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Group languages

Group finite presentation:

I a finite set of generators Σ

I a finite set of defining equations E

Word problem: given w in Σ∗, is w =E 1?
Group language: {w ∈ Σ∗ | w =E 1}

I the word problem is in general undecidable (Novikov 1955,
Boone 1958)

I the languages of different representation of a group a
rationally equivalent

I relate algebraic properties of groups to language-theoretic
properties of their group languages

Example: a group language is context free iff its underlying group
is virtually free (Muller Schupp 1983)
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A simple presentation of Z2

I Generators: {a; a; b; b}
I Defining equations: a−1 = a, b−1 = b, xy = yx

a

a

b b

The associated group language is

O2 = {w ∈ {a; a; b; b}∗||w |a = |w |a ∧ |w |b = |w |b}



O2 and computational group theory

I Gilman (2005)
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MIX

MIX = {w ∈ {a; b; c}∗||w |a = |w |b = |w |c}

MIX and O2 are rationally equivalent



The Bach language

I Bach (1981)

Wikipedia entry:
http://en.wikipedia.org/wiki/Bach language



The MIX language

I Marsh (1985)

Conjecture: MIX is not an indexed language.



MIX and Tree Adjoining Grammars

I Joshi (1985)

[MIX ] represents the extreme case of the degree of free word order
permitted in a language. This extreme case is linguistically not
relevant. [. . . ] TAGs also cannot generate this language although
for TAGs the proof is not in hand yet.



MIX and Tree Adjoining Grammars

I Vijay Shanker, Weir, Joshi (1991)



MIX and mildly context sensitive languages

I Joshi, Vijay Shanker, Weir (1991)
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A generalization of context-free grammars

Rule of a context free grammar:

A→ w1B1 . . .wnBnwn+1

with A, B1, . . . , Bn non-terminals and w1, . . .wn+1 string of
terminals.

A bottom-up view:

A(w1x1 . . .wnxnwn+1)← B1(x1), . . . ,Bn(xn)
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A generalization of context-free grammars

Replace strings by tuple of strings:

B(s1, . . . , sm)← B1(x1
1 , . . . , x

1
k1

), . . . ,Bn(xn1 , . . . , x
n
kn)

I the strings si are made of terminals and of the variables x ij ,

I the variables x ij are pairwise distinct (otherwise we get
Groenink’s Literal Movement Grammars),

I each variable x ij has at most one occurrence in the string
s1 . . . sm (otherwise we get Parallel Multiple Context-Free
Grammars).
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Formal definition

A m-MCFG(r) is a 4-tuple (N,T ,P, S) such that:

I N is a ranked alphabet of non-terminals of max. rank m.

I T is an alphabet of terminals

I P is a set of rules of the form:

A(s1, . . . , sk)← B1(x1
1 , . . . , x

1
k1

), . . . ,Bn(xn1 , . . . , x
n
kn)

where:
I A is a non-terminal of rank k, Bi is non-terminal of rank ki ,

n ≤ r ,
I the variables x ij are pairwise distinct,

I the strings si are in (T ∪ X )∗ with X =
⋃n

i=1

⋃ki
j=1{x ij },

I each variable x ij has at most one occurrence in s1 . . . sk

I S is a non-terminal of rank 1, the starting symbol.
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The language generated by an MCFG

Given an MCFG G = (N,T ,P,S), if the following conditions
holds:

I B1(s1
1 , . . . , s

1
k1

), . . . , Bn(sn1 , . . . , s
n
kn

) are derivable,

I A(s1, . . . , sk)← B1(x1
1 , . . . , x

1
k1

), . . . ,Bn(xn1 , . . . , x
n
kn

) is a rule
in P

then A(t1, . . . , tk) with ti = si [x
i
j ← s ij ]i∈[1;n],j∈[1;ki ] is derivable.

The language define by G , L(G ) is:

{w | S(w) is derivable}
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An example

S(x1y1x2y2)← P(x1, x2), Q(y1, y2)

P(ax1, bx2)← P(x1, x2)

P(ε, ε)←
Q(cx1, dx2)← Q(x1, x2)

Q(ε, ε)←

Q(ε, ε)

Q(c, d)

Q(cc, dd)

P(ε, ε)

P(a, b)

S(accbdd)

S(ancmbndm)← P(an, bn), Q(cm, dm)

The language is: {ancmbndm | n ∈ N ∧m ∈ N}
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The well-nestedness constraint

I (x1y1, y2x2)← J(x1, x2), K (y1, y2)

I (x1y1, x2y2)← J(x1, x2), K (y1, y2)

A(x1z1, z2x2y1, y2y3x3)← B(x1, x2, x3)C (y1, y2, y3)D(z1, z2)

A(z1x1, y1x2z2y2x3, y3)← B(x1, x2, x3)C (y1, y2, y3)D(z1, z2)



MCFLwn and MCFL

MCFLwn

{an1 . . . a
n
m | n ∈ N}

{wm+1 | w ∈ {a; b}∗,m ∈ N}

MCFL

{w1 . . .wnznwnzn−1 . . . z1w1z0w
r
1 . . .w

r
n |

n ∈ N,wi ∈ {c; d}+, z0, . . . , zn ∈ D∗
1 }

Staudacher 1993
Michaelis 2005

{w#w#w | w ∈ D∗
1 }

Engelfriet, Skyum 1976

{w#w | w ∈ D∗
1 }

Kanazawa, S. 2010
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A 2-MCFG for O2

S(xy)← Inv(x , y)
Inv(x1y1, y2x2)← Inv(x1, x2), Inv(y1, y2)
Inv(x1y1y2, x2)← Inv(x1, x2), Inv(y1, y2)
Inv(x1, y1y2x2)← Inv(x1, x2), Inv(y1, y2)
Inv(x1x2y1, y2)← Inv(x1, x2), Inv(y1, y2)
Inv(x1, x2y1y2)← Inv(x1, x2), Inv(y1, y2)
Inv(αx1α, x2)← Inv(x1, x2)
Inv(αx1, αx2)← Inv(x1, x2)
Inv(αx1, x2α)← Inv(x1, x2)
Inv(x1α, αx2)← Inv(x1, x2)
Inv(x1α, x2α)← Inv(x1, x2)
Inv(x1, αx2α)← Inv(x1, x2)

Inv(x1y1x2, y2)← Inv(x1, x2), Inv(y1, y2)
Inv(x1, y1x2y2)← Inv(x1, x2), Inv(y1, y2)

Inv(ε, ε)←

terminal rule

well-nested binary rules

rules for constants

non well-nested rules

initial rule

where α ∈ {a; b}

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.
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A graphical interpretation of O2.
Graphical interpretation of the word aaabaabaabbbbbaabbabbbbaaaabbbbbbbbaaa:

The words in O2 are precisely the words that are represented as closed curves:
babbababbabbabbababbaaabbbabbaaaabbabbbaba
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Parsing with the grammar

Rule Inv(ax1a, x2) ← Inv(x1, x2)

Inv(abaabaaababbbabaaabbbabbbbaaaba, babbbbaaaaaababbaab)

Inv(baabaaababbbabaaabbbabbbbaaab, babbbbaaaaaababbaab)



Parsing with the grammar

Rule: Inv(x1y1, y2x2)← Inv(x1, x2), Inv(y1, y2)

Inv(baabaaababbbabaaabbbabbbbaaab, babbbbaaaaaababbaab)

Inv(bbbabaaabbbabbbbaaab, babbbbaaaaaaba)

Inv(baabaaaba, bbaab)



Parsing with the grammar

Rule Inv(x1, y1x2y2)← Inv(x1, x2), Inv(y1, y2)

Inv(bbbabaaabbbabbbbaaab, babbbbaaaaaaba)

Inv(bbbabaaabbbabbbbaaab, bbaaaaaa)

Inv(babb, ba)



Parsing with the grammar

Rule: Inv(x1b, bx2)← Inv(x1, x2)

Inv(bbbabaaabbbabbbbaaab, bbaaaaaa)

Inv(bbbabaaabbbabbbbaaa, baaaaaa)



Parsing with the grammar

Rule: Inv(bx1, bx2)← Inv(x1, x2)

Inv(bbbabaaabbbabbbbaaa, baaaaaa)

Inv(bbabaaabbbabbbbaaa, aaaaaa)



Parsing with the grammar

Rule: Inv(x1y1, y2x2)← Inv(x1, x2), Inv(y1, y2)

Inv(bbabaaabbbabbbbaaa, aaaaaa)

Inv(bbabaaabbbabbbb, aaa) Inv(aaa, aaa)



Parsing with the grammar

Rule: Inv(bx1b, x2) ← Inv(x1, x2)

Inv(bbabaaabbbabbbb, aaa)

Inv(babaaabbbabbb, aaa)
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The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 1: w1 or w2 equal ε:



The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 1: w1 or w2 equal ε:
w.l.o.g., w1 6= ε , then by induction hypothesis, for any v1 and v2 different from ε such
that w1 = v1v2, Inv(v1, v2) is derivable then:

Inv(v1, v2) Inv(ε, ε)
Inv(x1x2, y1y2)← Inv(x1, x2), Inv(y1, y2)

Inv(v1v2 = w1, ε)
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Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 2: w1 = s1w ′
1s2 and w2 = s3w ′

2s4 and for i , j ∈ {1; 2; 3; 4}, s.t. i 6= j ,

{si ; sj} ∈ {{a; a}; {b; b}}:



The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 2: w1 = s1w ′
1s2 and w2 = s3w ′

2s4 and for i , j ∈ {1; 2; 3; 4}, s.t. i 6= j ,

{si ; sj} ∈ {{a; a}; {b; b}}:
e.g., if i = 1, j = 2, s1 = a and s2 = a then by induction hypothesis Inv(w ′

1,w2) is
derivable and:

Inv(w ′
1,w2)

Inv(ax1a, x2)← Inv(x1, x2)
Inv(aw ′

1a,w2)



The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 3: the curves representing w1 and w2 have a non-trivial intersection point:



The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 3: the curves representing w1 and w2 have a non-trivial intersection point:

v1

v2

v3

v4

A B
w1 w2 Inv(v1, v4) Inv(v2, v3)

Inv(v1v2 = w1, v3v4 = w2)



The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 4: the curve representing w1 or w2 starts or ends with a loop:



The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 4: the curve representing w1 or w2 starts or ends with a loop:

v1 v2

Inv(v1, ε) Inv(v2,w2)

Inv(v1v2 = w1,w2)



The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 5: w1 and w2 do not start or end with compatible letters, the curve representing
then do not intersect and do not start or end with a loop.



Case 5

No rule other than

Inv(x1y1x2, y2) ← Inv(x1, x2), Inv(y1, y2)

Inv(x1, y1x2y2) ← Inv(x1, x2), Inv(y1, y2)

can be used.



Case 5

No rule other than

Inv(x1y1x2, y2) ← Inv(x1, x2), Inv(y1, y2)

Inv(x1, y1x2y2) ← Inv(x1, x2), Inv(y1, y2)

can be used.



The relevance of case 5

The word
abbaabaaabbbbaaaba

is not in the language of the grammar only containing the
well-nested rules.







The relevance of case 5: a proof is now in hand

I Joshi (1985)

[MIX ] represents the extreme case of the degree of free word order
permitted in a language. This extreme case is linguistically not
relevant. [. . . ] TAGs also cannot generate this language although
for TAGs the proof is not in hand yet.

Theorem (Kanazawa, S. 12)

There is no 2-MCFLwn (or TAG) generating MIX or O2.



Solving case 5: towards geometry
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Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing w ′
1w

′
2:

w ′
1 = aw ′′

1 a and w ′
2 = aw ′′

2 a w ′
1 = aw ′′

1 a and w ′
2 = aw ′′

2 b

w ′
1 = aw ′′

1 a and w ′
2 = bw ′′

2 a w ′
1 = aw ′′

1 a and w ′
2 = bw ′′

2 b



Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing w ′
1w

′
2:

w ′
1 = aw ′′

1 b and w ′
2 = aw ′′

2 b w ′
1 = aw ′′

1 b and w ′
2 = bw ′′

2 a

w ′
1 = aw ′′

1 a and w ′
2 = a w ′

1 = aw ′′
1 a and w ′

2 = b



Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing w ′
1w

′
2:

w ′
1 = aw ′′

1 b and w ′
2 = a w ′

1 = aw ′′
1 b and w ′

2 = b
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Jordan curves

illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).



A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two

points A′ and D′ inside J such that
−→
AD =

−−→
A′D′, then there are two points B and C

pairwise distinct from A and D such that A, B, C , and D appear in that order on one

of the arcs going from A to D and
−→
AD =

−→
BC .

A D

A′ D′



A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two

points A′ and D′ inside J such that
−→
AD =

−−→
A′D′, then there are two points B and C

pairwise distinct from A and D such that A, B, C , and D appear in that order on one

of the arcs going from A to D and
−→
AD =

−→
BC .

A D

A′ D′



A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two

points A′ and D′ inside J such that
−→
AD =

−−→
A′D′, then there are two points B and C

pairwise distinct from A and D such that A, B, C , and D appear in that order on one

of the arcs going from A to D and
−→
AD =

−→
BC .

A D

B C

EF

A′ D′

G H



A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two

points A′ and D′ inside J such that
−→
AD =

−−→
A′D′, then there are two points B and C

pairwise distinct from A and D such that A, B, C , and D appear in that order on one

of the arcs going from A to D and
−→
AD =

−→
BC .

Applying this Theorem solves case 5.
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A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two

points A′ and D′ inside J such that
−→
AD =

−−→
A′D′, then there are two points B and C

pairwise distinct from A and D such that A, B, C , and D appear in that order on one

of the arcs going from A to D and
−→
AD =

−→
BC .

Applying this Theorem solves case 5.



Winding number

Let wn(J, z) be the winding number of a closed curve around z.

illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).



An interesting Lemma

Let exp :

{
C → C− {0}
z → e2iπz .

Lemma
Given an simple arc

y
AB such that

−→
AB = k ∈ N, we have:

wn(exp(
y
AB), 0) = k



Translation becomes rotation

exp :

{
C → C− {0}
z → e2iπz .

A D

B C

EF

IJ

G H

O

A,D

E,F

B,C

I, J G,H



Translation becomes rotation

exp :

{
C → C− {0}
z → e2iπz .

A D

B C

EF

IJ

O

A,D

E,F

B,C

I, J



An interesting characterization

Lemma
Given an simple arc

y
AD such that

−→
AD = 1, we have:

I
y
AD contains a proper subarc

y
BC such that

−→
AD =

−→
BC iff

exp(
y
AD) is not a Jordan curve.



Jordan curves and winding numbers

illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).

Theorem: There is k ∈ {−1; 1} such that the winding number of Jordan curve around
a point in its interior is k, its winding number around a point in its exterior is 0.



Proving the characterization

Lemma
Given an simple arc

y
AD such that

−→
AD = 1, we have:

I
y
AD contains a proper subarc

y
BC such that

−→
AD =

−→
BC iff exp(

y
AD) is not a

Jordan curve.

Proof

I by 1-periodicity of exp, if
y
AD contains a proper subarc

y
BC such that

−→
AD =

−→
BC ,

then exp(
y
AD) is not a Jordan curve,

I if exp(
y
AD) is not a Jordan curve:

I take the closed curve C obtained by removing the closed subcurves of

exp(
y
AD) that have a negative winding number,

I take a proper closed subcurve D of C that is minimal for inclusion,
I D is a Jordan curve winding positively (i.e. once) around 0,

I D induces a proper subcurve J of exp(
y
AD) whose winding number is 1,

I J induces a proper subarc
y
BC of exp(

y
AD) such that

−→
AD =

−→
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The characterization on the example
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C → C− {0}
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The characterization on the example
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Yet another observation from algebraic topology

Let’s suppose that
−→
AD = 1 and that A0 = A′ = 0, A1 = D′ = 1,. . . , Ak = k

let exp :

{
C → C− {0}
z → e2iπz .

A D

B C

EF

IJ

G H

A0 A1 A2 A3A−1A−2 O

A,D

E,F

B,C

I, J G,H
A0, A1

exp sums up the winding number of a Jordan curve around the Ai ’s as the winding
number around exp(A0) = exp(0) = 1.



Proving the Theorem

Let’s suppose that
−→
AD = 1,

Lemma
Given an simple arc

y
AD we have:

I
y
AD contains a proper subarc

y
BC such that

−→
AD =

−→
BC iff exp(

y
AD) is not a

Jordan curve.

Corollary: a simple path J from A to D (resp. D to A) does not contain B and C as
required in the Theorem iff ϕ(J) is a Jordan curve of C− {1} that winding 0 or 1
(resp. or −1) time around 1.

Corollary: if J is a simple closed curve of C composed with two curves J1 and J2

respectively going from A to D and D to A which do not contain points B and C as
required in the Theorem then |wn(exp(J), 1)| = |wn(exp(J1), 1) + wn(ϕ(J2), 1)| ≤ 1.

Lemma: if J is a simple closed curve of C composed with two curves J1 and J2

respectively going from A to D and D to A such that 0 and 1 are in the interior of J,
then |wn(ϕ(J), 1)| ≥ 2.

The Theorem follows by contradiction.
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Nederhof’s conjecture

I Nederhof (2016)

Conjecture: for every k ,

Ok = {w ∈ {a1, a1 . . . , ak , ak}∗ | ∀1 ≤ i ≤ k, |w |ai = |w |ai}

is generated by the grammar with rules of the form:

S(x1 . . . xk)← Inv(x1, . . . , xk)

Inv(s1, . . . , sk)← Inv(x1, . . . , xk), Inv(y1, . . . , yk)
s1 . . . sk ∈ perm(x1 . . . xky1 . . . yk)

Inv(x1, . . . , αxi , . . . , αxj , . . . , xk)← Inv(x1, . . . , xk)
...

Inv(ε, . . . , ε)←



Status of the conjecture

Positive arguments

I The conjecture has been tested on millions of examples

I In the case of Z3, some cases can be solved using braiding
arguments

Negative argument

I for the case of Z2 many arguments are strongly related to
planarity → no clear way of generalizing to higher dimensions
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