of a finite abelian group

In 1964, in a remarkable paper [100], André Weil constructed a unitary
representation associated to a symplectic locally compact abelian group. In
a few decades the Weil representation has appeared to be a central object in
mathematics, lying at the crossroads between the theory of theta functions,
number theory, harmonic analysis and quantum mechanics.

In the third paragraph of his celebrated paper, André Weil makes in passing
the following remark: “qu’il me soit permis, en passant, de signaler I'intérét
qu’il y aurait peut-étre a examiner de plus pres, du point de vue de la
présente théorie, le cas des groupes finis.” (“Let me mention in passing the
interest that might lie in studying more closely, from the viewpoint of the
present theory, the case of finite groups.”)

The exact intent of Weil is not immediately clear, aside from a note to the
1946 paper [54] by H. Kloosterman'. One possible interpretation is that
the existence of the Weil representation for finite abelian groups is closely
related to the existence of Abelian Topological Quantum Field Theories.

1. The Heisenberg group

1.1. The Heisenberg group associated to a Seifert form. Let A
be an Abelian group, let C be a subgroup of C and let w : A x A — C
be a nonsingular symplectic pairing. We are interested in the following two
cases: (1) A is finitely generated free Abelian, C' is the group of integers; (2)
A is finite Abelian, C' is the group Q/Z. We choose a form f: A x A — C
such that

(1'1) B(x,y)—ﬂ(y,w) :w(xay)v Va,y € A.

Such a pairing was called in Chapter 1, §3.2, a Seifert pairing. Recall that
there is no uniqueness of the Seifert pairing 3 for a given symplectic form w:
adding an arbitrary symmetric bilinear pairing to a Seifert pairing produces
another Seifert pairing associated to the same symplectic form.

The motivation for this terminology comes from the following example.

EXAMPLE 6.1. Let ¥ = S2 be an oriented smooth surface. Choose a collar
Int(¥) x [-1,1] = S — d%. For a l-cycle = representing an element x in
H{(X) = Hy(Z x 0), denote by xt (resp. x~) the 1-cycle representative

1The Weil representation appears in this paper presumably for the first time. It was
independently rediscovered by L.E. Segal [87] in 1960, followed by D. Shale [85].

111



112 6. THE WEIL REPRESENTATION OF A FINITE ABELIAN GROUP

corresponding to & x 1 (resp. = x —1) in the collar. The Seifert form is a
bilinear pairing § : H1(X) x H1(X) — Z defined by
Bla,y) = k(z,y") € Z, x,ye Hi(X),

where lk denotes the usual symmetric linking pairing of cycles in S3. Note
that lk(z,y") = lk(z~,y). Hence

ﬁ(‘rvy) - ﬁ(y,x) = 1k<l’,y+) - 1k(y,.73+) = lk(‘rver) - lk(xayi) =—xTey

where o denotes the intersection pairing on ¥ (with the usual orientation
convention)?. Hence —3 satisfies the relation (1.1) where w is the intersection
pairing.

A Uy’

DEFINITION 6.1. The Heisenberg group s¢3(A) associated to (A4, 3) is the
extension of A defined as the set A x C endowed with the multiplication rule

(1) - (y, 1) = (z + y, t + 1" + Bla,y)).
If 5 is understood, we suppress the subscript and write simply 7 (A).

Associativity follows from associativity in A and bilinearity of 5; the pair
(0,0) of neutral elements in A and C' is the neutral element of .7(A); the
inverse of (x,t) is (—z, —t + f(z,x)) for any v € A and t € C.

It follows from the definition that J#3(A) lies in the exact sequence
(1.2) 0—C——H(A) —A——N0.

EXAMPLE 6.2. The multiplicative group of upper triangular 3 x 3 integral
matrices with 1’s on the diagonal is isomorphic to the Heisenberg group

A (Z?) associated to the Seifert pairing defined by the matrix { 8 (1) ]

EXERCISE 6.1. Prove in detail the previous statement. What happens if the
ground ring Z is replaced by a more general ring R ?

The following proposition shows that there is exactly one isomorphism class
of Abelian Heisenberg group, the direct product group.

ProposSITION 1.1. The following assertions are equivalent:

2The alternative formula (z,y) — Ik(z",y) defines a Seifert form for +w. The latter
is given for instance in [2, §, 9.5, Definition 12]. Here we follow [82, p. 201-202], [59,
p. 53, def. 6.4].
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(1) The short exact sequence
(1.3) 0—C——H(A)—A——0
18 split;
(2) w=0 (B is symmetric);
(3) There is an group isomorphism Hg(A) ~ A x C.

PrROOF. We prove (1) = (2) = (3) = (1). Suppose that the
extension ¢ (A) is split. There exists then a (group-theoretic) section
s:A— H(A),s(a) = (s1(a),s2(a)), with s : A > A and s9 : A > Q/Z.
Since s is a section, we must have s1(a) = a. Since s is a group homomor-
phism,

sa(a +d') = sy(a) + sa(a’) + B(a,d’), Va,d € A.
This implies that £ is symmetric, or equivalently, w = 0. If 8 is symmetric,
choose a quadratic function ¢ : A — C over 8. The map
s: Ax C — H#3(A), (a,¢c) — (a,c+ q(a))
is a group isomorphism between A x C' (with direct product group structure)
and Hg(A). The remaining implication (3) = (1) is obvious. [ |

DEFINITION 6.2. Let Z denote the center of J7(A).

The following observations are useful.
LEMMA 1.2. Let X = (z,t),Y = (y,t') € H(A). Then

(1.4) [X,Y] = (0,w(z,y)).
The center of (A) is Z = 0xC and does not depend on the Seifert pairing.
Furthermore, [ (A), 7 (A)] € Z with equality if w is nonsingular.

PrROOF. The equality is a direct computation:
[X,V]=XYyx 'v!
= (z,t)(y, V) (—2, —t + B(z,2))(—y + —t' + By, y))
=(z+yt+t' + B y)(~z—y,~t =t + Bz, z) + By, y) + B(—2,~y))
= (0,0 + B(z,y) + Bz, x) + By,y) + Bz, y) — Bz + y,x + y))
= (0, 8(z,y) — B(y,z))
= (0,w(z,y)).

Thus (z,t) € Z if and only if w(z,y) = 0 for all y € A. Since w is nondegen-
erate, * = 0. Hence Z = 0 x C. The other assertions follow. |

REMARK 6.1. It follows from Lemma 1.2 that for a nonsingular symplectic
form w, ##(A) is nilpotent of nilpotence class 2 and the exact sequence (1.2)
identifies with the canonical exact sequence

0 — [(A), H(A)] = H(A) = H(A)/[A(A), #(A)] — 0.

COROLLARY 1.3. Let A be a Lagrangian in A. The set L = A x C s
a mazimal abelian normal subgroup of H#(A). Conversely, any mazimal
abelian subgroup G of ' (A) is normal and of this form, i.e., there exists a
Lagrangian A in A such that G = A x C.
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PRrROOF. Clearly, L is a subgroup of J#(A) with composition law
(1.5)
(@,t) (,t') = (@+y, t+ 1"+ B(w,y)) = (y+ 2,8 +t+ By, 2)) = (v, ) (2, 1),

for any z,y € A, t,t' € C, since 0 = w(x,y) = B(z,y) — B(y,x). Hence L is
abelian. According to Lemma 1.2,

(1.6) (@0 (. t) (@ )" = (0,0@)) (1,1) = (1,1 + w(@,y))
In particular, L is normal in J#(A).

Now a subgroup G in J#(A) is abelian if and only if for any (z,t), (y,t') €
G, the relation (1.5) holds if and only if S(z,y) = B(y,z) if and only if
w(z,y) = 0. The epimorphism .7 (A) — A, (z,t) — x restricts to a group
morphism G — A. Thus the image of the latter is an isotropic subgroup of
A. The last statement of the corollary follows. |

COROLLARY 1.4. Let L = A1 x C' be a mazimal abelian normal subgroup of

H(A). For each Lagrangian Ao transverse to Ay, there is an isomorphism
p: Ao — H(A)/L.

PROOF. Define ¢(ag) = [(ag,0)] for ag € Ag. This is a group morphism
because
(1.7)
p(ao)e(bo) = [(ao,0)(bo,0)] = [(ao + bo, B(ao, bo)] = [(0, 5(ao, bo))(ao + bo, 0)]
€zZcL
= [(ao + by, 0)] = go(ag + bo).

Since Ag and Ay are transverse, A = Ag @ A1 and there is a well defined
projection pg onto Ay with respect to Aj. Define a map #(A) — Ay by
sending (x,t) to po(z) = xg for any (z,t) € H#(A). This map is a group
morphism, sends L to 0 and thus induces a group morphism 7 (A)/L — Ay
inverse to . |

A group isomorphism ¢ : A — A’ induces an isomorphism

e xide : (.’E,t) = (gO(.T),t)
from J#3(A) onto H{,-1yx3(A’). However, it is not even necessary for two

Heisenberg groups to be isomorphic that the Seifert pairings be isomorphic,
as the following observations show.

REMARK 6.2. The map (z,t) — (x,—t) is an isomorphism between the
Heisenberg groups Hg(A) and H_g(A).

EXERCISE 6.2. Provide examples of bilinear pairings 8 : A x A — Q/Z such
that (8 is not isomorphic to —(. Find a necessary and sufficient condition in
the case of e-linking pairings. (Use the classification results, Chap. 1, §4.)

LEMMA 1.5 (Presentation of the Heisenberg group: free Abelian case). As-
sume that A is free Abelian, C is Z and w : A x A — Z is nonsingular. Let
Ao and Ay two transverse Lagrangians in A. Let{x;,i € I) (resp. {y;i,i € I))
be a system of generators of Ao (resp. A1).

(1) The group 7 (A) is generated by {(x;,0) i € I} U {(y;,0),i € I}.
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(2) The group #(A) may be presented as

(1.8) (ui, v, 0,5 € | [ui, [ug, v]] = [vi, [ug, v]] = 1).

The proof is an immediate generalization of the argument given by P. Kahn
in [48] (whom he attributes to K. Brown) for the special case of the Heisen-
berg group .#(Z?*) considered in Example 6.2 above.

PROOF. For (1), let H be the subgroup generated by {X; = {(x;,0) i €
It v {Y; = (y4,0), j € J}. According to Lemma 1.2, [(z;,0), (y;,0)] =
(0,w(xs,y;) (i,j € I) which generate Z. Hence Z < H. Next,

(i,0)(y5,0)- (0, =B(wi,y;) = (xi +y5, Bwi, y;) - (0, =B(wi, y;) = (wi +y;,0).
—_—

ez

By transversality, (w,0) € H for all w € A. Using the relation (1.4) once
more, we conclude that (w,t) € H for all (w,t) e A x C,ie. H= 7(A).

Let us prove (2). Let F' be the free group generated by wu;,v;,i,j € I, R
the relator normal subgroup presented in the statement of the theorem and
let G be the quotient group F'/R. According to Lemma 1.2, any pair z,y
of elements in J#(A) satisfies [z,y] € Z hence satisfies the relations of the
presentation (1.8). Therefore there is a unique homomorphism f : G —
€ (A) that sends [u;] to (x4,0) and [v;] to (y;,0), i € I, j € I. It follows
from (1) that the homomorphism is onto. Furthermore, the map f induces
a commutative diagram

1——~[G,G] G G/|G,G] —=1
I
1 Z H(A) A 1

where all vertical arrows are epimorphisms. Clearly the abelianization Gy,
of G is the free Abelian group on the generators u;,v;,7,j € I, therefore
Gap = G/[G, (] is isomorphic to Ag @ A1 = A. Thus the induced epimor-
phism f : G/[G,G] — A is actually an isomorphism. Observe that [G,G]
is generated by [(z,0), (y,0)] = (0,w(x,y)), z,y € Ao U Ay. It follows that
[G,G] is generated by (0,1), thus [G,G] = Z. Hence the induced epi-
morphism f|iqq ¢ [G,G] — Z is an isomorphism. Apply the 5-lemma to
conclude that f is an isomorphism. |

LEMMA 1.6 (Presentation of the Heisenberg group: finite case). Assume
that A is finite Abelian, w : Ax A — Q/Z is nondegenerate. Let C be the set
of values of w, i.e. C = w(A, A). Let Ay and Ay two transverse Lagrangians
in A. Let {x;,i€ I) (resp. {y;,i € I)) be a system of generators of Ny (resp.
Ay).

(1) The symplectic form w: A x A — C is nonsingular.
(2) The finite Heisenberg group J€(A) is generated by {(x;,0) i€ I} U
{(y270)77’ € I}
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(3) For an element x € A, denote by ord(x) the order of x in A. The
group € (A) may be presented as

(19 Cugyvpie | uf™) = o0%) = [ug, [uj, 0] = [os, [ug, 0 ]] = 1.

PROOF. Assertion (1) follows from Lemma 2.2. The remainder of the
proof is similar to that of Lemma 1.5. |

REMARK 6.3. Provided that the rank of A is even, there is a unique non-
singular symplectic pairing w : A x A — C up to isomorphism. Lemmas 1.5
and 1.6 show that the Heisenberg group Hg(A), up to isomorphism, does not
depend on the choice of the Seifert form 5. However, there is no canonical
isomorphism between two Heisenberg groups #3(A) and ¢4 (A).

We need to make more explicit the general form of an automorphism of
JO(A). Let ® : 53(A) — H#3(A) be an automorphism of J#(A). Since as
aset H(A) = A x C, write

O(x,t) = (p(x,t),Y(x, 1), ze Ajte C

with p : AXC — Aand ¢ : AxC — C. First, since A = 7 (A)/[H#(A), 5 (A)],
® induces an automorphism ® : A — A such that the diagram

p

H(A)—— A
@ )
H(A) L~ A
is commutative. Since p : A x C — A is the canonical projection on the first
factor, we find that
o(z,t) =po ®(x,t) = Pop(x,t) = P(x).
In particular, ¢(x,t) only depends on x € A. Next,
(®(x),¥(x,t)) = ®(z,t) = 2((0,) (x,0)) = (0,t) D(,0)
= (0,2(0,1)) (®(),¥(x,0))
= (2(2),¥(0,t) + ¥(,0)).
Hence there is a decomposition ¢(z,t) = 1(0,t) +(z,0). On the one hand,
O(z,)®(y, t') = ((2), ¥(0,¢) + ¥(,0)) (2(y), ¥(0,') + ¥(y,0))
= (2(z) + @(2),%(0,) + ¥(0,') + ¥ (2,0) + ¥(y, 0) + B(L(x), D(y)).
On the other hand,
O((z,t) (y,1) = ®(z +y, t +1' + B(x,y))
O(x+y),Y(x+y t +t + B(2,y)))
D(z +y),0(0,t + ¢ + Blx,y)) + ¥(x +y,0)).

Hence
(1.10)

P(0,8)+4(0,")+1p(x,0)+1(y, 0)+B(D(x), D(y)) = (0, t+t'+B(x,y)) +¢(x+y,0).
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Observe that
(0,9(0, + u)) = (0,¢ +u) = ©((0,)(0,u)) = (0,(0,))(0,(0, u))
= (0,4(0,t) + (0, u)).

Hence t — (0, 1) is additive. We can therefore simplify the equality (1.10)
and obtain the relation

P(x,0) + ¥(y,0) + B(®(), D(y)) = ¥(0, B(z,y)) + ¥(x +y,0).
Equivalently,

(1.11) (2 +y,0) —9(z,0) = ¥(y,0) = B(2(2), B(y)) — ¥(0, B(z,y)).

Note that (1.11) implies that the map (z,y) — B(®(x), ®(y)) — (0, B(z,y))
is symmetric bilinear. (The right hand side implies that it is bilinear, the
left hand side implies that it is symmetric.) Thus the map = — (z,0) is

a quadratic function. Let us determine the restriction of ® to the center
Z =0x C of #(A). We have ®|(0,t) = (0,v(0,t)). Now

(0,9(0,w(z,y))) = 2(0,w(,y)) = S([(x,1), (y,t)])

= [2(x, 1), ®(y, t')]
= [(@(x), ¥ (. 1)), (2(y), (y,1))]
= (0,w(®(x), 2(y))),

hence the relation

w(ovw(xay)) = w(@(l‘),@(y))
In particular, 1(0,t) = t if and only if ®"w = w. Now the réle of the
symplectic group is apparent.

DEFINITION 6.3. The symplectic group over (A,w) is
Sp(A) = {se€ Aut(A) | s*w = w}.

Let us sum up the result just proved.

LEMMA 1.7 (Automorphisms that are the identity on the Center);An auto-
morphism ® : A (A) — A (A) satisfies ®|z = idy if and only if € Sp(A).
We arrive at the following definition, inspired by that of Gurevich and

Hadani in their study of the Weil representation in characteristic two [40].

DEFINITION 6.4. The affine symplectic group over (A,w) is
(1.12) ASp(A) = {s e Aut(H(A)) | s|z =Idz}.

We sum up and complete the results obtained so far.

PROPOSITION 1.8. The group ASp(A) is an extension of Sp(A) that fits into
the short exact sequence

(1.13) 0 —— Hom(A,C) —— ASp(4A) —— Sp(4) — L.

Elements in ASp(A) can be presented as ordered pairs (s,q), s € Aut(A), q:
A — C acting on H(A) b

(1.14) (s,9) - (2, 1) = (s(2),t + q(2)), (x,1) € H(A).
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The group law in ASp(A) is given by
(1.15) (s,q) - (5,q) = (s’ 08,4 05+ q).

Furthermore, the automorphism s and the quadratic function q are related
by the formula

(1.16) q(z +y) —q(z) —q(y) = B(s(z), s(y)) — B(z,y), Yo,y € A.

In particular, each s € Sp(A) determines a linking pairing As : A x A — C
defined by

(117) AS(H?,y) 25(8(.%),3(3/))—5(.7],3/), m,yeA.

PRrOOF. It follows from the previous discussion that an automorphism &
of #(A) decomposes as ®(z,t) = (®(z),(0,t) + 1 (z,0)) where t > (0, 1)
is an additive group homomorphism and x — (z,0) is a quadratic func-
tion over symmetric bilinear pairing (x,y) — B(s(z),s(y)) — ¥(0, 5(z,y)).
Suppose that ® € ASp(A). Then ¥(0,t) = t and the last two assertions
of the Proposition follow for s = ® and ¥(x,t) = t + q(x). it follows from
Lemma 1.7 that the induced automorphism ® on A is symplectic. The
corresponding map

ASp(A) — Sp(4), & +— &

is a group homomorphism. Let us prove that it is onto. Let s € Sp(A).
Choose any quadratic function ¢ over the symmetric bilinear pairing (z,y) —
B(s(x),s(y)) — B(x,y). Define ®(x,t) = (s(x),t + g(x)). We claim that this
defines an automorphism in ASp(A). First, ®(0,¢) = (0,t), i.e. ® restricts
to the identity on the center Z of 7 (A). Secondly, compute

O((x,1) (y, ) = ©(x + y,t + '+ B(z,y))

= (s(@ +y),t+t' + Bx,y) + q(z +y)))

= (s(x) + s(y),t + '+ q(x) + q(y) + B(s(x), s(y))

= (s(2),t + q(x)) (s(y), ' + ()

= O(x,t) 2(y,t').
Thus @ is a homomorphism. Thirdly, it is readily verified that the map
(x,t) — (s7Y(x),t — q(s7!(x))) is ®!. This proves that ® — @ is an
epimorphism. Next, an automorphism @ lies in the kernel of the map & — @
if and only if ® = id4 if and only if ®(z,t) = (z,t + ¢(z)) where ¢ is
quadratic over (z,y) = B(®(z), ®(y)) — B(x,y) = B(x,y) — B(x,y) = 0 if
and only if ¢ € Hom(A, C'). This proves that the sequence (1.13) is exact.
Lastly, the group law is obtained by writing, for ®(z,t) = (s(z),t + q(z))
and ®'(x,t) = (s'(x),t + ¢'(x)), the composition

o ®(x,t) = (s(x),t + q(z)) = (5'(s(2)),t + q(z) + ¢'(s(x)).
|

REMARK 6.4. Our presentation of the Heisenberg groups in this paragraph
uses the additive notation for the value group C' <€ C. Given a symplec-
tic abelian group (A4, w) with Seifert form [, we may regard the symplectic
pairing and the Seifert pairing as bimultiplicative pairings A x A — C*
into the multiplicative group C*. Then we could equivalently define the
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Heisenberg group associated to A by the same group law as before but on
the underlying set A x C*. This leads to a Heisenberg group that con-
tains an isomorphic image of the Heisenberg group s#(A). Similarly, for
finite abelian groups, one may choose the value group to be the multiplica-
tive group U(1) = {z € C | |z| = 1}. This leads to the Heisenberg group
AV (A) that also contains an isomorphic image of S (A).

1.2. The short exact sequence for ASp(A). We take up the question
whether the exact sequence (1.13) is split. According to Proposition 1.8, a
set-theoretic section of the epimorphism ASp(A) — Sp(A) is represented by
amap Sp(A) — ASp(A), s — (s, qs) where g5 is quadratic function over the
symmetric bilinear map s* — 3. The section is group-theoretic (i.e. is a
homomorphism) if gys = g 0 s + gs.

PROPOSITION 1.9. Let A be a finite abelian group. The following assertions
are equivalent:

(1) The affine symplectic group ASp(A) is a split extension of Sp(A)
and Hom(A,Q/Z);

(2) A has odd order.

(3) Multiplication by 2 defines an automorphism of A;

PROOF. The proof is a relative version of the proof of Prop. 5.30.

Let us prove (1) = (2). Assume that A has even order. We shall show that
there is no group-theoretic section ASp’(A) — ASp(A). Consider an element
xo € A of order 2% where k is maximal. By the classification of symplectic
linking pairings (Prop. 3.12), there exists another element x; € A of order
2% such that the subgroups By and B; generated by x¢ and z; respectively
are isotropic and do not intersect nontrivially, the subgroup By @ B; is an
orthogonal summand of (A, w) and

1
w(xg, 1) = oF (mod 1).
Define an element s € Sp(A4) by setting

s(zo) = o, s(z1) =z + 21

and extending by the identity on the orthogonal complement of By By in A.
Without loss of generality (cf. Corollary 3.14 and Corollary 3.15), we may
assume that 3(zo, z1) = w(zo, z1) and B(x1, z0) = B(z0,z0) = B(21,21) = 0.
Then As = s*3 — 3 is trivial except on By @ B; where
1
As(z1,21) = o mod 1, As(zo,x0) = As(0,21) = As(21,20) = 0.
So As is actually trivial everywhere except on the cyclic component B where

it identifies to (2%) By an immediate induction from (??), for any r,
(5, 28)" = (8,Xs) ==+ (8, As) = (8", 8B — ).

Since s"(xg) = o, s" (1) = rxo + =1, a direct computation shows that

(1.18)
r
s"*B(x1,x1)—B(z1,21) = B(rzo+x1,rx0+21)—0 =7 (20, 21) = o mod 1.
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Suppose that there is a group-theoretic section o : Sp(4) — ASp(A) :
s — o(s,As) = (01(s),02(As)). Then o1(s) = s. Let gs = o2()\s). Since
gs : A > Q/Z is a quadratic function over A4, we must have

1
gs(z1) = okl + term of order dividing 2% (mod 1),

by Lemma 5.20. Then for any r, the group-theoretic section sends (s, As)"
to

(5,q5)" = (", (s" 1) *qs + -+ + 5%¢s + qs)-
Let Q. = (s""Y)*qs + --- + s%¢s + gs. Note that Q, is a quadratic function
over (s")* — B. We compute that
() qs(21) = qs(s'(21)) = gs(L w0 + 21) = qs(21) + qs(L 20) + As(l w0, 71)
= gs(z1) + qs(lzo) +0

= o1 T term of order dividing 2¥ (mod 1).

where we used Lemma 5.20 in the last equality. It follows that
Qr(x1) = # + term of order dividing 2¥ (mod 1).

In particular, @9« is nontrivial. Therefore the group-theoretic section o
would send (s, As)2" = (id4, 0) (the trivial element in ASp(A)) to the non-
trivial element (s,q5)2k = (ida, @9x) in ASp(A). This is the desired contra-
diction.

The implication (2) = (3) is standard (Prop. 5.30).

Let us prove (3) = (1). We should prove that the short exact sequence
(1.13) is split. Define a map o : Sp(A) — ASp(A) by o(s) = (s, ¢gs) with

qs(x) = %)\S(x,a?), reA.

The map ¢s : A — Q/Z is clearly a (homogeneous) quadratic function. We
have

Gt () = 5 (850 8(2), 5.0 8(2)) — Bla )
_ %(5(5 0(z),s05(x)) — B (x), §'(z)))
1B (@), §'(2)) — Bz, x))

N

s/ (2) + v ().
It follows that

0(505) = (505, qsox) = (505,45 05 + ) = 7(s) - 7(5).
Hence o is a group-theoretic section of the short exact sequence (1.13). W

REMARK 6.5. It is true for any Abelian group A that if multiplication by 2
is an automorphism of A, then the exact sequence is split. (The finiteness
of A is not used for the implication (3) = (1) in Proposition 1.9.)

PROPOSITION 1.10. Let A be a finitely generated free Abelian group. The
affine symplectic group ASp(A) is a nonsplit extension of Sp(A) and Hom(A,Z).
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PROOF. A group-theoretic section o : Sp(4) — ASp(A),s — (s,qs)
exists if and only if for each s € Sp(A), there is a quadratic function g¢; :
A — Z over \s = s*3 — 3 that satisfies the relation ¢,y = g5 0 s’ + gy for
any s,s’ € Sp(A). Since ¢, is quadratic over Ay, we can write

1
qs(z) = 5()\3(1‘,17) + ¢s(2)), € A,
for some homomorphism ¢ : A — Z satistying the following two conditions:

(1.19) bss = Ps 08 + dgr, Ps(x) = Ns(x, 2) mod 2.

Therefore, a group-theoretic section exists if and only if for each s € Sp(A),
there exists a homomorphism ¢s € Hom(A, Z) satisfying (1.19).

Now the map Sp(A) — Hom(A,Z/2Z), s — As mod 2 is well-defined. Since
A is free, each homomorphism x — Ag(x,z) mod 2 individually lifts to a
homomorphism A — Z. We shall show that there is no system of lifts
(¢s)sesp(a) that satisfies (1.19).

It suffices to prove this for A = 72, w = [ _01 (1) ] Then Sp(A) = SLa(Z).
The two elements
1 0 1 ‘- 10
Tlor ol T
satisfy the relations
2 _| =1 0 | _ 3
(1.20) 5% = [ 0 1 |= (st)”.

For each element f € Sp(A), let us write ¢y = [ay by], for ay, by € Z, acting
on elements in Z? (viewed as column vectors), so that ¢(z,y) = arx + byy,
r,y € Z. According to (1.20), ¢s2 = @14 = P(s1)3, s0 that

(1.21) U2 = a_1d = A(g)3, b2 = b_1q = bepys-
Then

[ast bst]:¢st:¢sot+¢t: [af bf] |: i (1):|+[at bt]

= las + a; + bs bs + by].
Hence
(1.22) st = ag + ap + b, by = bg + by.
Similarly the relation
Gst)2 = Pst 0 St + Pst = (psot+ ¢p)ost+ gsot+ ¢y
= ¢ 0 (tst +1t) + ¢y o (st + 1d)
yields

[agsty2 bsye] = [as bs] - [ :; 1 ] + Lo b { —01 } ]

= [—as — 2bs — by as+ a; + bs + by].
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2. The Heisenberg group and the discriminant

The goal of this paragraph is to study the Heisenberg group associated to the
discriminant group. Let (V,w) be a nondegenerate symplectic lattice. The
discriminant construction (see Chap. ) associates to (V,w) a discriminant
finite symplectic group (G, A,) that fits into the exact sequence

(2.1) 0 1% 1% G, 0.
The intermediate group V* has a natural symplectic structure induced by
w, namely wolyz,p : VEx VE - Q.

Let B:V xV — Z be a Seifert form associated to (V,w). This determines
a Heisenberg group (V) for V. Then V* has also a Seifert form, namely
Bolvixy: : VExVE — Q. We define the Heisenberg group 2 (V*) associated
to (V*, Bolyayyt) in the same way as before: it is the set V¥ x Q endowed
with the usual multiplication rule. There is a natural choice of Seifert forms:

LEMMA 2.1. There is a Seifert form B :V x V — Z associated to w such
that Bo(V,V*) S Z and Bo(VH, V) € Z.

Proor. The Seifert form constructed |

We fix a Seifert form as in Lemma 2.1 in this paragraph. The last group
G, = V#/V in the sequence (2.1) also inherits a Seifert form, namely the
Seifert form defined by

Bu([],[y]) = Bo(w,y) mod 1, x,ye VE.
(Lemma 2.1 ensures that this is well defined.)

LEMMA 2.2. There is a short exact sequence

1 ——= V) —= AV — #(G,) — 1.

PROOF. The inclusion map (V) — #(V*) is the natural one pro-
vided by the set-theoretic inclusion. The conjugate formula (1.6) shows that

A (V)< (V). The natural projection map (V) /#(V) — H(G,,), (w,t) —
([w], [t]) is a group isomorphism. [ |
We define a new symplectic group.
DEFINITION 6.5.

ASp(VE V) = {® € Aut(A/(VF) | ®| (v € ASp(V)}.
By definition, an automorphism ® € ASp(V*#, V) gives rise to an element
3|y e Sp(V*) and also to an element in ASp(V).

ProroSITION 2.3. There is a commutative diagram with exact rows and
columns
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1—ASp(V) ASp(VH) ASp(Gy) 1
1——Sp(V) Sp(V*) Sp(G.) 1
1 1 1

Second row: we define the first nontrivial arrow ASp(V) — ASp(V*). Let
(s,q) € ASp(V'). The automorphism s € Sp(V') induces an automorphism
sp € Sp(V). This automorphism induces by restriction a monomorphism
sg : VP — V. We claim that sg(V*#) = V for any s € Sp(V). Let = € V¥
We have

3. The Schrodinger representation
In this section, (A4,w) is a finite symplectic group endowed with a Seifert

form f: Ax A— Q/Z.

LEMMA 3.1. For any Lagrangian Ay in A, there is a Lagrangian Ag in A
and a Seifert form B : A x A — Q/Z such that

{ AO@Al = Aa
Blagxa; = wWlagxArs Blaixa, = Blayxa, = Blagxa, = 0.

PROOF. See the proof of the corollary 3.14. |

The purpose of this setting is to regard Ay and Ay as dual subgroups.
COROLLARY 3.2. The maps

ap H,B(CLO,—)’AI, ai HB(_7G1)|AO

are group isomorphisms Ay ~ A} and A; ~ A§.

In the sequel we fix a Lagrangian A; and another Lagrangian Ag satisfying
the conditions of the Lemma above. The precise choice for Ay is actually
irrelevant for our later purpose (see below §4, Corollary 6.7), but allows for
a concrete description of the Schrodinger representation.

Let x : Z — U(1) be a character on the center of J#(A). For each a € A,
define a character

Xa : A= U(1), 2= x(=B(z,a)).
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Let L?Ag be the Hilbert space consisting of C-valued functions over Ag
endowed with the positive definite hermitian product

(3.1) Srgy— ), F@)glx).

$€A()

An orthonormal basis for L2A consists of the set of functions d,,z € Ao
defined by 6,(y) = 1 if x = y and d,(y) = 0 otherwise. Recall that L?A is
actually a commutative and associative algebra for the convolution product

Frg @)=, flx—y) gly), € Ap.

y€Ao
We have d, * §y = 04y, ,y € Ag. The map
T — Oy
extends linearly to an algebra isomorphism (C[Ag],-) — (L?Ag, *).

Consider on L?Ag the following two operators:

e Translation: 7,0, = 0,44, defined for ag € Ap.
e Modulation: My, 0, = Xq, 0, defined for a; € A;.

LEMMA 3.3. For any f € L?*(Ap), ag,z € Ag,a1 € Ay,
(Tuo£)(2) = f(z —a0),  (Ma, )(2) = Xa1 (2) F(2) = x(B(z,a1)) " f(2).

PRrOOF. The second statement is clear. The first statement follows from
{0} zea, being a basis for L?(Ag) and the identity 0,440 (2) = dz(2 —ap). N

DEFINITION 6.6. For each a = (ag,a1) € A, define the Weyl operator W, :
L?Ag — L?Ag by
Wy = My, Ty,

It is clear from the definition that Wy = Id. Furthermore, if a = (ag, a1)
and b = (bg, b1) then

(3.2) WoWa = Xa1 (00) ™" Whia.

In particular, W_,W, = x4, (ap) Id = W,W_,, thus

(3.3) Wit = xa,(a) " W,

It follows from (3.2) that

(3.4) WyWa = Xay (b0) ™ Xty (a0) WaW.

LEMMA 3.4. For any a = (ag,a1) € A,

(3.5) Wa = Xai(a0) ™ Weo = Wt

In particular, W, is unitary.

PROOF. Using the inner product (3.1), one computes

Waf,9) = Xax (a0)71<f) W_ag)-
Hence W} = x4, (ag) ™t W_,. The second equality is (3.3). [ |
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Let U(L?Ag) denote the space of unitary operators on L2Ag. The map
A - U(L*Ap), a— W,,
is a projective unitary representation in the sense that there is a cocycle

c(a, b) = Xb, (a()) = X(B(W b))_1 € U(l)

such that W, = ¢(a, b)W,Wj. The group — known as the Mackey obstruc-
tion group associated to (A4, c) — that consists of all pairs (a,z) € A x U(1)
endowed with the law

(a,2) - (d',2) = (a+d,27¢c(a, b)), ae A zeU)

is precisely the Heisenberg group #.5(A) = # VMV (A) (cf. Remark 6.4).
The map

7 H(A) — U(L2Ay), (a,t) — x(t) W,

is a faithful unitary linear representation of .#°(A). This is the Schrodinger
representation of the Heisenberg group.

LEMMA 3.5. The following properties hold:

(1) The Weyl operators W,,a € A, form a basis of Endc(L?Ay).

(2) The Schridinger representation w : A (A) — U(L?Ag) is irre-
ducible.

(3) w|z(0,t) = x(t) Id for allt € Q/Z.

ProOOF. We follow [74, Lemma 3.2], see also [44, p. 823].
(1) Define a map a : A — Endc(L?Ag) by

a(z)p =W, oW, .

Relation (3.2) ensures that this is an additive map, hence a representation.
If @ = (ap,a1) and b = (b, by) then the relation (3.4) implies that

a(b)(Wa) = Xar (b0) "Xy (a0) Wa = x(w(a, b))~ W

So W, is an eigenvector of o with eigencharacter. Since a — y(w(a,—))"t is
an isomorphism of A onto Hom(A, U(1)), the eigenvectors W, have distinct
eigencharacters. It follows that {W,, a € A} is a set of linearly independent
elements of Endc(L2Ap). Since the cardinality of this set is

Al = [Ao| - [A1] = |Ao| - |Ao| = |Ao|? = dimc Endc(L*Ao),
the set is a basis of End¢(L?Ap).

(2) A subspace of L?Ag invariant under all the Weyl operators W, is invari-
ant under Endc(L2Ay), according to (1). Thus it is either 0 or L2 Ay.

(3) Follows from definitions. [ |
REMARK 6.6. An endomorphism commuting with all Weyl operators is a

multiple of the identity. Proof: by Lemma 3.5 (statement (1)) and linearity,
the endomorphism has to commute with all endomorphism, hence the result.
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The representation 7 : J#(A) — U(L?Ag) induces a representation 7 :
C[2#(A)] — Endc(L?Ap) by linear extension

T (Z /\j(aj»tj)) = Njm(ag,t).
j 5

By property (1) of Lemma 3.5, 7 is surjective. The kernel is easily identified:
it consists of the two-sided ideal J generated by all elements

(0,8) - h— x(O)h, (0,t) € Z, he #(A).

DEFINITION 6.7. The reduced group algebra V[.7#(A)] of the Heisenberg
group on A is defined as the quotient of C[77(A)] by J.

As a consequence of our previous observation, the reduced group algebra of
the Heisenberg group identifies to the algebra of endormorphisms of L?A,.

COROLLARY 3.6. The representation 7 induces an algebra isomorphism be-
tween the reduced group algebra V[#(A)] and Endc(L?Ap).

We now turn to the main result of this paragraph.

THEOREM 3.7 (Stone-Von Neumann-Mackey). For any irreducible unitary
representation p : J(A) — U(H) where H is a Hilbert space such that
plz(0,t) = x(t) Idy, there is an isometry W : L?(Ag) — H such that

U(r(h)f) = p()U(S), for all f € L%(Ay), he H#(A).
In short: up to unitary equivalence, there is a unique unitary irreducible

representation m : J#(A) — U(L?Ap) such that m|z(0,t) = x(¢) Idzey,.
The Schrodinger representation is essentially unique.

ProOOF. We follow [74, Theorem 3.1] supplying details from [60, p.26-
27]. Since 7 is faithful, we regard #(A) as embedded into U(L2A4p). By
the previous lemma, Endc(L2Ag) is freely generated over C by the Weyl
operators Wy, a € A. Therefore p : 7 (A) — U(H) extends linearly to a
representation 5 : End¢(L?Ag) — Endc(H) by

(3.6) p <Z AaWa> = Xap(Wo).

This turns H into a Endc(L?Ag)-module. Since p is irreducible, H is a
simple End¢(L?Ap)-module. On the one hand, since p is unitary,

p(Wo)*p(W,) = Idy for all a € A.
On the other hand, since W, is unitary,
p(W)p(Wa) = p(WiW,) = p(Idj2,,) = Idy.
Hence p(W) = p(W,)~! = p(W,)*. It follows from (3.6) that
p(*) = p(¢)* for all ¢ € Ende(L*Ay).

For a € Ap, let p, be the orthogonal projector onto Cé, = L?Aq defined
by pa(f) = {f,64)0a. Then p? = p, and p* = p,. Furthermore, p(p,)? =
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p(pa) = ppa) and p(pa)* = p(p;) = plpa) thus p(p,) is an orthogonal
projector. Since p is injective, p(p,) has rank 1. In particular,
ﬁ(pa)H =Cuo + 0

for some vector vg € H, ||vo||y = 1. Define a map W : L2Ay — H by setting
U (¢do) = p(¢)vo, ¢ € Ende(L*Ao)

and extending by C-linearity. This map is well defined since

(1) End(c(V)(SO = L2A0;

(ii) if ¢(d0) = ¢'(do) then ¢po = ¢'po, so p(¢d)p(po) = p(¢")p(po), hence
(p(¢) — p(¢")) o p(po) = 0. Since p(po) + 0, we have p(¢)[z, =
p(¢") |, so that p(¢)h = p(¢')h.

We claim that ¥ is surjective. Let ¢, € Endc(L?4g) such that ¢,(dg) =

da- Then ¢apod} = p, and therefore Id 24, = >, Ao PaPa®y Applying
p: Endc(L?Ag) — Endc(H) yields

Idy = Y A(¢a)i(po)p(da)*.
ac€Ag

Hence any element h € H decomposes as h = 3 4. Aap(¢a)vo. Surjectivity
of U follows.

Observe that W(0,) = ¥(édado) = (66a)t0 = H(6)F(da)v0 = H(O)T (Bad) =
p(0)¥(d,). It follows that

(3.7) U(pf) = p(o)W(f) for all ¢ € Endc(L?A4g) and fe L?Ay.

Using again that p is unitary, we deduce that ¥ : L2Aq — H is an isometry.
Restricting the property (3.7) to s (A) yields the desired result. |

DEFINITION 6.8. A model of the Schrédinger representation is an irreducible
representation 7 : 7 (A) — U(H) into a Hilbert space H such that 7|z (0,t) =
x(t) Idy for all (0,%) € Z.

By the Stone-von Neumann Theorem, all models of the Schrédinger repre-
sentation are equivalent. That there are several models is a key feature of
the Schrodinger representation. Before explaining how this fact leads to the
Weil representation, we present other models.

4. The Schrodinger representation as an induced representation

An alternative incarnation of Schridinger representation is the representa-
tion of J(A) induced from a maximal abelian normal subgroup in J#(A).

LEMMA 4.1. For any Lagrangian Ay in A, the subset L1 = Ay x Q/Z <

H(A) is a mazimal abelian normal subgroup.

In particular, L; contains the center Z = 0 x Q/Z. Extend the character
X : Z — U(1) to a character x on L; by

X:Li— U(1)7 (.T,t) = X(t)
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We now assume that these choices are fixed throughout the construction to
follow.

Consider the space of all functions .#(A) — C. Let Ha, be the subspace
of functions f : 7 (A) — C such that

f(h-1) =X f(h), heH(A), le Ly
Note that if f € Ha,, then |f]| is invariant under right (and thus also left)
translations by elements of L;, hence induces a map Ay = #(A)/L; — C.

By definition, the induced representation is given by the action of J#(A) on
H 4, by translations

©(W[f)(@) = f(h™"2), feHa, heA(A).

To see that this representation is equivalent to the previous representation
7, observe first that any map f : Ag — C extends in a unique way to a map
f € Ha, defined by

f(a0,0)-1) = X() ™" flao), ag€ Ao, L€ Ly.
PROPOSITION 4.2. The map f — f 18 an isometry
L*(Ao) = Ha,, [ T,

which is an equivalence between the representations m and 7.

PRrROOF. The first assertion follows from the definition. For the second
assertion, we have to verify the identify w(h)[f] = 7'(h)[f] for h € H°(A),
f € L?(Ap). To check that the two maps are equal, one has to verify that they
coincide on an arbitrary element x € . (A). Let x be such an element: it
decomposes as = = (ag, 0)] where ag € Ag and [ € Ly are uniquely determined

by z. On the one hand, we have

T(R)[f1(y) = x(t) Mp, Thy f(y)-

Hence

On the other hand, we have

o (W[fl(z) = f(h )

((—ho — h1,—t + B(ho, hl)(ao,O)l))
((a0 — ho,0) (0, —t + B(ag, h1))(—h1,0)l)
€Ay €Ly
= X(1)~" x(t) x(=B(ao, h1)) f(ao — ho)
= X(1) 7" x(t) My, Thy f(a0).
This is the desired equality and concludes the proof. |

f
f

COROLLARY 4.3. The Schridinger representation depends on the choice of

one Lagrangian Ay in A rather than on a pair of transverse Lagrangians of
A.
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REMARK 6.7. An alternative proof follows from the definition of the Weyl
operator, where Aj can be replaced by A/A; throughout the construction.

As our construction is based on the finite group A, there is yet another
presentation of the induced model as a quotient of the group algebra of
the Heisenberg group. Let I = I4,, be the two-sided ideal in C[.77(A)]
generated by the set {h -1l — x(l)h, he H(A), l € L1}. Set

H(Ar) = ClA(A)]/1.

The Heisenberg group J#(A) acts by translations on the left on the group
algebra C[7Z(A)]:
h'ékzéhk, h,keji”(A).

Since [ is stable under 7#(A), this action descends to a representation

H(A) x H(A1) — H(Ay):
71'”<h)[(5k] = [h . 6k] = [5hk]> h,k € %(A)

The following proposition is similar to Prop. 4.2.
PROPOSITION 4.4. The map dq, — [0a,] defines an equivalence
L*Ag — H(A1)
between the representations m and w” .
PROOF. Let us show that [7(h)dg,] = 7" (h)[da,] for any h € F#(A) and

ap € Ao. Let h = (h() + hl,t) with ho € Ao,hl € Al. FiI’St, W(h)éao =
X(t) Xhl(_) 5a0+h0 = X(t) Xh1 (a0 + hO) 5a0+h0' Hence

[7(7)day] = X(£) X1 (a0 + 10) [dag+hol-
Next, hag = (ho + hi, t)(ao, 0) = (CLO + ho, 0)(0, hy,t— B(ao + ho, hl)) Hence
W/,(h) [5610] = [5htl0] = X(t - 6((10 + ho, hl)) [5ao+h0] = [ﬂ-(h)(sao]'
|

REMARK 6.8. There is a natural injective algebra map j : C[.7#(A)] —
L2#(A) whose image consists of complex-valued functions on J#(A) with
finite support. Consider the left-invariant Haar measure p on 2 (A) normal-
ized so that u(#(A)) = 1. The canonical injection inj : Ha, — L?5#(A) is
a section of the projection map p : L?#(A) — H 4, defined by

(4.1) (pf)(x) = . f () x(1) dp(l).

Furthermore, the following diagram is commutative

C[#(A)] L~ L22(A)

H(A1) ~ Ha,
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The canonical projection proj : C[7(A)] — H(A) = C[s(A1)]/] has
no section corresponding to the inclusion map inj. (Formally, a section
s:H(Ay) — C[#(A)] can be defined as

s[5 = 3 ) b

l€L1

but then the target space must be enlarged accordingly to include functions
with infinite support and then, it must coincide with L2.#(A).)

5. The Weil representation

5.1. The intertwining operator. According to the previous para-
graph, the Schrodinger representation can be regarded as an induced func-
tional representation defined as a map mp : H(A) — U(H,)) (noted 7" in
the previous paragraph). This map depends on the choice of a Lagrangian
A in A. Another choice of Lagrangian A’ leads to another Schrodinger rep-
resentation mpr : S(A) — U(Hyas). By the Stone-Von Neumann-Mackey
theorem, the two representations are unitary equivalent: there exists an
isometry para € Hom yp(4)(Ha, Has) such that the diagram

H(A) x Hy —2> Ha
idpr/’A\L lPA/,A
%(A) X HA/ % HA/

is commutative. In formula,

paATA(R)[f] = mar(R)paraf,  he H(A), feHn.
In short:
PAATA = TAPA’ A-

This relation alone determines the map pas o up to a multiplicative constant
(See Remark 6.6). Such a map is called an intertwining operator.

LEMMA 5.1. Suppose that A and A" are transverse in A. Up to a multiplica-
tive constant,

(5.1) paralf1(R) = D f(h-(1,0))

leN

PROOF. We need to verify that p[f] € Hp. Let L' = A’ x Q/Z the
maximal normal subgroup associated to A’. Let x = (u,t) = (u,0)(0,¢) € L’.
Then f(he(,0)) = f(h - (u,0) - (0,8) - (1,0)) = f(h - (u,0)(1,0) - (0,1)) —
x(®)7t f(h- (w,0)(1,0) = x(z) "t f(h - (u,0)(1,0)). Then by summing over
le N, we see that p[f](hz) = x(x)~1 p[f](h). Thus p[f] € Har. Next, since
the action is by translations, p is a #(A)-map. |

Consider now three pairwise transverse Lagrangians A, A’ and A” in A. They
give rise to three intertwining operators pas a, par ar and par A respectively.
Both paz p and ppr ar © pprp are intertwiners of Ha» and Ha. Since Hp
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is irreducible (Lemma 3.5), it follows from Schur’s lemma that there exists
C(A",N';A) € U(1) such that

(5.2) par a0 para = C(A", AL A) ppna.
As noticed by A. Weil, it turns out that the cocycle C'(A”, A, A) can be
expressed as a Gauss sum.

Suppose A”, A’ and A are pairwise transverse Lagrangians. Since AOA” = A,
there is a well-defined projection ppr p : A — A” on A” with respect to A.

LEMMA 5.2. Suppose A" and A are transverse. Then

C(A" N A) = > x(BI, para(l))-
Ven

Note that the map gararp 2 ' — B(U', par a(l')) is a homogeneous quadratic
form on A’. Thus Lemma 5.2 can be rephrased as

C(A", A, A) = 1 ([gar aral)
where [ga7 ar.a] denotes the Witt class of gar a7 a in WQ(Q/Z).

PROOF. Let 8 € H, the extension of the map d (defined in Prop. 4.2).
Note that the support of 3y is Z-A = A x Q/Z. We apply the identity (5.2)
to &y evaluated at z = 0. Since A and A’ are transverse, Z - A and Z - A/
intersect exactly on the center Z. Hence

para[00](0) = D bo(l',0) = bo(0) = 1.
l'eN
Thus

C(A", N, A) = panar(para[00])(0)

Z Z SO((lﬁv 0)(l/7 0))

"eN" l'eN’

Do +1,8(1",1)).

l//EA// l/EA/

Now dg(a,t) + 0 if and only if @ € A. Thus the only nonzero terms in the
sum above occur when " +1" € A. This is equivalent to I” = —pp» A (I'). Let
us compute this term:

So(l" = para(l'), B(=par a (), 1)) = x(B(=para(l), 1) ™" = x(B(para (), 1))
eA

Summing over all I’ € A’ yields the desired result. |

We turn now to the case when Lagrangians are not ncessarily pairwise trans-
verse. The formula above (5.1) for pa 5 is no longer applicable. We proceed
as follows. By Lemma 1.7, there is a Lagrangian A” which is transverse both
to A and to A’. Thus both pp» x and pyr a» are well defined. We could then
define

PA’A = PAT A" O PAM A
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provided that we could show that the operator py/ o does not depend on
the particular choice of A” among all Lagrangians transverse to both A
and A’. Let Ay and Ay be two such Lagrangians. We wish to show that
PA’ AL © PAL,A = PA’ Ay © PAs,A- By Lemma 1.7, there exists a Lagrangian Az
such that Ajs is transverse to Ay, As, A1 and Ay. We observe that

PA AL © PALA = Para; © C(A1, Az, A) " pay Ay © pasa
= C(A17 A37 A)_lp/\’,/\l O PA1,A3 © PA3,A
= C(A1, A3, A) 7 C(N, Ay, A3)parag © PagA-

Up to a new higher cocycle, the products para, © pa;.A and para, © pas,A
coincide.

5.2. Definition of the Weil representation. Let 7 : 7(A) — U(H)
be a model of the Schrédinger representation. By definition, the affine
symplectic group ASp(A) acts by automorphisms on the Heisenberg group
H(A):

ASp(A) x H(A) — A (A), (s,h) — s(h).
For each s € ASp(A), the map m o s defines a new representation of the
Heisenberg group. This representation is still irreducible unitary and verifies

7082(0,t) = 7| 7(5(0,1)) = 7| £(0,£) = x(t) Idy

for any t € Q/Z. Hence by Theorem 3.7, the representations m and 7 o s are
unitary equivalent: there exists a unitary operator (defined up to a unitary
scalar) ps € H — H such that

(5.3) ps(m(h) f) = m(s(h))(psf), Vhe A (A), VfeH.
Equivalently,
(5.4) Tos=ps T py .

The Weil representation is the map
ASp(A) —» U(H), s — ps.

This definition depends on the choice, for each s € ASp(A), of a unitary
operator ps € U(H) verifying (5.4).

LeEMMA 5.3. The Weil representation is a projective representation in the
sense that for any s,s’ € ASp(A), there exists c(s,s') € U(1) = S such that

(5.5) psst = ¢(5,8") psps-
The map (s,s") — c(s,s") is a 2-cocycle satisfying the identity
(5.6) c(so, s152)c(s1, 82) = ¢(sos1, s2)c(so,$1), VS0, S1,52 € ASp(A).
PRrROOF. For s,s’ € ASp(A4),
pspa(h) = por (W)p = pon(s' (W) p = 7(5' (h))papsr = (s’ (h))pops
= 7 () paps-
Set C(s,s") = p_psps € U(L?Ap). Then

—1__ss’

C(s,s")m(h) = ps_;pspszﬁ(h) = pa T (R)psps = ﬂ(h)ps_;pspsf =7(h)C(s,s).



5. THE WEIL REPRESENTATION 133

Since 7 is irreducible, Schur’s lemma implies that C(s,s") = ¢(s, ) Idy for
some multiple ¢(s, s’) € C*. Since C(s,s’) is unitary, ¢(s,s’) € U(1).

The cocycle identity is derived from associativity by writing down the equal-
ity Psg-(s152) = P(sos1)-s2 and applying (5'5)' u

There is the natural question of linearization: can one choose the operators
(Ps)seasp(a) in such a way that the corresponding Weil representation is
linear 7 Specifically, is there a map b : A — U(1) such that s — b(s) ps is
linear ? Such a map exists if and only if b(ss") c(s,s") = b(s) b(s') for all
s,8" € ASp(A). The cocycle ¢ is a coboundary in this case.
In general there is a construction of a central extension of ASp(A) that has
defined on it a linear representation induced by the projective Weil represen-
tation and the cocycle c. The set ASp(A),. of all pairs (s,t) € ASp(A) x U(1)
becomes a group (the Mackey obstruction group associated to ¢) when en-
dowed with the operation

(5,t) - (s',t") = (ss',tt'c(s,s')7Y), se Asp(A), teU(1).
Clearly the group ASp(A), is a central extension of ASp(A) and fits into the
short exact sequence
(5.7) 1—-U()— ASp(A). — ASp(A) — 1.
The map, induced by the projective Weil representation, defined by

ASp(A)e — U(L*Ag), (s,t) =t ps

is a linear representation.

One can ask for a smallest group U, a map u : U — U(1) and a group G,
and a map g : G. — ASp(A), such that there is a commutative diagram
with exact sequences

1—U(1l) —= ASp(A). —= ASp(4) ——1
A)——

|l

1 U G. ASp( 1.

By taking U = 1, we see the following

PROPOSITION 5.4. The Weil representation is linearizable if and only if the
short exact sequence (5.7) splits.

THEOREM 5.5. If A had odd order, then the Weil representation is lineariz-
able. If A had even order, then the projective Weil representation lifts to a
linear representation of the double cover of ASp(A).

5.3. A computation of the Weil cocycle. Our goal is to describe
a canonical choice for the Weil representation s — pg and to describe the
corresponding cocycle explicitly. We shall use the induced representation
model w4, : H#(A) — U(Ha,) for each Lagrangian A;.

The group ASp(A) acts on functions on J#(A) by
(Saf) =S f7 with (8 ’ f)(h) = f(s_l(h))v he %<A)
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Now if f € Ha,, then s- f € Hy4,). More precisely, s acts as a unitary
operator 75 : Ha, — Hg(a,). Furthermore, we observe a property of the
family of unitary operators (rs)easp(4) and intertwiners:

LEMMA 5.6. The diagram

PAy,Aq
Ha, Ha,
lrs lrs
Ps(Ag),s(A1)
Hs(ar) s(Az)-

1s commutative.

It is then natural to consider, similarly as in the previous paragraph, a “new”
representation w5 1 J(A) — U(H4,)) defined by

T, (h) = ms(ay)(s(h)), he A (A).

This is again a model of the Schrédinger representation. We observe fur-
thermore that

rs(ma, (WIf]) = 7, (Wrs(f)l, he A (A), feHa,

which shows that rg is a unitary equivalence between the representations
ma, and 7 ¢

We define for s € ASp(A),
Ps = PAys(Ay) OTs : Hay — Ha,.
LEMMA 5.7. The assignment s — ps defines a linear map
ASp(A) = U(Ha,)
that satisfies the identity
psmay(h)pst =ma,(s(h)), heH(A), seASp(A).
REMARK 6.9. The map p depends on a fixed Lagrangian A; in A.

PROPOSITION 5.8. The cocycle (s1,s2) — c(s1, s2) of the Weil representation
defined by

Psisy = C(S1,52) Psy Psy
s given by

(58) C(Sl,Sg) = C(A1,81A1,8182A1)_1‘

Proor. We compute

Ps1Psa = PAy,s1(A1) ©Ts1 © PAp,sa(Ar) © Tso
= PA1,51(A1) © Psi(A1),s152(A1) © Ts1 O sy
= C(A1,5141,515241) PA, 5150(A1) © Ts1s2
= C(Al, 81A1, 81$2A1) p5152.

We applied Lemma 5.6 in the second equality and used the fact that rg s, =
rs,Ts, in the third equality. The desired result follows. |
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6. The Maslov index for finite groups

We define here the Maslov index for an ordered triple of Lagrangians in a
finite symplectic group (A,w). We adapt the original definition by Kashi-
wara as described by Lion and Vergne in [60, I, §1.5] to our setting. For
other generalizations see also the work of Kamgarpour and Thomas [49].

Let A be a symplectic abelian group. Let Ag, A1, Ao be three Lagrangians in
A. Consider the abelian group Ag@ A1 P As. The Maslov index is defined as
the Witt class of the homogeneous quadratic form @ defined on AgP A1 P Ao
by

Q(ap+ar+az) = w(ag, a1)+w(ai,az)+w(az, ap), (ao,ar,az) € Agx A xAsg.

In the case when A is a lattice, the Witt group is the Witt group of integral
quadratic forms is isomorphic to Z, the isomorphism being given by the
signature. In the case when A is a finite abelian group, the Witt group is
the Witt group 209 of finite quadratic forms is isomorphic to Z/8Z x Z/2Z.
We denote the Maslov index of (Lo, L1, L2) by u(Lo, L1, L2) € Q.

The following two properties are consequences of the definition. The first
property states that the Maslov index is invariant under circular permuta-
tion:

(61) M(L07L17L2) = _M(L17L07L2) = _M(L07L27L1)‘

From the classification of finite symplectic pairings, we see that the symplec-
tic group Sp(A) acts transitively on pairs of transverse Lagrangians. The
second property states the Maslov index is invariant under the action of the
symplectic group:

(6.2) Vs e Sp(A), u(s Lo,s Li,s La) = (Lo, L1, L2).

A more subtle property of the Maslov index is the chain relation.

PROPOSITION 6.1. Let Ag, A1, Ao, L be four Lagrangians. The Maslov index
verifies the relation

(63) H(AQ, Aq, AQ) = M(AD, Aq, L) + M(Al, Ao, L) + /L(AQ, Ap, L).

The chain relation is a relation in the Witt group. In the classical setting
(when A is a lattice or a vector space), the Maslov index is an integer and
the chain relation has a geometric interpretation. See [60, I, §1.5.8] for a
proof. (Autres références...)

7. The Weil representation of a finite quadratic form

Let ¢ : G — Q/Z be a homogeneous quadratic form on a finite abelian
group G with associated linking pairing b, : G x G — Q/Z. Let (V,w) be a
symplectic lattice equipped with a Seifert form 8 : V x V — Z. Then the
form

bW :GRV xGRV — Q/Z
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is nondegenerate and alternate, hence is defines a symplectic form on GRQV'.
LEMMA 7.1. The form b, @B : GV x GV — Q/Z is a Seifert form for
by @w.

PROOF. Let z,2' € G and y,y’ € V. We compute

(bq®5)(:c®y,a:/®y’) - (bq®5)(x’®y’,:c®y) =

q

where we used that b, is symmetric in the second equality. |
Denote by O(q) the group of automorphisms of G fixing ¢q. Recall that for
s € Sp(V), As € Link(V) denotes the linking pairing defined by A\; = s*5— .
PROPOSITION 7.2. There is a well defined monomorphism

O(q) ®Sp(V) = ASp(G®V), a®s— (a®s,q® As).
In particular, there is a well defined monomorphism

Sp(V) = ASp(G®V), s — (ide ®s,q® As).

PROOF. The point is to verify that (a®s, gq®As) € ASp(GRV). Clearly
a®seSp(G®V). We compute
by ®Xs)(z ®y, 2" ®Y')
g(z,2") - (B(sy, sy') — B(y,y"))

baon, (£ @y, ' ®y') = (b
b
by(x,2") B(sy,sy') = bg(z,2") By, y')
b
= (bg

(ax az’) B(sy,sy’) — by(x,2") By, y)
RB)((a®s)(x®Yy), (a®s)(x' ®Y)) — (b ®B)(z @y, 2’ ®Y).
|

Suppose that V' = Ly @® L1 is a Lagrangian decomposition of V. Then
GV = (G® L)) ® (G® L) is a Lagrangian decomposition of G ® V.
Composing the map of Prop. 7.2 with the Weil representation defined in
the previous section gives a projective representation

O(q) ®Sp(V) — U(L*(G ® Lo)), (@, ) > Pags,q@r.-
This is the Weil representation of the quadratic form q.

The groups O(q) and Sp(V'), viewed as subgroups of ASp(G®V'), are mutual
centralizers. They form a prominent instance of an reductive dual pair.
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8. Particular cases and examples

Several particular cases of the Weil representation of the quadratic form q are
of interest. The representation O(q) ® Sp(V) — U(L?*(G ® Lg)) considered
in the previous paragraph restricts to a representation

Sp(V) = U(L*(G ® Lo)), s = Pide@s,q@s-
For simplicity, we denote this representation by s — ps. We describe this
representation in terms of generators for Sp(V).

Let g > 1. Let V = Z?9 endowed with the canonical symplectic form. Then
Sp(V) identifies with the symplectic group

Spag(Z) = {M € GLoy(Z), MTQM = Q}, Q = [ 10 _019 }
9

also called Siegel’s modular group. (Our convention follows the left action
notation: automorphisms act on the left on groups.) The Seifert form is

0 0
o)
The lattice V' has a canonical Lagrangian decomposition

V =Lo® Ly,

where Lo = {z € Z%9 |V g < j <29, zj=0}and L1 = {y € Z*9 | V1<
J < g, yj =0}. For x = (z0,71), ¥y = (y0,y1) € Lo x L,

B($, y) = <l‘1, y0>

where (—, —) denotes here the canonical symmetric positive definite product
on Z9. Examples of integral symplectic matrices are
(8.1)

0 -1, [1, O] .. o 7. AT o0 ] .
Lg 0 }, [B 1g:| with B = B integral, [O A-1 with A € GLy(Z).

REMARK 6.10. The set of all matrices of the three types above generates
Sp2g(Z), see [89] and [7]. Furthermore, the set of each type generates a
subgroup of Spy,(Z) which has a group theoretic section into ASpy,(Z).

We explicit below the map
Spag(Z) — U(L*(G ® Lo)) = U(L*(GY)), 5~ ps.

PROPOSITION 8.1. The Weil representation p : Spy,(Z) — U(L*(GY)) is
determined by the following formulas:

82 o( ) )T @=160LM T x(@,88)00) f0)

yeGR®Lo

(5.3) (B0 )7@= (-aenE) 1@,
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REMARK 6.11. The proposition has a generalization (with essentially the
same proof below) for an arbitrary commutative locally compact group G
endowed with some Haar measure (a Borel measure invariant under transla-
tions which is unique up to a scalar multiple). In this case, the group G® Lg
inherits a Haar measure dp and the first relation reads

85 o4 00 )@= Mb© ) fo) duto)

PROOF. The three operators defined in the proposition are unitary (for
the hermitian product defined by (3.1)). The rest of the proof consists in
verifying the identity (5.4). We have to verify that

ps(m*(h)f) = m(h)(psf), Yhe HG®V), ¥fe L*(G® Lo)

with s being one of the three symplectomorphisms above. Set Gy = G ® Ly
and G1 = G ® Li. Write (s, s1) the image of a = (ag,a1) € Go ® G1 by
idg ® s € Spyy(Z). Let h = (ag,a1,t) € H(G® V). Recall that s acts on h
as

s-h = (s0,51,t+ (q® Xs)(t)).

We have
7 (h)f (x) = 7(s0, 51, + ¢ ® As(ao,a1)) f (2)
= X( + Q®)‘S(a0’ 1)) 50,51 ('T)
X(t +q® As(ao, ar)) xs,(x) f(z + s0)
X(t +q® As(ao, a1)) x(bg ® B(s1,x)) f(az + so).
Let g(x) be

m(ag, a1, 1) f () = x(t) x((bg ® B)(a1, %)) f(z + ao).

Consider now each case separately. It will be convenient to denote in this
paragraph by (—, —) the symmetric bilinear product on Z9 associated to the
g % g identity matrix.

In the first case: sy = a1,s1 = —ag. Then

As(@,y) = —((zo, y1) + {21, %0))-
This symmetric bilinear pairing admits a quadratic enhancement defined on
V by
x— —(xg, 1) = —fB(x, ).
It follows that ¢® As(a,b) = —(by®f)(a,b) for all a,be GRV. We compute
psg () = |G Lol ™% > x(bg® By, 2))g(v)

yeGRLo

= |G® Lol 2x(t) Y] x(bg® By, x +ar)) f(y + ao)
yeGRLo

=G Lol x(t) D, x(by®B(Y —ag.x +a1)) f().

y'eGRLo
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On the other hand, setting h = psf, we have
7 (a,t)h (z) = w(a1, —ag,t — ¢ ® As(ag,a1))h (x)
X(t = by ® B(ao, a1)) x(bg ® B(—ao, x)) h(z + a1)
G ® Lol ™" x(t) x(by ® B(—ao,x + a1)) -
D1 x(bg® By, x + a1)) ()

yeG®Lo

= psg (2).
In the second case: sg = ag, s1 = Bag + a1. Then
Xs(z,y) = 20 Byo, z,y € V.
It follows that (¢ ® As)(ap,a1) = (¢ ® B)(ap). We compute
psg (z) = x(—(¢® B)(z)) g(x)
= X(t) x(bg ® B(ar,x)) x(—(¢® B)(x)) f(z + ao).

Let h = ps(f). We have
7w (a,t)h (z) = m(ag, Bag + a1,t + (¢ ® As)(ap,a1))h (x)

= x(t + (¢® B)(ao)) x(bg ® B(Bag + a1,z)) h(z + ao)

= x(t + (¢® B)(ao)) x(bg ® B(Bag + a1,z)) x(—¢® B(z + ao)) f(z + ao)

= X(t) x(bg ® B(ar,z)) x(—(¢ @ B)(z)) f(z + ao)

= psg (2).

Here we used in the penultimate equality the fact that (b ® 5)(Bao,z) =
(by ® B)(0@® Bag,z®0) = (by ® B)(ao, x).

In the third case: so = (1¢ ® AT)ag, s1 = (1¢ ® A"1)a;. Then A\, = 0. It
follows that ¢ ® As = 0. We compute

psg (2) = g(le @ A "))
= x(t) x(by ® Bla1, (1¢ ® A" ")) f(la ® ATz + ao).

Let h = psf. We have

7*(a,t)h (z) = 7((1¢ ® A )ag, (1 ® A" Y)ay, t) h(z)

= x(t) x(by ® B((1e ® A a1, x)) h(z + (1 ® AT)ao).

Since h(u) = f((1¢ ® A~T)u), we deduce that
w(a,t)h () = x(t) x(by ® B((lg ® A ar,2)) f(1le® A™T)(z + (1 ® AT)ao))
() x(bg® B((1e ® A a1, 2)) f(1¢ ® A~ T)a + ao)
(1) x(bg ® Blar, (1 ® A™")x)) f((le ® A™T)z + ag)

g ().

X
X
0s9

We begin with the Weil representation associated to the group SLa(R) (cor-
responding to the case when the genus of the surface is 1) and then we
describe the general case.
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Let SLa(R), resp. SLa(Z), be the multiplicative group of 2 by 2 matrices
with real coefficients (resp. with integer coefficients) and determinant equal
to one. Let H = {7 = u+iv € C |v > 0} be the upper half plane. The
formula

(M, 1)~ M- -1 =

b
at + M:[ab

et +d’ c d]’ TeH

defines a transitive (resp. discontinuous) action of SLa(R) (resp. SL2(Z)) on
H. Tt is well known (see for instance [88, Chap. VII; Théoreme 2]) that

0 -1 11
S = [ 1 0 } and T = [ 01 ]
generate SLo(Z) with relations

S% = (ST)3, (ST)% = 1.

The group SLy(R) admits a double cover, called the metaplectic group Mpa(R).
This group is realized as the set of pairs

M= { ‘ Z } € SLa(R), 7 fas(7)

where fy7(7) is a holomorphic solution of the equation cr +d = fy;(7)%. In
other words, 7 +— f/(7) is a function defined in H as a holomorphic square
root of the holomorphic function 7 — ¢7 + d. Elements in Mpy(R) obey the
associative multiplication law

(8.6) (M, far (7)) - (N, fau (7)) = (MN, far(N - 7) (7))

which turns Mp2(Z) into a group with unit

10
1Mpg(Z): <{ 0 1 }’1>'

Let Mp2(Z) be the inverse image of SLy(Z) under the covering map Mpy(R) —
SLa(R). The following lemma is a consequence of well known facts about
SLa(Z).

LEMMA 8.2. The group Mps(Z) is generated by the two elements
0 -1 - 11
-([3 ) = ([a 1))

0
1

U

with relations
([ 5] e

The order 4 element Z generates the center of Mpy(Z).

1 54
O] ) A

Let ¢ : G — Q/Z be a quadratic function on a finite abelian group G
such that v(G,q) + 0. There is a unitary representation p, : Mpy(Z) —
Aut(C[G]), called the Weil representation, associated to (G, q). Let (eg)gec
be the standard basis of the group ring C[G] so that ey - ¢, = eg45 (Where
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dot denotes the (convolution) product of C[G]). Then p = p, is defined by
the action on the generators S,7 € Mpy(Z) by

(8.7) p(8)eg = |GI727(G,q) - Y. exp(—2mi by(g. h)) e
heG
(8.8) p(T)ey = exp(2miq(q)) ¢

One computes that

p(Z)eg = (G, q)? ¢—g-
For a proof using relations of SLa(Z) that these formulas indeed define a full
projective action of SLa(Z), see [72].

Let A = (A, fa) be a preimage of A € SLy(Z). Then according to (8.6),
the other preimage of A is AZ? = (A,—f4). Since p(Z2) = p(Z)? =
(G, q)* idcpq), we see that p induces a linear representation of SLo(Z) if
v(G, q)* = 1 and only a projective representation of SLy(Z) otherwise. For a
homogeneous quadratic function ¢, the Gauss sum (G, q) is an eighth root
of unity. It follows that the corresponding cocycle ¢(A4, B) = ¢4(A, B) lies
in {—1,+1} for ¢ is homogeneous. It can be computed as follows. Choose
first a canonical preimage A in Mpy(Z) of each A € SLy(Z) by using a fixed
branch cut for the argument of f4. Then set p(A) = p(A). We have by
definition

(8.9) p(AB) = ¢(A, B) p(A) p(B), A,BeSLy(Z).
It follows from this definition and (8.6) that
c(A, B) = p(AB, fap(7)) p(AB, fa(B7)f5(7)) ™" = fap(r) fa(Br)™" fa(1)"".

The second equality follows from the fact that the second term differs only
by the choice of the square roots and a different choice introduces only a
sign factor. For the same reason, we see that ¢(A, B) is independent of the
actual value of 7. The explicit computation of p for an arbitrary element
A € Mpy(Z) is carried out in [84] and [91].

For g = 1, let

1
Spag(R) = {M € GLay(R) | MYJM =J}, J= [ 01 09 ] )
—lg
the symplectic group over R. This group contains a most important discrete
subgroup Spy, (Z), consisting of symplectic matrices with integer coefficients,
called Siegel’s modular group. Exemples of integral symplectic matrices are
(8.10)
0 -1 1 B| . LT A 0 .
[19 0 ] , [0 1, with B = B” integral, 0 (AT)-L with A e GLy(Z).
The set of matrices above generates Spag(Z), see [89]. Let H, denote the set
of g x g symmetric matrices with complex coefficients the imaginary part of
which is definite positive (Siegel’s half space). The formula

A B

(M, Z)— M{(Z)=(AZ + B)(CZ+D)™', M= [ C D

], ZeH,
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defines a transitive (resp. discontinuous) action of Spag(R) (resp. Spag(Z))
on Hy. Since 71(Spy,(R)) = Z, the symplectic group admits a double cover
Mpay(R), called the metaplectic group. This group can be realized as pairs

A B
M:[C D]GSpQE(R), Z > /det(CZ + D).

Here the map Z — +/det(CZ + D) is a holomorphic square root of the
holomorphic map Z — det(C'Z+ D) (See for instance [30, Chap. I, Remarks
2.3 and 3.1]). The group multiplication is given by the same formula as
above, except that the action is replaced by the action of Spay(R) on Hy.
The metaplectic group over Z is defined as the inverse image of Sp,,(Z)
under the covering map Mpy,(R) — Spy,(Z). The elements

o= (5, )i ([5 ) o= (1 o)
lying above (8.10) generate Mpy,(Z).

Remarkably, the Weil representation extends to the metaplectic group Mpa,(Z)
for any g > 1. This is part of the content of the Theorem below. This ex-
tension is based on tensor product as follows. Let (ez)zecgzs be a basis for
C[G®Z7]. The symbol 1, used to denote the g x g identity matrix shall also
be used to denote the canonical positive definite bilinear symmetric pairing

(a,b) — Z ajb;, a,beZ’.

1<j<g
Define a map p = p, : Mpy,(Z) — Aut(C[G ® Z7]) by
(811) p(S)ex = [GI721(Goq) D, exp(-27i(by ®16) (1)) ¢y
yeGRZI
(8.12) p(T)e. = exp(2mi(q® B)(x)) ex
(8.13) p(U)er = e(1u@aT)-1s-

These formulas specialize to the case ¢ = 1 which is the case considered
above. It is not immediately clear that these formulas fit to yield a repre-
sentation of the metaplectic group. This, however, will be seen below as a
consequence of the previous section.
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CHAPTER 7
Linking pairings and Lagrangians

1. The intersection pairing

Let n = 1. Consider a connected compact oriented 2n-manifold X, possibly
with boundary. Consider the homomorphism defined by the composition

(1.1) Ho(X,0X) —=> H"(X) — Hom(Hn(X),2),

where the first map on the left is the isomorphism given by Poincaré-
Lefschetz duality. This map determines a bilinear pairing ax : Hy (X, 0X) x
H, (X) — Z whose adjoint map is the homomorphism (1.1).

Consider the projection homomorphism map j, : H,(X) — H, (X, 0X).

DErFINITION 7.1. The intersection pairing associated to X is the bilinear
pairing tx : Hp(X) x Hy(X) — Z defined by

ix(w,y) = ax(«(2),y), =,y € Hu(X).

It follows from Poincaré-Leftschetz duality that the intersection pairing on
X is (—1)"-symmetric. In particular, if X is a 4-manifold (n = 4), tx is
symmetric. If X is a surface (2-manifold), ¢x is antisymmetric. A geo-
metrical interpretation of the intersection linking pairing is as follows. Let
x,y € H,(X). Represent x,y by disjoint and transverse smooth n-cycles u, v
respectively. Then

(1.2) ix(zy) = Y, e(p) e

pEUNV

where £(p) = +1 or —1 according to whether the orientation of the sum
Tou® Tpv of the tangent spaces at p matches the orientation of the tangent
space T, X at p or not. The geometric definition makes apparent that ¢x is
(—1)"-symmetric.

REMARK 7.1. If 0X is nonempty then the intersection pairing ¢x may be
degenerate. See ... for an example. If 0X is empty then the intersection
pairing is nondegenerate.

2. The linking pairing of a (2n — 1)-manifold

Let n > 2. Let M be any connected compact oriented (2n — 1)-manifold
with boundary 0M. Poincaré-Lefschetz duality and the (torsion) universal
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coefficient theorem lead to the following sequence of isomorphisms
Tors Hy,—1(M) ~ Tors H"(M,0M) ~ Tors Ext(Hy,_1(M,M),Z)
~ Hom(Tors H,,—1(M,0M),Q/Z).
There is therefore a nonsingular bilinear pairing
aps : Tors Hy—1(M) x Tors Hy,—1(M,0M) — Q/Z.

A geometrical definition of this pairing is as follows. First define linking
numbers for cycles. Let x be an integral (n — 1)-cycle in M and let y
be a relative (n — 1)-cycle in (M,0M) representing homology classes in
Tors Hy,_1(M) and Tors H,,_1 (M, 0M) respectively. We may assume that x
and y are in general position. There exists k € Z and a n-chain C in M such
that k z = 0C'. We may further assume that C and y intersect transversally,
i.e., in a finite number of points away from the boundary.

DEFINITION 7.2. The rational linking number of x and y to be

C.
lky(2,y) = = € Q

where we denote by a small dot the algebraic intersection number.

EXAMPLE 7.1. Let M = S' x D? be the solid torus. Let * denote an
arbitrary point on S'. Let = x x 0D? be a meridian and y = S! x 0 be a
longitude. Clearly = bounds a disc C = * x D? and ¥ is a boundary modulo
OM = S' x 0D? (the torus surface). Since C' and y intersect in exactly one
point, it follows that for a suitable choice of orientations, lky/(z,y) = +1.

EXAMPLE 7.2. Consider the link L in the 3-sphere S? formed by two transver-
sal great circles J and K (the Hopf link). It can be obtained as the closure
of the braid o? in Artin’s notation. The linking number of the components
is +£1 according to the choice of orientations.

More generally, if x and y represent homologically trivial elements in H,,_1 (M),
then lky/(z,y) is an integer.

EXERCISE 7.1. The following exercise leads to a useful property of the linking
number lky/(z,y) in the case when M is a rational homology n-sphere.

1. There is a Poincaré-Alexander-Lefschetz duality isomorphism H,,_1(z; Q) ~
Hy,_1(M—z;Q). [See e.g. Bredon [9, VI, 8, Cor. 8.4] and use the long exact
sequence associated to (M, M — x).]

2. The linking number lkp/(z,y) only depends on the rational (n — 1)-
homology class of y in the complement of x in M.

PropPOSITION 2.1. The following identity holds:
an([z], [y]) = kas(z,y) mod 1.
DEFINITION 7.3. The linking pairing
Ay Tors Hy—1 (M) x Tors Hy,—1 (M) — Q/Z
associated to M is defined by

AM = ap © (id X j*)a
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where j, : Tors Hy,_1(M) — Tors H,,_1(M,0M) denotes the natural pro-
jection homomorphism.

PROPOSITION 2.2. If j, : Tors H,_1(M) — Tors H,_1(M,0M) is an iso-
morphism then the linking pairing Apys is nonsingular.

COROLLARY 2.3. If M 1is closed then the linking pairing Ay is nonsingular.

PROPOSITION 2.4. The linking pairing Ay of M?"~1 is (—1)"-symmetric.

Proor. This fact already holds at the level of the linking number. Let
C, C’ be two chains such that 0C' = kx and dC’ = ly. Then

0=0C-CY=0C  -C"+(-1)"'C-0C" =ka-C"+ (—1)"1C- 1y.
Because of dimensions, x - C' = C” - z. Dividing the equality above by kl

yields lkps(y, ) + (—=1)" " tkps(z,y) = 0. Since lkps(z,y) = "”TC/ = %, the
result follows. |

It follows that for a closed oriented 3-manifold M, (Hy (M), Aar) is a linking
group.

3. The relation between linking and intersection pairings

The intersection pairing on a connected oriented 2n-manifold X2 and the
linking pairing of its boundary M?"~! = 90X are related via the discriminant
construction (Chapter ...). We describe here this relation. In general, the
relation involves a certain subquotient of Tors H,,_1(M). We begin with a
few observations.

Consider the long exact sequence for the pair (X, M)
(3.1)

> Ho(X) L Ho(X, M) > Hy g (M) > Hy o1 (X) L Hyo1(X, M) —

The linking pairing Ap; can be computed on the image of ¢ : H,(X, M) —
H,_1(M). Let z,y € H,(X, M) such that dz,0y € Tors H,_1(M). Let
r,s = 1 such that r dx = s dy = 0. Exactness of (3.1) at H, (X, M) provides
Z,y € Hy(X) such that

j(@) =ra, j(G=sy.
The following lemma shows that the intersection pairing of X determines
Ay on Im(0) n Tors Hy,—1(M).

LEMMmA 3.1.
1 1 1
(3.2) Ay (0z,0y) = —=(T - y) (z-9) = —be(w,y),

T S

where dot denotes intersection product between Hy(X) and Hy (X, M).

The equalities in (3.2) are understood to hold in Q/Z.
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PROOF. Let U,V be relative cycles in (X, M) representing x and y re-
spectively. By assumption, r dz = 0, then r 0V bounds an n-chain C in
X, thus » U — C is an integral n-cycle in X representing Z. Assuming
transversality (as always), the algebraic intersection

ruvo-0)-v
is a well-defined integer. Then (cf. Remark ?7)

Cx(B0) =) = (U -C) V.

rs r r
Since

A (0x, 0y) = CTV mod 1,
the result follows. |

It is sometimes useful to provide a reformulation in terms of rational exten-
sions. Denote by a subscript ¢ rational extension. Since dz, dy are torsion
elements, there exists 2,y € H,(X;Q) = Hp(X) ® Q such that jo(z') =z
and jo(y') =y in Hy(X, M;Q) = H,(X, M) ® Q. Then

(3.3) A (0, 0y) = —(1x)g (2',y') mod 1.

COROLLARY 3.2. The intersection pairing of X determines the linking pair-
ing of M on Im(0) n Tors Hy,_1(0X).

The group

er(jx) + Tors Hy(X)
endowed with the nondegenerate symmetric bilinear pairing denoted rx in-
duced by tx, is a lattice. Therefore, we can apply the discriminant con-
struction to it and obtain a discriminant linking pairing (Gz,, Lz, ) which
we denote (Gas, Lpr). Since tx is non-degenerate, Gy is finite.

The sequence (3.1), when restricted to torsion subgroups of the middle
groups, induces a complex
(3.4)

— Tors Hp(X, M) —2~ Tors Hy_1(M) —> Tors Hy_1(X) —
Poincaré duality implies that the diagram

(-1ro
H,(X,M)—— H,_1(M)

NlPD PD\LN

H"(X) —" H"(M)

is commutative (See for example [9, Chap. VI, §9.2]). The sign (—1)" is
induced by the usual convention of orientation (”outward normal first”) for
(X, M). It follows from definitions and naturality of universal coefficients
that

(3.5) A (O(),y) = (=1)" ix(z,it(y)).
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In particular, since both \;; and I’y are non-singular,
(3.6) Im(d;)* = Ker(iy).
Hence Im(0;) € Ker(i;) = Im(d;)*, i.e., Im(;) is Aps-isotropic.

PROPOSITION 3.3. The linking pairing on Ker(iz)/Im(0;) induced by Apr is
canonically isomorphic to (G, —Lay).

PRrROOF. Denote by H(X, M) the (acyclic) complex (3.1) and by Tors H (X, M)
the subcomplex (3.4). Let F(X, M) be the quotient complex, completing
the short exact sequence of complexes
0 — Tors H(X,M) > H(X,M) - F(X,M) — 0.
The induced homology long exact sequence reduces, because of acyclicity of
H(X, M), to a natural homology isomorphism
H.(F(X,M)) ~ Hy_1(Tors H(X, M)),

induced by the connecting homomorphism. In particular, denoting by jx :
F,(X) — F,(X, M) the natural map induced by the adjoint of the intersec-

tion pairing. we have:
Ker 0 Ker i,

Imjx Imo;-

Then )
Ker 4;

Im 6t '

That Aps induces a linking pairing on Ker(i;)/Im(0;) — which we continue
to denote A\j; — is a consequence of the A-isotropy of Im(d;). Let z,y €
H, (X, M) such that dz,dy € Tors H,_1(X). Pick 2/,y' € H,(X;Q) such
that jo(z') =  and jo(y') = y. Letting [z],[y] € Coker jx be the images
respectively of x,y, we have

Ly([z], [y]) = (¢ex)o(,y) mod 1.

Applying (3.3), we deduce that —Ljy; and A\js are canonically isomorphic.
|

Gy = Coker jx ~

COROLLARY 3.4. In the Witt groups 00 and 20°,
[TOI‘S Hn_l(M), )\M] = —[GM, LM].
REMARK 7.2. There are various particular cases, however, when the equality

holds at the level of linking pairings themselves and not only in the Witt
group. See...

ProoOF. Since Ker(i;) = Im(d;)", this is a consequence of Propositions
3.3 and 2.5. [}

It is convenient to consider also non-canonical splittings of the linking pair-
ing. Let F,,(X, M) be a free abelian subgroup of H, (X, M) such that

Hy(X, M) = F(X,M)® Tors H, (X, M).

Set F' = 0F,(X,M). The arguments above show that the linking pairing
splits as
(TOI‘S Hn_l(M), )\M) = (F, /\M‘FXF) (‘D (FJ_u A)
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By Corollary ??, Tm(d;) < F*.

The following result is a slight improvement of Corollary 3.4, due to Gilmer

[-

PROPOSITION 3.5. The linking pairing (F*, ) is weakly metabolic.

ProOOF. First, assume

e the natural map Tors H,(X) — Tors H, (X, M) is injective.
e the natural map Tors H,_1(X) — Tors H,_1(X, M) is surjective.
e H, 1(M) is torsion.

There is an exact sequence

0 > Tors H,(X) > Tors H,(X, M) = F*+ > Tors H,_1(X) = Tors H,_1(X,M) =0

We shall show that D = Im(d;) is a metabolizer for (F*,)). In the exact
sequence above, Poincaré duality and the universal coefficient theorem pro-
vide isomorphisms Tors H,,(X) ~ Tors H,_1(X, M) and Tors H,(X, M) ~
Tors Hy,_1(X). Thus, by exactness,
| = |Tors Hy,,—1(X)|? | Tors Hn_l(X)|'
| Tors H,(X)|? |Tors Hy,(X)|

Hence |F*| = |D|?, which implies that D = Dt (orthogonality in F*).

and |D| =

In the general case, one can modify by surgery (X, M) without changing the
intersection pairing of X and the linking pairing of M, in such a way that
the hypotheses above are satisfied. | |

We now consider the particular case when H,(M;Q) = H.(S?*"~1;Q). By
definition, M is a rational homology sphere. Then all homology groups
Hyi(M),1 < k < 2n—2, are torsion groups, hence, by compactness, finite. In
particular, H,,_1(M) is a torsion finite group. Then Ker i; = Ker ¢ = Im 0.
Thus the linking pairing Ly, is actually defined on G = Im 0/Im 0.

THEOREM 3.6. Let M be a rational homology 2n — 1-sphere and let X be a
connected compact oriented 2n-manifold such that 0X = M. Then Ay =
A1 @ Ao where Ay has presentation with rank dim H,(X;Q) and signature
o(X) and Ay is metabolic.

Set H,_1(M) = H,_1(M)/Im(d;). There is an induced complex

Fo(X) —= Fo(X, M) =% Hy 3 (M) — H,_1(X)

For ease of notation, continue to denote Aps the induced linking pairing on
H,_1(M). Note that Gjs = Im(0) and that the induced linking pairing on
G is identified with Ljs. Assume, furthermore, that ¢tx is non-degenerate,

i.e.,, Rad(tx) = 0. Then Lemma 3.1 shows that

l=Am|BxB
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is non-singular. It follows from Lemma 7?7 that B is an orthogonal summand

for (H,—1(M),A\pr). Thus there is a canonical orthogonal splitting
(Ho1 (M), Ayr) = (B,1) ® (B, 1').






CHAPTER 8

Three-manifolds and Lagrangians

This chapter is devoted to the study of Lagrangians that arise in the homol-
ogy of 3-manifolds.

1. Lagrangians

Let M be a compact 3-manifold with boundary oM.

1.1. Linking number and linking pairing. We consider a slight
generalization of the setting introduced in the previous chapter. The idea
appears in a paper by J. Morgan and D. Sullivan! [70, §6] and has been
rediscovered since by several authors. Suppose that M is equipped with a
subgroup A ¢ H;(0M), isotropic with respect to the intersection pairing on
Hi(0M). Let Z(A) be the set of 1-cycles in M such that their homology
classes induce torsion elements in Hy(M)/ix(A). Let z,y € Z(A) be two
1-cycles in general position in M. Unravelling the definition, we see that
there exist n € Z, a 1-cycle z whose homology class lies in A and a 2-chain C
in M such that n z = i,z + 0C. Assuming that C is in general position with
respect to y and denoting by a dot algebraic intersection in M, we define
the linking number

C.
Ikp(z,y) = Ye Q.

n

LEMMA 1.1. lkyp is well-defined, symmetric and bilinear.

REMARK 8.1. The linking number takes values in Z if and only if one of the
cycles is a boundary modulo a 1-cycle whose homology class lies in A. In
particular, if [x] € ix(A), then lka(z,y) € Z.

PROOF. If n x = i,2' + 0C" is another decomposition, then 0(C' — C’) =
ix(2' — z) represents an element in i.(A). In particular, C — C’ is a relative
2-cycle, i.e. represents an element in Ho(M,0M). Let p € Z such that
p [y] = ix(w) in Hi(M) for some w € A. Thus the algebraic intersection
(C —C") - py is computed using the homological intersection product e :
Hy(M,0M) x Hy(M) — Z. Let a = [C' — C'] € Hy(M,dM). Since this
product takes value in Z, no torsion occurs. Hence

(C-C"y= ;(a-p y) = ;(aoM ix(w)) = ]1)(6’aoaM w) = 0.

Iy may have been introduced even earlier, but so far this is the earliest reference I
could find.

153
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The third equality is a well-known property of intersection products with
respect to the long exact sequence associated to (M, M ). In the last equal-
ity, the product is the intersection product on H'(0M). Since both da and
w lie in the same isotropic A, their product vanishes. This proves that lky
is well defined.

Since lky is defined for 1-cycles, it is a bilinear pairing. To see that the pair-
ing is symmetric, let C’ be a 2-chain in M and 2’ a 1-cycle whose homology
class lies in i,(A) such that p y = i,2' + 0C’. Assume transversality, the
intersection of two 2-chains C' and C” is a 1-cycle in M. Hence

0=0(C-C")=0C-C"—C-0C" = (nx—ixz) - C'—C-(ny —is2)
=naz-C' —C-py—iwz -C' +C-i.2
=nz-C'=C-puy.

Dividing by n p gives 0 = lky (y, z) — lkp (2, y). |

REMARK 8.2. If A, A’ are two isotropic subgroups of Hy(dM) such that
ixsA € i, then Z(A) € Z(A’). The latter inclusion induces an epimor-
phism GaM — G/ M that in turn induces a homomorphism Ty M — Th: M.
It follows that for any 1-cycles x,y € Z(A) in general position in M, there
exists an integer k such that

)\A’(‘T:ay) = k)\/\(.%',y)

EXERCISE 8.1. Give an example such that the induced homomorphism
TaAM — Th/M is not onto.

Given the special role that Lagrangians play in 3-cobordisms (see §...), we
are interested in the special case when A is a Lagrangian.

LEMMA 1.2. Let M be any connected compact oriented 3-manifold with
boundary OM. Let A be a Lagrangian in Hi(0M). Let

be the homomorphism induced by inclusion. The linking pairing on M in-
duces a linking pairing
An : Tors (Hl(M)/z'*(A)> x Tors (Hl(M)/z’*(A)) - Q/zZ
defined by
A ([a], [b]) = lka(a,b) mod 1.

REMARK 8.3. By a Poincaré-Lefschetz duality argument, Ker ¢, is a La-
grangian in H;(0M). In the case when 0M = @ or when A = Ker iy, we
recover the usual linking pairing. See [37, Chap. 4], [9, VI,10,Problem 8].

PROOF. See [70, §6]. Another proof follows from Theorem 1.6 below.
|

DEFINITION 8.1. Given a connected compact oriented 3-manifold M with
boundary dM endowed with a Lagrangian A in Hy(0M), we set

GAM = Hi(M)/ix(A), TaM = Tors Gy M.
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According to Lemma 1.2, Th M carries a linking pairing Ap.

DEFINITION 8.2. We say that a Lagrangian A < Hi(0M) is essential in
M if the inclusion map iy : Hi(0M) — Hy(M) restricted to A induces an
isomorphism onto its image i.(A).

We say that a Lagrangian A ¢ H1(0M) has co-finite inclusion if the quotient
Gp = H1(M)/i.(A) is finite.

EXERCISE 8.2. If Hi(M) is finite then 0M is a union of 2-spheres and
the only Lagrangian is 0. [Use the homology long sequence associated to
(M, 0M) with rational coefficients.]

EXAMPLE 8.1. Let M = T? x [—1,1], the cylinder over the 2-torus T2 =
St x St = 9(B? x S'). The boundary of M consists of two copies (with
opposite orientations) of the torus:

T_=Tx0, T, =Tx1

2-torus. Let m4 denote the meridian 0B% x * x {+1} € T} < 0M. Let I+
denote the longitude * x S x {£1} € T4 < dM. There are two inclusion
homomorphisms

(i-)s : Hy(T-) > Hi(M), (it)s : Hi(T}) — Hi(M),
which combine into a third inclusion homomorphism
ix : 1 (OM) = H(=T-) S Hy(T}) — Hi(M), (z,y) = (i-)«(x) + (i4)+(y)-
In particular, the Lagrangian Ker ¢, coincides with the antidiagonal La-
grangian in —H,(T) & H(T). It does not have co-finite inclusion. The
Lagrangian A generated in 1-homology by 2m_ + [_ and I; has the co-
finite inclusion property. In Hy (M), (i—)«[l—] = (i1 )«[l+] and (i_)«[m_] =
(i4)«[m+] and Hy(M) is generated by iy[m4] and i[l;]. Hence

Ga = Hi(M)/ixA = {[m ], [ DAR2my ] + [14], [+ 1)

— ([m]y/(2lm)y = Z/2Z.

ExAMPLE 8.2. Consider the closed 3-manifold M obtained from S*x S1 x S*
by drilling out a small solid torus (contained in a small 3-ball). Then oM
is a 2-torus and Hy(M) = Z*. No Lagrangian A ¢ H{(0M) = Z? has the
co-finite inclusion property. In particular, there are essential Lagrangians
that do not have the co-finite inclusion property.

Below is an important special case when essential Lagrangian and Lagrangian
with co-finite inclusion coincide.

LEMMA 1.3. Suppose that M is a cylinder over an oriented handlebody of
genus g = 1. Let A be a Lagrangian in Hy(0M). The following assertions
are equivalent:

(1) A has co-finite inclusion;
(2) A is essential in M;

(3) The inclusion homomorphism iy : H1(0M) — Hi(M) preserves the rank
of A;

(4) ixA is a rank 2g sublattice in Hy(M).
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The following two remarks relate to the case when the Lagrangian is de-
composable (see Def. 4.3, Chap. 4) with respect to a fixed decomposition
Hy(=%1) ® H1(X2).

REMARK 8.4. A decomposable Lagrangian need not have co-finite inclusion.
For instance, the Lagrangian A generated by [m_]| € H;(—T_) and [m4] €
H,(T;) is a (rank 2) decomposable sublattice of Hy(T-)® H; (T ); however,
(i=)x[m—] = (i4)«[m+], hence i,(A) has only rank 1 in Hy(T-) ® H1(T})
SO

GAM = Hy(M)/isA ~ Z

where [ is the standard longitude of T', so it does not have co-finite inclusion.

REMARK 8.5. An essential (resp. co-finite inclusion) Lagrangian need not
be decomposable. Let ¥ = T, the 2-torus, and M = ¥ x [0,1]. It follows
from the definition that A = {(x,2z) |x € H1(X)} is a non-decomposable
Lagrangian in Hi(—X) @ H1(X). We have (i_)«[m_] = (it)«[m+] and
(12)«[l=] = (i4)«[l+]. So ixA is generated by 3[m] and 3[l], hence

Hi(M)/ix(A) =7Z/3Z®Z/37Z.
Therefore A has co-finite inclusion.

EXERCISE 8.3. Show that in the example above (Remark 8.5), there is no
decomposable Lagrangian A’ in H1(—X)@® H1(X) such that G\M ~ G/ M.

1.2. A geometric description of decomposable Lagrangians. Con-
sider a connected oriented 3-manifold M with non-empty boundary oM.
Such a manifold gives rise to a Lagrangian Ker i, < Hj(0M) where i, :
H{(0M) — H;(M) denotes the inclusion homomorphism. See for instance
[9, VI, Th. 10.4].

DEFINITION 8.3. The Lagrangian Ker ¢, is called the topological Lagrangian
associated to (M, 0M).

The emphasis here in the definition is that the topological Lagrangian de-
pends only on the topology of (M,JM).

In general, there are many other Lagrangians in Hi(0M); if we regard M as
some Lagrangian decorated cobordism (see...), the topological Lagrangian
generally differ from the Lagrangian Aj,; associated to the cobordism. One
way to see that is to remark that Ker i, does not have to be decomposable.

EXAMPLE 8.3. Let again M = T2 x [0,1], the cylinder over the 2-torus
T2 = S' x S'. The boundary of M consists of two copies
T_=Tx0, T, =Tx1

(with opposite orientations) of the 2-torus. The Lagrangian Ker i, is gen-
erated by pairs (—z,z) € —H 1 (T) & H1(T). It is not decomposable. Denote
as before (Example 8.1) by

[ms], [l+] € Hi(T%)

the homological classes represented by the meridian and longitude respec-
tively. They clearly generate Hi(T%). Any pair of primitive elements of
H,(Ty) forms a symplectic basis of H;(T4) if and and only if it is uniquely
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represented by a matrix A € SLy(Z) with respect to the basis (I+,m4).
In particular, there is a one-to-one correspondence between Lagrangians
in Hi(Ty) and primitive elements in Hy(Ty). Let now A € Hy(0M) =
—Hy(T-) & H(T}) be a Lagrangian. It is generated by two independent
primitive elements. If one of these two elements can be taken to be in Hy (T )
then (since it is primitive) it generates a Lagrangian Ay € Hy(T4). If both
elements can be taken in Hy(7T-) and H;(T) respectively, then A is a de-
composable Lagrangian and A = A_ & A,. Conversely, any decomposable
Lagrangian A ¢ —H(T_) & Hy(T4) is generated by two primitive elements
in Hy(T-) and H;(T4) respectively. For instance,

Ay = A&, Mz = )&M), Aoy = (m )&y, Mgy = (m)&(m.y.)
are four distinct decomposable Lagrangians of Hy(0M) = Hi(—T-)®H (T ).

It is not hard to extend the observation of the previous example.

LEMMA 1.4. Let (M,X_,%) be a 3-cobordism with OM consisting of exactly
two connected components, ¥_ and X, . A Lagrangian

A c Hl(aM)
18 decomposable with respect to the decomposition
Hy(0M) = —H1(2-) © Hi(24)

if and only if A is generated by elements represented by simple closed oriented
curves in 0M.

EXAMPLE 8.4. In the example 8.3 above for M = T x [0, 1], the topological
Lagrangian associated to M is generated by pairs (—z,z) € —H1(T-) &
H(Ty), v € Hi(T). None of these pairs (except the trivial one) can be
represented by one single simple closed oriented curve in M.

ExaMPLE 8.5. In the example given in Remark 8.5, the Lagrangian A is
generated by ([m_],2[my]) and ([I_],2[l+]). None of these generators can
be represented by a simple closed curves in 0M.

PROOF. The representation of generators of A by simple closed oriented
curves is a sufficient condition: each simple closed curve must lie in one
single connected component of M and in particular will induce a well-
defined homological class in Hq(X_) or in H;(X4). Since A is Lagrangian,
there are exactly g4+ simple closed curves in 34 where g+ denotes the genus
of ¥1. The result follows. Conversely, if A is decomposable then Ay =
A n Hi{(X4) is a Lagrangian in H;(X4). Such a Lagrangian is generated
by a system of g independent primitive elements in Hj(X+). An element
in Hy(X4) is primitive if and only if it is represented by a simple closed
oriented nonseparating curve (see e.g., [64]). Hence the result. [ |

1.3. Lagrangians and gluings. Consider a disjoint union H of ori-
ented solid handlebodies Hi,..., H, and an orientation preserving homeo-
morphism f: Uj0H; — 0M. Let

M=Mu;—H
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F1GURrE 1.1. A handlebody H, its meridians and the collars
of its meridians.

be the closed oriented 3-manifold obtained by gluing the handlebodies to
OM via f. Let Ay be the Lagrangian generated in H;(0M) by the images
by f of the meridians of 0H1,...,0H,.

LeMMA 1.5. The Lagrangian Ay is decomposable and essential in M. Con-
versely any decomposable and essential Lagrangian A € Hy(0M) is obtained
as Ay for some orientation preserving homeomorphism f : uj0H; — dM.

Let j denote the map M — M induced by the inclusion M < M v H and
the gluing. The following observation is useful.

THEOREM 1.6. Let z,y be two 1-cycles in general position in M such that
some of their multiples lie in i, A. Then

lkp (7, y) = lkg7(Jez, J5y)-
In particular, there is a linking pairing isomorphism

~

(TOI‘S Hl(M)a)\M) ~ (TAM, )\A)

In particular, Ap is nondegenerate.

PROOF. Consider first the case when 0M is a connected handlebody of
genus g = 1. (The case when g = 0 is trivial.) Then H is another handlebody
of genus ¢, so that 0H is closed surface of genus g. Choose compressing discs
Dy,...,D, in H for 0H such that m; = dDq,...,my = 0Dy are meridians
in 0H. Choose disjoint collars N{),...,NS of D1,...,D, respectively in
H so that ONY, ... ,ﬁNg are collars of my,...,mgy respectively in 0H. Set
NO = ujNJQ. Note that H — N? is a topological closed 3-ball. See Figure 1.1.

Let N be the image of NY under the canonical projection map 7 : M [ [ Ng —
M uyN° Set M = M UN =MuyN°and M n N = n(dN°) ~ oNO.
The relevant part of the Mayer-Vietoris sequence reads

Hi(M ~ N) % 5 (M) @ HY(N) — Hi(M U N) —— Ho(M ~ N)
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Note that N is homeomorphic to N? and is contractible since each com-
ponent NJQ is contractible, hence H;(N) = 0. Thus the image of (i, j«)
reduces to ix(H1(M n N)) in Hy(M). Now i,(Hi(M n N)) is generated
by the image of the meridian m viewed inside M. This is i, A. It follows
that Hy(M') = Hi(M v N) ~ Hi(M)/isHi(M n N) = H{(M)/i.A. Now
M is obtained from M’ by gluing a 3-ball onto M’ since H — Ny is 3-ball.

Hence H1(M) = H1(M') ~ Hi(M)/isA = Ga. Under this identification,

the linking pairing on Tors H;(M) coincides with the linking pairing on
TAM.

The general case (when 0M consists of several components) is completely
similar. Since the linking pairing (Tors Hy (M), A;;) is the linking pairing of
the closed 3-manifold M, it is nonsingular (Cor. 2.3) and the last statement

of the lemma follows. |

EXAMPLE 8.6. Let M be the solid torus S' x D?. Its boundary is OM =
S1 x 0D? = S' x S'. The first integral homology of M is freely generated
by a meridian m = x x 0D? and a longitude [ = S x x. Let A be the
Lagrangian generated by the longitude I = S' x x < S' x dD?. Then
GAM = H(M)/isA = 0, the linking numbers lka (x, y) are integers and the
linking pairing lky is trivial. Consider a homeomorphism f : 8(S' x D?) —
M sending the meridian * x 0D? to the longitude [ of M. Then M = S3.
Hence linking numbers are usual linking numbers in S (hence are integers)
and the linking pairing on S2 is trivial since the homology of S® is trivial.

EXAMPLE 8.7. Consider the same solid torus M = S' x D?. Let n be a
nonzero integer and m and [ the meridian and longitude as before. Let A =
A, be the Lagrangian in Hy(0M) generated by m+n I. Then Hy(M)/i A ~
Z/nZ and Ikp(p [l],q [I]) = +22 mod 1. If f : d(S* x D*) — M is a
homeomorphism sending the meridian * x D? to m +n [ in M, then M is
the lens space L(n, 1) and we recover the cyclic linking pairing on L(n, 1) in
this fashion.

Under the hypothesis of this paragraph, any quadratic enhancement ¢p of
AA is nondegenerate. We observe that any quadratic enhancement can be
regarded as partially induced by a relative spin structure s on the 3-manifold
M with boundary. We describe it as follows. With the same notation as
above, endow the disjoint union of oriented solid handlebodies Hy, ..., H,
with relative spin structures sy, ..., s, respectively, in such a way that

slove = Vif*silom,

Then gluing the handlebodies to M via f yields a closed 3-manifold M
with spin structure 5. Any quadratic enhancement of \j is obtained as the
quadratic form induced by § for some suitable choice of s1,..., s;.

REMARK 8.6. We regard the Lagrangian A as a kind of algebraic remnant
of the gluing. Topologically it is easier to think in terms of gluings; alge-
braically (specifically in relation with the Weil representation), it is easier
to think in terms of Lagrangians.
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1.4. Seifert pairings. In this paragraph we show how a cylinder over a
surface endowed with a Lagrangian gives rise to a pairing on the 1-homology
of the surface. Let ¥ x [0,1] be a cylinder over a closed surface ¥. Let
Yy =X x {1} and ¥_ = ¥ x {0}. We regard ¥ as embedded in ¥ x [0, 1]
via the inclusion ¥ — ¥ x {1/2} < ¥ x [0,1]. The cylinder structure
provides ¥ with a natural bicollar. For a l-cycle z € ¥ = ¥ x {1/2}, we
denote by T the 1-cycle corresponding to = x {1} and by z~ the l-cycle
corresponding to x x {0}. Denote as usual the inclusion homomorphisms by
it Hi(X4+) — H1(Z x [0,1]). Let A be a Lagrangian in H; (0(X x [0,1])) =
Hi(—X x 0) @ H1(X x 1). We keep the same notation for the inclusion
homomorphisms followed by the projection map Hi(X x [0,1]) — Gy =
Hi(X x [0,1])/ixA.

We shall now assume that A is decomposable and essential.

LEMMA 1.7. The assignment
(1.1) B([=], [y]) = ka(iy 2™, ify™)

where x and y are two representative cycles in general position in %, defines
a bilinear pairing 5 : Hi(X) x Hi(X) — Q.

PROOF. We have to verify that (??) is a well-defined pairing carried by
H{(X). We claim that lka(i; 7, ify ") depends only on the homology class
of x in Hy(X). If we replace x by a homologous cycle 2’ = z + dz in ¥ then

ipa' T =igaT iy (027) =iya + Qi 2T
so i, o'~ is a cycle homologous to iy x~ in the complement of ify*. By
Lemma 1.5, A is generated by the image by some homeomorphism f of
the meridians of a standard handlebody H of the same genus as that of X.
Setting M = M uy —H, we have, according to Theorem 1.6,

AA(’L';.’L'_, Z:y+> = )\M(j*l;x_,]*u:.f+)
Moreover, since H;(M) is finite, M is a rational homology 3-sphere. The
claim on the linking number follows (cf. Exercise 7.1). [ |

DEFINITION 8.4. The bilinear pairing 8 : H1(X) x H1(X) — Q defined above
is the bilinear pairing associated to the pair (X, A).

REMARK 8.7. If GyM = 0, then the bilinear pairing is an integral bilinear
pairing Hi(X) x H1(X) — Z.

Question. If one assumes only that A is essential, does (1.1) still define a
bilinear pairing as stated in Lemma 77 7

ExAMPLE 8.8 (The Hopf Seifert pairing). Let (M,X_, %) be the trivial
cylinder over the standard 2-torus . Recall that oM = —YX_ u X,. Let m
and [ be the standard meridian and the standard longitude of 3 respectively,
forming a geometric symplectic basis for ¥ = ¥ x 1/2. We denote by m™,
[~ (resp. m™,I") the curves m, [ respectively pushed onto ¥_ (resp. 3, ).

The following relations hold:

mex | = +1.
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+

m

FiGure 1.2. The cylinder over the torus equipped with a
geometric symplectic basis on the components > and >.

mt o5 IT=+1=m" o5, 1".

m_ ey [T =4+1=—m"e_x [~ =—m eyyIl .
Let A be the Lagrangian in Hi(0M) generated by [m~] and [IT]. Then
kp(ifm™ i 1) =m®* ey, 1T = +1.

Glue two copies of a standard solid torus H = S x D? of genus ¢ to
¥ x [0,1] as follows. We glue the first solid torus via a homeomorphism
—0H — ¥ x {1} sending the meridian of H to [T. We glue the second solid
torus via a homeomorphism 0H — ¥ x {0} sending the meridian of 0H to
m~. The resulting closed 3-manifold is S3. We call this gluing the Hopf
gluing. By Theorem 1.6, for any disjoint 1-cycles z,y in 3 x [0, 1],

lkA(37a y) = 1kS3 (]*%J*y)

In particular, B([l],[m]) = lka(izl~,ifm™) is the linking number of a pos-
itive Hopf link in S3. For this reason we shall call the Lagrangian A above
the Hopf Lagrangian.

These considerations extend obviously to the case of an oriented closed con-
nected surface ¥ of arbitrary genus.

DEFINITION 8.5. Let 3 x [0,1] be the cylinder over the standard surface
of genus g > 1. Let H, denote the standard oriented handlebody of genus
g. Let f_ : ¥, — ¥ x {0} be the identity and let f : ¥, — ¥ x {1}
be an orientation preserving homeomorphism sending the j-th meridian of
Y4 = 0H, onto the j-th longitude of ¥ x {0}. The Hopf gluing is defined as
the gluing that consists in gluing two handlebodies to the cylinder ¥ x [0, 1]
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via the parametrization f_ and f; on the bases:
S3=Hyup ¥ x[0,1] Uy, omir —Hy.

The Lagrangian A € H;(d(2 x [0,1])) generated by the meridians of ¥ x {0}
and the longitudes of ¥ x {1} is called the Hopf Lagrangian.

The Hopf Lagrangian A is decomposable and essential and G (X x [0, 1]) =
0.

LEMMA 1.8. If A is the Hopf Lagrangian then the bilinear pairing Ba :
H(X) x Hi(X) — Z is a Seifert pairing with respect to the intersection
pairing on —>.

PROOF. Since G5 (X x [0,1]) = 0, the bilinear pairing 3 is integral. The
proof that 5 induces the intersection pairing, i.e. that

—rexpy = 6(x7y) - B(y7$)7
is completely similar to that of Example 6.1, Chap. 6, §1. |



CHAPTER 9

Abelian skein theory

In this section we give a topological (“skein”) interpretation of the Heisen-
berg algebra and the Schrodinger representation of the Heisengerg algebra.
These results are interesting by themselves because they provide state mod-
ules with extra structures. They give a completely skein-theoretic approach
to the construction of Abelian TQFTs and they are building blocks used
in the proof of Theorem 2.3. For this, we develop an appropriate calculus,
called skein calculus, pioneered by J. H. Przytycki and V.G. Turaev.

1. Heisenberg skein modules: preliminary construction

Skein modules are certain modules (actually some of them are algebras) built
from links with extra structures in three-manifolds. The algebraic properties
of skein modules reflects the topology of the ambient three-manifold. The
Heisenberg skein modules introduced in this section will be shown to be
closely related to the Heisenberg groups.

Let M be an oriented compact 3-manifold. According to Moise’s theorem
[68], any topological 3-manifold has an essentially unique smooth structure.
We shall use implicitly this fact without further comment. We shall need a
few basic definitions on knot theory as well. For more details, we refer to the
introductory chapters of the monographs of D. Rolfsen [82] and G. Burde
and H. Zieschang [11]. A knot in M is a smooth embedding of a circle in
M. More generally, a link in M is a smooth embedding of a finite collection
of pairwise disjoint circles in M. A framed link in M is a smooth embedding
of a finite collection of pairwise disjoint annuli in M. We shall frequently
abuse notation and identify a link (resp. framed link) with its image in the
ambient manifold M. In particular, the components of a framed link are
thought of as a collection of pairwise disjoint annuli. A link is oriented if
each of its componments is assigned an orientation. Two knots are parallel
if they form the boundary of a framed knot in this previous sense. We shall
use the blackboard convention for the drawing of framed knots and links:
the annulus determining the framing on a component is understood to lie in
the plane of the figure. It will be also convenient to think of a framed link
as a link endowed with a unit vector field, the vector field pointing towards
the parallel knot of the original knot. An isotopy of a (framed) link L in
M is a smooth 1-parameter family ; of framed links such that (g is the
embedding defining L. Two (framed) links L and L’ are isotopic in M if they
can be included into one isotopy, i.e. if there exists a smooth 1-parameter
family s of framed links such that g is the embedding defining L and ¢y

163
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is the embedding defining L’. We shall frequently abuse notation and not
distinguish between a link and the isotopy class it represents.

DEFINITION 9.1. Let G be a finite Abelian group and let L be an oriented
link in M. A basic colour for L is a map col : mo(L) — G from the set of
components of L to the group G. A basically coloured link in M is a link in
M together with a basic colour.

In this chapter, we shall simply write “colour” instead of “basic colour”.

We need to define two sets of “indeterminates” based on G.
DEFINITION 9.2. The set G is defined by the disjoint union

G ={tgt,' | g€ Gy {typnt,, | {9.h} = G}
The set G is defined by the disjoint union

G =A{tg.t," 1ge GYU{t ot | g+ ho{g,h} S G} = G—{t, .1, 4 | g€ G}

9,97
Let Z[G2d] (resp. Z[Gaad]) denote the multivariable Laurent polynomial
algebra over the indeterminates in G4 (resp. in G9'2d). By definition,
the following relations hold:

—1 —1
tgt, =t tg=1
tgh =thyg
-1 —1
tg7h : tg,h = tg,h : tg7h = 1'

DEFINITION 9.3. We define the free module .Z (M) over Z[G9%#4] generated
by the set of all isotopy classes of oriented framed coloured links in M,
including the empty link denoted @. Similarly, for k > k, we define the free
module %, (M) over Z[G9%#] generated by the set of all isotopy classes of
oriented framed coloured k-component links in M. In particular, £ (M) is
just the free module generated by the set of all isotopy classes of oriented
framed coloured knots in M.

Note that 2 (M) = {@} U U1 Lo (M).

The figure below represents two oriented framed coloured links X (g, h) and
X_(g,h) which are identical except in a small embedded ball in M where
they look exactly as shown, where one arc is part of a component coloured
by an element g € G and the other arc is part of a component coloured by
hedG.
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Consider now the elements
(1.1) X1 (g,h) = tgnX_(g,h), X_(g,h) —t,} X1 (g,h)

where X (g,h) and X_(g,h) are two oriented framed coloured links which
are identical except in a small embedded ball D in M where they look exactly
as shown in the figure, where one arc is part of a component coloured by
an element g € G and the other arc is part of a component coloured by
h € G. The possibility g = h is accepted, whether the arcs belong to
distinct components or not.

The next figure below represents an arbitrary oriented framed link Xy (g, g)
in M, where the interior of a small embedded ball D? is specified as shown.

g g
Xo

We consider also the elements

(1.2) X1(9,9) —tsXo(9,9), X_(9,9) —t;' Xo(g,9)

where X (g,9) and Xy(g,g) are two oriented framed coloured links which
are identical except in a small embedded ball in M where they look exactly
as shown in the figure. (Note that the number of components of X (g, g) is
the number of components of Xy(g,¢g) plus or minus one.)

Let X be an element in . (M) represented by an oriented framed coloured
link L. Denote by X u O the element in £ (M) that consists of the topo-
logically disjoint union of L and an extra annulus that bounds in M a disc
disjoint from L (the trivially framed unknot) with an arbitrary color. Con-
sider finally the element

(1.3) X-XvuoO.
We accept for X the possibility that X be the empty link.

Let . (M) be the submodule spanned by all elements of the three kinds
enumerated above, respectively by (1.1), (1.2) and (1.3). The corresponding
relations are called skein relations.

DEFINITION 9.4. The Heisenberg skein premodule <7°(M) is the quotient
Z(M)/ (M)

Elements of 7°(M) are called skeins. The skein represented by an oriented
framed link L will be denoted by (L). If we need to emphasize the color,
we include it in the notation. For instance, if K is an oriented framed knot,
then (K (g)) denotes the skein represented by K coloured with g € G. We
set Z2(M) = &/°(M)®C. The empty skein, noted (@), is the skein induced
by the empty link.
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EXAMPLE 9.1. If O denotes an annulus (coloured by an arbitrary color)
bounding a disc in M, then (O) = (&) (relation (1.3)).

LEMMA 1.1. The following relations hold in </°(M):

(1) The commutativity relations: for all g,h,k,l € G,
Loth = thtg, tgh =1thg, tglnk =Tnktg, tgntkl = tkitgn-
(2) The doubling relations: t tg.g forallge G.

PROOF. (1) The order in which the skein relations are processed is ir-
relevant. (2) The following relations hold in &7°(M):

X1(9,9) = t3X0(9), X+(9,9) =tg4X-(9,9) = tg-gtngO(gvg)'
Therefore
tgXo0(9,9) = tggty ' Xo(g, 9)
for any skein. The result follows. |

COROLLARY 1.2. The skein premodule o/°(M) is a module over the Laurent
polynomial algebra Z[G24].

PROOF. The skein module &7°(M) inherits a Z[G9"*4]-module structure
from Z(M). The previous lemma shows that the map determined by

Ly > 13, 2G4 > Z[G]
induces on @7°(M) a structure of Z[G9*d]-module. [

ExAMPLE 9.2. Consider the 3-manifold M = S2 (or an integral homology
3-sphere). Let L = Ly u -+ U L, be an oriented framed link coloured with

Ji,---,9n. Then
lk LZ,L Ik(L;,L%)
W= 11 tas™ T ta" @

1<i<j<n 1<i<n

where L] denotes the component parallel to L; determined by the framing.
It follows that 27°(S%) ~ Z[Gauad].

ExaMPLE 9.3. Consider the case when G is the trivial group. We can set
to = t and tgg = u. According to the lemma, t*> = u. The relations of
the first kind are X, = tX_, X_ = t~'X,. The relations of the second
kind are X, = uXy, X_ = u~'Xy. The Heisenberg premodule «7°(M) is a
Z[t,t~']-module.

ExAMPLE 9.4. Consider the oriented framed and coloured two component
link L in the solid torus (oriented handlebody of genus one) S' x D? as
pictured in Fig. 1.1. Denote as usual by m = x x 0D? a meridian of S x D?
and by [ = S x * a longitude of S' x D2. Color the meridian by an element
g € GG and the longitude by an element h € G.

Fig. 1.1 shows that in the Heisenberg skein premodule .27°(S! x D?), the
following relation holds:
(L) = tg n{l(h)).

Note that both a relation of the first type (1.1) and a relation of the third
type (1.3) were used.
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FIGURE 1.1. A skein relation in S' x D?. After applying

a skein relation, the loop labelled by g becomes trivial in
St x D2,

EXERCISE 9.1. In general, nontrivial identities are produced on a link dia-
gram by a combination of Reidemeister moves and skein moves.

Consider the skein (L) represented by two
parallel framed knots with opposite orien-
tations in an arbitrary 3-manifold M and
coloured with the same color as represented !
here. Prove that (L) = (&).

LEMMA 1.3. &/° is a covariant functor from the category of oriented 3-
manifolds and isotopy classes of smooth orientation preserving inclusion
maps to the category of modules and maps over Z[G’q“ad]. In particular,
if there is an orientation preserving diffeomorphism between M and N then
A°(M) and /°(N) are isomorphic modules. In particular, the mapping
class group of M acts by automorphisms on <7°(M).

PRrOOF. Consider a smooth embedding f: M — N. If ®: S* x [0,1] —
M is an isotopy between two knots ¢g = ®(—,0) qnd ¢; = ®(—,1), then
fo®: S x[0,1] » N is an isotopy between f o ¢g and f o ¢1. Thus
f induces a module map f, : L(M) — Z(N). The inclusion map sends
S (M) to L(N), i.e. preserves the skein relations as well, hence induces
a map /°(M) — o/°(N). Clearly the assignment is associative and sends
the identity idas to the identity id o (pr). It follows that if f: M — N is an
orientation preserving diffeomorphism, then the induced map fy : &°(M) —
2/°(N) is a module isomorphism.

Suppose that f and g are two isotopic smooth embeddings M — N related
by an isotopy ¥ : M x [0,1] — N such that f = ¥(—,0) and g = ¥(—,1).
Let ® : S' — M be an isotopy between two knots ¢ = ®(—,0) and ¢; =
®(—,1). Then

S x[0,1] 3 M x [0,1] > N
defines an isotopy between f o ¢g and g o ¢1. Thus the isotopy class of f
induces a well-defined map fy : ZL(M) — Z(N). It follows that there is a

well-defined action of the mapping class group of M on the group of module
automorphisms of &7°(M). [ |

The following result is the fundamental example that we shall be concerned
with in this chapter.
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PROPOSITION 1.4. Let ¥ be a closed oriented surface of genus g and H
an oriented handlebody of genus g such that 0H = . There is a natural
surjective module map «7°(X x [0,1]) — /°(H).

PROOF. Regarding the cylinder 3 x [0,1] as a collar of 0H in H (that
is, 0H = X x {0}) provides an inclusion ¥ x [0,1] € H. By Lemma 1.3, this
inclusion induces a module map «7°(3 x [0,1]) — &/°(H). To see that this
map is onto, observe that any framed link L in H can be isotoped in H so
that L lies in ¥ x [0,1] ¢ H. [ |

Consider the 3-manifold M = ¥ x [0,1] where ¥ is a compact oriented
surface. Provide M with the product orientation as usual. The product of
two elements L, L’ € £ (X x [0,1]) is defined by uniformly compressing L in
¥ x [0,1/2], respectively L’ in ¥ x [1/2,1], and juxtaposing in ¥ x [0,1] =
Y x([0,1/2]u[1/2,1]). The result L-L’is clearly an oriented framed coloured
link in ¥ x [0, 1].

DEFINITION 9.5. The product
(1.4) (L, L) L- L
induces a product on &7 (X x [0,1]), called the skein product.

The skein product turns «7°(3 x [0, 1]) into an associative algebra with the
empty skein (@) being the unit. By definition, (L) = (@) = 1.

Note. We write down product identities from
left to right in accordance with our definition
above of the skein product in ¥ x [0, 1]. (This
convention will lead to the Schrédinger rep-
resentation as a right action.) For instance,
the figure opposite represents the product link
amb inside ¥ x [0,1]. (For simplicity, the
drawing of 3 x 0 is omitted.)

Convention. We use the right hand rule con-
vention for the orientation of handlebodies
(that are embedded in R3), with the oriented
normal (last) vector pointing towards the eye
of the reader, as depicted opposite. All pic-
tures are drawn following that convention.

An oriented genus two
handlebody.

EXAMPLE 9.5. Consider the skein (L) in the cylinder 7" x [0,1] over the
torus T2 represented by the two component oriented framed coloured link L
as pictured in Fig. 1.2. Denote as usual by m the meridian (here coloured
by g € G) and by I (here coloured by h) the longitude of T = 0S' x D?.
Then Fig. 1.2 shows that the following relations hold in the Heisenberg skein
algebra «7°(T x [0,1]):

(L) = U(h)) - <{m(g)) = tgn <m(g)) - U(R)).

This example shows that <7 (T x [0,1]) is not commutative.
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FIGURE 1.2. A skein relation in 7" x [0, 1].

EXAMPLE 9.6. Consider the skein (L) in the cylinder 7" x [0, 1] over the
torus T represented by the two component oriented framed coloured link L
as pictured in the left side of Fig. 1.3. This is the same oriented framed link
as in the previous example except that the two components are coloured
by the same element g € GG. An application of the second skein relation
is pictured in Fig. 1.3. Observe that the integral homology of the link in

FIGURE 1.3. Another skein relation in 7" x [0, 1].

T x [0, 1] is unchanged after the skein relation.

REMARK 9.1. If alink L ¥ x [0, 1] has a projection on ¥ without crossings
then its n-th power (L)" is represented by n parallel copies of L. Further-
more, in this case, the (L) has an inverse (—L) where —L denotes L with
the reversed orientation (this follows from Exercise 9.1 and our convention

(@) =1).
However, if L has no projection on ¥ without crossings then (L)" is not
represented in general by n parallel copies of L.

2. A skein multivariable polynomial

We now proceed to generalize Examples 9.4 and 9.5.

PROPOSITION 2.1. Let ¥ be a compact oriented connected surface such that
0% consists of at most one component. Let A be the Hopf Lagrangian in
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Hy(0(X x [0,1])). Let L be a framed oriented coloured link in ¥ x [0,1].
There is an oriented framed coloured link Ly < X x {1/2}, unique up to
1sotopy, such that

lk Z lkp (€,¢)
@1) D= T[] tagen T1 tew” ToeaEx0.1)
ir Lemo(L
J,Eg;aro(SL) eolt)
I+

with the following properties:

(1) The oriented links L and Lo represent the same homology class:
[L] = [Lo] in H1(2).
(2) The components of the oriented framed link Ly consist of parallel
copies of standard (trivially framed) meridians and longitudes in
x [0,1] (with possibly reversed orientation). Furthermore, all
parallel components of Lo have the same orientation.

PROOF. Consider a component ¢ of L. Regard ¥ x [0,1] as the con-
nected sum of g copies of T'x [0, 1] where T is the usual torus, possibly with
one single disc removed. It will be convenient to consider a link diagram,
using the projection of the link on ¥ x 1/2. Using isotopy (second Reide-
meister move on the diagram) and the second skein relation, we see that ¢ is
skein equivalent to a (possibly multi-component) link 7 whose components
lie individually in no more than one 7" x [0, 1]. See below for an elementary
example.

FiGure 2.1. Simplifying a link using skein moves.

Using the third skein relation we disregard the individual trivial components
(like the one in the right side of Fig. 2.1). We are left with a new link L
with non trivial components.

Using an isotopy if necessary, we may assume that the projection of the
components onto ¥ x {1} is generic. By the previous step, we may assume
that the projection of each component lies either on a torus minus a disc or on
a torus minus two disjoint discs. Furthermore, by using the skein relations,
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we may assume that they have no crossing point in 3 x {1}. Decompose
each torus minus a disc into the connected sum of a pair of pants (denoted
P) and a cylinder (denoted C'). Similarly decompose each torus minus two
discs into a connected sum of two pairs of pants.

LEMMA 2.2. The following skein relations hold:

\ -1
=)=
8

The first relation is understood to hold in P x I and the second and third
relations are understood to hold in C' x 1.

PrROOF OF LEMMA 2.2. The first relation from left to right is obtained
as follows. First pull down from the curve a small band under the 7, bring
it back up on the other side, so as to create two crossing points with opposite
sign (second Reidemeister move). Apply the second skein relation at each
crossing. This creates a trivial component, which we discard using the third
skein relation, and the two components depicted in the figure. The second
relation is an application of the second skein relation. The third relation
from left to right is obtained by creating two crossing points with opposite
sign (second Reidemeister move) and applying the second skein relation
at each crossing. Discarding the trivial component created, we obtain the
component depicted on the right. |

As a consequence, we can remove components that are parallel to the bound-
ary component.

COROLLARY 2.3. The following relation holds in (T — B?) x I:

PROOF. Apply the first relation of Lemma 2.2 and Exercise 9.1. |

It follows that one can transform the original link L into a new link Lg
whose components are all non trivial and pairwise disjoint, non parallel
to the boundary component, such that each one of them is isotopic to a
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trivially framed meridian or longitude in ¥ x {1/2}. By Exercise 9.1, all
parallel components have the same orientation. Hence Lg satisfies condition
(2).

Let us compute the polynomial coefficient of the reduced link Ly. Each
skein relation of the first type (resp. of the second type) applied to a crossing

point ¢ € ¥ between two distinct components j and [ (resp. between two arcs
belonging to the same component ) contributes to the polynomial by a factor

ti((ﬁgj)ﬂol(l) (resp. by a factor ti((jgl)). (The sign e(c) € {—1,1} is +1 or —1
according to whether the orientation of 7. coincides or not with T.v® T .w
where v is the unit tangent vector at c¢ of the outgoing undercrossing arc
and w is the unit tangent vector at ¢ of the outgoing overcrossing arc.) The
skein relation of the third type does not change the linking nor the framing
numbers of the remaining components. The skein relations and isotopy do

not change the homology class, hence condition (1) is satisfied.

Finally, the procedure produces a reduced link Ly that satisfies (1) and
(2). Let Lj be another oriented framed coloured link determined by the
same procedure that satisfies (1) and (2). By (2), L; consists of a union
of parallel copies of meridians m; and/or longitudes [;, 1 < i,j < g. Let
a; (resp. bj) be the number of parallel copies of the i-th meridian (resp.
j-th longitude), with minus sign if the orientation is reversed. Then by
(1)s Xi<ijeglai[mi] + b5 [L]) = [L1] = [L] = [Lo]. It follows that Ly
has the same decomposition into parallel copies of oriented meridians and
longitudes. Thus Ly and L are isotopic.

Observe that the set of colors of the components of Ly (resp. L1) is a subset
of the set of colors of L.

Consider a finite sequence of isotopies and skein relations that leads from the
original link to the reduced link. Consider two non trivial components j and
[ of the original link such that 1k (7,7) & 0. Since finally the linking number
between the two components is zero, we conclude that that the coefficient

lclf)’l‘((j’l) A similar observation shows that a single
J3)scol(l)” 10
CO.

non trivial component j contributes exactly b () Hence the expression

after the last step is ¢

of the polynomial Py, is as stated.
|

COROLLARY 2.4. The Laurent polynomial Py, associated to a link L is an

invariant of the skein (L). In particular, it is an invariant of framed isotopy
of L.

DEFINITION 9.6. The Laurent polynomial

H{A f lkA uad
(2.2) Po= ] #8090 1T tea™ ez
pairs Lemo(L)
j,[eﬁo(L)
IFL

associated to the framed oriented coloured link L is called the linking number
skein polynomial of L.
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ExXAMPLE 9.7. For the skein (L) of Example 9.5 (see Fig. 1.1), we have
P = tg,h-

COROLLARY 2.5. If L is a framed oriented coloured link in B> or S® then

_ Aka(2.0) ke (£,0)
<L> - H col (9),col (£ H tcol(@ )
pairs Lemo (L
]7ZE7T0(L)
I+L
In particular the skein algebras o/°(B3) and o7°(S®) are both isomorphic to

Z[équad] )

PROOF. Given a link L in S2, we can assume that L misses some small
ball inside S? and therefore lies in a 3-ball B3. The 3-ball B? is diffeomorphic
to B2 x [0,1]. Thus @/°(B3) ~ &°(B? x [0,1]) (Lemma 1.3). We apply
Proposition 2.1 to a disc ¥ = B2, so (Lo) = (@) = 1. [ |

We record the behaviour of the linking number skein polynomial under the
skein product.

LEMMA 2.6. Let J and L be two oriented framed coloured links in ¥ x [0,1].
Then er (0)
j— ]7
Prr= H tco?(]),col(l) PyPr.
pairs{y,¢}
(9:£)emo(J)xmo(L)

PROOF. There are three Hopf Lagrangians: let Ay (resp. Aj) be associ-
ated to the Hopf gluing applied to the first copy of ¥ x [0, 1] which contains J
(resp. applied to the second copy of ¥ x [0, 1] which contains L). Finally let
A be associated to the Hopf gluing applied to ¥ x [0, 1] ~ ¥ x [0, 1]uX %[0, 1].
Abusing notations and denoting by the same letter a component in possi-
bly three distinct manifolds, we have lka,(7,¢) = lka(y,¢) for any pair j7,¢
of components of J. (if 7 = ¢, the framing number lkx(¢,¢) is meant.)
Similarly, lka, (7,¢) = lka(y,¢) for any pair 3, ¢ of components of L. Since
mo(JL) is the disjoint union of my(.J) and mo(L), we compute by means of
Lemma 2.1, the skein polynomial Py, and the product of skein polynomials
P;Pr,. Comparing the two yields the desired formula. |

COROLLARY 2.7. For any oriented framed coloured link in ¥ x [0,1],
P ;=P
where —L denotes the same coloured link with reversed orientation of all of

1ts components.

Proor. Colors are unchanged and orientation reversal of all components
of the link does not affect linking and framing numbers. Hence the skein
polynomial is unchanged. |

COROLLARY 2.8. For any oriented framed coloured link in ¥ x [0,1],
PLmir - PZI

where L™ denoted the mirror image of the link L with the same colors.
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ProOF. Follows from the fact that for the mirror link, all linking and
framing numbers are the opposite of those of the original link. |

3. Heisenberg skein modules and algebras

We fix a closed oriented surface X of genus g with its geometric symplectic
basis (m1,l1,...,mg,lg) so that

miOijZiOZjZO, mioljzéij, 1<z’,j<g
with trivial framing on each simple closed curve.

LEMMA 3.1. The Heisenberg skein algebra o7/°(X x [0, 1]) is a free Z[GI24]-
module whose basis consists of all elements of the form

(3.1) TTT [Gms (0> - TTT el (usnd

j=11=1 j=11=1

where the indices (numbers of parallel copies) ri,...,rq,51,...,84 lie in N,
the indices £(j),€(j) lie in {£1} (the minus sign meaning reversed orienta-
tion) and the colors x;; and y;; lie in G.

The Heisenberg skein premodule </°(H) of a genus g oriented handlebody
H is a free Z[G"*)-module with basis

g S
TT1 [t (wia),
j=11=1
where each longitude with possible reversed orientation is coloured with an
arbitrary element of G.

PROOF. The first statement follows from Prop. 2.1. For the second
statement, view the solid handlebody H as containing the cylinder over the
closed oriented surface Y so that dH identifies with one of the bases, say
3 x 0, of the cylinder over . Let (L) be a skein in &/°(H). By isotopying
L is necessary, we may assume that L lies in ¥ x [0,1] < H. By the
previous argument, (L) is proportional to an element of the form (3.6).
Now in &7°(H), each trivially framed meridian becomes a trivial knot so
{m) = (). This gives the desired result. [ |

REMARK 9.2. There is a slight abuse of notation in the second statement
of Prop. 3.1. Indeed, &7°(H) has not been given yet any natural product
structure. What the second statement really means is that any skein in H
can be geometrically represented by a disjoint union of parallel longitudes
(with the standard orientation) arbitrarily coloured.

Let L be any coloured oriented framed link (possibly empty) and let K be
an oriented framed knot in M such that L~ K = &. The orientation and the
framing of K determine an oriented knot K’. Extend the framing of K to a
framing for K'. Let g,h € G be arbitrary colors for K and K’ respectively.
Consider the element

(3.2) (LUK(g)uK'(h)y—{(LuK(g+h))



3. HEISENBERG SKEIN MODULES AND ALGEBRAS 175

in @7°(M).

Consider similarly the element

(3.3) (Lu K(0))—<(L)
in &7°(M).

DEFINITION 9.7. The Heisenberg skein module /(M) is the quotient of
2/°(M) by the submodule generated by all elements (3.2), (3.3).

—

PROPOSITION 3.2. The map that assigns to a skein (L) € o (M) its homol-
ogy class

[L]= ) col(t)®[l] € Hi(M;G)
Lemo(L)

induces by Z-linear extension a natural Z-linear epimorphism

o (M) — Z[H\(M; G)].

PROOF. Assigning to an isotopy class of a framed oriented coloured link
L in M its homology class

(3.4) [L]= )] col() @[] e Hi(M;G)
Lemo (M)

determines a well-defined Z-linear epimorphism
L(M) — Z[H, (M; G)).

It is not hard to verify that the skein relations do not change the 1-homology
of L with coefficients in GG. The first skein relation performed on L does not
affect the number of components and both the colours and the integral 1-
homology of the components are unchanged. Hence the first skein relation
leaves invariant [L] € Hi(M;G). The second skein relation performed on
(a crossing of a regular projection of) L does affect the number of com-
ponents: it splits one component into two components if there is initially
one component self-crossing and it merges two components into one com-
ponent if there are initially two distinct components (with the same colour)
crossing. The algebraic sum of the integral 1-homology of the two compo-
nents after the skein relation is performed (resp. before the skein relation
is performed) is equal to the integral 1-homology of the single component
before the skein relation is performed (resp. after the skein relation is per-
formed). Since the colour remains constant, we conclude that the quantity
[L] = Dlpery(r) c0l(£)®[¢] is unchanged under the second skein relation. The
invariance under the third skein relation is clear since we only add a trivial
(hence homologically trivial) component.

Consider now the extra relations. For the element described by (3.2), its
1-homology class is

> ()@ +g®[K]+hR[K']— ). col()®[] - (9®h)@[K] =0

lemo(L) Lemo(L)
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since [K] = [K’]. Consider the element described by (3.3): its 1-homology
class is

D () @[ -0 [K]— > col(t)®[(] = 0.

temo (L) Lemo(L)
Therefore the natural map /(M) — Z[H1(M;G)] induces a Z-linear epi-
morphism &7 (M) — Z[H1(M;G)]. [ |

PROPOSITION 3.3. In o/ (M), the following relations hold for arbitrary ele-
ments g, h, k € G:
(3.5)

-1
tgnlogk =lgnvk, tgnteh = tgrkh, totgntn =tgrn, togn =155, t—g =14

Proor. Consider the following skein identity:

h+k hk h k h k h+k h+k
\/ y/ y/ NS N
tg,h tg,k = tg,h, tg,k \ = tg,h = = = tg,h+k
\ \ AN, \
g g g g g g
The identity typtgr = tgntr follows. The second identity follows since

tgn = thg. For the identity ¢, = t4tptyn, we have on the one hand the
identity

On the other hand, we also have the skein identity

g+h g+h

Comparing the two identities yields the relation t,,, = tstptgn. Now

GO AT ot

Thus tg0 = tog = 1. It follows that 1 = ty0 = tg ntgn 50 tg p =t ;.

Similarly t_g , = tg_}z. Since t% =190 = 1, we see that {yp = £1. In fact,
1=y = (O -t <©©>=to (@) = to.

1 2 1
L=ty =tgg=tyt_gtg o =tgt gty s =tgt_gt,> =t 1t_,

hence t_, = t,. |

Thus
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The following result is a direct consequence of Prop. 3.3 and the definition
of G4 (Chap. 1, §5).
COROLLARY 3.4. &/ (M) is a Z[G"*!]-module.
For instance, if G = Z then G9! is generated by ¢; with no extra relation.
Hence G9"d = 7, = G and &/ (M) is a Z[t*']-module.

From Lemma 3.1, we can describe further the structure of the Heisenberg
algebra o7 (X x [0, 1]).

PROPOSITION 3.5. The Heisenberg skein algebra </ (X x [0,1]) is a free
Z[GY)-module whose basis consists of all elements of the form

(3.6) [T - T [<mi (i)
j=1 j=1

where the colors x; and y; lie in G.

The Heisenberg skein module o7/ (Hgy) of the genus g oriented handlebody is
a free Z|G*)-module whose basis consists of all possible disjoint unions of
longitudes arbitrarily coloured by elements in G.

Let ¢ : G — Q/Z be a quadratic form with associated bilinear pairing
b:GxG— Q/Z. Let x : Q/Z — U(1) be a character.

DEFINITION 9.8. The group U, = x © q(G) is a finite subgroup of U(1):
it is the finite unitary group associated to (g, x). We shall write U if the
quadratic form and the character are understood from the context.

Recall that to the quadratic form ¢ : G — Q/Z is associated a group homo-
morphism ¢ : G — Q/Z (Chap. 1, §5).

DEFINITION 9.9. The evaluation map evy : Gaad _, [J is defined by
(3.7) ev = xo0q.
We shall write ev if the quadratic form and the character are understood

from the context.

Here is an explicit formula for ev, given an element P € G9"#d (represented

as an element in G4 i.e. as a monic monomial):

ev(P) = P(ts = x(a(9)). tyn = x(b(g. ). 9.h € G).

LEMMA 3.6. The evaluation map ev is a group homomorphism and U =
ev(Gauad),

PRrOOF. The two statements follow from the definition and universal
property of q. |

By the group ring construction, the map ev induces a ring morphism, still
denoted ev: Z[GW] — Z[U]. Regarding Z[U] as a Z[G9%]-algebra, we
define the Z[U]-module by the “ring change”

"QZ;X(M) = "Q{(M) ®Z[unad] Z[U]
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DEFINITION 9.10. The Z[U]-module @?q\,x(M) is called the reduced Heisen-
berg skein module.go lighten notation, we shall simply drop the subscripts
and simply write o/ (M) when the quadratic form ¢ and the character x are
understood.

—~

REMARK 9.3. There is a natural Z-map </ (M) — </ (M) defined by (L) —
(L)® 1 where 1 is the unit element in U.

An immediate consequence of the definition is that the reduced Heisenberg
skein module of a surface is also an algebra.

—~

LEMMA 3.7. &7 (X x [0,1]) is a Z[U]-algebra and the map

—~

e (3% [0,1]) > (5 x [0,1]), (L) (L)@ 1y
s a Ting surjective map that satisfies
e(P (L)) = ev(P)-e((L)), PeGuad

REMARK 9.4. One may concretely regard the reduced Heisenberg skein mod-
ule as the Heisenberg skein module obtained after “evaluation”, i.e. after
“evaluating” the indeterminate ¢ = yoq(t) for all t € G424, This evaluation
is equivalent to the evaluation

(3.8) tg = x(a(9)), tgn =x((g,h)), g,heq.

In other words, in the reduced skein module, (1) we replace two parallel
oriented framed knots by one of them and add their original colors; (2) we
evaluate t; = x(q(g)) and t5n = Xx(bg(g,h)); (3) Any framed oriented knot
coloured with 0 can be erased. The first relation allows in particular to
replace n parallel copies of an oriented framed link by one copy of them
coloured with n times the original color and conversely for any n € N.

For the following definition, consider the natural ring map Z[U] — C that
sends a formal Z-linear combination of unitary elements to its actual complex
value. Using this map, one may regard C as a Z[U]-algebra.

DEFINITION 9.11. The reduced Heisenberg skein module with complex coef-
ficients is /(M) = o/ (M) @z C.

REMARK 9.5. The reduced Heisenberg skein module Q%E(M ) is a C-vector
space. The reduced Heisenberg skein module «/c(X x [0, 1]) is a C-algebra.

PROPOSITION 3.8. Let L be an oriented framed coloured link in ¥ x [0, 1].
Let 01, = X peny (1) cOL(0) @L the framed 1-cycle determined by L in ¥ x [0,1].
Denote by [L] = 0y, its homology class in Hi(X;G). Then

—

(3.9) (Ly = x((g®ka)(07)) - Loy in /( x [0,1])

where Ly is an oriented framed coloured link such that

(1) The oriented links L and Lq represent the same homology class:
[L] = [Lo] m Hl(E,G)
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(2) The components of the oriented framed link Ly consist of parallel
copies of standard (trivially framed) meridians and longitudes in
Y x {1/2} (with possibly reversed orientation). In particular, for
any pair of components £,0' of Lo, lkp(¢,¢') = 0. Furthermore, all
parallel components (meridian or longitude) of Lo have the same
orientation.

PROOF. We apply Prop. 2.1 to L in &/ (X x [0,1]). Evaluating the skein
polynomial P, (2.2) at (ty = x(q(g)) and tg, = x(b(g, h)), we observe that

Pu(ty = X(a(@):ton = X (g 1), 9:h € G) = x((g@ k) (D).
This gives the desired formula. |

Let H, be an oriented handlebody of genus g, so that 0H, = ¥,. Recall
the geometric symplectic basis (mq,11,...,mg,ly) for the surface ¥. Then
(I1,...,1y) is a geometric basis for the first homology of H,.

THEOREM 3.9. The map defined by

(Ly—[L]
defines a Z[U]-linear isomorphism ,Q/{\(E x [0,1]) — Z[U][H1(3;G)]. In
particular, the Heisenberg skein algebra o (¥ x [0,1]) is a free Z[U]-module

with basis
-+ Llgy---{may - (myg),
where the geometric elements of the symplectic basis are coloured with arbi-
trary elements of G.
Let Ay be the Lagrangian in Hy(3,) generated by the longitudes. The map
defined by
(Ly—[L]

defines a Z[U]-linear isomorphism Ja/f\( H,) — ZIU||G ® A1]. In particular,
the Heisenberg skein module Jz/( g) of the genus g oriented handlebody is
a free Z|U]-module whose basis elements consist of disjoint unions of longi-
tudes coloured with arbitrary elements of G.

PRrooOF. Follows from Prop. 3.5. |

In other words, an element of the basis of QQ/K\(E x [0,1]) is an arbitrary
product of the skeins of the symplectic basis. Similarly, an element of the
basis of ﬁ?\(Hg) is an arbitrary product of the skeins of the basis of the first
homology of H,;. Whether a given skein appears in the product is determined
by the color.

COROLLARY 3.10. Let g denote the genus of . Then rank ,Q?\(E x [0,1]) =
|G|?9 and rank 42?\(Hg) = |G9.

EXAMPLE 9.8. 7 (B3%) = &/(53) = Z[U].
COROLLARY 3.11. The map (L) — [L] induces C-linear isomorphisms
(S x [0,1]) = C[Hy(%5G)],  alc(Hy) = C[G®A4].
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COROLLARY 3.12. Q/KE(E x [0,1]) is a C-algebra of dimension |G|* and
ac(Hy) is a vector space over C of dimension |G|9.

—

DEFINITION 9.12. The product structure on 7/ (H,) is defined as the one
induced by the product in Z[U][G ® A1] on the generators given in Th. 3.9.

o~ o~

LEMMA 3.13. The product structure on o/ (Hg) turns o/ (Hg) into an algebra

—~

isomorphic to Z|U||G ® A1]. In particular, the reduced skein algebra < (H)
on the genus g handlebody is commutative.

The product has a simple geometric meaning.

PROPOSITION 3.14. Let L and L' be two oriented framed links in Hy. If L
and L' are topologically disjoint in Hy or if L' is parallel to L then

(3.10) (L UL =(L) (L.

In particular, this explains our previous (abuse of) notation (see Remark
9.2) for {1y gy =<l v---Ulg).

PROOF. According to Prop. 3.8, any link is skein equivalent (up to an
element in U) to a disjoint union of oriented trivially framed coloured lon-
gitudes. Therefore it suffices to verify the identity for an oriented framed
coloured link that is a disjoint union of oriented framed coloured longitudes
li...,ly. Let [l;] € Hi(Hgy; G) denote the 1-homology class of the i-th longi-
tude. Then

[L] = [li(col(l1)) U -+ - U lg(col(ly))] = col(lh) ® [l1] + - - - + col(ly) ® [I4]-

This justifies our previous notation: (L) = {ly(col(l1)))---{l4(col(ly))) =
{li(col(ly)) U -+~ U lg(col(ly))). If I; and I} denote the same trivially framed
oriented longitude ! with different colors x,y € G, then {l;) - {I}) can be
geometrically represented by the union of I; and a parallel copy coloured
with z and y respectively. This framed oriented link is then skein equivalent
to [; coloured with x + y. Hence

i)y - iy)y = iz + y))-
Since for a longitude I’ parallel to [ (determined by the framing of 1), {!'(y)) =
{I(y)), the definition of the reduced Heisenberg module implies that

A(x)y - (y)y = Az +y)) = Az) v l'(y)).
The result follows. |

REMARK 9.6. If the links are not topologically disjoint and not parallel, then
the formula (3.10) does not hold in general. For instance, consider the Hopf
link L u L' inside the handlebody of genus 2 depicted below (left). Denote
by x,y € G the respective colors of the components. Then (L) - (L") =

<l1> . <l2> = <l1 |\ l2> But
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Hence (L u L") = exp(2miby(z,y)) - {li Ula). Soif by(x,y) & 0 (mod 1), then
(Lo L) +<L) (L.

COROLLARY 3.15. There is a C-algebra isomorphism A\C(Hg) ~ C[G®A4].

EXERCISE 9.2. Does the linear isomorphism @/ZE(E x [0,1]) —» C[H1(%; G))]
of Th. 3.9 extend to an algebra isomorphism ? Show that the algebra

structure on %(E x [0,1]) defined geometrically above is not compatible
with this linear isomorphism.

4. Relation to the Heisenberg group algebras

Our goal is to compare the Heisenberg skein algebra to the group algebra of
a suitable Heisenberg group. We begin by observing that the multiplicative
structure on skeins in X x [0, 1] is preserved at the level of 1-homology.

LEMMA 4.1. The assignment
L—[L]
defines a map from the set of of isotopy classes of oriented framed coloured
links in X x [0, 1] to the group Hy(X;G) that satisfies
(4.1) [L-L']=[L]+[L].

PROOF. Since [L] = > }sc (1) col(()®[¢], it suffices to observe that mo(L-
L') is the disjoint union of mo(L) and mo(L’). [ ]

LEMMA 4.2. The map L — [L] induces an algebra homomorphism
(3 % [0,1]) — Z[H1 (55 G)].

PRrROOF. Extend L — [L] linearly to a Z-map from the algebra freely
generated over Z by isotopy classes of of oriented framed coloured links in
¥ x [0,1] (with the product defined earlier) to Z[H1(X;G)]. Then we let
Gauad act trivially on £ (X x [0,1]) and extend to £ (X x [0,1]) by setting

[P-L] =[]

for any P € G4 and any framed oriented coloured link L in ¥ x [0, 1].
This induces a Z-map </ (X x [0,1]) — Z[H1(3; G)] such that [P (L)] = [L],
for any P € G9! and any skein (L). It is readily checked that this is an
algebra homomorphism. |

Our goal is to define Heisenberg groups associated to Hy(X; G). First recall
the Hopf Seifert form defined on H;(X): we associate to Hy(d(X x [0, 1])) the
Hopf Lagrangian A that is generated by the meridians of > x0 and a maximal
independent set of longitudes of 3 x 1. The Hopf Seifert form is defined by
Ba([€],[¢]) = ka(iy €—,ii¢,) and induces the integral intersection pairing.
(See Chap. 7, §1.4.) Secondly, we define a bilinear pairing as follows. Let
x,y € H1(X; Q). Lift z,y to disjoint G-colored links L, L < X. Set

— /],[¢ ua
(42) A (x’ y) - H tcof&%,[cll[(é’])) € Gq d
pairs {£,¢'}

(£,6"emo(L)xmo(L")
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where (L) denotes the set of components of L.
LEMMA 4.3. The formula (4.2) defines a Seifert form
et Hi(3;G) x Hi(2;G) — Gauad
associated to the symplectic form w defined by
- [e]e[¢]
OJ($, y) - H tcol(é),col(é’)’

pairs {¢,¢'}
(£,6"emo(L)xmo (L")

where the integral homology classes [£] and [¢'] verify
z=>Ycol()®[(], y=> col(t)®[(].
)4 a
PROOF. independent of the various choices. (TBC) |

DEFINITION 9.13. The unreduced Heisenberg group associated to Hi(3;G)
is the group Z(H,(%;G)) = H1(2;G) x G endowed with the product

(x,P) ’ (y7Q) = (.I' + v, CA(Z,y) P Q)

One verifies as in Chap. 6, §1, that J#(H;(3;G)) is indeed a group.
REMARK 9.7. For G finite, the Heisenberg group ' (H;(X; G)) is finite.

There is a well-defined map ® from the set of isotopy classes of framed
oriented coloured links in 3 x [0, 1] to .2’ (H1(X; G)) induced by the formula

(L) = ([L], Pr), LeZ(Xx]0,1]),
where Py, is the skein polynomial defined in Prop. 2.1. The group G4"®d acts
on itself in the natural way. That action extends naturally to an action on
A (H1(%;G)) by regarding it as the natural action of the center 0 x Gauad
by multiplication:
(4.3) Q- (x,P) = (0,Q)-(x,P) = (£,Q-P), P,Qe G zeH|(Z;G).
The map Q — (0,Q) extends to a group ring map from Z[G9"*!] into the
center of Z[J#(Hi(X;G))]. This turns Z[2#(H1(2;G))] into a Z[GId]-
algebra.

LEMMA 4.4. The map ® induces a Z[G*]-algebra map:
& o/ (5 x [0,1]) — ZA(H, (3 G))].
ProOOF. First, & : Z(¥ x [0,1]) — Z[(H1(X;G))] induces a map
O (X x[0,1]) — Z[F(H1(X; G))] since (L) = ([L], Pr) depends only

on (L). Secondly, by the previous paragraph, ®(P (L)) = P ®((L)) for any
P € Z[G94]. Thirdly, the induced map @ is multiplicative since

O(L-L')=(L-L,Prr)=(L]+[L],ea(L, L") Py Pr,) =®(L) ®(L").
|
THEOREM 4.5. The map
O (X x[0,1]) = Z[H(H1(3;Q))]

is a Z[G9%*]-algebra isomorphism.
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PRrROOF. We construct a map V¥ : Z[2#(H,(X;G))] — /(X x [0,1]) as
follows. Let (z, P) € 7 (H1(X;G)). The 1-homology class x € H1(%; G) =
Hi (%) ® G can be lifted an oriented coloured link L in ¥ x [0, 1] such that
& = [L] with the following prescriptions:

e L consists of a disjoint union of unlinked and trivially framed stan-
dard oriented meridians (in ¥ x 0) and standard oriented longitudes
(in ¥ x 1);

e all parallel components have the same orientation.

Consider now P = [[,.qtF € G4, Lift P to a monomial in Z[S]. We
use the monomial P to modify L ¢ ¥ x [0,1] in such a way that the linking
and framing numbers of the colored components match the corresponding
partial degrees of P in the following fashion. First compare the colors of
L and those of P. For each color s € G such that ks + 0 and that does
not appear in the list of colors of I:, then we create an unknotted trivially
framed component ¢ < ¥ x [0,1] with color s and topologically disjoint
from the other components. Next, given two unlinked components ¢ and ¢
of L with colors col(¢) and col(¢') respectively, we link them algebraically
Ecor(e),col(er)y = de8eol(¢),cot(ery P times. Similarly, each one-component ¢ with
color col(?) is now framed algebraically Keol(e) = degeol(p) P times. Let L be
the oriented framed coloured link thus obtained. We set ¥(x, P) = (L). It is
easy to see that the map W is well-defined: indeed, the indeterminacy in the
lift L lies solely in the possibility of parallel components and can be removed
by requiring the lift L not to have any multiple parallel components. Using
skein relations, it is clear that P, = P. Furthermore, [L] = [L] = z. It
follows that ¥ = &1, |

DEFINITION 9.14. The core of o/ (X x [0,1]) is
Cot (L x[0,1]) = {P{(L)| Pe G [ e £(T x [0,1])}.

COROLLARY 4.6. The core C.o/ (X x [0, 1]) identifies to the Heisenberg group
H(H1(3; Q). In particular, it has a group structure, its group algebra is
o (3 x [0,1]) and all elementary skeins in ¥ x [0, 1] are invertible.

PROOF. There is a commutative diagram

Co/ (S x [0,1]) — 2(H\(3: Q)

lincl iincl

(8 % [0,1]) — = Z[A#(H1(5;G))]

Hence @ sends bijectively and multiplicatively C.e/ (3% [0,1])) to 22 (H1(Z; G)),
the Heisenberg group. The result follows. |

REMARK 9.8. PLEASE CHECK THIS ! Using the isomorphism ®, one can
describe the inverse of an element P (L) € C.«Z(X x [0,1]). The inverse of
an element (x, P) € 2 (H1(X; G)) is given by

(z,P) ' = (—z,P7Y), zeH(ZG), PeGad
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(Use the product law in 7 (H1(3; G)) and the fact that cy (—z, ) = cp(z,7) ! =
1. PLEASE CHECK THIS !) Using ®~! and Corollary 2.8, we deduce that

(P <L>>71 = plpminy,

REMARK 9.9. The definition 9.14 suggests the following question. Is the core
the full group of units (i.e., the group of all invertible elements) of </ (¥ x
[0,1]) ? Theorem 4.5 reduces this question to the question of determining
the group of units of Z[.7(H1(X;G))]. In the case when G has torsion, it
can be answered negatively. (I do not know of a description of the group
of units of &7 (¥ x [0,1]).) See Exercise 9.3. I do not know the answer
for G = Z. In this case, 7 (H(X)) is torsion free and one expects that
the group ring has no nontrivial units (i.e., the unit group coincides with
+(H1(X;G))). See [50].

EXERCISE 9.3. Let GG be an abelian symplectic group endowed with a Seifert
form. We assume that G has a nonzero torsion element. The purpose of
the exercise is to show under this hypothesis, that the group of units of
o/ (¥ x [0,1]) is strictly larger than the core C.oZ (X x [0, 1]).

1. Show that G9! has a nonzero torsion element. [Hint: Use Corollary
5.15.]

2. Deduce that s#(H1(3;G)) has a nonzero torsion element x.
3. Show that there exists an element y € J#(H1(3;G)) such that y~lzy ¢
(x).

4. Let n be the order of x. Show that the element z = (z — 1)y(1 +z + 22 +
-+ 2" 1Y is not zero in Z[(H1(X; G))].

5. Show that 22 = 0.

6. Deduce that 1—z is an invertible element (of infinite order) in Z[ ¢ (H1(3; G))].
Conclude.

Consider the particular case G = Z. In this case, G324 = 7. The cocycle is
amap cp : Hi1(2) x H1(X) — Z[t,t71] given by

ez, y) = 9@V gy e HY (D)
where 5 : Hi1(X) x Hi(X) — Z is the usual Seifert form inducing the inter-

section form on H;(X).

COROLLARY 4.7. [36, Th. 5.4] The map ® : o/ (X x [0,1]) — Z[#(H1(X2))]
is a Z[t,t~']-algebra isomorphism. Furthermore,

Cot (L x[0,1]) ={t" (L) | ke Z,Le L( x[0,1])}.

The first statement was first proved by R. Gelca and A. Uribe in [35, The-
orem 5.6] (with ground field C rather than the ring Z). R. Gelca calls the
group CZ (3 x [0,1]) the linking number skein group.

Recall that we are given a quadratic form ¢ : G — Q/Z, with associated
linking pairing b : G x G — Q/Z and a character x : Q/Z — U(1). Recall
that U denotes the finite subgroup x o ¢(G) in U(1).
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We define three closely related Heisenberg groups associated to Hq(X; G).

DEFINITION 9.15. The Heisenberg group associated to the Seifert pairing
b® B (with value group Q/Z) is denoted #Y%(H,(X;G)). The Heisen-
berg group associated with y o (b ® ) (with value group U(1)) is denoted
VD (H(3;G)) and is called the unitary Heisenberg group. The Heisen-
berg group associated with x o (b® )|V (with value group U) is denoted
AV (H(3;G)) and is called the finite unitary Heisenberg group.

The Heisenberg groups are related by homomorphisms

H(H\(3;G)) —— #Y (H((%;G)) —— VD (H(3;Q)).

\/

AYL(H(Z:G))

The left horizontal arrow is id x y 0|V, the right horizontal arrow is induced
by the inclusion U < U(1). The left diagonal arrow is id x ¢, the right
diagonal arrow is id x y.

Recall that the composition y o ¢ is just the “evaluation” map ev.

LEMMA 4.8. The map e = idxev is a group homomorphism 7 (Hy(X; G)) —
AV (H(3;G)) that satisfies
e(P-z)=ev(P)-e(x), PeGM ze(H\(Z;Q)).

The analogous statement for the full unitary group also holds.

As a ring, Z[2#Y (H1(3; G))] is a Z-algebra. Since Z = 0 x U is the center
of #Y(H1(%;@G)), U acts by multiplication on s#Y(H(X;G)). However,
this does not quite turn Z[#Y (H1(3; G))] into a Z[U]-algebra. The reason

is that, since
—1eUnZcZ|U],

multiplication of elements in Z[#Y (H;(X;G))] by —1 is not just formal; it
is to be identified to the action of —1 on them. Namely, one should have
—1(h,u) = (h,—u), he Hi(%;G), uelU.

This identity does not hold in Z[2Y (H,(%;G))], so we are led to consider
the appropriate quotient. Let Jy denote the two-sided ideal in
Z[U][#Y (H1(Z; G))] generated by the elements

u(h,u') — (hyuu'), he H(2;G), u,u’ €U.
DEFINITION 9.16. We define the quotient algebra
V(A (H\(35G))) = Z[UN (Hy (S G))]/ o

The quotient algebra V(Y (H1(X;G))) is finite.

EXERCISE 9.4. Let J_ denote the two-sided ideal in Z[57(H1(X; G))] gen-
erated by —1 (h,u) — (h, —u), for all h € Hi(X;G) and w € U. The natural
inclusion map Z[#Y (H,(3;G))] — Z[U][2#(H1(Z; G))] induces a Z[U]-
algebra isomorphism

ZIAY (H\(55G)]/J- = VA7 (H\(5;G))].
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COROLLARY 4.9. The map e induces a natural ring map
ZIA (H\(55 Q)] — V(AT (Hi(55G)))
such that e(P - z) = ev(P) - e(z), P € Z[GY], z e Z[#(H (Z;G))].

PROOF. The desired map is the composition
ZIA (H\(55 Q)] — Z[Y (Hi(Z; G))] = V(7 (Hi(5:G))).

Here the left arrow is the linear extension of e (which is a ring homomor-
phism) and the right arrow is the ring projection (cf. exercise 9.4). The
map transfers the Z[G9%%]-algebra structure of Z[.2#(H1(%; G))] to a Z[U]-
algebra structure on V (22Y (H{(%; G))). [ |

THEOREM 4.10. There is a Z|U]-algebra isomorphism
® o/ (% % [0,1]) — Z[Y (Hi(5G))]
such that the diagram

A (2 % [0,1]) — 2= Z[A#(H1(5;G))]
T3 % [0,1]) —2= V(Y (1 (5 G)))

is commutative, where the left vertical arrow is the natural ring projection
map e induced by ev in Lemma 3.7.

PRrROOF. The map ® is defined by

C’I;(<L>€Q?(E><[()71])) = ([L]veV(PL)>'

It follows from definitions that the diagram is commutative. It remains to
show that ® is invertible. We already know that & is invertible by Th. 4.5.
We define an algebra map ¥ by setting

U(z,t)=eod (e Ha,t)), z€ H, teU.

The map is well-defined, i.e. does not depend on the lift (z, P) € S (H(2;G))
chosen so that t = ev(P). It follows from definitions that ®~! = W. Thus
is invertible. [ ]

DEFINITION 9.17. We define Ve [(H1(2;G))] = V[V (H1(%;G))] ® C.

The following two exercises provide alternative constructions of the reduced
group algebra of Definition 9.17.

EXERCISE 9.5. Let Jc denote the two-sided ideal in C[#Y (H1(3; G))] gen-
erated by
u(h,u') — (h,uv'), he H(%;G), u,u’ €U.

There is a C-algebra isomorphism

Vel (Hi(3:G))] ~ CLAY (Hy(S;G))] /e
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EXERCISE 9.6. We relate the quotient of the group algebra defined above to
the reduced group algebra defined in Chap. 6, (§3, Def. 6.7). Let J be the
two-sided ideal in C[2Y%(H(2; G))] generated by the elements

(0,t) -z —x(t)z, (0,t) € Z, x € H(H1(2;G)).
There is a C-algebra isomorphism

Vel (H(2; Q)] =~ ClAY2(H (2 G))]/J.

PROOF. The map id x (x|V)~! : #V(H(Z;G)) —» #AYE(H(Z;Q)) is
injective. So the C-linear extension

ClAY (H\(2:G))] = ClA Y (H(2;G))]

is an injective C-algebra map which sends J¢ into J. Therefore, it induces
an injective C-algebra map

f Vel (H(2:G))] — ClAYP(H\(55G))]/ .
Define a C-linear map C[#YZ(H(Z;G))] — C[o#Y (H (Z; G))] by
(h,t) — x(t) (h,1), he Hi(3;G), teQ/Z.

Since (h,t) = (0,t) (h,0) = x(t) (h,0) € C[AYZ(H(%;G))]/J, we verify
that this map induces a map g : C[#YZ2(H,(2; G))]/J — Ve[ (H (Z;G))]
such that ¢ = f~L. |

COROLLARY 4.11. The following diagram of algebras is commutative:

Ao (S % [0,1]) —T> C[A(H,(Z; G))]

e (% [0,1]) —= Ve[ (H (S G))]

where the top horizontal arrow is a C[GY*]-algebra isomorphism and the
bottom horizontal arrow is a C-algebra isomorphism.

For each Lagrangian Ay of Hi(X), there is a Schrodinger representation
mp, c AYE(H(Z;G)) — U(L2(G® H{(X)/A1)) induced from the character
x on the maximal abelian subgroup (G ® A1) x Q/Z in Hi(¥;G) x Q/Z.
(See Chap. 6, §4.) For simplicity, we write Ag = H1(X)/A1, identifying the
quotient to a fixed Lagrangian.

We choose the Lagrangian A1 to be the Lagrangian generated by meridians
of ¥. The Lagrangian Ay can be chosen to the Lagrangian generated by a
maximal independent set of longitudes of ¥. If ¥ is a surface with a maximal
independent set of distinguished longitudes (in particular if ¥ is a standard
surface, see...), then one can take Ay to be the Lagrangian generated by
this set of longitudes of ¥. The following construction is independent of the
particular choice for the Lagrangian Ay such that Ag @ Ay = Hy(2).

LEMMA 4.12. There is a unique C-linear extension
7a, Ve[ (H(Z;G))] — Ende (L2 (G ®A))



188 9. ABELIAN SKEIN THEORY

of the Schrédinger representation making the diagram

H(H(3;G)) — = U(L*(G ® Ao))

| |

Vel (Hy (35 G))] —2> Ende (L2 (G ® Ao))

commaute.

Proor. This is essentially Corollary 3.6. Extend m by C-linearity to
a linear map C[27(H;(3;G))] — Endc(L?(G ® Ag)), that we continue to
denote mp. We have ma ((0,t)-h) = wa(0,t) ma(h) = x(t)ma(h), so wa(J) = 0.
The result follows. |

A crucial observation remains to be made at this point. According to Chap.
86, end of §4, a model for the Schrodinger representation is given by the
algebra

H(HL(;G)) = CLAYE(Hy(2:6)))/1
where [ is the two-sided ideal generated by all elements
l-h—x()h, he #(H(2;G)), le GRQ H(X)/A x Q/Z.

Clearly J < T so there is a natural projection map V[#Y%(H,(%;G))] —
H(H1(2;G)). It is not hard to piece the definitions together to see that this
map fits into the following commutative diagram

(4.4)

e (S % [0,1]) —2s V[A(H) (S; G))] —2> Ende(L2(G ® Ag))

_ o

e (H) H(H1(Z;G)) L2(G®A)

where the left vertical arrow is the epimorphism induced by inclusion
Yx[0,1]c H

of the cylinder over ¥ = 0H (viewed as a collar of 0H) inside the handlebody
H; the middle vertical arrow is the projection map induced by the inclusion
J <€ I; the right vertical arrow is the projection map defined, on the basis

of Weyl operators for Endc(L?(G ® A)), by
W(ao,cu) = X(a1)5a07 (a’07 al) € Hl(za G)

These three maps are vector spaces epimorphisms. All other maps are alge-
bra isomorphisms: the top maps are defined by Theorem 4.10 and Corollary
3.6; the bottom left map is the map induced by d ; the bottom right map
is defined by Prop. 4.4 (Chap. 6, §3).

EXERCISE 9.7. Show that the vertical arrows are not algebra maps.



5. THE SCHRODINGER REPRESENTATION FROM ABELIAN SKEIN THEORY 189

By definition, L?(G®A) is an End¢(L?(G®A))-module and H(H(X; G)) is a
Vel2€(H1(3; G))]-module: the action of Ve[ (H1(X;G))] on H(H1(2;G))
is induced by the action of C[#YZ(H(X;G))] on itself.

o~

It follows from the diagram above that there is also a 7 (3 x [0, 1])-module
structure on g?\(H ). In the next paragraph we give a simple geometric
interpretation of this action, describe it using Abelian skein theory and
relate it to the Schrédinger representation.

5. The Schroédinger representation from Abelian skein theory

Let M be a compact oriented 3-manifold with boundary . In this para-

graph, we explain how the skein module gx/f\(E x [0,1]) acts on the skein
module &7 (M). We then identity this action to “the” Schrédinger represen-
tation, as defined in Chap. 6, §3.

There is a natural gluing M’ = M U (X x

[0, 1]) defined by identifying 0M = ¥ with £x[0,1]
—2x 0. The result is a “thickened” mani-
fold M’ which is homeomorphic to M. Fix -

such a homeomorphism so that we may
identify M’ and M.

LEMMA 5.1. The Heisenberg skein algebra </ (3 x [0,1]) acts on the right
on /(M) by the map

o (M) x o (Ex[0,1]) > (M U (Z x [0,1])) = &/ (M),
defined by
(L), (L)) »<Lu L)

This action induces an action ap of the reduced Heisenberg skein algebra

o~ o~

(3 x [0,1]) on o7 (M).

REMARK 9.10. The action is a right action because of our convention for
the product of links. Recall that the product of links in ¥ x [0, 1] is written
from left to right, starting with the link whose projection on [0, 1] is the
lowest. Since the gluing is performed on ¥ x 0 = 0M, we write down from

left to right the link in M and then the link in ¥ x [0, 1]. This ensures that

« is a morphism (rather than an anti-morphism), i.e. a true action®.

PROOF. Since M and M’ are homeomorphic, Lemma 1.3 ensures that

—~ —~

we can identify o/ (M') and «/(M). The result is a consequence of the
definitions. |

1We could have decided to perform the gluing on ¥ x 1 in order to get a left action.
The reason we did not choose this convention is that with this convention, the gluing of
a standard oriented handlebody M = H, (embedded in R?) with a cylinder oM x [0, 1]
is “external”: if we visualize it inside S® = R® U {00}, then the thickened handlebody
M' = (0M x [0,1]) U M contains the point at infinity.



190 9. ABELIAN SKEIN THEORY

Let H = H, denote? an oriented handlebody of genus g such that 0H = ¥.
The following proposition gives a geometric (skein-theoretic) description of
the Schrodinger representation.

— —

PROPOSITION 5.2. The action of o/ (X x [0,1]) on </ (Hy) is induced by the
Schrodinger representation mwp,. More precisely, the following diagram is
commutative:

A —

(S x [0,1]) Endc(#/ (H))

b

VIAYE(H(5;G))] —— Endc(L2(G @ A))

|

A (H(%5G) ——U(L*(G®A))

where the first vertical descending arrow is the isomorphism of Theorem
4.10, the second vertical descending arrow is the isomorphism induced by
1-homology (See Th. 3.9).

Proor. We have already seen that g?\(Hg) is isomorphic to the algebra
L*(G®A) = C[G®A](Theorem 3.9). We have also seen that DQ?(E(E x [0, 1])
is isomorphic via ® to the quotient V[#YZ(H,(%; G))] of the finite Heisen-
berg algebra J#(H1(3;G)) (Theorem 4.10). By Lemma 4.12, It suffices to
identify the representation on the image of the finite Heisenberg algebra
' (H1(2;G)). Since the Schrodinger representation is induced from the
subgroup (A1 ® G) x Q/Z, it suffices to identify the representation on this
subgroup. A typical element in this subgroup is an elementary skein whose
1-homology lies in A1 ® G.

Let therefore (m;(x)) denote the skein in ¥ x [0, 1] represented by the i-th
meridian of ¥ x 1 < 3 x [0,1] and coloured by x € G. Let {l;(y))n denote
the skein in the handlebody H represented by the j-th longitude of H and
coloured by y € G. Using skein calculus, we verify that

Ghn it
e 00 = { oo} G 625

(In the case when ¥ has genus 1, a proof follows from Fig. 1.1. The general
case is similar.) Note that S (ixm;,ixlj) = d;j, so that

(mi(x)) - i(y))a = x (055 b(x,y)) <L (y))n-

Therefore, if L is an arbitrary disjoint union of parallel meridians in 3 x 1
and L’ an arbitrary element in . (H),

(5.1) (s (Wi = x (0@ B(LL D)) L.

This is the desired result. |

2Tt can be taken to be the standard handlebody of genus g without loss of generality.
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REMARK 9.11. Even though it is not needed, it is instructive to verify ge-
ometrically how the other elements induced by longitudes act. Let (I;(x))x
denote the skein in ¥ x [0, 1] represented by the i-th longitude of ¥ x 1
¥ x [0,1] and coloured by = € G. Let {l;(y))n, denote the skein in H,
represented by the j-th standard longitude of H, and coloured by y € G.
Clearly,
i)y -y = i(x))m - Li(y))H-

Therefore, if L is an arbitrary disjoint union of parallel longitudes in ¥ x 1
and L’ an arbitrary element in . (H),

(5.2) (Lys - {Lyy ={Lyn - {L')u.

Recall that 6.ry,.cry,; = Or) * O[] = O[r)+[/]- Therefore, longitudes acts
as translations as expected.

Tables of actions (three parts)

6. The Weil representation of a quadratic form from Abelian
skein theory
6.1. The action of the isometry group O(g) on ;zz/f\(M) Let M
be an oriented compact 3-manifold. The automorphism group Aut(G) of G
acts on the polynomial algebra Z[G%24] over the indeterminates in U uV =
{tg, t;l, tg.hs tg_}L, g,h € G} by acting on the labels of the indeterminates:

+1 _ ,+1 +1 _ 441
V-t —t¢(g), w-t%h—tw(g)’w(h), Y e Aut(G), g,heG.

More generally, the group Aut(G) acts on the Z[G9"*]-module .2 (M) freely
generated isotopy classes of framed oriented coloured links in M defined in
§1. If we represent an elementary skein coloured by g € G by (L(g)), then
the action is given by

Y- P(L(g)) = (- PYXL(¥(9))), P eZ[G™].

This action evidently preserves the submodule generated by the skein re-
lations and therefore induces an action on the Heisenberg skein premodule
2/°(% x [0,1]) by acting on the colors of the skeins. The action also pre-
serves the submodules generated by the elements 3.2, 3.3 and 3.5 respec-
tively. Therefore, the action induces an action

Aut(G) x o (M) — o (M).

Consider the isometry group O(g), the subgroup of Aut(G) that consists
of automorphisms of G preserving the quadratic form ¢. Each isometry
1 € O(q) leaves invariant the specializations [ty] = x(q(g)) and [tyn] =
x(b(g,h)), that is,

V- tg] = [ty(g)] = [tg], ¥ - [tgn] = [tyg)um] = [tgn]-
The previous action induces an action
O(g) x /(M) — o/ (M)

that affects only colors.
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6.2. The action of the mapping class group. The previous para-
graph §5 relies on one fixed identification
Mu((Zx[0,1]) > M

in order to identify (a model of) the Schrodinger representation (Lemma 5.1
and Prop. 5.2). There is, however, some extra freedom in this identification.

—~

The mapping class group M(X) acts on the skein algebra o7 (X x [0, 1]) by
([7], <L) = halLy = {(h x id[o17) (L)),
where h € Homeo™ (X)) and L € Z(X x [0,1]). Thus each mapping class [h]

—

yields an automorphism of &7 (3 x [0,1]) and &7 (X x [0, 1]) respectively.

The following lemma relates this action to the symplectic group Sp(H;(X)).
The group Sp(H;(X)) acts on H1(X;G)) = H1(X) ® G as symplectomor-
phisms on H;(G) and as the identity on G; this action induces an action of
Sp(H1(X)) on the finite Heisenberg algebra s (H;(X; G)) by acting on the
1-homology.

LEMMA 6.1. The action of M(X) on o7 (X x[0,1]) factors through Sp(H1(X)).

PRrROOF. We verify that the diagram
M(X) x (X x [0,1]) (% % [0,1])
*x@l :ié
Sp(H1(X)) x Z[A (H1(%; G))] — Z[A(H1(%; G))]
is commutative: via the upper right corner, we find
© (hi(L)) = ([hlL)], Piry) -
Via the low left corner, we find
ha® ((L)) = has ([L], Pr) = (h«[L], Pr) -

The identity [h«(L)| = h«[L] follows from definitions. The identity Py =
Py, follows from the invariance of L +— Pr, under positive homeomorphisms
of 3 x [0,1]. The conclusion follows. [ |

6.3. The Weil representation as a skein multiplication. The com-
mutative diagram appearing in the proof of Lemma 6.1 can be extended as
follows.

O(q) x M(X) x /(X x [0,1]) (X % [0,1])

idx*x(bi “i‘b

O(g) x Sp(H1(%)) x Z[A (H1(%; G))] — Z[A (H1(%; G))]

inclxidl
ASp(H1(%; Q) x Z[A (H1(%; Q)] —— Z[A (H1(%; G))]

Here ASp(H1(X;G)) is the group defined in Chap. 6. Recall that there is
an epimorphism

ASp(H1(3;G)) — Sp(Hi(%;G))
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onto the symplectic group Sp(H;(X; G)) for the symplectic form b®w (where
w is the intersection form on H;(X)). The inclusion O(q) x Sp(H1 (X)) —
ASp(H1(%; Q)) is lifts the natural map (p,s) — ¢ ® s (see Chap. 6, §7,
Prop. 7.2).

Accordingly, for each s € ASp(H1(X)), there is an action

o, : o (H) x (X x [0,1]) — e (H)
which defines a representation af : %(Z x [0,1]) — End(c(,gz?\(H)). By
Prop. 5.2, aj enjoys the same property as ap does. Since it is also in-
duced by the Schrodinger representation, it follows from Lemma 4.12 and

the Stone-von Neumann Theorem that the two representations are equiva-
lent: there exists ps; € Endc (<7 (H)) such that the following diagram

o~

e (S % [0,1]) x Ho(H) —— oo (H)

iidxps lps

—~
s

Ao (S x [0,1]) x o (H) —>= e (H)
is commutative. In other words,
(6.1) ps (0-0") =cesps(a’) or ps(ar(o)d’) = ai(o)ps(c’)

for any o € 42/7(5(2 x [0,1]), o' € %(H) Now by the commutative diagram
(4.4), there are equivariant isomorphisms of algebras

Endc(o/(H)) ~ Ende (LG ® A)) = /(S x [0,1])

such that the natural action of End(c(JZ//\(H )) on e (H) is sent to the (skein)
action of o7¢ (X x [0,1]) on o/c(H). This implies the following result.

THEOREM 6.2. Let s € ASp(H1(3;G)). There is some skein
Ry € ofe(S x [0,1])

such that

ps(0) = Ry -0, o€ dp(H).

In particular, Rs is determined up to a multiplicative unit by the relation
(6.2) Ry -0 =s(0) Ry, oedc(Xx[0,1]).

In other words, the Weil representation pg is a skein R, acting by skein
product on </c(H); as a skein in ¥ x [0,1], it also acts on o/c(X x [0, 1]).
We sum up the correspondence in the following table.
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Ps R
algebra Endc(L2(G ® A)) He (S % [0,1])
Weil representation acts on L?(G® A) acts on ¢ (H)
as a unitary map induced by skein product

Linear extension | acts on End¢(L?(G®A)) | acts on %(E x [0,1])

by composition by skein product

REMARK 9.12. There exists an unreduced version of Theorem 6.2 (without
“hats”) such that the following diagram

ASp(H1(%;G)) —— /(2 x [0,1])

—

(X % [0,1])
commutes.
6.4. The Weil representation of a quadratic form from Abelian

skein theory. Since the action of M(X) does not affect colors, nor does
the action of Sp(H;(X)). It follows that the actions of O(q) and Sp(H;(X))

on /¢ (X x [0,1]) commute. In fact, their images are maximally commuting
subgroups of ASp(H;(X;G)) as the map

(p,8) = p®s
induces a injective homomorphism
O(q) ® Sp(H1(%)) — ASp(H1(%;G))
lifting the natural injective homomorphism

O(q) ® Sp(H1(X)) — Sp(H1(%; G)).

Here is an explicit formula for the action of O(q) x Sp(H1(X)) on &/ (X x
[0,1]): for any lift § € M(X) of s € Sp(H1 (X)),

(0, 5) - {L(g)) = G L(p(x))), € O(q),{Lye (X x[0,1]),9€G.
Alternatively, the action can be expressed on the group algebra of the Heisen-
berg group:

(¢,8) (x,P) = ((¢®s)sz, 0 P),pe0(q), z€ Hi(Z;G), Pe Gauad,

COROLLARY 6.3. For any (p,s) € O(q) x Sp(H1(X)), there exist skeins
R gs, Ry, Rs € &/ (X x [0,1]) such that up to a multiplicative constant,

(6.3) Rogs = Ry Its = s - Ry
and for any o € &/ (3 x [0,1]),

(6~4) Pw@s(U) = Rygs - 0.
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PROOF. The existence of the skein R, gs € o7 (X x[0,1]) for any ¢ € O(q)
and any s € ASp(H1(X; G) is ensured by Theorem 6.2, as well as the second
property (6.4). Let

R(p = Rgo@id; Rs = Rid@s-
Then Rygs = R,gid)o(ides) = [ty - Rs. Similarly Rygs = Rs - Ry. |

6.5. Computations. We begin with the action of the mapping class
group.
LEMMA 6.4. Let 7, be the right Dehn twist about a meridian m on . Then

R, =1GI72 Y t, (m()).

zelG

The equality above is to be understood up to a multiplicative complex num-
ber of absolute value 1.

PRrROOF. The existence of R, is ensured by Corollary 6.3. It is sufficient
to verify the identity (6.2) on the basis elements of &7 (X x [0, 1]) which are
products of skeins that consist of a meridian (resp. longitude). If o has
trivial geometrical intersection number with m, then 7,,(0) = o. Since
(o) can be written using meridians and longitudes that have geometrical
intersection number zero with m, the skeins {(m(z)) and o commute. Hence
R, -0 =o0-R,, . If the skein o consists of the meridian m with some color
z then (7,,)«(0) = 0, so

R., o= |G| gtz<m<x>><m<z>>
— |G| gtm(x +2))
= |G]72 Y talm(2)) m(x))
= <m<z>>TG|—% 2 ta(m(z))

= (Tm)(0) - Rr,,.
Finally, let o = (I(y)). First, as illustrated in the figure below (in the case

¥ is a torus), (1, (1)) = t, (m(y)) {(y)).

0000

FIGURE 6.1. Computation of the skein of the right Dehn
twist applied to a colored longitude.




196 9. ABELIAN SKEIN THEORY

The left hand side of (6.2) is
LHS = R,,, - (U(y)) = G723 Y. tolm(x)) - AU(y))-

The right hand side of (6.2) is
RHS = 70 ({(y))) - Rr,py = (Tn(1)) - R,
= t,(mly)) QW) G723 talm())

= GI7% Y tyte (m(y)) Ay)) (m(@))

— |G|z étytz ) tay(mi)) Ay))
|G| Dtatetay (mly +2)) Q)

— |G @ by (mly + ) )AUy))

= G772 Y tdm(2)) Uy))
= LHS.

EXERCISE 9.8. In order to compute R, , write down R, as an element in
o/ (3 x [0,1]), use the identity (6.2) on basis elements and verify that this

indeed leads to the formula above (up to a multiplicative constant).



CHAPTER 10

The Abelian invariant of a closed 3-manifold

Throughout this chapter, M is a closed oriented connected 3-manifold.

We define a topological invariant 7(M) of M. A version of this invari-
ant is derived from a modular (or quasi-modular) category in the sense of
V. Turaev [93] or from a generalization of the invariant introduced by H.
Murakami, T. Ohtsuki and M. Okada [69].

This invariant has a number of remarkable properties (...).

1. The definition from the skein theoretic framework

The construction of 7(M) is based on the technique of surgery, well known in
topology. This technique enables to represent closed 3-manifolds by framed
links in the familiar Euclidean 3-space (or the 3-sphere S3). Specifically the
3-manifold M is presented as the result of surgery along a framed link L in
S$3 = R — {oo}. The invariant 7(M) is derived from topological invariants of
the link L satisfying some additional invariance property (invariance under
the Kirby moves). In our situation, the topological invariants of L are
the Abelian skein invariants (L) corresponding to different colorings of its
components.

The skein invariants depend on the choice of a character x : Q/Z — U(1).

In this chapter, x : Q/Z — U(1) denotes the fixed character defined by
x(t) = exp(2mit).

1.1. Surgery on links in the 3-sphere. Let B? be a closed unit 2-
disc so that its boundary 0B% = S is the unit circle. Consider a tubular
neighborhood 7' of a knot k in S3. A meridian m is a simple closed curve
in 0T that bounds a disc in T. A longitude [ is a simple closed curve on 0T
that transversally intersects once a fixed meridian and bounds a surface in
S3 —T. The 1-homology of 0T is generated by the homology classes of m
and [ respectively. Hence the homology class of any simple closed curve ~
on ¢1 that is transverse to m and [, satisfies

[V = (v-m)[m] + (v- D I] = (7] e [m]) [m] + ([7] « [1]) [1]-

A framed knot in S® may be regarded as a smooth embedding of ¥; =
S1 x B? in S3 together with its parallel, the image of the standard longitude
St x {0}. Consider such an embedded solid torus j : S* x B? < S$3 in the
3-sphere. Remove from S? the interior of j(S! x B2) and glue back the solid

197
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torus B2 x S! along j|g1,g1. The result
x(8%, L) = (S — Int(S' x B?)) Uj| (B* x S1)

is a closed 3-manifold, known as surgery along the torus in S3: it depends
only on the isotopy class of the framed knot represented by j (see [37,
Chaps. 4 and 5, §5.3], [82, Chap. 9]). In particular, it does not depend on
the orientation of the surgery link L (but depends on the orientation of S3).
More generally, the procedure is carried out on framed links. A fundamental
result due to W. Lickorish [58] and A. Wallace [99] asserts that any closed
oriented 3-manifold M (up to orientation preserving homeomorphism) is
the result of surgery on some framed link L: there exists a framed link
L < 83 such that M = x(S3,L). Via the theory of handles, this result
also follows from the theorem of V. Rokhlin [81] asserting that every closed
oriented 3-manifold bounds a compact oriented 4-manifold. (See [37, §5.4]).
In order to state the other fundamental result that we use to define the
invariant, we need to introduce two geometric operations (and their inverse)
on links in S$3. The first operation consists in creating a topologically disjoint
unknot with framing +1. The reverse operation consists in annihilating
a topologically disjoint unknot with framing +1. To describe the second
operation, one needs to define first the band sum operation: consider two
knots J and K in S? and a band embedding b : [0, 1] x [0, 1] — S such that
b([0,1] x [0, 1]) nJ = b([0, 1] x {0}) and b([0, 1] x [0, 1]) n K" = b([0, 1] x {1}).
Replacing the arc b([0, 1] x {0}) of J by b({0,1} x [0, 1]) yields a new knot
Ji, K, denoted the band sum of J and K along b. The second operation
consists in creating a parallel K’ of some component K and replacing a
link component J by a band sum of J and K’. This second operation is
also called “sliding” a link component over another one (this is particularly
relevant given the interpretation of this move in terms of handle sliding,
see [37, Chap. 4]). This operation is schematically represented below by
Fig. 1.1 below. (Note that this operation is well defined regardless of the
orientation of the components.)

Kirby’s theorem [53] states that two framed links in S give rise to home-
omorphic 3-manifolds if and only if they are related by isotopy in S® and
a finite sequence of the two moves described above. As a consequence, an
invariant of a framed link L is an invariant of the closed 3-manifold (5%, L)
if and only if it is invariant under both Kirby moves.

REMARK 10.1. It is useful in practice to orient the components of the surgery
link L, even though the resulting 3-manifold x(S3, L) does not depend on
the choice of the orientation.

1.2. Abelian invariant of a closed 3-manifold. Let L = L; u---u
L., be an oriented and framed link in S? presenting a closed oriented con-
nected 3-manifold M. We may assume that L avoids a small ball inside S3;
then L lies inside a 3-ball B3> = S3 — B3. For each coloring of the compo-
nents of L with elements of G, there is an associated skein (L) € o/ (B?).
The invariant {-) of links extends by linearity to links whose components
are labelled by a element in L?(G), that is, a formal C-linear combination
of elements of . The set L?(G) of labels can be regarded as the set of
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c Q

>

FI1GURE 1.1. The sliding move.

generalized colors. A label in G (in the sense of the previous chapter) will
be henceforth called a simple color. For any n-component oriented framed
link L, there is a linear n-form

LA2(G)" - C, (c1,...,cn) = {Llct,...,cn)),
where we denote by L(cy,...,c,) the link L whose (ordered) components
are colored by cy,...,c, respectively.
A special color plays a fundamental role with respect to the Kirby moves:
Qa = ). b,
geG

LEMMA 1.1. Any knot K colored with Q¢ satisfies the sliding property: for
any knot J colored with color c € L*(G),

(L.1) (J(c) v K(2)) = {(JHK)(c) v K(€))

where t, denotes the handle sliding operation along a band b.

PROOF. One needs to compute the new framing number and the new
linking number after the handle slide. Specifically one needs to compare the
framing number of the knot Jf, K to that of J and to compare the linking
number of Jf, K and K to that of J and K. We have

fr(JipK) = fr(J) + fr(K) + 2 Ik(J, K)

and
k(JE K, K) =1k(J, K) + fr(K).

For simple colors g, ¢, we have

(T8pK)(e) v K(g)) = tFTHOTEHIRITER g (e) L K (9))
75fr(K)Jr2lk(JK 7ffr <J( ) ( )>
_ tfr( )+21k(J, K)tfr( )tfr(K)tlk JK) <J(C)>

fr(K
_ th(rC)tQIk(JK tlk(JK ()

_ () k() K) <J( ).

g+c g+c c
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Hence
(T8 E)(€) U K(Q)) = Y ((J1K)(e) v K(9))
geG
= 2 i)
heG
Z (K(h)) {J(c) by Example 9.2
heG
= > (e v K(h)
heG
= {J(c) u K()).
The general case when c is a generalized color immediately follows. |

1.3. Definition and first properties. Let L = L1 u--- U L;; be an
oriented and framed link in S® presenting M by surgery in S3. The linking
matriz Ar is the matrix whose nondiagonal (i, j)-entry is the linking number
of Ly and L; in S® if i + j and whose diagonal (j, j)-entry is the framing num-
ber of L; in S3. The linking matrix is symmetric and integral. Let sign, (L)
(resp. sign_ (L), resp. signy(L)) denote the number of positive (resp. nega-
tive, resp. null) eigenvalues of A; ® R. Set sign(L) = sign_ (L) —sign_(L)
and rank(L) = rank(Ar). Note that rank(L) = sign, (L) + sign_(L) and
m = rank(L) + signyg(L). Finally let Uy denote the oriented unknot with
framing +1.

We begin with a few observations about Us.

LEMMA 1.2.
<U+ Z t+1
zeG
PROOF. Since (U4 (7)) = tE{@) = t¥!, the result follows. [ |

COROLLARY 1.3. Ifq is nondegenerate, then (U (S2)) is invertible in </ (S3).

PROOF. |

LEMMA 1.4.

U+(Q)) = > x(*q(g)) = Ty (G, £q).

geG

If qlk.. 3 = 0 (in particular, if q is nondegenerate) then (U+(Q2)) + 0.

In particular, if x(¢) = exp(2int) and ¢ is nondegenerate, then (U4 (Q2)) =
[(G,+q) = T(G,q)*".

DEFINITION 10.1. We denote L(2) the framed link L each component of
which is colored by €2, i.e., we write L(Q) instead of L(€,..., ).

THEOREM 1.5. The skein
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PROPOSITION 1.6. The complex number
T (M) = |G|~ B2 (U (@)~ (1) (U ()~ (L))

s a topological invariant of M.

To simplify notation, we shall write 7(M) instead of 7, (M) if the character
X is self-understood.

Proor. Lemma 1.1 implies the invariance under the sliding operation.
For the invariance under the other move that replace L by the topologically
disjoint union L [ [U4 of L and an unknot Uy with framing +1, we observe
that

(L] U = (L)) U ().
Since sign+(L[[U+) = signy (L) + 1 and signy (L[ [Us) = signy (L), the
result follows. ]
REMARK 10.2. If we use the normalizeFi special color ' = ﬁ 2gec 0g In-
stead of  then we obtain 7/(M) = |G|¥&(L)/2 (M),
REMARK 10.3. The invariant 7 is extended to non connected closed 3-

manifolds by setting 7(M [[N) = 7(M) - 7(N) for any closed 3-manifolds
M and N.

The invariant has a remarkable property with respect to connected sum and
orientation reversal.

PRroPOSITION 1.7. For closed oriented 3-manifolds M and N,
(1.2) T(MEN) = 7(M) - 7(N).

PROOF. The connected sum MEN can be presented as the surgery on S3
on two topologically disjoint links J and K. It follows that (J(z) v K(z)) =
(J(z)) - (K(x)) for any color x € L?(G), in particular for the special color
Q2. Another consequence is that Ajox = Aj @ Ak, so signy (J u K) =
signy (J) + signy (K). The result follows. [ |

PRroOPOSITION 1.8. For any closed oriented 3-manifold M ,
(1.3) T(=M) = 7(M).

PrOOF. If M = x(S3,L) then —M = x(S3, L™T) where L™ denotes
the mirror image of the link L. Then Apmi: = —Ap hence signy(L™") =
signg(L) and sign (L™") = —signy (L),

T(—M) _ |G|—sign0(Lmir)/2 <U+(Q)>—sign+(Lmir) <U_(Q)>—sign7(Lmir)<Lmir(Q)>
= |G| (@ (Q))ysEn- () (U () e+ (L (Q))
=7(M)

where we used Lemma 1.4 in the last equality. |

We explicit the invariant 7(M) in terms of the quadratic form ¢ : G — Q/Z.
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PROPOSITION 1.9. If q is nondegenerate then

(14)  7(M,q) = (G, q) |G Y exp(2mi(g® Ap)(w))
reGRZ™

ProOOF. By definition (L(2)) = >}, com{L(z)). By Prop. 3.8,

(L(x)) = exp <2m' q®1k <Z z; ® Lj>) = exp(2miq® Ap(x)).

The normalization term is

(U, (Q)ysiene D) (y_(Q))y—sisn- (L) = 1(@, g) e+ (D (@, g)~sien- (D)
= ‘I‘(G7q)‘—sign+(L)—sign_(L) el q)_sign(L)
— (G, q)|—rank(L) +(G, q)_sign(L)
= |G,*rank(L)/2 (G, q)—sign(L)

The result follows. |

The explicit expression (1.4) for 7(M, q) shows that 7(M,q) depends on ¢
only up to isomorphism:

COROLLARY 1.10. For any v € Aut(G), 7(M,v*q) = 7(M,q).

For the dependency of 7(M,q) under the action of Hom(tH,(M),Z/27Z),
resp. Hom(tH;(M),Q/Z), see §3 and §?7.

The case when G is a cyclic group was studied first by H. Murakami, T.
Ohtsuki and M. Okada [69].

PrRoOPOSITION 1.11. Let N be a positive integer. Let qn be the homogeneous
quadratic form defined on Z/NZ by

1 = 1/N (mod 1)  if N is odd,
an(1) = 1/(2N) (mod 1) if N is even;

Then ZN(M) = T(M, qN).

The formula of Theorem 1.9 allows for explicit computations of the invariant
in terms of surgery presentations.

EXERCISE 10.1. Using surgery presentations and the corresponding linking
matrices, show that:

7(8%) =1, 7(5? x §Y) = |G|"/2.

1.4. The relation with the linking group of M. Further analysis
of the invariant 7(M, q) involves the linking group (H; (M), Aar). It is shown
in [13, Th. 1] that 7(M) depends only on the linking pairing Aj; on the
torsion subgroup tH;(M) and the first Betti number b;(M) € N. A more
explicit relation is derived from the reciprocity formula [13, Th. 4].
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THEOREM 1.12. Let qpr : tH1(M) — Q/Z be a quadratic enhancement of
the linking pairing Ayr. Let (V, f,v) be a lift of the quadratic group (G, q) to
some lattice bilinear group endowed with an integral Wu class v € Wu(f).
Then

(15) 7(M) = [H'(M; G)|2 7(tHy (M), qar) 0 (V @ tH (M), f ® qar)-

PRrOOF. The proof consists in an application of the reciprocity formula.
See [13, Th. 4] for further details. [

It follows that if 7(M) % 0 then
(1.6) [T(MD] = [H' (M; G2,

In particular, we can make the following observation. Define an oriented
closed 3-manifold M to be an integral homology sphere if H,(M) = 0.

COROLLARY 1.13. M s an integral homology sphere if and only if T(M, q) =
1 for all quadratic groups (G, q).

PROOF. Since Hi(M) = 0, the linking group (Hi(M),Ayr) is trivial.
The converse follows from (1.6). Alternatively apply Prop. ?7 to S® endowed
with the trivial linking pairing. |

The vanishing of 7(M, q) can also be described explicitly [13, Th. 6]. For
ease of notation, denote by b: G x G — Q/Z the linking pairing associated
to gq.

COROLLARY 1.14. The following assertions are equivalent:

(1) 7(M,q) = 0;

(2) The characteristic element of (G Q tH1(M),b® Apr) is nontrivial;

(3) The linking pairings (G,b) and (tHy (M), A\rr) have an isomorphic
orthogonal cyclic summand of even order.

PROOF. Since g is nondegenerate, 7(M, q) is zero if and only if the Gauss
sum Y(V ® tH1(M), f ® qar) is zero. Now the quadratic form ¢y can be
presented as the discriminant quadratic form ¢, ., associated to a lattice W
with symmetric bilinear pairing g and integral Wu class w. Apply Corollary
1.16: the characteristic element of b = Ay and Ay = Aps is nontrivial. This
proves (1) = (2). The equivalence (2) = (3) follows from the definition
of the characteristic element (or homomorphism). ]

The formula (1.5) allows for a complete description of the invariant (M),
as obtained in [14].

THEOREM 1.15. Let M and N be two closed oriented connected 3-manifolds.
The following assertions are equivalent:

(1) There is a linking group isomorphism (H1 (M), Ayr) ~ (H1(N), An);
(2) 7(M,q) = 7(N,q) for all quadratic groups (G,q: G — Q/Z).
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PROOF. (1) = (2): Let ¢ be a linking group isomorphism (Hy (M), A\ps) ~
(H1(N), An) so that ¥* Ay = Aps. Lift ¢ to an isomorphism (Hy (M), qpr) ~
(H1(N),qn), for some homogeneous quadratic forms gy and gy over Ay
and Ay respectively. This is done as follows. First lift Ay to a homogeneous
quadratic form gy (this is possible since Quad®(\y) is nonempty, see §27?).
Then let gy = *qn so that 1) becomes an isomorphism (Hy(M),qp) ~
(H1(N),qn). It follows that H!(M) and H'(N) are isomorphic and

YV @EH (M), f ®qu) = (V@ tH1(N), f ®qn)
for any lattice (V, f). Hence formula (1.5) shows that 7(M,q) = 7(N, q).

(2) = (1): The idea is to consider 7(M,q) as a Gauss invariant of the
linking group (Hi (M), A\pr). Specifically we wish to apply Corollary 4.3.
For this, we need to verify that the three hypotheses are satisfied. Since
|HY (M, G)| = |H(N;G)|, the first hypothesis is satisfied.

Therefore 7(M, q) depends on the one hand, on the quadratic form (G, ¢) up
to isomorphism, and on the other hand, 7(M, q) classifies the linking group
of M up to isomorphism.

In view of Theorem 1.12, the torsion groups G (endowed with the quadratic
form g : G — Q/Z) and H{(M) (endowed with the linking pairing) play
similar roles. Therefore, one is led to present 7 as an algebraic pairing — a
viewpoint adopted in [17].

2. The Abelian invariant as an algebraic pairing

Let 2°(0) denote the set of isomorphism classes of nondegenerate homo-
geneous quadratic forms on finite abelian groups. We define a related set
M(0) as follows. An element in M(0) is represented by a linking group (V, f)
(see §77). Two linking groups represent the same element in 9t(0) if they
are isomorphic. Both sets Q°(0) and 97(0) are monoids for the orthogonal
sum @, with the trivial form being the neutral element. By [51, Theorem
6.1], any linking group (H, \) is realized as the linking group of a closed
oriented 3-manifold M, that is, Ay = A, H;(M) = H. Define a pairing on
M(0) x Q° by

(2.1) (H, X G q) =7(M,q)
for any closed oriented 3-manifold M realizing the linking group (H, \).

PROPOSITION 2.1. The pairing {—;—) : M(0) x Q°(0) is well defined and
bimultiplicative.

PROOF. The discussion above on 7(M, q) ensures that (H, \; ¢y is inde-
pendent of the particular choice of such a 3-manifold M. In view of Proposi-
tion 1.9, the pairing is indeed multiplicative on orthogonal sums with respect
to QY(0). Theorem 1.12 also implies that the pairing is multiplicative on
orthogonal sums with respect to 9t(0): the quadratic enhancement of the
orthogonal sum of two linking groups (H,\) and (H’,\) can be taken as
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the orthogonal sum of two quadratic enhancements ¢ and ¢’ of A and X
respectively. |

One can alternatively present the pairing (—, —) in a purely algebraic fash-
ion, without reference to the 3-manifold, as follows. Let (W,g) be any
bilinear lattice that lifts the linking group (H,—\) via the discriminant con-
struction. Then

(22)  (HXG,q) = (G070 4(GRW,q®g) |G H|:.
Note that G ® H is finite since G is finite.
Let (tH, qrr) be a quadratic enhancement of the linking pairing (tH, —\) and

let (V, f,v) be a lift of the quadratic group (G, q) as before. By Theorem
1.12, the relation above can be rewritten as

(2.3) (H G, q) = v(tH, qu)’ @) v(VQ H, f ® qu) |G ® H|2

Bimultiplicativity of the pairing (—, —) means that
<(H7 )\) @ (Hla >‘/)7 Gu q> = <H7 )\7 G7 Q> ' <Hl7 )‘/7 G7 q>7
and

(H, X\ (Gq) @ (G',q)) =<{H,\;G,q) - {H,\; G, ¢).

The following result, proved in [17, Th. 1], shows how the linking pairing
Anr is recaptured through 7(M). See also [14].

THEOREM 2.2. The pairing (—,—) : MM(0) x Q°(0) — C is nondegenerate.

3. Extension to Spin structures

A spin structure o on M is a trivialization considered up to homotopy of
the tangent bundle over the 1-skeleton M that extends over the 2-skeleton
M? of M. Spin structures on a closed oriented 3-manifold M exist because
of the vanishing of the Stiefel-Whitney class wo(M) € H?(M;Z/2Z). The
set Spin(M) of spin structures on M is in bijective correspondence with the
group H'(M;7/27). More precisely, there is a canonical action

Spin(M) x H'(M;Z/2Z) — Spin(M), (0,a) > o -«
that is free and transitive. A spin structure o on M induces a canonical
quadratic refinement
4o tH1(M;Z) — Q/Z

of the linking pairing Aps. The map

Spin(M) — Quad(Ay), 0 — gs
is affine over the natural epimorphism H'(M;7/27) — Hom(tHy (M), 7Z/27)
in the sense that

Goa = Qo + &, a € HY(M;Z/27).

For all these facts, see for instance [53], [65], [37], [61]. With this fact
in mind, it is interesting to observe that Theorem 1.12 has the following
interpretation.
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THEOREM 3.1. Let (V, f,v) be a lift of the quadratic group (G,q) to some
lattice bilinear group endowed with an integral Wu class v e Wu(f). For any
spin structure o € Spin(M),

(3.1) 7(M) = [H'(M; G)|= y(tH1 (M), go) /) 5(V @ LH1 (M), f @ o).

In other words, the computation of 7(M) uses the choice of a spin structure
on M but it is independent of that particular choice.

The results of the previous paragraph suggest to refine the construction. A
topological invariant 75P'™ of (M, o) may be defined as follows. Fix a linking
pairing, i.e. an element (H, \) € 9(0).

ProprosITION 3.2. The complex number
(32) TPN(M, o) = (H, A tHi (M), 4o

is a topological invariant of the pair (M,o).

In other words, we reverse roles: the original quadratic form ¢ of the defi-
nition is now that induced by the spin structure ¢ and the linking pairing
that was previously induced by the 3-manifold M, is now algebraic.

REMARK 10.4. By means of (2.2), the expression for 7P can be made
explicit.
(3.3)

. . 1
TPN(M, 0) = y(tH1(M), g7) 59 y(6HL (M) @ W, g5 ® ) [tHL (M) @ H 2,
where (Gg,A\g) = (H, \).

PROPOSITION 3.3. Let a € tH (M) have order 2. Then
(3'4) 7_spin(Jw’O_ X 04) _ eQﬂiqg(a) (a(g) — g(w,w)) 7_spin(]w’a)

for any integral Wu class w € Wu"V (g).

Here we identified o € tHy(M) with Ay(e) € Hom(tHy (M), Z/27). Tt is
true that if by (M) > 0 then there are several lifts of a in HY(M;Z/27); it
is part of the statement of Proposition 3.3 that the left hand side of (3.4) is
independent of the particular choice of lift.

REMARK 10.5. The quantity o(g) — g(w,w) mod 8 is the Brown invariant!
of the discriminant homogeneous quadratic form ¢4, which is a quadratic
refinement of .

EXERCISE 10.2. The result above implies that the right hand side of (3.4)
must be independent of the choice of the quadratic refinement and depends
only on the linking pairing A. Let us try to verify this fact directly. Changing
the quadratic refinement is equivalent to choosing a new integral Wu class
w + 2t for g with 2t € 2W* A W. Compute

g(w + 2t,w + 2t) — g(w,w) = g(w, 2t) + g(2t,w) + g(2t, 2t)
= 4go(w, t) + go(t, )]

IThe original Brown invariant was defined for even symmetric bilinear pairings, i.e.
when w = 0.
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Now ¢,(«) has order at most 4 since « has order 2. Therefore, one must
have

4[g(w,t) + go(t,t)] = 0 mod 4.
This implies that gg(w,t)+gq(t,t) € Z. But gg(w,t) € Z so the computation
implies that gg(t,t) € Z, which cannot hold in general. Explain why this
computation does not contradict Proposition 3.3.

For the following result, we denote the invariant by 75P"(M,o; H, \) so as

to express the dependence of the invariant on the choice of a linking group
(H,N).

PROPOSITION 3.4. Let (M,op) and (N,on) two closed oriented connected
spin 3-manifolds. The following assertions are equivalent:

(1) There is a quadratic group isomorphism (Hy (M), qnr) ~ (H1(N),qn);
(2) TP™(M, 03 H,\) = 7" (N,on; H, \) for any (H, \) € M(0).

PROOF. See [17, Th. 2]. [ |

A nice consequence is that 7°P'" classifies YSPI" equivalent spin manifolds in
Massuyeau’s spin refinement of the Goussarov-Habiro theory (see [61]).

4. Extension to Spin® structures

The idea of extending the invariant 7 to Spin® structures is formally similar
to the extension to Spin structures. A Spin® structure on an oriented closed
connected 3-manifold M is a complex structure (considered up to homotopy)
on the 2-skeleton M? that extends to M. For references on Spin® structures,
see [37] and [18]. The set Spin°(M) of Spin® structures on M is acted on
freely and transitively by H?(M;Z).

The basic observation consists in the interpretation of Spin® structures as
quadratic refinements of the linking pairing, as in [18, Th. 2.3]. First define
a modified linking pairing

Ny + Ha(M;Q/Z) x Hy(M;Q/Z) — Q/Z
by the formula
Ay = Ao (B % Bu),
where By @ Ho(M;Q/Z) — Hi(M) denotes the Bockstein homomorphism.
This modified linking pairing is nondegenerate if and only if M is a rational
homology 3-sphere. There is a natural H?(M;Z)-embedding

(4.1) Spin®(M) — Q(Xy), s+~ ¢’

See [18, §2] for further details. To the Chern class ¢(o) € H?*(M) cor-
responds the difference dgo : Ho(M;Q/Z) — Q/Z defined by dgo(z) =
¢°(z) — ¢°(—x) = {c(o),z), © € Ho(M;Q/Z). A spin® structure o on M is
torsion if its associated Chern class c¢(o) € H?(M) is torsion. The quadratic
refinement ¢” is nondegenerate if and only if ¢° vanishes on Ha(M) ® Q/Z
if and only if ¢ is torsion. In this case, the quadratic function ¢ factors
through a unique quadratic refinement of the usual linking pairing Ajs. In
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particular, this is the case if M is a rational homology 3-sphere. As in [15],
we shall consider only torsion spin® structures.

A Spin structure induces naturally a Spin® structure, hence there is a nat-
ural map Spin(M) — Spin(M). This map is injective if M is a rational
homology 3-sphere. The image of this map is the set of Spin® structures o
with trivial Chern class ¢i(0) = 0. This map and the maps above fit into
the commutative diagram

Spin(M) —— Spin®(M)

| l

Quad(Ayr) — Quad(XN),).

The extension of the invariant 7 to Spin® structures is not obvious, however,
because a priori one has to define a tensor product involving non homoge-
neous quadratic functions. If we try to mimic the definition of the spin case,
then we run into the problem of defining the tensor product ¢ ® g where ¢
is a possibly non homogeneous quadratic function?. An alternative product
(and the corresponding extension) is proposed in [17], but the extension
in question is shown to fail to have the property of classifying degree 0 in-
variants of complex spin structures (See [19, §3] for the foundations of the
theory of finite type invariants of complex spin structures). Another exten-
sion suggested at the end of the same paper corresponds to the Gaussian
invariant used in the classification of general quadratic functions described
here in §7?7 (Th. 3.1).

2Lemma 1 of [15] applies in fact only to homogeneous quadratic functions.



CHAPTER 11

The invariant 7 for an oriented framed link in a
closed 3-manifold

The Abelian invariant 7(M) of the chapter extends to an invariant of an
oriented framed link in M. The idea consists in extending the Kirby calculus
to closed 3-manifolds equipped with oriented framed links. The extension is
natural and the skein calculus developped in §suits well that extension.

In particular, we prove a conjecture stated in [?]...

1. The Kirby calculus for oriented framed links in 3-manifolds

There is a “Kirby calculus” generalized to the setting of oriented framed
links in closed oriented connected 3-manifolds. Consider a pair of oriented
framed links

L=Liv---ul,, J=Jiu---ulJ,

sitting inside the 3-sphere S3. Performing surgery on the framed link L
yields a closed 3-manifold M = x(S3, L) that contains an oriented framed
link £ = £1 U --- U L, induced by the link J < S%. Two oriented framed
links (M, L) and (N, Ly) in closed oriented 3-manifolds are equivalent if
there is an orientation preserving diffeomorphism f : M — N such that
f(Lyr) = Ly. (Here the framed links should be understood collections of
small embedded annuli.) Note that if two links K and £ are isotopic in N (as
oriented framed ordered links), then (IV, ) and (N, £) are equivalent. One
observes that a slight generalization of the Lickorish—Wallace theorem holds:
up to equivalence, any pair (M, £) consisting of a closed oriented connected
3-manifold M and an n-component oriented framed link £ < M is the result
of surgery on a framed, partially oriented link Ly U -+ U Ly, U Jy U --- Jy
where

- the surgery is performed on the framed link L;
- the link J = J; U --- U J, is oriented.

It is useful to think of such a surgery as a “partial surgery”: namely the
surgery is performed on the first framed link L and nothing is done on the
remaining components (that is the components of the oriented link .J).

There is also an analog of Kirby’s theorem. In order to state it, we briefly
describe a number of reversible moves. The first move is the stabilization
move (creation or annihilation of a trivial component with +1-framing, un-
linked from all other component) and involves only the first link L (the
surgery link) indicated in Fig. 1.1. The second move comes in two forms:

209
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the first handle slide is one component of the first link L sliding over another
component of L; the second handle slide is one component of the second link
J sliding over one component of L. See Fig. 1.1 below.

L > )
], L, ~ y\L}J e

FicUure 1.1. The sliding moves for links in 3-manifolds.

THEOREM 1.1. Two pairs of disjoint framed links (L, J) and (L',J") in S*
present equivalent pairs (M, L) if and only if, up to reordering of the com-
ponents of L and up to isotopy, they are related by a finite sequence of
stabilization and handle slide mowves.

REMARK 11.1. The classical Kirby theorem corresponds to the special case
J=J =g2.

PRrooF. This is straightforward from the usual Kirby’s theorem. For
each Kirby move L; — Lo, we consider the corresponding diffeomorphism
x(S3,L1) — x(S3,Ls) of 3-manifolds and write down combinatorially the
image of the link £ in x(S3, Lo). |

2. Definition and invariance

Let L= L1 u---uU L, be an oriented and framed link in a closed oriented
connected 3-manifold M. According to the previous section, the pair (M, £)
is presented by surgery by a pair

L=Liv---uUlLy, J=Jiu---uJ,

of disjoint framed oriented links in S3: the manifold M is obtained by
surgery on L as before while the framed link £ in M? is the image of the
framed link J after the surgery is performed on L. We order the set of
components of J, so that after the surgery the set of components of £ inherit
that order.

Now we fix as in the previous chapter a quadratic group (G,q: G — Q/Z).
Furthermore, we ascribe to each component of the oriented link £ a color
ce L*(G).
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PrOPOSITION 2.1. The complex number
(M, L(c)) = |G| 580 B2 @ ()~ (B (U_ ()= B L(Q) L I (e))

is a topological invariant of (M, L).

PRroOOF. The invariance under stabilization is the same as for Prop. 1.6.
The invariance under the handle slide move follows from Lemma 1.1. |

Proposition 2.1 generalizes Proposition 1.6. The invariant 7(M) considered
in the previous chapter is recovered if the link £ is empty or the color ¢ is
trivial:

T(M) =7(M,2) = 7(M, L(0)).

Similarly as in the previous chapter, we give an explicit expression for
7(M, L) in terms of the quadratic group (G,q). It suffices to consider the
case when the colors of the components of £ are simple. Simple colors are
identified with elements of G. For each 1 < j < n, ascribe a color ¢; € G to
L;. Choose an arbitrary orientation and order for the surgery link L. The
number m is the number of components of L and the number n is the num-
ber of components of J. Denote by A = Ay s the linking matrix of the link
L U J in 83. This is an integral symmetric matrix of size m + n. Denote as
before by sign(L) € Z the signature of A;, ® R. The tensor product ¢® A can
be regarded as a homogeneous quadratic form G = G™ x G™ — Q/Z.

PROPOSITION 2.2. Let q be nondegenerate and let ¢ = (c1,...,¢,) be an
n-uple of simple colors. Then

(2.1) (M, L(c)) = (G, q) PG| 72 Y exp(2mi(q © Aros) ().

zeG™M

REMARK 11.2. For a subset J < {1,...,n}, let £7 = Ujc; denote the
corresponding sublink of £. If £ is ordered, then £” is also ordered. If
c = (¢;)1<i<n € (L*(G))" is the color vector for the ordered link £, then
¢! = (¢j)jes € (L2(G)Y! is the color vector for £7. Let ¢ € G be a color
vector such that ¢; =0 if ¢ ¢ J. Then

(2.2) (M, L(c)) = 7(M, L7 (c”)).
PROPOSITION 2.3. For pairs of links (M, L) and (N, L'),

(M, L{)(N, L)) = (M, L(c)) - 7(N, L'(¢)).

PROOF. One can present (M, L)§(N, L’) as the disjoint union
LuLl'uJiJ <83

where L and L’ are topologically disjoint framed links in S such that
x(S3,L) = M and x(S3,L') = N. [ |
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3. The vanishing of the invariant

We give a necessary and sufficient condition for 7(M, L£(c)) to vanish. This
condition has a particular importance because of its decisive role in the
construction of the topological quantum field theory in §.... This condition
is expressed by means of the tensor product of linking pairings and the
characteristic homomorphism. We assume throughout this section that the
quadratic form ¢ : G — Q/Z is nondegenerate and that the color of each
component of £ is simple. The nondegenerate symmetric bilinear pairing
associated to the quadratic form ¢ : G — Q/Z is denoted b,.

THEOREM 3.1. 7(M, L(c)) is nonzero if and only if the class
D ®[L]
J

in Hi(M; Q) is the characteristic element of (G,by) and (tH1(M), M), i.e.,
if and only if

Recall (cf. §??) that the characteristic element 6 = 0 ,, lives in G ®
tHy (M).

PROOF. First, the fact that }; ¢; ® [£;] must lie in G @ tHi(M) is a
necessary condition for 7(M, L;q,c) to be nonzero is proved in [15, Th. 3
(D]

Next, we observe from (?7) that 7(M, L; ¢, ¢) = 0 if and only if the last Gauss
sum on the right hand of (??) is zero. Developping the term ¢ ® Ar s (z, ¢)
AL Apyg
Ajr Ay
enables to rewrite the Gauss sum as a product of a nonzero complex number
and the Gauss sum

YERLZ™,q® AL + (by® As1)(=,0)) = WG OW,q® g + (b ® Go) ([w]),
where g denotes the symmetric bilinear map on W = Z™ determined the
m x m linking matrix Ay and w € G ® W¥ is a lift of 2,6 ®L]eG®

WH/W = G ® Tors Hy(M). Now we apply the formula (9.1) to obtain the
identity

in terms of the block decomposition of the matrix Ay ; =

4@ g+ (bg ® go)(—,w) = Pregvew—2t © Jf
where (V, f,v) is a bilinear lattice equipped with an integral Wu class v for
f such that (G, ¢f.) = (G,q)("), where w is a Wu class for g and where
te VEQ W is a lift of w e G ® WE.
Finally we apply Th. 1.14, condition (4): v(G ® W, ¢ f@gv@w—2t © jf) F 0 if
and only if ¥(w) = 0 € Gy ® Gy is the characteristic element for A\f ® \; =
by @ Apr. This is the desired result. |

1Such a triple exists by Th. 4.6.
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COROLLARY 3.2. If7(M, L;q,c) + 0 then Zj c;®[L;] lies in GR®Tors Hy (M)
and has order at most 2. In particular, if T(M,L,q,c) £ 0 and at least one
of the two groups G or Tors H1(M) has odd order, then 3, c; ® [L;] = 0.

PROOF. The characteristic element 6 lies by definition in G®Tors H; (M)
and satisfies 2 § = 0 (see the end of §77). The first statement follows. The
second statement is a consequence of the first one. |

COROLLARY 3.3. The following assertions are equivalent:

(1) 7(M,q) + 0;

(2) The characteristic element Oy, x,, is zero;

(3) (G,by) and (Tors Hy(M), Anr) have no common orthogonal cyclic
summand of even order.

PROOF. Apply Th. 3.1 with £ = @. Then Zj c; ® L;j = 0. This gives
(1) < (2). The equivalence (2) < (3) follows from the definition of the
characteristic element. |

4. Classification results: topology

In this paragraph, we investigate the sensitivity of the invariant 7(M, @) to
the topology of (M, L).

There is a well defined notion of linking numbers of cycles whenever they
represent torsion elements in homology. A framing of a smooth 1-cycle Z
in M is a framing on each of its components. We denote by Z’ the parallel
copy of Z in M. The framing allows to define a number qﬁ}(Z ) € Q by the
formula

1
@ (Z) = 511<M(Z, Z") eqQ.

If Z does not represent a torsion element in Hy (M), then ¢, (Z) is undefined.

THEOREM 4.1. Let (M, L) and (N,J) be two closed oriented connected 3-
manifolds equipped with oriented and framed n-component links L and J.
The following two assertions are equivalent:

I. (i) There is an isomorphism
(H1<M)7)‘M7 [£1]7 EER) [ﬁn]) = (Hl(N)v)‘N’ [*71]’ EER) [jn])

of pointed linking groups;
(ii) The rational linking and framing numbers are equal:

kns (L, £5) = kn (T3, J3) and ¢ (L) = ¢5(T) for all1 <i < j <n.
II. 7(M,L,q,c) = 7(N,T;q,c) for any quadratic functionq : G — Q/Z
equipped with ¢ € G™.

The proof is dealt with in the next section. We first consider two simples
examples of applications of Theorem 4.1.
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ExXAMPLE 11.1. Consider the two pairs of links in S® representing two ori-
ented knots (M, £) and (N, J) respectively (see Fig. 4.1). Since the surgery
links are the same, M = N = (S! x S?) § L(5,1) (the connected sum of
S1 x S? and a lens space). Set an arbitrary framing % € Z for the component
Ji = 83 (in red in the figure; it should be the same for both components
labelled J7).

5 ]
0 £[73 /N @5 0732 f\& +5
UL, L, QLI QLZ

FIGURE 4.1. Two pairs of links representing two oriented
knots in (S' x S?) # L(5,1) .

We have

Hi(M) = Z®L/5Z, Aylz,y) = % mod 1.

Under the identification above, [£] = (5,1) and [J] = (5, 3) respectively.

The extended linking matrices are and respec-

N O O
= ot O
* [ = DN
O O
Wl ot O W
* | W N

tively.

Let (G,q,c) be a pointed quadratic form. The characteristic element for
(bg, Aar) is zero since Tors Hi (M) has odd order. Hence ¢ ® [£] is charac-
teristic if and only if ¢ ® [L] is zero. Consider the case when G is cyclic of

n ifk=0,1; Then
n/5b otherwise.
c®[L] = 0 if and only if ¢ = 0 mod n’ (if and only if c® [J] = 0). Let
n = 25 and ¢ = 5 mod 25. Using the definition (??) of 7 and the observation
above on the characteristic element, we find that

T(M, L;q,¢) + 7(M,TJ;q,c).

Thus there is no isomorphism ¢ : Hy (M) — Hi(M) such that ¢([£]) = [T]
and gﬁ*(/\M) = )\M- |

order n. Let k be the 5-valuation of n. Let n/ = {

ExaAMPLE 11.2. Consider again the two oriented and framed knots £ and J
in S x S? presented in Fig. ??. Here M = N = S' x S2. Let (G,q,c) be a
pointed quadratic form. It is not hard to see that ¢® [L£] is characteristic if
and only if ¢ = 0 in G. We conclude immediately that

7(S* x 8%, L;q,¢) = 7(S* x %, T;q,¢).
It follows that there exists an isomorphism ¢ : Hy (M) — H;(M) such that
o([L]) = [J] and ¢*(Aar) = Aps. (This isomorphism is actually induced by

a diffeomorphism of the pair (S x S2, L), as described in the Example ??.)
[ |
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COROLLARY 4.2. Let (M,L) and (N,J) be two closed oriented connected
3-manifolds with framed oriented n-component links £ and J. Assume that
none of the components of L represents a torsion element in Hi(M). Then
the following assertions are equivalent:

I. There is an isomorphism
(HI(M)7 AM, [£1]7 ce [En]) = (Hl(N)7 AN, [\71]’ LR [jn])
of pointed linking groups.

II. 7(M,L,q,c) =7(N,T;q,c) for any quadratic functionq : G — Q/Z
equipped with ¢ € G™.

5. The proof of the classification theorem

Both implications? will be derived from the formula of [15, Th. 3] which
we recall and slight adapt to our notation. To state this formula, there are
a number of choices to make (although the final result does not depend on
the particular choices made). Choose a spin structure s on M, inducing a
homogeneous quadratic refinement ¢° : Tors Hy(M) — Q/Z of the linking
pairing Ay on M. Choose a lattice pairing (V, f,v) equipped with an integral
Wu class such that (VF/V,¢;,) = (G, q).

Assume first that >}, ¢; ® £; € G ® Tors Hy(M). Choose a framed 1-cycle
n = Zj & ® L; by lifting the coefficients ¢; € G = VE/V to & € V. Then
[7] € V¥ ® Tors Hy(M). Evaluating n against the Wu class v € V yields a
framed integral 1-cycle n, = >, j fo(v,&;)L;. Note that this cycle represents

a torsion element. There is an invariant of framed 1-cycles d5 defined by the
following conditions (see [15, §2.3, Lemma 14]):

(1) & is a Z-homomorphism and takes values in {0,1/2} = 1Z/Z <
Q/z;

(2) ds depends on the spin structure s on M;

(3) 05 vanishes exactly on framed 1-cycles for which the spin structure
s and the framing are compatible.

In the case when the framed cycle o represents a torsion element, we have

05(0) = 4" (0) = ¢*([o)).

In particular, for ¢ = n,,, we have
0s(m) = D Folv.€)84(L;).
J
Hence

G ) = ) fale,§)(a"(L) — a([£))) € 1/22/2.

In particular, if v = 0 mod 2, then d4(n,) = 0.

2This is not strictly necessary for the direct implication (I) = (II); however the idea
of using characteristic elements is a key ingredient in the converse.
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Using the fact that 7 also has a framing, we can slightly generalize the
definition of ¢ above by defining

(f®qm) = fal&: &) ¢"(L5) + D fol&, &) Tkar(L5, Lk) € Q.
J i<k

A fundamental formula [15, Th. 3| is the relation
(5.2)
(M, L;q,c) = o2mi((f®4™) () =6 (1)) v(Tors Hy(M),qs) Tev)

(v Tors m(00). @ .+ (Fo® Rar) (D)) 11O )
Here f ® g5 denotes the quadratic function V ® Tors Hi(M) — Q/Z over
f ® Apr defined by

r®y — f(z,2) gs(y)-

The map (f@@)XM) ([n]) is the map on V®Tors H; (M) induced by the map
adjoint to the linking pairing f ® A\ys at [n] € V* x Tors Hy(M). Explicitly

V ® Tors Hi(M) — Q/Z, z— (fo® Am)([n], 2).

Note that this map is well defined and non-trivial in general since [n] €
V¥ ® Tors Hy(M).

Let us prove the implication (I) = (II). Consider the case
ch ®[L;] ¢ G® Tors Hy(M)
J
first. By Cor. 3.2, 7(M,L;q,¢) = 0 = 7(N,J;q,c), which is the desired

result. Consider next the case

Yle;®[L;] € G®Tors Hy(M).
J

Since ¢* Ay = A, choose a spin structure s’ on N such that qb*qf\} = qy-
Thus q]S\/, ~ ¢3,; and their associated Gauss sums are equal. Set nyr = ] j §®
Lj and ny = ;& ® Jj. The isomorphism ¢ : Hi(M) — Hy(N) induces
an isomorphism 1+ ® ¢ sending [na/] € VE® Hi (M) to [nny] € VF® Hi(N).
The isomorphism 1+ ® ¢ induces an isomorphism

FOa + (fa®A) () = F®ay + (fa® An)([n])-

Hence their associated Gauss sums are equal. In view of Hi(M) ~ Hi(N),
the equality |HY(M;G)| = |H*(N;G)| is clear. Finally it follows from (iii)
that

(f ® i) () = (f ® ax) (1)
and it follows from (i) and the definition of s that
() = 0(nw ).
This is the desired result.

We now prove the converse.
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Step 1: we recover the homology by taking the absolute value of 7(M;q) =
7(M, @;q,0). By Corollary 3.3, if (G, ¢) and (Tors H;(M)) have no common
orthogonal cyclic summand of even order, then

T(M;q)| = |H'(M; G)|'? = |Hi(M) ® G|,

By allowing G to vary, we recover all p-components of H;(M) for all odd
primes p. For 2-components, for each k > 1 and G}, = Z/2FZ, we compute
7(M;q). By Corollary 3.3, we know that H;(M) has Gy as an orthogonal
summand if and only if 7(M;q) = 0. We only need to know the num-
ber of such summands. We observe that given any finite abelian group
G, the group G @ G carries a hyperbolic linking with no cyclic orthogonal
summand. Lift this linking to any quadratic form ¢g. Then |7(M;q)|?> =
|HY(M;G ® G)| = |[H'(M;G)|?. By allowing G to vary over all 2-groups,
we recover all 2-components of Hy(M). Finally we recover in this fashion
the isomorphism class of Hy(M). (For more details on this step, see [14].) B

Step 2: For ¢ = 0, the formula (??) simplifies to
(5.3)
V ® Tors Hy (M), f ® ¢°
T(M,L;q,0) = 7(M,q) = WV @ Tors L(M), f®4°)
v(Tors Hy (M), qs)f(w:v)
Using the discriminant construction (§??, Th. 4.6), we may choose any

bilinear even lattice (V, f,0) equipped with Wu class v = 0 € Wu" (f) such
that (Gy,¢r0) = (G, q). Then the formula simplifies further to
(M, q)

(5.4) THI(M, G)| 12 = y(V®Tors Hi(M), f®q°)

(5.5) = 7(V®H1(M),%f®AM)-

|HY(M; G)|Y2.

For the second equality above, we regard % f as the homogeneous quadratic

function defined by (3 f)(z) = @ € Z for all x € V and we use the fact
that 2 ¢°(y) = Ay (y,y) for all y € Hi(M). We now apply the classifica-
tion theorem (Th. 2.2) to the Gauss sums 7(M, q) = v1/2 50(An,0) (this is
the special case when the distinguished element is trivial): we recover the
isomorphism class of the linking pairing Aps. It follows from Step 1 and
Corollary 4.2 that we recover the isomorphism class of the linking group
(H1(M), Anr)- u

Step 3: we show how to detect whether a Z-linear combination > .. ; a;[£;]

is torsion in Hy (M) and if it is, we show how to compute its order.

Let J < {1,...,n}. Recall the corresponding ordered sublink £/ = U esL;
of L. Let (aj)jes € ZVl. We prove that 7 detects whether the Z-linear
combination ;. ; a;[£;] is torsion in H;(M). Note that it actually suffices
to detect whether > . ;a; [£;] = 0 in Hy(M). We use the following fact
from p-adic numbers. Let

Z =lim Z)nZ = {(xk)k=1 € H Z/kZ, for all n|m, x,, = x, mod n}.
k=1
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Note that the natural homomorphism

Z — H ZJkZ, x — (x mod k)g>1
k=1

~

factors through a map Z — Z.
LEMMA 5.1. Let H be an abelian group. The map H — 7® H is injective.

Applying this lemma to H = H;(M) for the particular element >}, a; [£;]
yields the

COROLLARY 5.2.

2 aj = 0 if and only if 2 a; mod k)®[L;] =0 € Z/kZ, for allk > 1
jeJ jed

Let £ > 1. Set Cp = Z/kZ. By 1j, we denote (1 mod k) € Cj. Let
1 € Cf be the unique form defined by 17(1;) = 1 mod 1. Let Gy =
Cr@C}. Define g, : Gy, — Q/Z by q(x, o) = a(x). The quadratic form gy, is
hyperbolic. In particular, (G, gx) has no cyclic orthogonal summand. Hence

the characteristic homomorphism vanishes: Xbg A = 0- Equivalently the
characteristic element is zero. Denote by ¢’/ = (¢j)jer € G’Lﬂ the color vector
associated to the ordered sublink £7. By the Vanishing condition (Th. 1.14),

(M, L7; q,¢’) % 0 if and only if Z]eJ ® [L;] = 0. This holds for any
color vector ¢/ = (¢j)jes and for any k > 1. In particular, for each k > 1, we
take ¢; = ¢j = aJ (1;,1%) € Gg. For each k > 1, set ¢f = (¢jx)jes € Gu|
We have > ;. ;¢; ® [£;] = 0 if and only if >, ;(a; mod k) ® [£;] = 0. By
corollary 5.2, we conclude that

Z a;[£;] = 0 if and only if for all k > 1, 7(M, L”; gy, c]) + 0.

jedJ
In particular the invariant 7 detects whether };;c ; a; [L;] = 0, as claimed.
The order of 3 ; a; [£;] is the smallest n > 1 such that >}, ; na; [£;] = 0.
It follows that it is the smallest n > 1 such that 7(M, L7; g, n ck,) + 0.

As a particular case, 7 detects whether a given component £; represents a
torsion element in Hy (M) of fixed finite order. [ |

Step 4. Set F1(M) = Hi(M)/Tors Hy(M). We show how to detect whether
any Z-linear combination Zje 7 aj[L;] projects onto a primitive element in
F1(M). (Recall that a primitive element in a lattice V' is an element z € V/
that can be completed to a Z-basis (x,z2,...,x,) of V.)

We use the notation of the previous step.

LEMMA 5.3. Letk>1. Letc=c¢’ € G‘k‘]l denote the color vector defined by
c;j=cjr = ar (1x,1F) € Gy, for all je J.

(1) The element Y ;. ; a;j[L;] projects onto a nonzero element in k Fy (M)
if and only if the following two conditions are verified:
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(1.1) 7(M, L; qx,c¢”) + 0 for c;j=ap (1, 1}) e Gy, je J.
(1.2) For any positive integer k' not multiple of k, for any nonzero
CJ € (Gk’)ulf T(Ma £7 qr’, CJ) =0.
(2) The element 3 ;. ; a;j[L;] projects onto a primitive element in Iy (M)
if and only if T(M, L;qx,c¢”’) =0 for all k > 1.

Step 5: we show how to recover ¢*(£;) € Q for all 1 < j < n such that
[£;] € Tors Hi(M). By Step 3, we know which components represents
torsion elements. Henceforth we assume that there is at least one component
L; that represents a torsion element in H;(M). Consider the set S of all
pairs (G, c) where G is a finite Abelian group and ¢ = (¢1,...,¢,) € G"
is an n-tuple of colors such that [0] = c® [L] = }};¢; ® [£;] = 0. Let
(G,c) € S. By Theorem 4.6, choose a triple (V, f,v) over (G,q). Since
[0] = 0e GRH (M), we choose a lift 1 such that [n] = 0. Then the formula
(5.2) reduces to

(5.7)

T(M, L g, ¢) = e2millreanm—aen) 1V @ Tors Hi(M), f @)
~(Tors Hy (M), q*)7 ()
Since we know the isomorphism class of Ap;, we can freely choose a spin
refinement ¢° of A\j;. Hence we can compute the Gauss sums of the right
hand side of (5.7). We already know the order |[H'(M:;G)| by Step 1. Since
[0] = 0, we know that the invariant does not vanish if and only if (G, q)
and (Tors Hi(M), Apr) have no common cyclic orthogonal summand of even
order. Let (V, f,v) be a triple over (G, q) satisfying this condition and the
condition that (G,c) € S. Then we recover

exp2ri ((f ®4")(n) —~ 3(n))

In particular for v = 0, we have §(n) = 0, hence we recover the term

exp 2mi(f ® qfr) (n).

\HY(M;G)|2.

We now prove our claim. Let 1 < j < n. Let d be the order of Tors H;(M).
Set

| 1 ifdiseven;

_{ 2 if d is odd.

For each N > 2, consider the pair formed by the group G = Z/adN7Z and
the colors defined by

| ad mod adV ifk=j
k= 0 if k% .
Clearly
0] =c®[L]=¢; QL] = 1®ad [L;] € Z/ad“Z ® H (M).

Thus (G,c) € S since d [£;] = 0 in Tors H;(M). Consider the bilinear
lattice f : Z x Z — Z defined by f(z,y) = ad" = -y. Observe that f is
always even (so that v = 0 is a Wu class) and Gy = G. Note that ¢ = ¢y
is a quadratic form over a cyclic group of order ad”. Thus (G,q) and
(Tors Hi(M),Apr) have no common cyclic orthogonal summand. We lift
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0 = (ad mod ad™) ® Lj to n = ad/adN ® L; = 1/dV"1 @ L;. Given our
choice of (V, f,0), the argument above applies: we recover the term

exp (2mi(f ®¢™)(n)) = exp (2mifo(é;, &) 4 (L))
= exp (27ri phe qfr(ﬁj)).

Hence we recover d;%qur([,j) mod 1 for all N > 2. The lemma below (well
known in the context of p-adic numbers when d is prime) implies that we
recover o ¢'(£;) € Q and hence ¢'(L;) € Q.

LEMMA 5.4. Let d = 2. Let Qg be the inverse limit of Q/edNZ. The map

Q — Qg, 7 (r mod d")y=1
18 injective.

The following fact is also well known: a sequence 0 < ry < d of rational
numbers such that ry = ry41 mod dV for all N > 1 corresponds to a
rational number r € Q provided that there exists Ny = 0 such that ry =
TN+1 for all N > No. |

Step 6. Let p: H1(M) — F1(M) denote the canonical projection. We show
that the invariant detects the isomorphism class of the pointed (plain) lattice
(F1(M),p([£1])s---,p([£Lr])). From Step 1, we know p = rank(F;(M)).
From the previous two steps, we can find in a finite number of steps the
(unique) maximal subset I < {1,...,n} such that p([£;]) # 0 in Fy(M) for
each i e I.

For all ¢ € GMI, 7(M, L;q,¢") = 7(M,L';q,c). By Step 4, the invariant
detects whether any Z-combination }, a; p([£;]) lies in kFy(M). Apply the
classification of pointed plain lattices (Prop. 5.1) to deduce the isomorphism
class of (F1(M),p([L1]),--.,p([£r])). This proves our claim. [ |

Step 7. Let r : Hy(M) — Tors Hy(M) be a retraction. We claim that the
invariant 7 determines the isomorphism class of the pointed linking pairing

(Aar, r([£]))-

Preliminary step: let (G, q,c) be a pointed quadratic form. We prove that
for any choice of a 4-tuple (V, f,v,§) such that (G¢, ¢s., [£]) = (G,q,¢),

(5.8)
YV ® Tors Hy (M), f ® gsy,+(fo ® \ar)([nu])) =
= 4(V ® Tors Hi(N), f ® qsy + (fo @ Aw)([nn]))-

Set
O =26k®ﬁk, On =20k®JkEG®H1(M)-
% 2

First, notice that according to Th. 3.1, if [#/] is non characteristic then [0 ]
is also non characteristic and both Gauss sums in (5.8) vanish (whatever our
choice for (V, f,v,€)). Hence (5.8) is verified.

Next, suppose that [0as] is characteristic. Then [fy] also is characteristic.
There is an isomorphism ¢ : (Tors Hy(M),A\yr) — (Tors Hi(N), An) of
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linking pairings (by Step 2), hence id¢g ;®1 is also an isomorphism of linking
pairings

(Gf ® Tors Hl(M), )\f ® )\M) >~ (Gf @TOI‘S Hl(N), )\f ® )\N)-

Since the characteristic element is preserved under linking isomorphisms (by
(?7?)), this is actually an isomorphism

(Gf®Tors Hi(M), s @ A, [0um]) ~ (G @ Tors Hi(N), A\ @ An, [ON])
of pointed linking pairings. Observe that idg, ® ¢ lifts to an isomorphism

idy: ® ¢ : VE® Tors Hy (M) ~ V! ® Tors Hy(N). Thus for any lift & of
ce G",

(Vﬁ®TOI‘S HI(M)af®)‘M7 [ﬁM]) = (Vﬁ@TOI‘S Hl(N)’f®)‘N’ [UN])

This isomorphism lifts to an isomorphism of pointed quadratic forms (f ®
Usprs [Mr]) =~ (f ® gs,,, [nn])- Therefore, (5.8) is again verified. This com-
pletes the preliminary step.

Since F1 M is free, there is a commutative diagram of split exact sequences

0 — V!® Tors H|(M) —=Vi® H (M) —= VI®Q F;{(M) —=0

| | |

0——=G®Tors HH(M) —= GR Hi(M) ——= G® F; (M) ——=0

with retractions 1+ ®7 and 1¢®r respectively. If follows that » , ¢, ®[Ly] €
G ® Tors Hy(M) if and only if >, ¢, ® [L] = >3 ek @ r[Ly]. Thus

(o] = D 6 ®[Ly] € VE® Tors Hi(M) = [nu] = Y & @ r[Ly].
P P

Let (V, f,0) be an even lattice over (G, q) (cf. Th. 4.6). For any homoge-
neous quadratic form ¢, we have

1
f®q: §f®bq7

where % f denotes the homogeneous quadratic function defined on the lattice
V by (1/2 f)(x) = @ € Z for all x € V. In particular,

f @ sy = 5/ © M.
Now equality (5.8) reads
(5‘9) Yh,s ()‘M7 T([*Cl])a s 7T([£n])) = Yh,s ()‘Na T([jl])a cee 7T([\7n])) ’

where h = 3f and s = fo(&)lve = (fo(&)lv,-.., fa(&)lv) € (V*)". We
apply Theorem 2.2: Step 1 ensures that condition (1) is satisfied and (5.9)
ensures that condition (2) is satisfied. The isomorphism

(Tors Hi (M), A\ar,7([L1])s -+ 7([£n])) = (Tors Hy(N), An,7([]),---,7([Tn])))
follows.

Step 8. Steps 7 and 8 imply that the hypotheses of Lemma 4.1 are satisfied.
We conclude that there is an isomorphism of pointed linking groups

(Hi (M), Ay [L1], -5 [£n]) = (HU(N), AN [T -y [Tnd) -
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This concludes the proof. |

6. The extension of the monoid pairing

Theorem 4.1 suggests extending the monoid pairing (—, =) : M+ x Q¥ — C
defined in §?7. This section is devoted to the construction of this extension.
Our main result is that this extended pairing is nondegenerate.

Let n > 0. Let 9" (n) denote the monoid of n-pointed linking groups.
In other words, 9™ (n) consists of triples (H,\,¢) where H is a finitely
generated abelian group, A : Tors H x Tors H — Q/Z is a linking pairing
and ¢ = (¢1,...,4,) € H™ is an n-tuple of distinguished elements. The
operation is the expected one, induced componentwise by orthogonal sum
and addition. There is a natural embedding 9™ (n) — M™(p) for any n < p
defined by adding p — n zeros on the right on the distinguished n-tuple to
form a distinguished p-tuple. We define also a monoid Q°(n) that consists
of pairs (g, ¢) where ¢ : G — Q/Z is a nondegenerate homogeneous quadratic
function on a finite abelian group G and c is a distinguished element in G™.
Clearly, Q° = Q°(0) embeds in Q%(n) in the usual way for any n > 0. An
ordered link £ = £ u---u L, in a closed connected oriented 3-manifold M
induces an element

[£] = ([£1],- -, [£n]) € Hi(M)"
and therefore determines an element (Hy (M), Ay, [£]) € M (n).

LEMMA 6.1. Let (H,\,¢) € M (n). There exists a closed oriented 3-manifold
M equipped with an oriented and ordered link L =Ly v ... u L, € M such
that (Hy (M), A, [L]) = (H, A, 0).

Proor. By [51, Th. 6.1], any (nondegenerate) linking pairing can be
realized as the linking pairing of a closed oriented 3-manifold. Actually, the
3-manifold can be chosen as a rational homology 3-sphere M’ (b;(M') = 0).
Let m be the rank of H. One needs to modify M’ to another 3-manifold
M such that by (M) = m so that Hi(M) = H. The simplest way to do
this is to make connected sums with S x §%: M = M’ﬁjj}“:lSl x S2. Then
bl(Mﬁﬁgnzlsl x S?) = by (M) +m bi(S' x §?) =0+ m 1 = m. It remains
to choose an ordered oriented link £ < M’ such that its components rep-
resent prescribed homology classes ¢1,...,#¢,. Since the dimension of each
components is one, we can achieve this component by component. Since
the codimension of each component in M is two, we can ensure that the
components are pairwise disjoint. |

Let n > 0. We define a pairing M T (n) x Q°(n) — C by

(61) <H7 A7£;Q7C>:T(M7'C;Q7c)7

where M is any closed oriented 3-manifold equipped with a link £ = £ u
... u L, © M provided by the lemma above. For n = 0 (no distinguished
element), this coincides with the previous definition (see §??). For n > 1
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(when there is at least one distinguished element), the definition is unam-
biguous only if we fix the framing lka(L;, E;) of torsion components of £
in M. We require that for each 1 < j < n,

p +1
Ikn (L5, £5) = N, €Q
where Nj is the order of the homology class [£;] in Hi(M). We refer to
this framing as the reference framing of L. For non torsion components, the
framing is undefined. Theorem 4.1 ensures that the pairing (—; —) is well
defined by (6.1).

THEOREM 6.2. The pairing
M+ (n) x Q°(n) - C, ((H, A 0), (g, 0)) = (A bq,0)

1s bilinear, left and right nondegenerate.

Bilinearity is meant with respect to the operations
(H N O@H N ) =(HoH AN ()

and

(¢.0)® ()= (g®q,c®C).
Clearly the pairing above generalizes the pairing introduced in §77:
(H, X, @5q,¢) = (H, X q,0) = CH,A;0) = (H, A, £, 0).

Proor. Bilinearity follows from the definition. Th. 4.1 asserts that
(=, —) is left nondegenerate. It remains to prove that it is also right nonde-
generate.

Step 1: we recover G by taking the absolute value of 7(M, L; ¢, ¢). This step
is completely symmetric to the first step of the proof of Th. 4.1. We have

[\, m, b q,¢)| = |HY(M; G)|"? = |G ® Tors Hy(M)|'/?,

if G and Tors H; (M) have no common cyclic orthogonal summand of even
order (and is zero otherwise). According to the previous lemma, for any
pointed linking pairing (A, £) € 9%(n), there is a closed oriented rational ho-
mology 3-sphere M equipped with an oriented link £ such that (\,0,/¢) =
(A, 0,[£]). Endow £ with the reference framing. By appropriate choices
of (Tors Hy(M), Apr), we recover all p-components of G, hence the isomor-
phism class of G itself.

Step 2: we establish a formula for 7(M, L;q,c) in a particular case (first
proved in [19, Cor. 4]). Let L = L1 u---UL, < M be an oriented link whose
components are all homologically trivial: [£;] = 0 in H{(M) for 1 < j < n.
We have [n] = >, & ® [Lx] = 0 for any lift of [0a] = D) cx ® [Li] = 0.
Furthermore,

ds(1w)
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Since each component is homologically trivial, all framing and linking num-
bers are integers. It follows that

J
It follows from the formula (5.2) that

(¢ ®Iknr)(0nr) = (pf0 @ Lkar) (Z ¢ ® ﬁj) = (f ®4")(1) = 65(n,) mod 1.

(6.2) T(M, L;q,c) = exp (27rz'(q®lkM)(9)> T(M,q).

In particular, if M is a Z-homology 3-sphere, 7(M,q) = 1. Hence
(6.3) T(M, L;q,c) = exp <2m'(q ® lkM)(9)> .

for an empty (or zero-framed algebraically split) link, we have
A,m, @5q,¢) = (A, m; q).

We have noted earlier that the pairing (—, —) : 9T x Q° — C is right non-
degenerate. Hence the (isomorphism class of the) homogeneous quadratic
form (G, q) is determined. In particular, the Gauss sum (G, q) is recovered.

Step 3: consider the case when M is a Z-homology 3-sphere with an oriented
link £ < M. Then it can be shown ([15, corollary 5]) that

O, 0, [£]s 4,0y = T(M, £:4,¢) = exp(27i(a ® Ac)(0)),

where A,y denotes the n x n symmetric integral linking matrix of £ in M.
Hence by varying the zero-framed link £ in M, we can realize any symmet-
ric integral n x n matrix with zeros on the diagonal. It follows that ¢(c;),
bg(cj,cr) € Q/Z, 1 < j, k < n, are all determined.

Step 4: given any pointed linking pairing (A, £), we realize it as the pointed
linking pairing (A, [£]) associated to a closed oriented 3-manifold M equipped
with a zero-framed oriented link £. The pair (M, £) itself can be realized
as a pair (L, J) of disjoint links in S where L is a framed m-component
link (on which the surgery is performed) and J is an oriented framed n-
component link (giving rise to £ once the surgery on L is performed). Such

a pair determines a linking matrix Ar_y. This symmetric integral matrix
decomposes as

A _| AL ALy
LuJ AJ,L AJ

where Ay, is the linking m x m matrix of L in S, Ay is the linking n x n
matrix of J in S3 and A JL = A‘}J’ 7 is the n xm matrix of the linking numbers
of the components of L with the components of J in S3. Hence, for x € G™
and ce G",

(®Apus)(@,c) = (®AL) (@) + (bg @ Ay)(w,¢) + (¢ ® Ay)(c),

where ¢® Ay s is regarded as a quadratic function on GQZ™*" = Gt =
G™ x G", q ® Ar is regarded as a quadratic function on G ® Z™ = G™,
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q® Ay is regarded as a quadratic function on G®Z" = G" and b, ® A1 is
regarded as a bilinear pairing (GQ®Z™) x (GRQZ") = G™ x G" — Q/Z. It
follows from the previous step that we recover the term

(q®As)(e) = > aler) Tkga(Jp, Ji) + . beler, &) lkga (i, ).
k k<l

Step 5: with the notation previously introduced, we have
T(M, L;q,c)
(G, q)~sisnD|G|~m/2

= Z exp(2mi(q ® Aros)(x,€)).

xeG™

By Steps 1 and 3, we know the factors v(G, ¢)~¥8*%) and |G|~™/2. There-
fore, we recover the Gauss sum

N exp(2mi(@®@ALos)(x,€) = > exp<2m'((q®AL)(x)+(bq®AJ,L)(x,c)+(q®AJ)(c))>.

xeG™ xXeG™

According to Step 4, we know the term (¢ ® Ar)(c). Hence we recover the
Gauss sum

2 exp (27ri((q®AL)(:r) + (bg ®AJ7L)($,C)>>.

xeG™

Since we know its absolue value |G ® Tors Hy (M )\% from Step 1, we recover
the Gauss sum

YHCRZ™,q® AL + (by® As1)(—,¢)) =G OW,q¢® g + (by ® Go)([w]),
where g denotes the symmetric bilinear map on W = Z™ determined the
m x m linking matrix Ay and w € G ® W* is a lift of § = 2,6 ®[Lj] €
GRWHW = G® Tors Hi(M). Tt follows that we recover all Gauss sums
Yg,5(q, ¢) for all bilinear pairings (W, g). Therefore, applying the classifica-

tion result for homogeneous quadratic functions (Corollary 3.3) yields the
desired result. [ ]






CHAPTER 12

Abelian topological quantum field theory

Let M = (M,X_,%,) be a connected compact oriented 3-cobordism. In
other words, M is a connected compact oriented 3-manifold such that

oM=3,]]-=_.

The surfaces ¥4 and ¥ _, called the bases of the cobordism, are closed and
oriented. We also write

E+ = 5+M, E_ = 5_M

If each base is connected, we say that the cobordism is elementary. Note
that a given orientation restricts to an orientation on each of the connected
component. The opposite orientation is denoted by a minus sign. Each con-
nected component ¥ of the base carries a nondegenerate symplectic pairing

Hi(3) x Hi(X) = Z, ([a], [b]) — [a] « [0]

in the first homology with integral coefficients, namely the intersection pair-
ing. If ¥ is not connected (if the cobordism is not elementary), the pairing
may be degenerate. Recall that H;(—X) = —H;(X) is the same space as
H;(X) but carries the symplectic pairing opposite to that of Hy(X).

We regard two cobordisms as equivalent if they are equivalent by an orien-
tation preserving homeomorphism that is the identity on the boundary. As
is well-known, 3-cobordisms form a category Cob where objects are closed
oriented surfaces and morphisms are oriented 3-cobordisms and the com-
position is provided by the gluing along a common base. The composition
will be denoted by o. For our purpose, this category has the right notion of
morphisms but too many objects (too many noncanonical objects). In order
to reduce the number of objects (to make them more canonical), we need to
enrich somewhat this category.

Once we have defined the right category, we extend the invariant defined
in the previous chapters to cobordisms. There are actually two equivalent
constructions.

The first one is based on the following idea: glue to each base of a cobordism
(M,¥X_,%,) a finite union of standard handlebodies. This yields a closed
3-manifold M with a pair of distinguished framed oriented links L™, L™ in
—>_ U 34 (the links are the images of the meridians of the handlebodies
respectively). Let g~ (resp. g¢") be the total genus of X_ (resp. X.).
Color the links with some elements z—,z" € GY9- x G9+. According to
the previous chapter, to a pair (M ,L™ u L™) is associated a topological
invariant 7(M,L~ u L*,(g~,¢")) € C. By varying the colors and using a

227
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normalization factor, we obtain a linear operator 7(M) associated to the
cobordism M.

The second construction uses only linking invariants associated to the cobor-
dism M itself. It relies ultimately on the reciprocity.

Finally the invariant has special functorial properties: it is a topological
quantum field theory (TQFT). It can be approximately regarded as a func-
tor from an appropriate category of cobordisms to the category of finite-
dimensional C-vector spaces.

1. The parametrized cobordism category

Let g be a natural number. For each g, we fix an oriented handlebody H, of
genus g as follows. The standard handlebody Hj of genus 0 is the unit closed
3-ball D? = R3. For g > 1, consider a union Uy of g circles C1,...,Cy of
radius 1 in the plane z = 0 of R3 centered on the z-axis such that C; n Cj4q
is the singleton {(27,0,0)} for 1 < j < g — 1. Consider the discs in the
plane y = 0 centered at (25,0,0), lleqj < g, of radii 1/2. These discs are
orthogonal to the circles C;. Consider the solid of revolution generated by
these circles by revolving them around the axes © = 2j—1, y = 0 respectively.
By definition, this is the standard handlebody H, of genus g. It is a closed
tubular neighborhood of U, in R3 symmetric with respect to the planes
z =0 and y = 0. The circle centered at (2j —1,0,0), 1 < j < g, of radius
1/2, lies in the boundary of Hy: it is the standard j-th longitude of H,.
The circle of radius 1 in the plane z = 2j — 1 centered at (2j — 1,1,0),
1 <j < g, is the standard j-th meridian of H,. It also lies in the boundary
of Hy. All the standard handlebodies are orientable as submanifolds of R3:
we choose the orientation so that the outward normal vector is last. The
map mir : (z,y, z) — (x,y,—2) is an orientation reversing homeomorphism
that restricts to Hy. It is the standard orientation reversing homeomorphism
of Hy. A closed oriented surface is standard if ¥ is empty or if there exists
g € N such that ¥, = 0H,. The standard j-th longitude, resp. meridian, of
¥4 is the standard j-th longitude, resp. meridian, of H,. The orientation
of each meridian is chosen so that it moves counterclockwise in the plane
x = 2j — 1. The orientation of each longitude is chosen so that it moves
counterclockwise in the plane z = 0. The unit vector field tangent to the
standard meridians of 3, is normal to the standard longitudes. Consider a
standard longitude and push it slightly in the direction of this vector field.
This yields a circle parallel to the standard longitude that lies in Y, which
we call the standard parallel longitude.

DEFINITION 12.1. A standard 3-cobordism is a 3-cobordism (M,%_, 3 )
whose bases are finite disjoint unions of standard surfaces.

ExAMPLE 12.1. The standard handlebody H, can be regarded as the stan-
dard cobordism (Hy, =X, @) or (Hy, @, ).

The definition of a standard cobordism is rigid. It is completely dependent
of our geometrical model of a closed surface of genus g. The idea is to
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make all the gluings and all the computations using standard cobordisms
and standard surfaces.

Two standard cobordisms (M,X_, %) and (N,X" ¥’ ) such that 3, = X"
can be composed by gluing along the common basis: N oM = N u M.
Composition is an associative operation.

We need to define an equivalence relation on cobordisms. A first attempt
could be to define a weak equivalence between two standard cobordism as an
orientation preserving homeomorphism that sends the bottom (resp. top)
base to the bottom (resp. top) base. If two standard cobordisms are weakly
equivalent then their bottom and top bases respectively coincide. We cer-
tainly want this property to hold. As any homeomorphism restricts to a
homeomorphism of the boundary, the only difference between this defini-
tion and a general homeomorphism is to distinguish between top and bottom
bases. So we are left with the following definition.

DEFINITION 12.2. An equivalence between two standard cobordisms is an
orientation preserving homeomorphism that induces the identity on the
bases.

Denote equivalence by ~.

LEMMA 1.1. Let M, M’, N, N’ be standard cobordisms. Suppose that N o M
and N'oM' are well-defined. If M ~ M’ and N ~ N’ then NoM ~ N'oM’.

PRrRooFr. Trivial. [ ]

LEMMA 1.2. FEquivalence classes of standard cobordisms form a small cate-
gory with finite coproducts (disjoint unions).

PrOOF. Cobordisms are morphisms between two standard surfaces (pos-
sibly empty). Formally speaking, an object is a finite sequence of elements
in {*,0,1,2,...}. We set ¥, = @. For instance, a morphism between g_
(one term sequence) and g4 (one term sequence) is represented by an el-
ementary standard cobordism (M, %, , %, ). In general, a morphism be-

tween (g7,...,9,) and (g7,...,9F) is a standard cobordism with bottom
base (resp. top base) a surface with connected closed components of genus
gy s>, (resp. of genus g ,...,gS) respectively. The notion of equiva-

lence enables to have an identity cobordism for each object g € {*,0,1,2,...}:
it is empty if the object is * or it is the cylinder ¥4 x [0, 1] otherwise. W

The category of equivalence classes of standard cobordisms is denoted Cob®.

DEFINITION 12.3. A parametrized 3-cobordism is an oriented 3-cobordism
(M,¥X_,%4) equipped with two orientation preserving homeomorphisms
fo Xy — X_and fi : X, — X respectively.

EXAMPLE 12.2. The standard handlebody Hj of genus g can be regarded as
a parametrized 3-cobordism (Hg, @, ¥,) parametrized by the identity f; =
idp,. More generally, any standard cobordism provides an example of a
trivially parametrized cobordism with identity parametrizations.
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DEFINITION 12.4. Let (M,¥_,%) and (N,%;,X;) be two parametrized
cobordisms such that there is an orientation preserving homeomorphism
sending ¥y to X1. Let g be the genus of ¥y. Denote by fo: Xy — X9 < M
and fi : ¥y — X1 < N the parametrizations of ¥y and ¥; respectively. The
composition N o M of N and M is defined as

NoM=N][[Z,x[-L1]] [ M.
fi fo

Here the identifications are given by (s,—1) = fo(s) for all s € ¥, and
(s,1) = fi(s) for all s € X,.

Loosely speaking, we glue a cylinder (over the basis ¥,) to the disjoint union
N[ M via the respective parametrizations. See Fig. 1.1.
>

AZI

g x [-1,1]

/\20

/\Z
. Ja—

FiGURE 1.1. Gluing two parametrized cobordisms.

DEFINITION 12.5. Let (M,X,,¥_) and (N, X/ ,X" ) be two parametrized
cobordisms. Let g4 (resp. g—) denote the genus of the surface X, (resp.
g-). Let f_, f+, f_, f. be the parametrizations of ¥_, X, 3" /¥’ respec-
tively. An equivalence between M and N is an orientation preserving home-
omorphism F': M — N inducing homeomorphisms on the bases such that
Fls_of-=fland Fls, o fy = f}.

LEMMA 1.3. Let M,M',N, N’ be parametrized cobordisms. Suppose that
NoM and N'oM' are well-defined. If M ~ M’ and N ~ N’ then NoM ~
N oM.

PROOF. Let Fy (resp. Fys) be an equivalence between N and N’ (resp.
between M and M'). Let g be the genus of the bottom base of N which
coincides with the genus of the top base of M. Define a map

FoN[[Ex[-1,1][M > N][Z x [-L 1] [M

Fn(z) ifxeN
F(z) = x ifreX x[—-1,1]
Fn(z) ifze M.
This map induces an orientation preservation homeomorphism F': NoM —

N’ o M’ which commutes with the parametrizations, hence is an equivalence
between N o M and N’ o M. |

by
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LEMMA 1.4. Equivalence classes of parametrized cobordisms form a small
category with finite coproducts (disjoint unions).

PROOF. An object is a finite sequence of elements in {x,0,1,2,...}. We
set ¥, = @. For a finite sequence g = (g1,...,9r), let 3, denote the
disjoint union of the standard surfaces X, ,...,%, . A morphism between
(g97,---,g,)and (g7 ,..., gF) is represented by a triple (M, f_, f) where M
is an oriented cobordism (M,¥_,¥;), f-: ¥, — ¥_ and fy : ¥, — X}
are orientation preserving homeomorphisms. The identity morphism is rep-
resented by a cylinder with identity parametrizations on the bases. The
other axioms are easily verified. |

The category of equivalence classes of parametrized cobordisms is denoted
CobP?",

Any parametrized cobordism (M, ¥_, ¥ ) yields a standard cobordism (M X 2g,)
as follows. We set g+ to be the genus of X1. (If X is empty, then we choose
¥4, to be empty.) We define

M = (Zg— H M H g+
I
The identification are given by (s,1) = f_(s) for all s € ¥, and (s,0) =
fi(s) for all s € B, . Clearly M is a standard cobordism (M,%, ,%.)
obtained by gluing the cylinders over 3, (resp. 34, ) to ¥_ (resp. X) by
means of the parametrization f_ (resp. fy) along ¥, x {1} (resp. along

Ygp x {0}).

LEMMA 1.5. If M and N are two equivalent parametrized cobordisms then
M and N are two equivalent standard cobordisms.

PROOF. Suppose there is an equivalence F' : (M, X_, %) — (N, X, X))
between two parametrized cobordisms. It follows that the genus of the bases
coincide: g— = ¢’ and g4 = ¢/,. Define a disjoint union of maps

(g x[0, D] [ M [ [(Zg_x[0,1]) = (g, x[0, 1N ] [ N [ [(Sg x[0,1])

by
z ifzeX, x][0,1]
F(z) =X F(z) ifzeM

x ifzeX, x][0,1].

Since F' commute with parametrizations, the maps glue together to induce
amap (M,¥, ,%, ) — (N,X,, Z;+) between standard cobordisms. The
map is easily seen to be an orientation preserving homeomorphism. By

construction, it preserves pointwise the bases. It is therefore an equivalence.
|

PROPOSITION 1.6. The assignment M — M induces a covariant full functor
CobP¥ — Cob?.
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PROOF. Lemma 1.5 implies that the assignment is well defined at the
level of equivalence classes. Let F : CobP® — Cob” denote the correspond-
ing assignment. The identity morphism of the object ¢ = (g1,...,¢r) in
CobP* is represented by the cylinder C' = 3, x [0,1] with the identity as
parametrization of the bases. It follows from the definition that C' = C' in
Cob®. Thus F sends the identity morphism of g in CobP* to the identity
morphism of g in Cob®. The identity F(N o M) = F(N) o F(M) follows
from Fig. 1.2. By Example 12.2, any standard cobordism is realized as the

Yy, x [0,1] NoM ¥, x[0,1]

Y, . Yo%,

\_/

9+

N

LY LY LY LY
L L L L
[ [ [ [
T T [ [
[ [ [ | '
' | ' | ! | ! '
N o Mo
= ! ! ‘
- - - v
Ny Ny Ny Ny
Yy =3

g

g

+

FIGURE 1.2. The composition N o M.

image of a trivially parametrized cobordism. Hence F' is a full functor. W

2. The Lagrangian cobordism category

Let A be a symplectic lattice. As is customary, we denote by —A the same
underlying lattice A with the symplectic pairing opposite to that of A. In
particular, if ¥ is a closed surface, then H;(—X) = —H;(X). Any orientation
preserving homeomorphism ¥ — ¥ induces a symplectomorphism H; (X)) —
Hy(%).

The following definition should be seen as a motivation.

DEFINITION 12.6. A Lagrangian cobordism is an oriented compact 3-cobordism
M,¥_, %) endowed with

(1) Lagrangians A~ < Hy(X_) and AT < Hi(X4).

(2) A Lagrangian Ay < Hi(0M) = —H1(X_)@® H;1(2) such that Ay,
is transverse to the Lagrangian A~ @ A" in H1(0M) = —H1(X_)&
Hi(52).

REMARK 12.1. The condition (2) is equivalent to An A~ = A n At = 0.
This follows from Lemma 1.5.

REMARK 12.2. The Lagrangian Ajs associated to the cobordism M is de-
composable. This follows from Lemma 1.2.
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EXAMPLE 12.3 (Meridional and longitudinal Lagrangians). For any stan-
dard surface ¥, there are two distinguished and transverse Lagrangians,
namely the Lagrangian generated in 1-homology by the meridians of ¥,
(the standard meridional Lagrangian) and the Lagrangian generated in 1-
homology by the longitudes of ¥4 (the standard longitudinal Lagrangian).

EXAMPLE 12.4 (The trivial Lagrangian cylinder). Let M = ¥ x [0, 1] be the
oriented cylinder over a standard surface 3 = 3,. We endow X x {0} (resp.
¥ x {1} with the longitudinal Lagrangian A" (resp. A7) in Hy(X x {1})
(resp. Hi(X x {0})) generated in 1-homology by the longitudes l1,...,1,
of ¥ x {1} (resp. Hi(¥ x {0})). We endow M with the Lagrangian Ajs
generated in Hy(0M) = —H; (X x {0}) & H; (2 x {1}) in 1-homology by the
meridians of 3 x {1} and ¥ x {0}. Clearly Aj is transverse to A~ @A™, The
cobordism acquires a structure of Lagrangian cobordism called the trivial
Lagrangian cylinder.

ExaMPLE 12.5 (Lagrangian cobordism associated to a parametrization). Let
f X4 — X be an orientation preserving homeomorphism (a parametriza-
tion). We associate to f a Lagrangian cobordism C(f) as follows. As a
cobordism, C'(f) is obtained by gluing two cylinders ¥, x [0, 1] and ¥ x [0, 1]
via f:
C(f) =% x[0,1]] [ £, x [0,1]
!

with the identification (s,1) = (f(s),0) for all s € 3. Hence C(f) is an
oriented cobordism between ¥, and Y. To the bottom base we associate
the standard longitudinal Lagrangian A~ < H;(X,). To the top base we
associated the Lagrangian f(A~) < H;(X¥). To the cobordism C(f), we
associate A = Graph(fs). Clearly A is transverse to A~ & f(A™). The
case when f = idy, yields the diagonal Lagrangian for A and the trivial
Lagrangian cylinder.

DEFINITION 12.7. The composition of two Lagrangian cobordisms (M, ¥ _, )
and (N, Xo, X, ) is defined as the underlying composition of the two cobor-
disms N o M = N u M endowed with the Lagrangians of the bottom base
of M and the top base of N and the Lagrangian Axoyr = Ay o Apr. (See
Chap. 5, Lemma 1.1, for the composition of Lagrangians.)

LEMMA 2.1. The composition of two Lagrangian cobordism is a Lagrangian
cobordism.

Proor. This follows from Lemma 1.9. |

DEeFINITION 12.8. Two Lagrangian cobordisms are equivalent if there exists
a cobordism equivalence (an orientation preserving homeomorphism that
restricts to the identity on the boundary) between them sending Lagrangian
onto Lagrangian.

Equivalence classes of Lagrangian cobordisms form a category Cob'®® with
trivial Lagrangian cylinders being the identity morphisms. The assignment

(Ma X, E+) - <A7H1<E—)7 H1(2+)>
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is a functor Cob'®® — Lag;l (Z). As before the category Cob'®® has too
many objects. We now modify this category.

DEFINITION 12.9. A Lagrangian decorated cobordism is an oriented 3-cobordism
(M,¥_,%}) endowed with

(1) A pair of isotopy classes of oriented framed links L~ < ¥_ and
L™ < ¥, such that the subgroups A~ and A" generated in 1-
homology by the components of L_ and L, respectively are La-
grangians in Hy(X_) and Hy (X, ) respectively.

(2) A Lagrangian A ¢ H1(0M) = —H;(X_) @ H1(X+) such that A is
transverse to the Lagrangian A~ @ A" in Hi(0M) = —H1(X_) &®
Hy(X4).

EXAMPLE 12.6 (The trivial Lagrangian decorated cobordism). Let M =
¥4 x [0,1] be the trivial Lagrangian cobordism. If we provide M with the
two underlying sets of longitudes in ¥, x {0} and X, x {1}, then M is called
the trivial Lagrangian decorated cobordism.

ExaMPLE 12.7 (Lagrangian decorated cobordism associated to a parametrized
cobordism). Any parametrized cobordism (M,YX_, ¥ ) yields a Lagrangian
decorated cobordism. The cobordism is topologically the same. Let LT be
the oriented framed link formed by the images of the longitudes of ¥,, by the
parametrization fi : Y,, — ¥,. Similarly let L™ be the oriented framed
link formed by the images of the longitudes of ¥, by the parametriza-
tion f_ : ¥y, — YX_. Let Ay be the Lagrangian in Hi(0M) generated
in 1-homology by the images of the meridians of ¥, and X, under the
parametrizations f; and f_ respectively. Clearly Ay; and A~ & A1 are
transverse. This provides M with the structure of a Lagrangian decorated
cobordism.

DEFINITION 12.10. Two decorated Lagrangian cobordisms M and N are
equivalent if there is an orientation preserving homeomorphism f: M — N
sending the top base (resp. the bottom base) to the top base (resp. the
bottom base), sending the oriented framed link in the top base (resp. in
the bottom base) to the oriented framed link in the top base (resp. in the
bottom base) and sending the Lagrangian Ajs to the Lagrangian Ay .

We now define the composition of two Lagrangian decorated cobordisms
using standard surfaces.

Let (M,X_,%) and (N,X1,3;) be two Lagrangian decorated cobordisms
such that there is an orientation preserving homeomorphism 3y — ;. Let
g be the genus of Xg. Let L° (resp. L') be an oriented framed link inside X
(resp. ¥1). Let 1 < j < g. Denote by [; the j-th longitude of ¥,. Choose
orientation preserving homeomorphisms fo : ¥y — 3¢ and f1 : ¥, — ¥
such that fo(l;) = LY and f1(l;) = L}, i =1,...,9. The composition N o M
of M and N is defined by

NoM=N][]Syx[-1,1] [[M
f1 fo
with the identifications (s, —1) = fo(s) and (s,1) = fi(s) for all s € .
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REMARK 12.3. Each longitude m;, 1 < j < g, has a natural parallel in X:
at each point p € m;, there is a well defined positive normal vector of length
1. The framing of the links L° and L is inherited from the framing of the
longitudes m;, 1 < j < g, in ¥,.

REMARK 12.4. The choice of the homeomorphisms fy and f; is not unique
in general. One should complete the definition of fy and f; by defining
for instance on meridians and extending completely the definition of each
homeomorphism to X,. However, we shall soon see that a different choice
will eventually lead to an equivalent Lagrangian decorated cobordism.

LEMMA 2.2. The composition of two Lagrangian decorated cobordisms has a
natural structure of Lagrangian decorated cobordism.

ProOOF. Two Lagrangian decorated cobordisms (M, ¥ _, %) and (N, X1, %)
are composable if and only if there is an orientation preserving homeomor-
phism ¥y — ¥ sending the link L to the link L' (up to isotopy in ¥1). The
link associated to the bottom base (resp. top base) of N o M is the link L~
(resp. L™) associated to ¥_ (resp. to ;). The links L™ and LT generate
Lagrangians A~ (M) and AT (N) in H1(X_) and H;(X;) respectively.

The only point consists in defining the Lagrangian Aoy in Hi(N o M) asso-
ciated to the Lagrangian decorated cobordism N oM so that it be transverse
to A=(M)& AT (M). Let Ap; and Ay be the Lagrangians associated to M
and N respectively. Our gluing depends on the intermediate links in >
and X1, so we cannot define Ayopr = Ay o Aps as in the case of Lagrangian
cobordisms.

The cobordism N o M can be written as the composition of cobordisms (in
the sense of morphisms of Cob)

NoM=NoC(f1)oC(fy ) oM

where C(f1) and C(fy 1) are Lagrangian cobordisms associated to f; and
fa respectively. (See Example 12.5.) Now regard M and M as Lagrangian
cobordisms as well. We have expressed N o M as the composition of four
Lagrangian cobordisms, hence N o M is a Lagrangian cobordism. Therefore
(in the usual sense of composition of Lagrangians, by Lemma 2.1)

Anonr = Ay o Graph(f1+) o Graph(f;,') o Aw,

where fo. and fi. denote the symplectomorphisms induced in 1-homology
by fo and f; respectively, is a Lagrangian transverse to A~ (M) and A™ (M).

We are therefore forced to define the composition Anops by the formula
above which proves the result. |

The composition is associative and the trivial Lagrangian decorated cobor-
disms represent the identity morphisms.

ProprosITION 2.3. The equivalence classes of Lagrangian decorated cobor-
disms form a category, denoted Cobglg .

PROOF. First, one needs to verify that the composition of two La-
grangian decorated cobordisms, up to equivalence, does not depend on the
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particular homeomorphisms fy and f1 chosen to send the set of components
of the top base of the first cobordism to the components of the bottom base
of the second cobordism. Associativity is a routine verification. |

Example 12.7 shows that a Lagrangian decorated cobordism M is naturally
associated to a parametrized cobordism M.

ProPOSITION 2.4. The assignment M — M induces a full covariant functor
CobP? — Coblffg.

PROOF. Let (M,¥_,%,) be a decorated Lagrangian cobordism with
transverse Lagrangians Ay © Hi(0M) and A~ & AT < H;(0M) respec-
tively. We show that this cobordism is represented by a parametrized cobor-
dism. First the symplectic group acts transitively on pairs of transverse
Lagrangians.

we need to find parametrizations f_ : ¥, — X_ and fi : ¥, — ¥4 such
that the images of meridians |

—~1
REMARK 12.5. We could introduce a more general category CobfiLg by re-
moving the condition of transversality for the Lagrangians. For all practical
purposes, the category Cobifg will suffice.

VOIR SI PLUTOT SUR LA SECTION SUR LES PAIRINGS....

3. Axioms for a 3-dimensional TQFT

The notion of a topological quantum field theory (the emphasis is on ”topo-
logical”) is due to E. Witten [101]. M. Atiyah gives in [1] the first axiomatic
definition of a TQFT. We give here the relevant definitions in dimension 3
with ground field C sufficient for our purposes.

We start with the definition of a modular functor, introduced by G. Segal
[86]. The notion of modular functor relies on a suitable category of surfaces.
Generally, the surfaces are required to be oriented and to have some extra
structure. In the present setting, typically the extra structure will be a
parametrization by a standard surface, an oriented framed link inside the
surface or a Lagrangian in the 1-homology. For a general axiomatization of
these extra structures, the reader is referred to [93].

DEFINITION 12.11. A 2-dimensional Modular Functor, in short a 2-MF, is a
covariant functor from the category of closed oriented surfaces (2-manifolds),
possibly with extra structure, and structure preserving homeomorphisms to
the category of finite-dimensional vector spaces and isomorphisms such that

(1) To each (structure preserving) homeomorphism of closed oriented
surfaces f : ¥ — Y/ is assigned an isomorphism of vector spaces
fi : T(X) = T(X'). The vector space T (X) is called the space of
states of X.
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(2) 7 is tensor multiplicative with respect to disjoint union: for two
(structure preserving) homeomorphisms of closed oriented surfaces
f:X9— X1 and ¢ : of, — X, there is q commutative diagram

T(Sol[5)) — 1% sy [
lz fi®gy J/:
T (X0) ® T(Xh) T(E)®T(E)

3) 7 is dual involutive with respect to orientation reversal: for an
p y
structure preserving) homeomorphism of closed oriented surfaces
p g 1%
f X — Y/ there is a commutative diagram

5t
T(=Y) ——T(-%)

-, |

1
T —=T(®)"
Another equivalent way of stating this is the existence, for any
closed oriented surface X, of a nondegenerate bilinear pairing

ds 1 T(S) x T(=%) - C

satisfying the naturality conditions with respect to (structure pre-
serving) homeomorphisms.
(4) The state space of the empty set (viewed as a closed surface) is C.
(5) The isomorphisms of (2) — (4) compatible with each other and with
the canonical commutativity, associativity and unit isomorphisms
arising from the disjoint union of two surfaces, of three surfaces and
the union of a surface and the empty surface respectively.

We are now ready for the definition of a TQFT. We begin with Atiyah’s
version. We assume that we are given a category of 3-cobordisms. Given two
vector spaces V' and W, we shall often use the canonical linear isomorphism
V*® W — Hom(V,W) induced by the map (¢, w) — ¢(—)w. The inverse
isomorphism is given by Hom(V,W) — V*@W, f — >, e} ® f(e;) for any
basis (e;) of V.

DEFINITION 12.12. An anomaly free 3-dimensional Topological Quantum
Field Theory, in short a 3-TQF'T, consists in the following assignments:

(1) A 2-dimensional modular functor 7 that assigns to a (structure
preserving) homeomorphism f : ¥ — ¥’ an isomorphism of finite-
dimensional vector spaces f; : T(X) — T(X').

(2) To any compact oriented 3-manifold M is assigned a vector 7(M) €

T (0M).
These assignments are subject to the following requirements:

(a) 7 is functorial: for any positive homeomorphism f : M — N of
compact oriented 3-manifolds,

(floar)s(m(M)) = T(N).
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(b) 7 is tensor multiplicative with respect to disjoint union: for two
compact oriented 3-manifolds M and N, the isomorphism

T(@M]JoN) ~ T(M)®T(N)

sends 7(M [[N) to 7(M) ® 7(N).

(c) Behaviour with respect to gluing: consider a compact oriented 3-
manifold M such that M = N][[P][Q and an orientation re-
version homeomophism f : N — —P. Denote by M’ the compact
oriented 3-manifold obtained from M by identifying N with —P
via f. Then the composition

fu@idp@id@ dp@idQ

T(N)®T(P)®T(Q)

T(P)*Q@T(P)®T(Q)

T(Q)

sends 7(M) to 7(M') in T(Q).
(d) Normalization on the cylinder: for a closed oriented surface 3,
7(X x [0,1]) is sent to idy(x under the composition

TEExD)=TE][[-2) = T(E)®T(-3) = Hom(T (%), T()).

(e) Normalization on the 2-sphere and the 3-ball: 7(S?) = C and
T(B?) =1eC.

An immediate consequence of the axioms is that a 3-TQFT yields a numeri-
cal topological invariant of closed 3-manifolds, for if M is a closed 3-manifold,
then 7(M) e T(0M) = T(@) = C; and if f : M — N is a homeomorphism
then functoriality implies that

T(N) = (floan)s(m(M)) = (flg)s(T(M)) = idc(7(M)) = 7(M).

LEmMMA 3.1. If (M,%,Y) is a compact oriented 3-cobordism, that is OM =
=X [Y, then 7(M) identifies naturally to a linear operator T (X) — T (¥/).
Furthermore, if F - (M,X_,%,) — (N,X", X)) is a cobordism isomorphism
then there is a commutative diagram

7)™ 73 )

(Fz)ul l(F|2+)u
7= "L (3.

PROOF. The vector space T(X)* ® T(X') is canonically identified to
Hom(7(X), T (X)), so the first assertion is verified. By definition, F' pre-
serves the bases, i.e. sends Y¥_ onto ¥’ and X, onto ¥/,. Therefore
Flom = Fl_x_[[F|g,. By functoriality (axiom (a)), (F|anr)s identifies
to

(FIEDF@(Fls )i : TE) @T(EL) - T(EL)* @ T(Y))
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via the commutative diagram

(Flanr)s

T(=2-11%+) T(-2L11%4)
T(E)*@T(Z4) TEL*@T(X,)

:l l:

Hom(7(X_),7T(24)) T Hom(T(20), T(2))

By functoriality, (F|aar)y7(M) = 7(N). The desired identity is the commu-
tativity of the last square below. |

LEMMA 3.2. Let M = (M,¥X_,¥;) and N = (N, X", ¥'.) be two 3-cobordisms
and f : ¥4 — ¥ be a positive homeomorphism. Let N oy M denote the
cobordism obtained by identifying ¥y and X' along f. Then Then

T(NoygM)=r1(N)o fyor(M).

PRrROOF. The composition NoyM is obtained from N [ [ M by identifying
¥, and ¥’ along f. According to the gluing axiom, 7(N oy M) is the image
of 7(N [ [ M) under the composition
(3.1)

TEs [T 15150 = TE ) 0 T(E) @ T © T(S))
1d®id®f;®id
——— T(E ) QT(E)QT(E)* @T(5,)

S TE@TEL) ~T(-3-][)).

The desired identity follows from the commutativity of the square

Hom(7(X-), T(3+)) @ Hom(T (24), T(¥,)) > Hom(T (%), T(X}))

- :

TE)RTENTE)*®@T(X,) TE)*QT(E,)

We are now ready to state the desired version of the definition of a 3-TQFT
(due to V. Turaev [93]).

DEFINITION 12.13. A 3-TQFT consists in the following assignments:

(1) A 2-dimensional modular functor 7.
(2) To each 3-cobordism M = (M,¥_, ¥, ) is assigned a linear operator
T(M):T(E2) - T(24).

These assignments are subject to the following requirements:
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(1) Naturality: given two 3-cobordisms M = (M,X_,3,) and N =
(N, ,X¥), there is a commutative square
(M)
T(22) == T(54)
(Fz)ﬁl l(Fler)u

N
7)) "L s,
(7¢) Multiplicativity on disjoint union: given two 3-cobordisms M =

(M,X_,¥;) and N = (N, X, %'), there is a commutative square

T(M]]N)

T(S_11%) TS 1))
T )eTE) Y s e T

(731) Fonctoriality (gluing): given two 3-cobordisms M = (M,¥X_, 3, ),
N = (N,¥ %) and a (structure preserving) homeomorphism
f:34 — X', let Noy M be the cobordism obtained by identifying
Y, and ¥ along f. Then there exists k € C — {0} such that

T(Noy M) =4k t(N)o fyor(M).

The complex number k is called the anomaly of the TQFT.
(7v) Normalization (on the trivial cobordism): 7(¥ x [0,1],X,%) =
idT(Z)‘

The TQFT is said anomaly free if the complex number in (ii7) can always
be taken to be 1.

PROPOSITION 3.3. An anomaly free 3-TQFT in the sense of Definition 12.13
is an anomaly free 3-TQFT in the sense of Definition 12.12 and conversely.

PrROOF. In the direction Def. 12.12 — Def. 12.13, consider a 3-
cobordism (M,3,%'). The image of 7(M) € T(—X][[¥’) under the iso-
morphism

T(-2][¥) = T(2)*®@T(X) ~ Hom(T (L), T(X)

the linear operator assigned in Def. 12.13 (axiom (2)). The naturality and
gluing axioms follow from lemmas 3.1 and 3.2. Multiplicativity on disjoint
union (axiom (ii)) follows from the corresponding axiom (b). Normaliza-
tion on the cylinder corresponds under the definitions (axiom (iv) and (d)
respectively). Conversely, for the direction Def. 12.13 — Def. 12.12, as-
suming an anomaly free 3-TQFT in the sense of Def. 12.13, let M be an
oriented compact 3-manifold with boundary dM. We regard it as a cobor-
dism M = (M,@,0M), 7(M) € Hom(C, T (0M)). Then 7(M)(1) € T(0M)
is the vector assigned in Def. 12.12 (axiom (2)). Reading backwards the
commutative diagrams of the proofs of lemmas 3.1 and 3.2, we see that the
naturality and gluing axioms are satisfied. |
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REMARK 12.6. We have not tried to give a minimal set of axioms for a 3-
TQFT. For instance, one need not a priori assume that the assignment of
an isomorphism f; : 7(¥) — T(X') to a homeomorphism f : ¥ — ¥’ be a
functor: this follows from the other axioms of Def. 12.12, see [4, §4.2, Th.
4.2.3]. Note that this relies strongly on the anomaly free gluing (axiom (c)
in Def. 12.12).

As we have seen, a 3-TQFT gives rise in particular to C-valued topological
invariants of closed oriented 3-manifolds. We are interested in the converse:
given a C-valued topological invariant of 3-manifolds, can it be extended to
a 3-TQFT ? It turns out that under given two simple conditions, the answer
is almost positive. Let us say that a weak TQFT 7 is the same object
as a TQFT, except that it does not necessarily satisfy the multiplicativity
property with respect to disjoint union.

PRrROPOSITION 3.4. Let 19 be C-valued topological invariant of closed oriented
3-manifolds . Assume that for any closed oriented 3-manifolds M and N,

(3.2) (M [N) =7(M)-r(N)
and
(3.3) T0(—M) = 7(M)

where bar denotes complex conjugation. Then there exists a unique extension
T of 1o to a weak 3-TQFT.

The first condition (3.2) is generally easy to satisfy: in general, a topological
invariant of a closed 3-manifold is defined first on a connected closed 3-
manifold. Then the equality (3.2) extends the definition of the invariant
T to non necessarily connected closed 3-manifolds. This is exactly how we
proceeded in Chapter 10, §1.3, Remark 10.3.

PrOOF. We follow the construction in [6]. First extend 7y by linear-
ity to the vector space over C freely generated by all closed oriented 3-
manifolds (possibly with extra structures). For a closed oriented surface
Y, let T(X) the vector space over C whose basis consists of all oriented
compact 3-manifolds whose boundary is parametrized by a (structure pre-
serving) homeomorphism on a standard surface (or a finite disjoint union of
standard surfaces). For M € T(X) with parametrization f and N € T(—X)
with parametrization g, we set M Uxy N = M Ugr-1 N. Define a bilinear
pairing

TXE)®T(-%X) - C, (M,N)=1(M us N).

Let T(X) be the quotient of T'(3) by the left annihilator of (—, —). Then the
induced bilinear pairing ds; : 7(X) ® 7(—X) — C is nondegenerate. Now if
M is a cobordism between 3 and ¥, then 7(M) : T(X) — T (') is defined
as follows. Let [N] be a generator of 7(X). Then

7(M)[N] = [N us M] e T(X)).

It is easy to check that 7 satisfies all the axioms of a weak anomaly free
TQFT. [ |
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However, in general, one does need the multiplicativity axiom to hold as
well as finite-dimensionality of the spaces of states 7(X). To this end, an
additional sufficient condition is required in [93, III §4], but seems hard to
verify in practice on a candidate invariant 79. In the case when the state
spaces are finite-dimensional, then the bilinear pairing dy is nonsingular
(which is the desired property in order for the duality property 7 (—X) ~
T(X)* to hold).

[This and the corollary may be replaced in the paragraph on representations
of mapping class groups.

ProproSITION 3.5. Given a structure preserving homeomorphism f : 3 —
Y/, the isomorphism fy : T(X) — T(X') depends only on the isotopy class
of f.

Proor. Consider an isotopy
2 x [0,1] = X', (z,1) = fi(x)

between two structure preserving homeomorphisms fo = f and fi = g.
We wish to show that f; = gy. It suffices to show that if F' : ¥ — X is
a structure preserving homeomorphism isotopic to the identity, then F} =
idy(g). (Set F' = g~ 'f, apply the result to F so that by fonctoriality,

gﬁ_lofﬁ:(gflof)ﬁzFﬁ:idsofﬁzgﬁ.)

Extend f; to a homeomorphism @ : 3 x [0,1] — X x [0,1] by (s,t) —
(ft(s),t). This is an isomorphism of cobordism. Naturality and normaliza-
tion imply that id oid = Fj o id hence the result. |

COROLLARY 3.6. TFQT Mapping class group

Comments on equivalence. From invariants to TQFTs... etc.]

4. Construction I: filling in

This section is devoted to a first construction of the abelian TQFT asso-
ciated to a quadratic form ¢ : G — Q/Z on a finite abelian group. This
construction relies on “closing” cobordisms by standard handlebodies. The
ground cobordism category is the category CobP* of parametrized cobor-
disms.

4.1. Surgery presentation for parametrized 3-cobordisms. Just
as any closed 3-manifold can be presented by surgery on S3 along some
framed link, we wish to state an analogous result for a compact oriented
parametrized 3-cobordism. One should recover the previous statement if the
boundary is empty. We shall follow and adapt slightly Turaev’s description
[93, IV, §2.3]. Another related approach is developped by Matveev and
Polyak in [63].

Let (M,X_,%4) be an oriented compact parametrized 3-cobordism. The
easiest solution is to fill in M by gluing handlebodies along the parametriza-
tions of the bases and apply the previous statement (Wallace and Lickorish
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theorem) to the resulting closed 3-manifold M: there exists a framed link L
such that M is the surgery on S% along L. A closed tubular neighborhood
of L is a finite union of embedded solid tori. The surgery link is a parallel
of L lying in N (L) in S3 (each component lying on the boundary of a solid
torus), which we may regard as the boundary of S — Int(N(L)). The com-
plement S% — Int(N (L)) is embedded inside M. By isotoping the original
link L in S3, we may assume that the surgery link avoids the handlebodies
embedded in M. Recall that the bases are parametrized, so we consider the
images of the standard longitudes. Since the standard longitudes are ori-
ented and trivially framed, the images inherit an orientation and a framing,
hence form an oriented framed link inside M. Note that the link consists
of the union of two distinguished sublinks corresponding to the bases of the
cobordism. This link lies in the complement of N (L) so can also be regarded
as a link LT u L™ in S3. Note that the links L™ and L~ come endowed
with distinguished neighborhoods, namely the embedded handlebodies of
the top and bottom bases respectively. First we isotop the handlebodies in
S$3 = R3 U {0} so that the top handlebodies lie in R? x [1/2, 1], the bottom
handlebodies lie in R? x [0, 1/2] and the link L lies in the complement of the
handlebodies inside R? x [0,1]. Then by means of isotopy, we realize each
genus g handlebody H as the union H = N(R) u N(uiji) where

(1) R is a rectangle (the direct product of two intervals) and N(R) is
a closed regular 3-dimensional neighborhood of R;

(2) (LJi )je is a set of g oriented band (for H) and N(ujL;—r) is a closed
regular 3-dimensional neighborhood of UjL;_r whose components
are g solid tori.

(3) R n v jL;—r consist of 2¢ aligned small intervals and dN(R) n

N (Uiji) consist of 2¢ discs whose boundaries are (images of the

standard) meridians lying in a plane parallel to R? x 0.

Such a triple (L™, L, L") verifying these conditions is called a (surgery) link
presentation of the cobordism M. The union (L~ u L u L") —Int(N(R)) is
a framed tangle T— v L U Tt with ¢~ bottom strands and ¢g* top strands.
The triple (T~, L,T%) is called a tangle presentation of the 3-cobordism M.
Clearly the two presentations are equivalent: a tangle presentation gives
rise to a link presentation with distinguished handlebodies and a link pre-
sentation with distinguished handlebodies determines a tangle presentation.
In particular, to a surgery presentation is associated an extended linking
matrix.

Conversely, suppose given a triple (L_, L, L) of disjoint oriented framed
links in S3. Let g+ the number of components of L. There is a positive
homeomorphism f1 sending the standard oriented trivially framed multi-
longitude of the standard handlebody H,, of genus g+ to Li. The home-
omophism fy extends to an embedding, still denoted fi, of the standard
handlebody H,, of genus g+ into S3. We may assume that the images of
f— and fi are disjoint.
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FIGURE 4.1. A surgery presentation of an oriented compact
3-cobordism between two connected bases of genus 2. The
figure on the right is a tangle version; the figure on the left
is the link version.

Cutting out the interior of the handlebodies f_(IntH, ) and f;(IntH,,)
from S? yields an oriented compact 3-cobordism E with bottom base ¥_
and top base X;. The link L naturally lies in F and keeps its framing.
Surgery on FE along L results in a compact oriented 3-cobordism M with
bases 0_M = ¥_ and 0, M = X,. Note that the bases are endowed with
parametrizations induced by f.

EXERCISE 12.1. Generalize the description above to the case of a cobordism
with non-connected bases.

PROPOSITION 4.1. Any compact oriented parametrized 3-cobordism (M,¥_, %)

can be realized as the surgery on S along some triple (H_,L,H,) as de-
scribed above: M = s(S3,L_,L,Ly).

DEFINITION 12.14. A triple (L_, L, L) such as in Prop. 4.1 is called a
surgery presentation for M = s(S3 L_,L,Ly).

4.2. The composition of cobordisms in terms of surgery pre-
sentation. Consider a parametrized 3-cobordism P = N M obtained from
3-cobordisms M and N by gluing along a positive homeomorphism 0, M —
0_—N commuting with parametrizations of the bases. Suppose that M is
given a surgery presentation (T, L,T%) and N is given a surgery presen-
tation (T'~, L', T'"). Define a new triple

(T, L/, T o (T, L, T*) = (T, Lu (T'"" o TT) U L', T'"")

by composing the intermediate tangles (note that the composability of the
cobordisms implies the composability of the tangles). See Fig. 4.2.

PROPOSITION 4.2. The composition (T'~,L',T'"") o (T~,L,TT) of tangle
presentations of M and N is a tangle presentation of the parametrized 3-
cobordism N M.

4.3. Definition of the TQFT. Let (M,X_,¥ ) be a Lagrangian dec-
orated cobordism. For simplicity we shall assume first that ¥_ and X, are
connected.

By definition, M is endowed with two parametrizations f_ : ¥, — ¥_ and
fr:8g, > Xy Let Hy = (X4 xI)uy, (—Hgy,) be the 3-manifold obtained
by gluing a cylinder to the standard handlebody via the parametrization
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o [ re=

__L _____ Co-m B

FIGURE 4.2. The surgery presentation of a composition be-
tween two cobordisms.

map fy @ Xy, — X4 x {1}. Similarly let H_ = (X_ x I) uy_ H,_ be the
3-manifold obtained by gluing a cylinder to the standard handlebody via
the parametrization map f_ : £, — 3_ x {0}. We define the state space
associated to the bottom and top bases by

(4.1) T(31) = o/ (Hy).

Thus as a vector space, 7 (X4) is generated by the 1-homologies of the
standard colored longitudes and is isomorphic to L?(G ® A4+) where A4
denotes the abelian group freely generated by the 1-homology of standard
longitudes in Hy, . In particular, 7(X+) has dimension |G|%*. Note that
the state space T (24) depends on the parametrization.

LEMMA 4.3. A structure preserving homeomorphism f : ¥ — Y/ between
parametrized surfaces gives rise to an isomorphism fy @ T(X) — T(X')
induced at the level of the skein spaces.

The homeomorphism is assumed to preserve the extra structure of the
parametrization: if h : ¥, — ¥ and A’ : £; — ¥/ are parametrizations,
then foh=h.

PROOF. For simplicity assume that ¥ and ¥’ both are connected and
have genus g. Extend f : ¥ — ¥’ to a homeomorphism (f x idjo 1) [ [idg, :
(2 x[0,1])[[Hy — (¥ x [0,1]) [[ Hy. By assumption on f, this homeo-
morphism extends to a homeomorphism

H= (X x[0,1]) up Hy — (X' x [0,1]) uy Hy = H'.

This map induces an isomorphism f; at the level of the skein spaces (cf.
Lemma 1.3). |

Consider the closed oriented manifold

~

(4.2) M=H, vy Muy, Hy,

obtained by gluing two standard handlebodies to M via the parametrization
maps.
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Xg_ D N Y.

FiGure 4.3. Closing off by standard handlebodies.

Note that

M~H vus Mus, Hy.

Let £~ (resp. L£1) be the image by f_ (resp. by fi) in ¥_ (resp. in X})
of the standard longitudes of 0H,_ (resp. 0H,, ). We denote by the same
symbol the induced links in M after the gluing. Since a standard longitude
has a preferred standard parallel, each link comes with a framing. We define
C-linear map 7(M) : T(X_) — T(X4) by
(4.3)

r(M) (L (e = |61 S 7 (L) U £F(es) (LT ()

C+€Gg+
for any c_ € G9-.

In the general case, when the bases are not necessarily assumed to be con-
nected, each base is a disjoint union of connected closed oriented surfaces
Y,...,%, and Ef,...,Ea, with genera ¢;,...,g, and gf,...,g;; re-
spectively. Note that r_ and r, are the number of components of ¥_ and

>+ respectively. We say that
g+ =9+ + 05,

is the total genus of the base ¥ 1. In accordance with the axioms, we set
T(21) = ®2, T(S5). We fill in the bases of M in the same way as
above, using the parametrizations for each connected component of ¥_ and
>4, respectively. Call the resulting manifold M. As before, we consider
the images of the standard longitudes by the parametrizations. The only
difference is that £* has g4 = g;—r + -+ g;ﬂ components. Then we define
the cobordism operator 7(M) by the same formula as above (4.3) paying
attention to the fact that now g denotes the total genus.

THEOREM 4.4. The assignment 7 : CobP* — Vectc, (M, X_,X;) — 7(M)
is a 3-TQFT.

The complete proof of this result is a detailed version of [16, Theorem 2] and
consists in a verification of the axioms of a TQFT (Def. 12.13). We need
an auxiliary construction formalizing surgery in the setting of cobordisms in
order to present a proof of Theorem 4.4. We do this in the next section.
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4.4. Proof of Theorem 4.4.

PROOF. Considez\the rule that assigns to a parametrized surface X its
state space T(X) = o/ (H) (see (4.1)) and to an orientation and parametriza-
tion preserving homeomorphism f : ¥ — ¥’ the linear map f; : T(X) —
T(X'). By Lemma 4.3, fy is a linear isomorphism. This rule is easily seen to
be functorial and to satisfy the conditions (1), (2) and (4) of the definition
of a modular functor (Def. 4.3). The multiplicativity property on disjoint
unions of closed surfaces follows from the definitions. For disjoint unions of
cobordisms (M,¥X_, %) and (N,X_,%"), 7(M ][] N) is a linear map

TEIOTE) ~T(E-[[2) - T [[£) ~ T(E) @ T(,).

Consider the image by the parametrization in ¥_ and X’ respectively of
the respective standard longitudes. The image splits as disjoint union of
framed colored links in ¥ and ¥’ respectively. Under the isomorphism
TE_J][X) ~T(E-)®T(XL), the image becomes the corresponding ten-
sor product of skeins. The naturality of the assignment M — 7(M) (axiom
(7)) follows from definitions, as well as the multiplicativity on disjoint unions
(axiom (i7)).

Let us prove the normalization axiom (axiom (iv)). First consider the trivial
cobordism (¥ x [0,1],%, ) for a connected genus g closed surface X. First,
by definition T(X) = A(H) = C[G®A] where H is an oriented handlebody
such that 0H = 3. We apply formula (4.3). Recall that each parametriza-
tion is the identity.

S3 if g =0;
7,82 x 8t ifg=1.

Proof of Claim 1. Consider the case g = 0. The cylinder is a cylinder
over the 2-sphere S2. Gluing a 3-ball along —0_(S? x [0,1]) = S? yields
another 3-ball. Gluing another 3-ball to its boundary yields the 3-sphere
S3. Consider now the case ¢ = 1. Consider the first parametrization of
Y_ =—0H = —0_(X x [0,1]), sending meridian onto meridian. The result
of the identification is H u (¥ x [0,1]) ~ H. After identification along the
parametrization of ¥ = 0, (X x [0, 1]), the identification space is the gluing
of two solid tori with identification of the meridians, hence S? x S'. The
case g = 2 is handled similarly using connected sums.

Claim 1. M = {

The picture below represents a tangle presentation of a parametrized ori-
ented compact cobordism, that consists of g oriented and 0-framed bottom
arcs, ¢ oriented and O-framed top arcs and and oriented O-framed link in S3
that consists of g individually unknotted circles.
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Claim 2. The picture is a surgery presentation in S for the standard cylinder
¥ x [0,1] of genus g.

Proof of Claim 2. See [93, IV, §2.6] for a detailed proof.

Each £7(c—) (resp. L7 (c—)) is a standard colored multi-longitude of 3. In
order to compute (4.3), we need to compute 7(1\7, L7 (=) u LT(cq)). In
order to do this, we apply the formula (2.2). Consider the surgery presen-
tation above of (1\7, L7 (c=) u LT (e4)). The extended linking matrix A for
the ordered pair of links (Lo, L~ u L) is read off from the picture above:

0 —I, I,
A==, 0 0 |,
I, 0 0

c
(by®Iy)(ct — ¢ ,x), x € GI. Note that the map = — (by ® Iy)(c¢™ — ¢,z
is a group homomorphism G9 — Q/Z. Hence

) GlY if ¢t —c =0;
w;gx((qC@A)(%C 70+)):{ ‘o’ ;f(c:+—2*4=0-

Applying the surgery formula (2.2), we find that
T(M, L7 U L",q) =v(G,q) " G172 Y x((by® A)(cT — ¢, )

zeGY
= 6,4 . |GI9/%.
We deduce from the formula for the cobordism (4.3) that
T(M)(L (c-)) = (LT (c-)), c- e

Since 7(¥-) = T(X4+) = T(¥), we deduce that 7(2 x [0,1]) = idy(5). This
proves the normalization axiom for a connected closed surface. The general
case of a cylinder of a possibly non-connected closed surface is similar.

We now verify the gluing axiom (iii). Consider two parametrized cobor-
disms (M,X_,¥;) and (N, X", ¥, ) with a positive homeomorphism ¥, —



4. CONSTRUCTION I: FILLING IN 249

¥ identifying the top basis of the first cobordism with the bottom ba-
sis of the second cobordism, commuting with the parametrizations of the
bases. Denote by N M the composition of the two cobordisms, obtained by
identifying ¥, with ¥’ . We shall use the tangle presentation for cobor-
disms. Assume that M is given a tangle presentation (T, L,T%) and N
is given a tangle presentation (7"~,L’,T'"). Then according to Prop. 4.2
(T, LuT'~oTt u L' ,T') is a tangle presentation for NM. Let A be
the extended linking matrix associated to (T, L, T") and B the extended
linking matrix associated to (7", L', T""). Note that both A and B have a
natural 3 x 3 block decomposition:

- L Lt %

A — L~ A,’, A,70 A,,Jr B— L'~ B,,, B,’O B77+
L | Ay~ App Aoy’ L' | By~ Boo DB+

LY Ay Ay Ay L' | By~ Byp By

It follows from definitions that the extended linking matrix C' for the com-
position (T-,Lu T~ oT*T U L', T'") is

L~ L T=oT* L LTt

I A~ A, A, 0 0

C— L Ap,— A()’() A()’_;_ 0 0
T=oT™* A+7_ A+,0 A+7+ + B_7_ B_70 B_7+
L 0 0 By, - Boo Bo+
Lt 0 0 B, _ Bio Bys

Let x = [¢, @, @0, 2/, '] where ¢ € ZITEN g e ZITDI| 5 e Zlmo(T T —
Zlmo Wl = Zlmo(L) 4t e Zlmo(N] and ¢ € ZIT@™I Then

c x
xCxTz[c:Emo]A x +[ZL‘O x c’]B 33(?
To c

It follows that
((R®C)(x) = (¢®A)(c, 2, 20) + (¢ B) (20,2, ).

Hence
(4.4)
D x(@®0)(x) = > x((a®A) (e, x,2.)) x((¢® B) (o, 2, )
=22 x(@®A) (e, z,20)) Y x((a® B) (s, ', ).

Note that the number of components of the new surgery link (for NM) is
|mo(Lu T~ oTH U L) = |mo(L)| + |mo(T"~ o TH)| + |mo(L')| = |mo(L)] +
g+ (M) + |mo(L)|. The signature of the linking matrix for the new surgery
link is sign(L u 7'~ o T* U L’). Comparing the expressions for 7(N),
T(M) and 7(NM), we see that the expression for 7(NM) contributes the

lmo(LuT =0T+ UL 94 (N)Fg4 (M) +|mq (L) |+ ()] .
2 , which

g4 (NM)
term |G|~ = |G|” 2 = |G|
is exactly the contribution of 7(N)o7(M) in powers of |G|. We deduce from
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(4.4) and the definition of 7 for links (2.1) that
T(NM) _ ,Y(G’ q)f(sign(LuT’*oT+uL’)fsign(L’)fsign(L)) T(N) o T(M)

Recall that for a nondegenerate quadratic form ¢, the Gauss sum (G, q)
is an 8-th root of unity, hence is not zero. This completes the proof of the
gluing axiom (axiom (#i7)).

It remains to complete the verification that 7 is a 2-MF, namely the condition
(3) of the definition, which asserts the existence of a nondegenerate bilinear
pairing dy, : T(X) x T(—=X) — C satisfying the naturality conditions with
respect to isomorphisms. Let X be a closed surface. The cylinder Cy =
¥ x [0, 1] can be regarded as the cobordism (C, X[ [ -, @). Accordingly, C
gives rise to an operator dy : T (X[ [ -X) = T(X)®T (—%) — C. Naturality
follows from definitions. We have already seen that the operator associated
to C regarded as a cobordism (C, -3, %) is idy () (normalization axiom).

Then nondegeneracy of ds, follows from [93, III, §2.3]%. |

5. The restorative construction: counting cycles

The construction is the main result of the chapter. It is based on the reci-
procity (Chapter 5). The previous construction provides a description of
the cobordism in terms of a topological Ansatz based on the skein theory of
topological handlebodies and external gluing. The construction in this sec-
tion provides a description of the cobordism operator in terms of invariants
of the 3-dimensional topology of the cobordism itself.

First we fix some auxiliary algebraic data based on the discriminant con-
struction (Chapter 2). As before is provided a homogeneous nondegenerate
quadratic function ¢ : G — Q/Z on a finite abelian group. We shall use
the discriminant construction in the form of a presentation of (G, q) given
by a triple (V, f,v) where f : V x V. — Z is a (nondegenerate) bilinear
lattice equipped with an integral Wu class v € Wu" (f). We note that there
are many choices for the presentation (V, f,v) and for the lift of coefficients
according to a given presentation of (G, q) as a discriminant quadratic func-
tion. However, the outcome of our construction will be independent of all
these choices.

Consider a 3-cobordism (M,%_,3,) in Cobirag. Recall the free abelian
groups A~ = A7, A" generated by the framed 1-cycles L;, (1 <i < g-)
and L, (1 < i < g4) respectively. We shall use the same notation, A~
and A", to denote the Lagrangian they generate in Hy(X_) and H;(X4)
respectively. Furthermore, A~ @ A" is a (decomposable) Lagrangian in

Hi(0M) = —H(X_)® H1(X4). Define two state modules by
T(X4) = C[G® A*].

These are simply vector spaces of formal combinations over C of certain
framed 1-cycles in dM (with coefficients in G) of dimensions |G|9- and
|G |9+ respectively. (The algebra structure on 7 (24 ) will not be used in this

ISince the proof requires only naturality of 7, the normalization axiom (axiom (iv))
and functoriality (gluing axiom (i7)).
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paragraph.) Recall that as part of the definition, the cobordism M comes
with a Lagrangian A in Hy(0M) = —H,(X-) ® H1(X4), which is transverse
to AP AT.

There are two nondegenerate linking pairings. One is the pairing b, : G x
G — Q/Z associated to the quadratic function ¢ : G — Q/Z; the other is
A TAM x TAM — Q/Z where TAM = Tors (H1(M)/ixA) (see Lemma
1.2 and Lemma ?7?). According to Chap. 2, §10 (see Def. 2.9), there is a
characteristic element

0 :gbq7)\M EGRTANM c GRQGAM

of order at most 2.

There are natural maps z;—r :G® AT - G ® G defined as the composition

GRA* > GRZ(5:) —= GR®ZI(M) —= G =GR G,y

where Z;(M) denotes the group of 1-cycles in M and the middle map is
induced by the inclusion homomorphism. For each x € G ® A™, let

Hz) ={ye GRA" | ij([y]) — i ([z]) = 0 G®GAM}.

An informal (and probably more inspiring) way of defining the set H(x) is
to declare that a 1-cycle y € G® AT lies in H(z) if and only if when viewed
inside M, the difference of the cycles x and ¥ lies in the class defined by the
characteristic element § € GQ®T)\M. Since G is finite, the set H(x) is finite.
Note that H(x) can be empty.

ExXAMPLE 12.8. In the case ThAM = 0, then Ay = 0 and # = 0. Thus
H(z)={ye GRA" | if([y]) — iy ([z]) =0 G®GAM}.

EXAMPLE 12.9. In the case GAM = 0, then for all y € G® A", the equality
it ([y]) —ix ([z]) = 0in G GAM = 0 is satisfied. Hence H(z) = G A*.

The 1-cycle kgy = if (y) — 5 () (with coefficients in G) inherits a framing
from the original framings of x and y. This cycle lifts to a framed ori-
ented 1-cycle K,y with coefficients in V¥ by lifting coefficients. Similarly the

characteristic element 6 € G @ Ta M lifts to an element feVt RTAM.

Note that there exists a lift K;, such that [Rg,] = 0 e VEQTAM if and only
if [Key| = 0 € G TAM if and only if y € H(x).

Let K, denote the framed 1-cycle obtained by evaluating (coeflicients of) K,

~

against the integral Wu class v e Wu" (f) € V: %, = (fo ®id) (v ®id)(Ryy)-
We shall need to use the invariant &,(R,) € 3Z/Z defined by (5.1). (As it
was defined, this invariant depends on the choice of a spin structure, but
the spin structure was used only to select a quadratic enhancement of the
linking pairing.) We denote this quadratic form by gp. We denote the
resulting invariant by 65 (%,) € 3Z/Z.
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(5.1)
CA(M) = ~v(TaM, gp)~fe)

7<V ®TAM, f @ qn + (f@ ® XA) (§)> G ® Ga|"2|G|79+/2,

The number Cy(M) € C is independent of the lift § for 6. It is nonzero
because of Theorem 3.1.

We define a linear operator 7(M) = 7(M,q) : T(X_-) — T4+(X4) by setting

(52) T(M)x=Ca(M) ), exp <2m' ((f ® ") (Ray) — 5A(%v)>> y
yeH(x)
for any x € G ® A~ and extending by C-linearity.

In an informal way (forgetting about the choice of the Lagrangian), we may
say that 7(M)x computes a weighted sum of cycles in ¥ almost homologous
to x when viewed inside M.

The major result of the paper [16] is the following theorem.

THEOREM 5.1. The assignment (M,¥_,3) — 7(M) defines a TQFT in
dimension 3.

The assignment actually takes a cobordism (a morphism in the category
Cob¥_.) to a unitary linear operator (cobordism invariant operator). In
particular, 7(M) depends on a Lagrangian A € Hy(0M). It is part of the
statement of Th. 5.1 that if M and N are equivalent, then 7(M) = 7(N).

A consequence of the classification theorem (Th. 4.1).

Let us record a particular case of Theorem 5.1.

COROLLARY 5.2. Suppose that G or TAM has odd order. Then
(5.3)

CA(M) = (T M, qA)_fQ(U’U)’Y(V ®TAM, f ® qA) |G @ GalV|GI 2.

and for anyx e GR A™,

(5.4) T(M)z = Ca(M) ) exp(2mi(q®1ka(Kay))) ¥-
yeH (z)

Proo¥F. Either hypothesis implies that the characteristic element 6 is
zero in homology. Then each cycle k., representing ¢ can be written as a
linear combination, with coefficients in G, of boundaries, say kzy = >, ¢ ®
Ly. Lift coefficients ¢ € G to coefficients & € V! and get a cycle Ry
with coefficients in V¥. Recall that (G, q) is the discriminant quadratic form
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derived from (V, f,v). It follows that

(q®1kp)(kay) = X a(cr)lka(L, Ly) + 254 b (CJ»Ck)lkM(Lka)

(F®q™)(Xpér ® Li) — X3 Q(ﬁk, v)3lka (L, L)
(f ®¢") (Ray) — X, fa(Er, v (%lkA leL’) 0)
(f ® ¢™)(Ray) — 2 fo(&rv) (51 Lk, L) — aa([Lk]))
(f ®¢")(Ray) — 4 (Ro).

Since in homology we can take § = 0 € VI ® TaM, Cx(M) is as stated in
(5.3) and the result stated follows. [ |

COROLLARY 5.3. If TAM = 0 then
(5.5) T(M)z = |G® Galz|G|9+/2 Y exp(2mi(g®1ka) (Kay)) ¥

yeGRAT
if (wh=ig ([=])

A complete proof of Th. 5.1 was given in [16] for v = 0. The same proof
carries over in the general case. Here we wish to make a few comments.
The crucial point in the proof of Theorem 5.1 lies in the exact behavior of
7 under the gluing of 3-cobordisms. To the best of the author’s knowledge,
this is done in an indirect way: the 3-cobordisms are viewed as boundaries
of 4-cobordisms and the composition of the 3-cobordisms is computed as the
boundary of the composition of 4-cobordisms; then Wall’s corrective formula
for the signature of the composition is used to compute the anomaly?. Wall’s
formula involves the Leray-Maslov index. However, the Leray-Maslov index
is an invariant of a triple of Lagrangians (with respect to an antisymmetric
bilinear pairing). We deduce the following result:

THEOREM 5.4. The assignment (M,X_,3) — 7(M) defines a TQFT in
dimension 4k — 1 for any k > 1.

Proor. Each closed (4k — 2)-manifold is naturally equipped with its
intersection pairing Hog—1(X) x Hop_1(X) — Z which is antisymmetric. In
addition, it is equipped with the isotopy class of framed (2k — 1)-cycles that
generate a Lagrangian. A cobordism M between ¥ and X, is equipped
with a Lagrangian A € Hop_1(0M) = Hop—1(—%_) ® Hor—1(X4+). The defi-
nitions of linking number lky, linking pairing Ay and quadratic enhancement
ga are the same. Then formula (5.2) makes sense for a (4k — 1)-cobordism
M with boundary 0M = —%_[[X;. All the axioms for a TQFT are easily
seen to hold except maybe the gluing axiom. Let N o M be the compo-
sition of two cobordisms (M,¥_,¥) and (N,X,X;). Let A_, A Ay the
respective Lagrangians in Ho,_1(3_), Hor—1(X) and Hog_1(X4). Consider
the standard Lagrangians Ay; = Ker(iy : Hop—1(0M) — Hax—1(M)) and
AN = Ker(iy : Hop—1(0N) — Ha—1(N)) respectively. The subspaces

Ao = (Ap)sA- ={y € Hop—1(2) | (x,y) € Aps for some z € A_},
Ay = (AN)*Ay ={y € Hop_1(X) | (y,2) € An for some z € A}
2The exact computation is not needed, for instance, if one is interested only in the

projective representation of the mapping class groups; in this case, Wall’s formula is not
necessary.
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are Lagrangians in Ho,_1(X). As in the case of 3-cobordisms, one finds that
7(N o M) = 5(G, q) "*=AA)7r(N) o 7(M),

where u(A_, A,A;) € Z denotes the Leray-Maslov index (see for [97] and
[93, IV 4]) of the three Lagrangians A_, A, Ay in Hog_1(X). [ |

REMARK 12.7. A careful reader may notice that not only the cobordism
invariant map 7(M) : T(X_) — T(X4) but the state modules 7 (X+) them-
selves depend on the extra structure on ¥y, namely the oriented framed
links L*. The key dependency is that of the cobordism invariant operator.
If we think of the link L < H;(X) as playing the role of a base of a fixed
Lagrangian, we can identify the module of states T (X) to a fixed vector
space (thought of as a color module). Suppose first that ¥ has genus g and
let A be the Lagrangian generated in homology by the components of L.
Consider the canonical isomorphism

cany, : C[GY] - C[G®A] =T(¥), (z1,...,2¢) » 21 ®@L1+---+24Q L.

Define the color module of ¥ to be T'(X) = C[GY]. Suppose next that ¥
consists of several connected components Xq,...,%,. We define T'(X) to be
the (non-ordered) tensor product of all the color modules of the components:
T(¥) = @)=, T(X;). The isomorphism can T'(X) — 7 (%) is defined to be
the (non-ordered) tensor products of the isomorphisms corresponding to the
components. Then we may define the cobordism invariant operator as a
map
T(E) > T(Zy), 7 (M) = cam}lr o7(M)ocang-.

In particular, a cylinder (with extra structures at its bases) on a surface 3 of
genus ¢ gives rise to an operator T'(3) — T'(X). This is especially relevant in
the next section when we derive representations of the mapping class group
of surfaces from this TQFT.



CHAPTER 13

The return of the Weil representation

According to the general theory, any TQFT in dimension 3 yields a projec-
tive representation of the mapping class group of surfaces. We shall outline
the procedure in our setting and proceed to the explicit computation of the
representation. Then we state in a more precise form the identification with
the Weil representation.

1. The mapping class group and parametrized cylinders

Let ¥ be an oriented connected compact surface of genus g without bound-
ary. Let M(X) denote the mapping class group of 3, that is the group that
consists of isotopy classes of orientation preserving homeomorphisms of 3.
We begin with a tautological representation of M(X).

DEFINITION 13.1. A parametrized cylinder C, over ¥ is an oriented cylinder
¥ x [0, 1] equipped with a homeomorphism ¢ : ¥ x 0 — ¥ x 1.

REMARK 13.1. A parametrized cylinder Cy, over ¥ is equivalently defined
as the oriented cylinder ¥ x [0,1] equipped with a homeomorphism ¥ —
> x 0, parameterizing the bottom base. Thus a parametrized cylinder is a
particular parametrized cobordism (X x [0, 1], ¥ x {1}, ¥ x {0}) where the top
base is parametrized by the identity and the bottom base is parametrized
by a fixed homeomorphism.

DEFINITION 13.2. An equivalence between parametrized cylinders is an ori-
entation preserving homeomorphism ® : Cy — Cy, such that

(L.1) Plsx 1y = ldsx 1} Pluxqoy © ¢(x) = (¥(2),0) forall z e .

REMARK 13.2. Two parametrized cylinders are equivalent if and only if they
are equivalent as parametrized cobordisms.

Denote by Cyl(X) the set of parametrized cylinders up to equivalence.

LEMMA 1.1. The map ¢ — C, from the group of homeomorphisms to the
set of parametrized cylinders induces a map

M(E) — Cyl(X), [¢] — [Cyl.
PROOF. Let (x,t) — ¢(x) be an isotopy between two homeomorphisms

o and @1 of X. We need to show that there is an equivalence between C,,,
and C,,. The map

®: % x[0,1] > X x [0,1], (z,t) = (0reep s )

255
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is clearly a level-preserving homeomorphism and commutes with parametriza-
tions. m

LEMMA 1.2. The set Cyl(X) is equipped with a product defined as follows:
for [Ca], [Cy] € CYI(D), et

CpoCy = (Cu] [ Cy)/ ~.

where for any x € ¥, C, 3(¢(x),0) ~ (x,1) € Cy. In other words, Cy, - Cy
is the cylinder X x [0,1] obtained by identifying the top base of a cylinder
with the bottom base of a cylinder via ¢ and compressing the result in the
t-coordinate. Define a product in Cyl(X) by

[Co] 0 [Cy] = [Cp 0 Cyl.

In other words, the top base of Cy is identified via ¢ with the bottom base
of Cy,. With this product, Cyl(X) becomes a group so that the natural map

M(E) — Cyl(%)

18 a group isomorphism.

PROOF. The product at the level of Cyl(X) is the composition of (equiv-
alence classes of) parametrized cobordisms. Thus the map [¢] — [C,] is
multiplicative. There is obviously a map from the set of parametrized cylin-
ders over ¥ to the mapping class group (X)) that sends Cy, to [¢]. We
claim that this map induces a map Cyl(X) — M(X). Let & : Cp — Cy be
an equivalence between two parametrized cylinders. Let ¢;(z) = ®|5. (4} for
all x € ¥. Then ¢;1(x) = idy and ¢g(x) o ¢ = 1. Therefore f; = ¢ 0@
defines an isotopy between ¢ (t = 0) and ¢ (¢t = 1). Hence [¢] = [¢]. So
we have just defined an inverse map Cyl(X) — M(X), [C,] — [¢]. Cyl(¥)
inherits its group structure from that of 9(X). |

REMARK 13.3. This implies that any obvious generalization of Cyl(X), for
instance homology cylinders, will contain the mapping class groups.

DEFINITION 13.3. A geometric symplectic basis for Hy(X) is a system of 2g
oriented simple closed curves (mi,l1,...,mg,ly) on X such that

(1) the complement ¥ — (m; U ... U my) is connected;
(2) the system ([m1],[l1],...,[mg], [lg]) of their 1-homology classes is a
symplectic basis for the intersection pairing e : Hy(X)x H1(X) — Z.

LEMMA 1.3. For any system (mq,...,m,) of oriented simple closed curves
whose complement is connected, there exists a geometric symplectic basis
extending it.

PROOF. See [27, §1.3]. [

We call the curves my, ..., mgy (resp. l1,...,l;) meridians (resp. longitudes).

REMARK 13.4. We could have as well defined meridians and longitudes as

images by some parametrization of meridians and longitudes of a standard
surface (Cf. §1).
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The surface 3 shall always be equipped with a geometric symplectic basis.
See Fig. 1.1.

Ficure 1.1. The standard oriented surface ¥ of genus g
equipped with 2¢g oriented simple closed curves and g — 1

unoriented simple closed curves. The geometric symplectic
basis of Hi(X) is (m1,l1,...,mg,1lg).

DEFINITION 13.4. A Lagrangian cylinder Cy over an oriented compact sur-
face ¥ is an oriented cylinder C' = ¥ x [0, 1] equipped with Lagrangians
A- c Hi(3_), A" < Hi(24+) and A € H1(0C) such that A@ A~ @ AT =
Hy(00).

A Lagrangian cylinder is a special case of a Lagrangian decorated cobordism
(and hence, a Lagrangian cobordism). As a consequence, a parametrized
cylinder induces a Lagrangian cylinder (cf. Prop. 2.4) as we recall now. Let
C, be a parametrized cylinder. As a parametrized cobordism, C, comes
equipped with two sets of oriented links L~ and L™ respectively: L~ consists
of the image of the longitudes /;,... /7 in ¥_ by ¢ : ¥_ — X_ while LTt
consists of the longitudes I{", ..., l; in ¥, . The links L™ and L" are framed
by the framing given by a small positive collar of L~ and L' in ¥_ and X ..
The links L™ and L™ generate Lagrangians A_ and A, in H1(X_) = H1(X)
and in H;(X4) respectively. The Lagrangian A = A, is generated by the
image by ¢ of the meridians in ¥_ and by the meridians in ¥;. (LA PARTIE
SUR SEIFERT A ETE DEPLACEE.)

2. The modular representation

According to the TQFT 7 defined in the previous chapter, the cylinder
M (h) gives rise to a cobordism map 7(h) : T(X_) — T(X4). Note that
7(h) o 7(h™1) is a multiple of 7(idy), hence a multiple of the identity, it
follows that 7(h) is invertible.

The isomorphism 7(h) depends on the quadratic form ¢: when we need
to emphasize this, we write 7,(h). It follows from Lemma 1.2 that the
cobordism M (h) depends only on the mapping class [h] € M(X).

Any oriented closed surface can be endowed with a geometric symplectic
basis. Since cylinders form a very particular class of cobordisms, we can be
more specific about our choices here. We choose two geometric symplectic
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bases (my, 1y ,...,my, ;) and (m{,1f,...,mJ 1) for Hi(X_) and Hi ()

l

g
respectively, as follows. Since any cobordism M (h) is a cylinder over ¥, the
natural inclusion map

it Y > S x {3} T x [0,1] = M(h)
is a positive embedding which induces an isomorphism
i s Hi(£5+) > Hi(M(h)).
We require the geometric symplectic bases to verify

i (1) = ig (1), iy (my) = iy (m]).
In particular, let

my =iy ([my]),...,mg =i (mf), L = if (IF),... 1y = i} (If).

The set [m1], [l1], ..., [mg], [l4] is a Z-basis for Hi(M(h)).

DEFINITION 13.5. The Lagrangian generated in Hy (M (h)) by l1,...,14 is the
longitudinal Lagrangian and is denoted Y. The state module T'(X) associ-
ated to a standard oriented closed surface ¥ is the group algebra C[G ® T].
More generally, the state module associated to an oriented closed surface
endowed with a Lagrangian A € H;(X) is T'(¥) = C[G ® A].

For a standard surface, the state module T'(X) plays the role of a reference
state module. If f: X, — X is a parametrization of ¥ sending T to A...

By definition 7(h) depends on the choice of geometrical Lagrangians A~
and A" in ¥_ and ¥,. In the particular setting of parametrized cylin-
ders, A~ (resp. AT) is the lattice generated by the oriented framed link
h(Iy), .., h(ly) (resp. by If,...,I}). Note that A~ and A* both identify
to YT in H;(M(h)) via the maps i; and i} respectively. With this identifi-
cation in mind, we can set T'(¥_) =T'(X;) = C[G® T].

The following result is a consequence of Theorem 5.1.

LEMMA 2.1 (Modular representation). The map
M(E) = Aut(T(%)), [h] = 74(h)

defines a projective representation of M(X).

The fact that the representation is projective and not just linear is a conse-
quence of the non trivial anomaly in the TQFT.

Let us describe more explicitly the modular representation 7, above in terms
of the formulas (5.1) and (5.2) for the TQFT given in the previous section.

By construction, i, (A) is the subgroup generated by i, hs([my ]), . .., ix ha([m,])
and iff ([m{]),...,if ([m]). Writing in the basis of Hy(M)
([ ]) = 3 (agk ] + by [mad) s B =1, g,
k

we find that Gy = Hi(M(h))/i«A is the abelian group generated by [l1], ..., [lg]
with relations »}, a; [lx]. In particular, G has rank at most g.
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Therefore, TAM(h) = Tors Coker(aji)i1<jr<g depends only on the matrix
(ajr)1<jk<g- According to the previous section, this matrix has a simple
interpretation:

ajr = ka (i ha(my ), if (1)) € Z.
On the other hand, linking numbers inside M (h) between images of longi-
tudes are rational in general.

The pair (G, Ap) is the discriminant linking group associated to the matrix
(ajk)1<jk<g- The characteristic element § € G ® Gj is the characteristic
element associated to Ay and A\g. Any choice x = (z1,...,24) € GY of colors
determines an oriented framed l-cycle >, x; ® (i~ o h)(I;) in M(h) with
coefficients in G. Similarly any choice y = (y1,...,y,4) € GY of colors deter-
mines an oriented framed 1-cycle };y; ® z'+(lj+) in M(f) with coefficients

in G. Given z = (z1,...,%4) € G9, we set
() = {y = .- 05) € G| i3 <Zyy ) —iy (Zfrj@h*([l‘])) —o}.
J
[0

Choose a lattice presentation (V, f,v) for (G, q) and a quadratic enhance-
ment (G, qx) of (G, Ax). Then we may lift 6 to an element § € V@ Ty M (h)
as before. More generally, we may lift 1-cycles with coefficients in G to
1-cycles with coefficients in V%. In particular, for any choices of colors z, v,
we obtain a 1-cycle Ky, with coefficients in %43

We define a normalization coefficient C'(h) using (5.1):
(2.1) C(h) = CA(M(h)).
Given z € G9 and y € H(x), we define the phase weight associated to y by

Q(z,y) = exp <2m' ((f ® qfr> (%my)) — 51)(%1;)) .

Let ez, € GY be the standard basis of C[GY]. Then

(22) T(flex =C(h)- D, Qw,y) e

yeH (z)
As noted above, it is a consequence of Th. 5.1 that the map
(2.3) M(2) - Aut(C[GY)), [h] — 7(h)
is a projective representation of M(X).

PROPOSITION 2.2. The representation [h] — 7(h) is unitary and factors
through the symplectic linear representation

M(Eg) — Sp(Hi(%)), [h] = ha
induced by homology.

PRrROOF. We first show that 7(h) only depends on hy € Sp(H1(X)). W
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(Since 7(M) = 1 if M is an integral homology 3-sphere, the representation
[h] — 7(h) factors through the symplectic representation.)

The following theorem is our main goal. It asserts that the Abelian TQFT
representation based on a finite quadratic form ¢ is essentially the Weil rep-
resentation associated to ¢q. Together with our description of the Abelian
TQFT representation (2.2), it provides a new description of the Weil repre-
sentation.

We first define the Weil representation in the appropriate setting. The group
G is endowed with its quadratic form ¢ : G — Q/Z, which turns it into a
quadratic group and in particular, into a linking group. The homology
group H;(X) is endowed with its intersection form e, which turns it into a
symplectic group. In particular, the group G ® H1(X) becomes a symplectic
group with the symplectic form b, ® e.

We endow the standard surface Y with the Hopf Lagrangian A and the
corresponding Hopf Seifert pairing 8 : H1(X) x H1(X) — Z (see §77), defined
by

(24 5l o)) = a0 y)

where as usual if : H{(¥4) — Hy(X x [0,1])/i+A denotes the inclusion
homomorphisms. This Seifert pairing 8 induces a Seifert pairing

by®pB: Hi(X;G) x Hi(X;,G) - Q/Z

for the symplectic form b, ® e which we still call the Hopf Seifert pairing.
One needs to select a Lagrangian in G® H1(X) = H1(X; G). We choose the
Lagrangian Lo in H;(X), which induces the Lagrangian G® Lo in H1(%; G).
Define a character x : H1(X;G) — C* by x = exp <2m’(bq ®,6’)).
Consider the Weil representation

p: Sp(H1(%)) — U(L*G ® Lo) = U(C[G ® Lo])
associated to Lagrangian Ly and character x (see §...).

THEOREM 2.3 (“Weil = TQFT”). The TQFT representation [h] — 7(h)
factors through the Weil representation p : Sp(H1(X)) — U(C[G ® Ly]). In
other words, the diagram

Sp(H)(5)) — ASp(H (5 G))

18 commutative.
3. A direct proof of “Weil=TQFT” theorem
In order to identify the Weil representation, we use Proposition 8.1. It

is therefore sufficient to identify the Weil representation on generators of
Sp(H1(X)). We use the list (8.1) provided by Remark 6.10. In the sequel,
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we endow H;(X) with a geometric symplectic basis (See Fig. 1.1 ). There are
three types of generators of Sp(H;(X)), so there are three cases to consider.
First case. Consider a diffeomorphism h : ¥_ — ¥_ such that h(m;) =
l; and h(l;) = —m;, 1 < j < g. With respect to the symplectic basis
([m7],---, [m;], (] [l;]), we have

0 -1
Matp, -y (he) = [ 1, o ]

Hence h represents a generator of Sp(H 1(X)) of the first type. By definition,

A is the Lagrangian generated by m and h(m ) = -, 1<j<yg
Thus i, A is generated by z*([mj]) = [mj] and z* «([m;]) = —i([l]]) =
—[l;], 1 < j < g. It follows that Ga = Hi(M(h))/ixA = 0. In partlcular
TaM(h) =0, Ap =0 and § = 0. Since G ® G = 0, for any z € GY, the set

H(x) consists of all elements y € G9. Let
wey =12 (N @1 ) —ic (Yo @n(;))
J J
= zi(Zw@l;’) +i;(2xj®m_>
J J

be the corresponding framed 1-boundary with coefficients in G. Since

Ikn (i L5, i 1) = Ik (iymy igm; ) = 0,
we find
(g ®1kp) (Kay) =(q®Tkp) Dy ®id 1 + 25 @i, m))
J
= 3 by (s A (i 1 i ).
i<k
We have

Ik (i l]+,z' my ) = lkA(i;m;,i:lj ) = lka(ifm} 1 +l+) m; e, l;.r = djk-
Now apply Corollary 5.3. We obtain
p(hs) g = ‘G‘_g/g Z x((bg ® B)(y,x)) e

yeGRLo
This is the formula (8.2) as desired.

Second case. We have to consider a diffeomorphism A : 3_ — 3_ such that
with respect to the symplectic basis ([my],...,[m ], [l ]--.,[l;]),

1, 0
Maty, oy () = { B 1, }

where B is an symmetric integral square matrix of size g. Note that
Iy, 01 11, O |_ 1, 0
B 1, B 1, | | B+B 1,

X(@g®(B+B))=x(q®B+q®B')=x(q®B) x(¢g®B).

and
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It follows that it suffices to verify the formula for an elementary symmetric
integral matrix B. Let 1 < i < j < g. Let E;; denotes the elementary
matrix defined by (E;;)x = 6k - 6j;. Consider the case when B = E;; + Ej;.
Then A is generated by [m; ] and

m; +1; if k=1
h*([m,;]) = m,; + Z(dlpdjk + 5jp6ik)lp = m; + l; ifk=jy;
2 mj  if k¢ {i,j}
for 1 <k <g. Thus GA\M = Hy(M(h))/ixA is the free abelian group of rank
g — 2 generated by [li],...,[l],[l5],...,[lg]. (Here = denotes deletion.) In
particular, Ty M is trivial, Ay = 0 and 0 = 0. By definition, y € H(z) if and
only if if ([y]) = iy ([x]) in GRGAM. Since Go M is free, Ker(GRQH1 (M) —
GR®GAM) = G®A. It follows that the map i} |gga+ : GRAT > GRGAM
are injective. (Here we use the fact that A and A~ @ A" are transverse
Lagrangians in Hy(0M(h)).) It follows that the equation i ([y]) = iy ([z])
has a unique solution in y. With the identification A" = Lo = A~, this
solution identifies y = .

Third case.

3.1. A second proof.

4. A few computations and examples
5. A modular category

For the definition of a modular category and the construction of quantum
invariants of 3-manifolds from modular categories, we refer to [93, Chap. 2,
Chap. 3]. Let b : G x G — Q/Z be a biadditive pairing on a finite group
G and a : G — Q/Z be a homomorphism such that 2a = 0. In [93, p.77]
(the second “toy example”), V. Turaev defines a modular tensor category
C(G,a,b) as follows.

e Objects are elements of G.

e The set of morphisms is C between two identical elements of G and
the singleton {0} otherwise.

e Composition of morphisms is the usual product in C.

e Tensor product of morphisms is induced by the usual products in
G and C respectively.

e The dual object to an object g € G is g~ 1.

e The braiding c4p, : g®h = gh — hg = h ® g is defined as
exp(2mib(g, h)) where b is a fixed bilinear pairing.

o The twist ty : g — g is defined as exp(2mi(b(g, g) + a(g))) where a.

e The associator (gh)k — g(hk) is the identity (trivial).

This category is known to be a semi-simple ribbon category with the set of
simple objects being G itself. Indeed, the (zy)-th entry of the S-matrix is

Tr(cpy 0 ¢yo) = exp(2mi(b(x,y) + b(z,y) + a(z) + a(y)).
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By definition a semi-simple category (over C) is modular if the S-matrix is
invertible over C.

PROPOSITION 5.1. Let (G, a,b) be a triple as above with b : G x G — Q/Z
nondegenerate. The following three statements are equivalent:

(1) The form
b:Gx G- Q/Z, (x,y) — b(z,y) + by, z)

1s non-degenerate.

(2) a = 0 and G has no cyclic (left or right) orthogonal summand of
even order.

(3) The semi-simple category C(G,a,b) is modular.

PROOF. Preliminary observation: using adjoint maps one sees that b is
nondegenerate if and only if the linking

(z,y) = b(z,y) + alz) + a(y)

is nondegenerate, which implies @ = 0. (1) = (2): suppose (1) satisfied.
Suppose that G has a cyclic orthogonal summand of even order 2k generated
by z € G. Then by [15, Lemma 28],  and b(z,z) = 2b(z,z) have the
same order 2k in Q/Z. But this would imply that b(x,z) has order 4k,
a contradiction since 2k b(:c x) = b2k x,x) = b(O x) = 0. (2) = (1):
suppose that the linking b is degenerate, i.e. Ann( ) ={z e G| bz, -) =
0} + {0}. It induces a nondegenerate hnkmg ' on the quotient G/Ann(b).
Any section of the projection G — G/Ann( ) induces an isomorphism of
linkings
(G,b) ~ (G/Ann(b), V') ® (Ann(b), 0).

By the previous result, since b is nondegenerate, G/Ann(¥') has no cyclic
orthogonal summand of even order. On the other hand, there is xy €
Ann(b) — {0} such that b(zo, —) = 0. In particular,

b(330a m0) = b(xﬂ 7$0) + b($07 1:0) = 07

hence 2 b(xg, o) = 0. This implies that the order of z( is even. It fol-
lows that Ann(g) has even order. Note that the direct sum decomposition
of Ann(b) is orthogonal. Hence Ann(b) contains an orthogonal cyclic sum-
mand of even order. This is the desired result. (3) = (1): modularity is
equivalent to the invertibility of the S-matrix. The latter is equivalent to
the nondegeneracy of (z,y) — b(z,y) + a(x) + a(y) which implies & = 0 and
nondegeneracy of b by the preliminary observation. The converse follows
from [10, Prop. 1.1]. [ |

Any triple (G, a,b) as above gives rise to a homogeneous quadratic form ¢
on G defined, as the sum of the polarization of b and the homomorphism a,
by: q(z) = b(x,x) +a(x), x € G. In this case, the bilinear linking associated
to q is the symmetrized form built from b. Conversely:
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LEMMA 5.2. Any homogeneous quadratic form q : G — Q/Z is the sum of the
polarization of some bilinear pairing b and a homomorphism a : G — Q/Z
such that 2a = 0 if and only if G has no cyclic orthogonal summand of even
order.

PROOF. If G has odd order then the image of ¢ is an odd (cyclic) sub-
group of Q/Z. Thus we can define b(z,y) = (q(z +y) — q(z) — q(y)) for
x,y € G. Then ¢q(x) = b(z,x) for all z € G. If G has even order, consider
any quadratic form ¢ on G that is nondegenerate. Then by [15, Lemma
29], there exists = € G of order k such that ¢(z) has order 2k in Q/Z, while
b(x,z) + a(x) has order dividing k for any bilinear pairing b: G x G — Q/Z
and homomorphism a : G — Q/Z. Therefore, ¢ is not the sum of the polar-
ization of b and the homomorphism a. |

We consider now the case when C(G, a,b) is not modular. A weaker con-
dition than the invertibility of the S-matrix is known in order to construct
a topological invariant from a semi-simple ribbon category (see [10, Prop.
1.6], [13, Appendix A]):

(5.1) Z exp(2mi(b(z, x) + a(x))) + 0.

ze@G
This is a Gauss sum. Using Lemma 7?7, we see that Condition (5.1) is
satisfied if and only if

(5.2) b(xz,z) +a(x) =0 for all z € G such that 2z € Ann(b) = Ker(g).
Without loss of generality, assume that b is nondegenerate. Then (5.2)
becomes

(5.3) b(xz,x) + a(x) =0 for all z € G such that 2z = 0.

Since x — b(z,x) is a homomorphism on {z € G | 2z = 0}, the condition
(5.2), viewed as an equation in a, has always a solution in a € G*.

The next step consists in extending a quantum invariant to a topological
quantum field theory. The modularity is used in a crucial way in this ex-
tension. However, in the case of C(G, a,b), the invertibility of the S-matrix
is used to ensure that the resulting topological quantum field theory is non-
degenerate (i.e., the cobordism invariant on a cylinder may vanish). It is
not hard to see that in the case when C(G, a, b) is semi-simple and satisfies
(5.1), there is a topological quantum field theory associated to G(G,a,b).

We mention an alternative modular category that produces (possibly up to
a normalization real factor) the invariant 7 above. The category in question
— as opposed to the one above — is not strict and includes a non trivial
associator a : (vy)z — x(yz) defined as a,, . = exp(2mih(x,y, 2)), x,y,2 €
G, where h is a map : G x G x G — Q/Z. The braiding is still defined as
above ¢g 4 : ¥y — yx by ¢z = exp(2mib(x,y)) but b is no longer necessarily
biadditive. The maps b and h are required to satisfy the hexagon identity.
It turns out that the pair (b,h) is an Abelian 3-cocycle in the sense of
Eilenberg and McLane [24]. Computations of Abelian Eilenberg-McLane
cohomology were performed by S. Eilenberg and S. McLane themselves [24]
and in particular the identification of H?(A'(G);Q/Z) where Al(G) is a
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certain cell complex associated to G, and the set of homogeneous quadratic
functions G — Q/Z. Further computations were performed by A. Joyal and
R. Street [47], F. Quinn [77] and others. The details of the construction of a
modular category from this data are worked out by F. Quinn [77] and S.D.
Stirling in [90]. The fundamental construction of Eilenberg and McLane
has been generalized by C. Ospel to a nonabelian (“quasi-abelian”) setting
in [73], which in turn, has been further used by V. Turaev to construct
enriched modular categories to incorporate a group action [95].






CHAPTER 14

Solutions and hints to Exercises

Solution to Exercise 1.1. If the quadratic functions are isomorphic, then
5 is a square mod 8, which is easily verified to be not true. |

Solution to Exercise 6.1. Let H be the group defined by

1 a c
H = 0 1 b || abceZ
0 01

and usual matrix multiplication. Define a map ¢ : Z? x Z — H by

1 a c
ela,bye)=10 1 b
0 0 1
We compute that
[ 1 a ¢ 1 a
ola,be)-pd b, dy=10 1 b |[-[| 0 1 ¥
| 0 0 1 0 0 1
[ 1 a+d c+ +al
=10 1 b+ b
| O 0 1
Thus defining the Seifert form by 3((a,b), (¢/,V’)) = al/, i.e. in matrix form,
8= 8 (1) ], shows that ¢ induces a group isomorphism between 5 (Z?)
and H. Only the ring structure of Z is used, so the result remains valid if
we replace the ground ring Z by any commutative ring. |

Solution to Exercise 3.1. The trivial map ev, o, sending Ato 1 ex-
tends to the augmentation map e : Z[A9%d] — 7 sending D e daquad Cz 2 1O

D e dauad Cz- Oince € (X, catey) = [A[ F0 (in Z), Dl catey F 0. ]

Solution to Exercise 3.2. Since ¢ is nondegenerate, for each y £ 0, there
exists z € A such that by(z,y) + 0. Form

a=a(g) = [ [(1—t.y).
y=+0

Note that ev(a) = [ [,1o(1 = x(bg(2,9)) # 0 in C for any injective character.
In particular, a 0. Let us prove that a is a zero divisor. Since A is finite,

267
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t.y is an element of finite order k. Note that 14+t, , +-- -+ t’;y is a nonzero

~

element in Z[A] (apply the augmentation map £). Thus the identity
(I—toy) - (Lbtey+- i) =1t =1-1=0

shows that 1 — ¢, , is a zero divisor.

Next, use the identity occurring in the proof of Proposition 1.1, namely

gaga = Al + )] (Z tw,y> ty.

y+£0 \zeA
It follows from Lemma 1.4 (relation (1.3)) that

gagaa = |Ala+ Z <Z t$7y> at,=|Aa.

y£0 \zeA
=0
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