The word problem in \mathbb{Z}^{2} and formal language theory

Sylvain Salvati
INRIA Bordeaux Sud-Ouest

Topology and languages June 22-24

Outline

The group language of \mathbb{Z}^{2}

A similar problem in computational linguistics

Multiple Context Free Grammars (MCFGs)

A grammar for O_{2}

Proof of the Theorem

A Theorem on Jordan curves

Conjectures

Outline

The group language of \mathbb{Z}^{2}

A similar problem in computational linguistics

Multiple Context Free Grammars (MCFGs)

A grammar for O_{2}

Proof of the Theorem

A Theorem on Jordan curves

Conjectures

Group languages

Group finite presentation:

- a finite set of generators Σ
- a finite set of defining equations E

Group languages

Group finite presentation:

- a finite set of generators Σ
- a finite set of defining equations E

Word problem: given w in Σ^{*}, is $w={ }_{E} 1$?
Group language: $\left\{w \in \Sigma^{*} \mid w={ }_{E} 1\right\}$

Group languages

Group finite presentation:

- a finite set of generators Σ
- a finite set of defining equations E

Word problem: given w in Σ^{*}, is $w={ }_{E} 1$?
Group language: $\left\{w \in \Sigma^{*} \mid w={ }_{E} 1\right\}$

- the word problem is in general undecidable (Novikov 1955, Boone 1958)
- the languages of different representation of a group a rationally equivalent
- relate algebraic properties of groups to language-theoretic properties of their group languages

Group languages

Group finite presentation:

- a finite set of generators Σ
- a finite set of defining equations E

Word problem: given w in Σ^{*}, is $w={ }_{E} 1$?
Group language: $\left\{w \in \Sigma^{*} \mid w=E 1\right\}$

- the word problem is in general undecidable (Novikov 1955, Boone 1958)
- the languages of different representation of a group a rationally equivalent
- relate algebraic properties of groups to language-theoretic properties of their group languages

Example: a group language is context free iff its underlying group is virtually free (Muller Schupp 1983)

A simple presentation of \mathbb{Z}^{2}

- Generators: $\{a ; \bar{a} ; b ; \bar{b}\}$
- Defining equations: $a^{-1}=\bar{a}, b^{-1}=\bar{b}, x y=y x$

The associated group language is

$$
O_{2}=\left\{\left.w \in\{a ; \bar{a} ; b ; \bar{b}\}^{*}| | w\right|_{a}=|w|_{\bar{a}} \wedge|w|_{b}=|w|_{\bar{b}}\right\}
$$

O_{2} and computational group theory

- Gilman (2005)

is indexed but not context free seems to have been open for several years. It does not even seem to be known whether or not the word problem of $Z \times Z$ is indexed.

Outline

The group language of \mathbb{Z}^{2}

A similar problem in computational linguistics

Multiple Context Free Grammars (MCFGs)

A grammar for O_{2}

Proof of the Theorem

A Theorem on Jordan curves

Conjectures

MIX $=\left\{\left.w \in\{a ; b ; c\}^{*}| | w\right|_{a}=|w|_{b}=|w|_{c}\right\}$
MIX and O_{2} are rationally equivalent

The Bach language

- Bach (1981)


```
-b ins
Exercise 2: Let \(L=\left\{X \mid X=(a b c)^{n}\right) . ~ L\) is CF (in fanct regular).
But Scramble ( \(L\) is not CF. For let \(L^{\prime}=\left\{X \mid X=a^{n} b^{k} c^{k}\right\}\) then
\(L^{\prime} \cap L=\left\{X \mid X=a^{n} n_{n}\right\}\).
\(L^{\prime} \cap L=\left\{X \mid X=a^{n} n_{c} n_{C}{ }^{n}\right\}\) is not \(C F\), but \(L^{\prime}=\left\{X \mid X=a^{n} b^{\text {minct }} c^{k}\right\}\) regular
a CF language and a regular language is \(C F\), the intersection of
    a regular language is CF, \(L\) can't be CF
```

Wikipedia entry:
http://en.wikipedia.org/wiki/Bach_language

The MIX language

- Marsh (1985)

Conjecture: MIX is not an indexed language.

MIX and Tree Adjoining Grammars

- Joshi (1985)

[MIX] represents the extreme case of the degree of free word order permitted in a language. This extreme case is linguistically not relevant. [...] TAGs also cannot generate this language although for TAGs the proof is not in hand yet.

MIX and Tree Adjoining Grammars

- Vijay Shanker, Weir, Joshi (1991)

of strings of equal number of a^{\prime} 's, b^{\prime} 's, and c 's in any order. MIX can be regarded as the extreme case of free word order. It is not known yet whether TAG, HG, CCG and LIG can generate MIX. This has turned out to be a very difficult problem. In fact, it is not even known whether an IG can generate MIX.

MIX and mildly context sensitive languages

- Joshi, Vijay Shanker, Weir (1991)

3) MCSGs capture only certain kinds of dependencies, e.g., nested dependencies and certain limited kinds of crossing dependencies (e.g., in the subordinate clause constructions in Dutch or some variations of them, but perhaps not in the so-called MIX (or Bach) language, which consists of equal numbers of a's, b's, and c's in any order 4) languages in MCSL have constant growth property, i.e., if the strings of a language

Outline

The group language of \mathbb{Z}^{2}

A similar problem in computational linguistics

Multiple Context Free Grammars (MCFGs)

A grammar for O_{2}

Proof of the Theorem

A Theorem on Jordan curves

Conjectures

Original paper

Fundamental Study

On multiple context-free grammars*

Hiroyuki Seki

Department of Information and Computer Sciences, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

Takashi Matsumura

Nomura Research Institute, Ltd., Tyu-o-ku, Tokyo 104, Japan

Mamoru Fujii

College of General Education, Osaka University, Toyonaka, Osaka, 560, Japan
Tadao Kasami
Department of Information and Computer Sciences, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

Communicated by M. Takahashi
Received July 1989
Revised January 1990

A generalization of context-free grammars

Rule of a context free grammar:

$$
A \rightarrow w_{1} B_{1} \ldots w_{n} B_{n} w_{n+1}
$$

with A, B_{1}, \ldots, B_{n} non-terminals and $w_{1}, \ldots w_{n+1}$ string of terminals.

A generalization of context-free grammars

Rule of a context free grammar:

$$
A \rightarrow w_{1} B_{1} \ldots w_{n} B_{n} w_{n+1}
$$

with A, B_{1}, \ldots, B_{n} non-terminals and $w_{1}, \ldots w_{n+1}$ string of terminals.

A bottom-up view:

$$
A\left(w_{1} x_{1} \ldots w_{n} x_{n} w_{n+1}\right) \leftarrow B_{1}\left(x_{1}\right), \ldots, B_{n}\left(x_{n}\right)
$$

A generalization of context-free grammars

Replace strings by tuple of strings:

$$
B\left(s_{1}, \ldots, s_{m}\right) \leftarrow B_{1}\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots, B_{n}\left(x_{1}^{n}, \ldots, x_{k_{n}}^{n}\right)
$$

A generalization of context-free grammars

Replace strings by tuple of strings:

$$
B\left(s_{1}, \ldots, s_{m}\right) \leftarrow B_{1}\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots, B_{n}\left(x_{1}^{n}, \ldots, x_{k_{n}}^{n}\right)
$$

- the strings s_{i} are made of terminals and of the variables x_{j}^{i},

A generalization of context-free grammars

Replace strings by tuple of strings:

$$
B\left(s_{1}, \ldots, s_{m}\right) \leftarrow B_{1}\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots, B_{n}\left(x_{1}^{n}, \ldots, x_{k_{n}}^{n}\right)
$$

- the strings s_{i} are made of terminals and of the variables x_{j}^{i},
- the variables x_{j}^{i} are pairwise distinct (otherwise we get Groenink's Literal Movement Grammars),

A generalization of context-free grammars

Replace strings by tuple of strings:

$$
B\left(s_{1}, \ldots, s_{m}\right) \leftarrow B_{1}\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots, B_{n}\left(x_{1}^{n}, \ldots, x_{k_{n}}^{n}\right)
$$

- the strings s_{i} are made of terminals and of the variables x_{j}^{i},
- the variables x_{j}^{i} are pairwise distinct (otherwise we get Groenink's Literal Movement Grammars),
- each variable x_{j}^{i} has at most one occurrence in the string $s_{1} \ldots s_{m}$ (otherwise we get Parallel Multiple Context-Free Grammars).

Formal definition

A m-MCFG (r) is a 4-tuple (N, T, P, S) such that:

- N is a ranked alphabet of non-terminals of max. rank m.

Formal definition

A m-MCFG (r) is a 4-tuple (N, T, P, S) such that:

- N is a ranked alphabet of non-terminals of max. rank m.
- T is an alphabet of terminals

Formal definition

A m-MCFG (r) is a 4-tuple (N, T, P, S) such that:

- N is a ranked alphabet of non-terminals of max. rank m.
- T is an alphabet of terminals
- P is a set of rules of the form:

$$
A\left(s_{1}, \ldots, s_{k}\right) \leftarrow B_{1}\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots, B_{n}\left(x_{1}^{n}, \ldots, x_{k_{n}}^{n}\right)
$$

where:

- A is a non-terminal of rank k, B_{i} is non-terminal of rank k_{i}, $n \leq r$,
- the variables x_{j}^{i} are pairwise distinct,
- the strings s_{i} are in $(T \cup X)^{*}$ with $X=\bigcup_{i=1}^{n} \bigcup_{j=1}^{k_{i}}\left\{x_{j}^{i}\right\}$,
- each variable x_{j}^{i} has at most one occurrence in $s_{1} \ldots s_{k}$

Formal definition

A m-MCFG (r) is a 4-tuple (N, T, P, S) such that:

- N is a ranked alphabet of non-terminals of max. rank m.
- T is an alphabet of terminals
- P is a set of rules of the form:

$$
A\left(s_{1}, \ldots, s_{k}\right) \leftarrow B_{1}\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots, B_{n}\left(x_{1}^{n}, \ldots, x_{k_{n}}^{n}\right)
$$

where:

- A is a non-terminal of rank k, B_{i} is non-terminal of rank k_{i}, $n \leq r$,
- the variables x_{j}^{i} are pairwise distinct,
- the strings s_{i} are in $(T \cup X)^{*}$ with $X=\bigcup_{i=1}^{n} \bigcup_{j=1}^{k_{i}}\left\{x_{j}^{i}\right\}$,
- each variable x_{j}^{i} has at most one occurrence in $s_{1} \ldots s_{k}$
- S is a non-terminal of rank 1 , the starting symbol.

The language generated by an MCFG

Given an MCFG $G=(N, T, P, S)$, if the following conditions holds:

- $B_{1}\left(s_{1}^{1}, \ldots, s_{k_{1}}^{1}\right), \ldots, B_{n}\left(s_{1}^{n}, \ldots, s_{k_{n}}^{n}\right)$ are derivable,
- $A\left(s_{1}, \ldots, s_{k}\right) \leftarrow B_{1}\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots, B_{n}\left(x_{1}^{n}, \ldots, x_{k_{n}}^{n}\right)$ is a rule in P
then $A\left(t_{1}, \ldots, t_{k}\right)$ with $t_{i}=s_{i}\left[x_{j}^{i} \leftarrow s_{j}^{i}\right]_{i \in[1 ; n], j \in\left[1 ; k_{i}\right]}$ is derivable.

The language generated by an MCFG

Given an MCFG $G=(N, T, P, S)$, if the following conditions holds:

- $B_{1}\left(s_{1}^{1}, \ldots, s_{k_{1}}^{1}\right), \ldots, B_{n}\left(s_{1}^{n}, \ldots, s_{k_{n}}^{n}\right)$ are derivable,
- $A\left(s_{1}, \ldots, s_{k}\right) \leftarrow B_{1}\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots, B_{n}\left(x_{1}^{n}, \ldots, x_{k_{n}}^{n}\right)$ is a rule in P
then $A\left(t_{1}, \ldots, t_{k}\right)$ with $t_{i}=s_{i}\left[x_{j}^{i} \leftarrow s_{j}^{i}\right]_{i \in[1 ; n], j \in\left[1 ; k_{i}\right]}$ is derivable.
The language define by $G, L(G)$ is:
$\{w \mid S(w)$ is derivable $\}$

An example

$$
\begin{aligned}
& S\left(x_{1} y_{1} x_{2} y_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right), Q\left(y_{1}, y_{2}\right) \\
& P\left(a x_{1}, b x_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right) \\
& P(\epsilon, \epsilon) \leftarrow \\
& Q\left(c x_{1}, d x_{2}\right) \leftarrow Q\left(x_{1}, x_{2}\right) \\
& Q(\epsilon, \epsilon) \leftarrow
\end{aligned}
$$

An example

$$
\begin{aligned}
& S\left(x_{1} y_{1} x_{2} y_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right), Q\left(y_{1}, y_{2}\right) \quad \overline{Q(\epsilon, \epsilon)} \\
& P\left(a x_{1}, b x_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right) \\
& P(\epsilon, \epsilon) \leftarrow \\
& Q\left(c x_{1}, d x_{2}\right) \leftarrow Q\left(x_{1}, x_{2}\right) \\
& Q(\epsilon, \epsilon) \leftarrow
\end{aligned}
$$

An example

$$
\begin{array}{ll}
S\left(x_{1} y_{1} x_{2} y_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right), Q\left(y_{1}, y_{2}\right) & \overline{Q(\epsilon, \epsilon)} \\
P\left(a x_{1}, b x_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right) & \frac{\overline{Q(c, d)}}{P(\epsilon, \epsilon) \leftarrow} \\
Q\left(c x_{1}, d x_{2}\right) \leftarrow Q\left(x_{1}, x_{2}\right) & \\
Q(\epsilon, \epsilon) \leftarrow &
\end{array}
$$

An example

$$
\begin{array}{ll}
S\left(x_{1} y_{1} x_{2} y_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right), Q\left(y_{1}, y_{2}\right) & \\
P\left(a x_{1}, b x_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right) & \frac{\overline{Q(\epsilon, \epsilon)}}{P(c, d)} \\
Q(c, \epsilon) \leftarrow \\
Q(\epsilon, \epsilon) \leftarrow & \frac{\overline{Q(c c, d d)}}{Q\left(c x_{1}, d x_{2}\right) \leftarrow Q\left(x_{1}, x_{2}\right)}
\end{array}
$$

An example

$$
\begin{array}{lc}
S\left(x_{1} y_{1} x_{2} y_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right), Q\left(y_{1}, y_{2}\right) & \\
P\left(a x_{1}, b x_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right) & \frac{\overline{Q(\epsilon, \epsilon)}}{} \\
P(\epsilon, \epsilon) \leftarrow & \frac{Q(c, d)}{Q(c c, d d)} \\
Q\left(c x_{1}, d x_{2}\right) \leftarrow Q\left(x_{1}, x_{2}\right) & \\
Q(\epsilon, \epsilon) \leftarrow &
\end{array}
$$

An example

$$
\begin{array}{lc}
S\left(x_{1} y_{1} x_{2} y_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right), Q\left(y_{1}, y_{2}\right) & \\
P\left(a x_{1}, b x_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right) & \frac{\overline{Q(\epsilon, \epsilon)}}{} \\
P(\epsilon, \epsilon) \leftarrow & \frac{Q(c, d)}{Q(c c, d d)}
\end{array} \quad \overline{\frac{P(\epsilon, \epsilon)}{P(a, b)}} \begin{aligned}
& Q\left(c x_{1}, d x_{2}\right) \leftarrow Q\left(x_{1}, x_{2}\right) \\
& Q(\epsilon, \epsilon) \leftarrow
\end{aligned}
$$

An example

$$
\begin{aligned}
& S\left(x_{1} y_{1} x_{2} y_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right), Q\left(y_{1}, y_{2}\right) \\
& P\left(a x_{1}, b x_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right) \\
& P(\epsilon, \epsilon) \leftarrow \\
& Q\left(c x_{1}, d x_{2}\right) \leftarrow Q\left(x_{1}, x_{2}\right) \\
& Q(\epsilon, \epsilon) \leftarrow
\end{aligned}
$$

$$
\frac{\frac{\overline{Q(\epsilon, \epsilon)}}{\frac{Q(c, d)}{Q(c c, d d)}}}{\frac{\overline{P(\epsilon, \epsilon)}}{P(a, b)}}
$$

An example

$$
\begin{array}{ll}
S\left(x_{1} y_{1} x_{2} y_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right), Q\left(y_{1}, y_{2}\right) \\
P\left(a x_{1}, b x_{2}\right) \leftarrow P\left(x_{1}, x_{2}\right) & \frac{\overline{Q(\epsilon, \epsilon)}}{P(\epsilon, \epsilon) \leftarrow} \\
Q\left(c x_{1}, d x_{2}\right) \leftarrow Q\left(x_{1}, x_{2}\right) & \frac{\frac{\overline{Q(c, d)}}{Q(c c, d d)}}{S(\epsilon, \epsilon) \leftarrow}
\end{array}
$$

The language is: $\left\{a^{n} c^{m} b^{n} d^{m} \mid n \in \mathbb{N} \wedge m \in \mathbb{N}\right\}$

The well-nestedness constraint

$$
I\left(x_{1} y_{1}, y_{2} x_{2}\right) \leftarrow J\left(x_{1}, x_{2}\right), K\left(y_{1}, y_{2}\right)
$$

$$
I\left(x_{1} y_{1}, x_{2} y_{2}\right) \leftarrow J\left(x_{1}, x_{2}\right), K\left(y_{1}, y_{2}\right)
$$

$$
A\left(x_{1} z_{1}, z_{2} x_{2} y_{1}, y_{2} y_{3} x_{3}\right) \leftarrow B\left(x_{1}, x_{2}, x_{3}\right) C\left(y_{1}, y_{2}, y_{3}\right) D\left(z_{1}, z_{2}\right)
$$

$$
A\left(z_{1} x_{1}, y_{1}^{y_{1} x_{2} z_{2} y_{2} x_{3}, y_{3}}\right) \leftarrow B\left(x_{1}, x_{2}, x_{3}\right) C\left(y_{1}, y_{2}, y_{3}\right) D\left(z_{1}, z_{2}\right)
$$

$\mathrm{MCFL}_{w n}$ and MCFL

MCFL

MCFL $_{w n}$

$$
\begin{gathered}
\left\{a_{1}^{n} \ldots a_{m}^{n} \mid n \in \mathbb{N}\right\} \\
\left\{w^{m+1} \mid w \in\{a ; b\}^{*}, m \in \mathbb{N}\right\}
\end{gathered}
$$

$\mathrm{MCFL}_{w n}$ and MCFL

$$
\left\{w_{1} \ldots w_{n} z_{n} w_{n} z_{n-1} \ldots z_{1} w_{1} z_{0} w_{1}^{r} \ldots w_{n}^{r}\right\}
$$

Staudacher 1993

$\mathrm{MCFL}_{w n}$ and MCFL

$\mathrm{MCFL}_{w n}$ and MCFL

Outline

The group language of \mathbb{Z}^{2}

A similar problem in computational linguistics

Multiple Context Free Grammars (MCFGs)
A grammar for O_{2}

Proof of the Theorem

A Theorem on Jordan curves

Conjectures

A 2-MCFG for O_{2}

$S(x y) \leftarrow \operatorname{Inv}(x, y)$
$\operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(x_{1} y_{1} y_{2}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(x_{1}, y_{1} y_{2} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(x_{1} x_{2} y_{1}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(x_{1}, x_{2} y_{1} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(\alpha x_{1} \bar{\alpha}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$
$\operatorname{Inv}\left(\alpha x_{1}, \bar{\alpha} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$
$\operatorname{Inv}\left(\alpha x_{1}, x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$
$\operatorname{Inv}\left(x_{1} \alpha, \bar{\alpha} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$
$\operatorname{Inv}\left(x_{1} \alpha, x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$
$\operatorname{Inv}\left(x_{1}, \alpha x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$
$\operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}(\epsilon, \epsilon) \leftarrow$

where $\alpha \in\{a ; b\}$

A 2-MCFG for O_{2}

```
\(\frac{S(x y) \leftarrow \operatorname{Inv}(x, y)}{\operatorname{lnv}\left(x_{1} y_{1}, y_{2} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}\)
    \(\operatorname{Inv}\left(x_{1} y_{1} y_{2}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)\)
    \(\operatorname{Inv}\left(x_{1}, y_{1} y_{2} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \quad\) well-nested binary rules
    \(\operatorname{Inv}\left(x_{1} x_{2} y_{1}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)\)
    \(\operatorname{Inv}\left(x_{1}, x_{2} y_{1} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)\)
    \(\operatorname{Inv}\left(\alpha x_{1} \bar{\alpha}, x_{2}\right) \leftarrow \operatorname{lnv}\left(x_{1}, x_{2}\right)\)
    \(\operatorname{Inv}\left(\alpha x_{1}, \bar{\alpha} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)\)
    \(\operatorname{Inv}\left(\alpha x_{1}, x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)\)
    \(\operatorname{Inv}\left(x_{1} \alpha, \bar{\alpha} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)\)
    \(\operatorname{Inv}\left(x_{1} \alpha, x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)\)
\(\frac{\operatorname{Inv}\left(x_{1}, \alpha x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)}{\operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}\)
    \(\left.\frac{\operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\operatorname{Inv}(\epsilon, \epsilon) \leftarrow}\right\}\) non well-nested rules
```

where $\alpha \in\{a ; b\}$

A 2-MCFG for O_{2}

$$
\begin{aligned}
& \left.\begin{array}{l}
\frac{S(x y) \leftarrow \operatorname{Inv}(x, y)}{\operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)} \\
\operatorname{Inv}\left(x_{1} y_{1} y_{2}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(x_{1}, y_{1} y_{2} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
\end{array}\right\} \text { well-nested binary rules } \\
& \operatorname{Inv}\left(x_{1} x_{2} y_{1}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
& \operatorname{Inv}\left(x_{1}, x_{2} y_{1} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
& \begin{array}{l}
\operatorname{lnv}\left(\alpha x_{1} \alpha, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(\alpha x_{1}, \bar{\alpha} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)
\end{array} \\
& \operatorname{Inv}\left(\alpha x_{1}, x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
& \operatorname{Inv}\left(x_{1} \alpha, \bar{\alpha} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
& \operatorname{Inv}\left(x_{1} \alpha, x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
& \frac{\operatorname{Inv}\left(x_{1}, \alpha x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)}{\operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)} \\
& \left.\frac{\operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\operatorname{Inv}(\epsilon, \epsilon) \leftarrow}\right\} \text { non well-nested rules }
\end{aligned}
$$

where $\alpha \in\{a ; b\}$

A 2-MCFG for O_{2}

where $\alpha \in\{a ; b\}$
Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.

A graphical interpretation of O_{2}.

Graphical interpretation of the word $\overline{a a} \bar{a} \bar{b} a a \bar{b} a a b b b b b \bar{a} \bar{b} \bar{a} \bar{a} b b b b a a a a b b b b b b b b \overline{a a a}:$

A graphical interpretation of O_{2}.

Graphical interpretation of the word $\overline{a a} \bar{b} \bar{b} a a \bar{b} a a b b b b b \bar{a} \bar{b} \bar{b} \bar{a} b b b b a a a a \overline{b b b b b b b b} \overline{a a a}:$

The words in O_{2} are precisely the words that are represented as closed curves: $\bar{b} \bar{a} \overline{b b} a b a \overline{b b} a b b a b b \bar{a} \bar{b} \bar{a} b b a a a b b b \bar{a} \bar{b} \bar{a} \bar{a} a \bar{a} b b a \bar{b} b \bar{a} \bar{b} a$

Parsing with the grammar

Rule $\operatorname{Inv}\left(\bar{a} x_{1} a, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$

Parsing with the grammar

Rule: $\operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$

Parsing with the grammar

Rule $\operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$

Parsing with the grammar

Rule: $\operatorname{Inv}\left(x_{1} \bar{b}, b x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$

Parsing with the grammar

Rule: $\operatorname{Inv}\left(\bar{b} x_{1}, b x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$

Parsing with the grammar

Rule: $\operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$

Parsing with the grammar

Rule: $\operatorname{Inv}\left(\bar{b} x_{1} b, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$

Outline

The group language of \mathbb{Z}^{2}

A similar problem in computational linguistics

Multiple Context Free Grammars (MCFGs)

A grammar for O_{2}

Proof of the Theorem

A Theorem on Jordan curves

Conjectures

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 1: w_{1} or w_{2} equal ϵ :

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs
$\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 1: w_{1} or w_{2} equal ϵ :
w.l.o.g., $w_{1} \neq \epsilon$, then by induction hypothesis, for any v_{1} and v_{2} different from ϵ such that $w_{1}=v_{1} v_{2}, \operatorname{Inv}\left(v_{1}, v_{2}\right)$ is derivable then:

$$
\frac{\operatorname{Inv}\left(v_{1}, v_{2}\right) \operatorname{Inv}(\epsilon, \epsilon)}{\operatorname{Inv}\left(v_{1} v_{2}=w_{1}, \epsilon\right)} \operatorname{Inv}\left(x_{1} x_{2}, y_{1} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
$$

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 2: $w_{1}=s_{1} w_{1}^{\prime} s_{2}$ and $w_{2}=s_{3} w_{2}^{\prime} s_{4}$ and for $i, j \in\{1 ; 2 ; 3 ; 4\}$, s.t. $i \neq j$, $\left\{s_{i} ; s_{j}\right\} \in\{\{a ; \bar{a}\} ;\{b ; \bar{b}\}\}:$

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs
$\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 2: $w_{1}=s_{1} w_{1}^{\prime} s_{2}$ and $w_{2}=s_{3} w_{2}^{\prime} s_{4}$ and for $i, j \in\{1 ; 2 ; 3 ; 4\}$, s.t. $i \neq j$, $\left\{s_{i} ; s_{j}\right\} \in\{\{a ; \bar{a}\} ;\{b ; \bar{b}\}\}$:
e.g., if $i=1, j=2, s_{1}=a$ and $s_{2}=\bar{a}$ then by induction hypothesis $\operatorname{Inv}\left(w_{1}^{\prime}, w_{2}\right)$ is derivable and:

$$
\frac{\operatorname{Inv}\left(w_{1}^{\prime}, w_{2}\right)}{\operatorname{Inv}\left(a w_{1}^{\prime} \bar{a}, w_{2}\right)} \operatorname{Inv}\left(a x_{1} \bar{a}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)
$$

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs
$\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 3: the curves representing w_{1} and w_{2} have a non-trivial intersection point:

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs
$\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 3: the curves representing w_{1} and w_{2} have a non-trivial intersection point:

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 4: the curve representing w_{1} or w_{2} starts or ends with a loop:

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs
$\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 4: the curve representing w_{1} or w_{2} starts or ends with a loop:

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs
$\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 5: w_{1} and w_{2} do not start or end with compatible letters, the curve representing then do not intersect and do not start or end with a loop.

Case 5

No rule other than

$$
\begin{aligned}
& \operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
& \operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

can be used.

Case 5

No rule other than

$$
\begin{aligned}
& \operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
& \operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

can be used.

The relevance of case 5

The word

$$
a b b \overline{a a} b a a a \overline{b b b b} \overline{a a a} b a
$$

is not in the language of the grammar only containing the well-nested rules.

The relevance of case 5: a proof is now in hand

- Joshi (1985)

[MIX] represents the extreme case of the degree of free word order permitted in a language. This extreme case is linguistically not relevant. [...] TAGs also cannot generate this language although for TAGs the proof is not in hand yet.

Theorem (Kanazawa, S. 12)
There is no $2-M C F L_{w n}$ (or TAG) generating MIX or O_{2}.

Solving case 5: towards geometry

Solving case 5: a geometrical invariant

Solving case 5: a geometrical invariant

Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing $w_{1}^{\prime} w_{2}^{\prime}$:

Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing $w_{1}^{\prime} w_{2}^{\prime}$:

Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing $w_{1}^{\prime} w_{2}^{\prime}$:

Outline

The group language of \mathbb{Z}^{2}

A similar problem in computational linguistics

Multiple Context Free Grammars (MCFGs)

A grammar for O_{2}

Proof of the Theorem

A Theorem on Jordan curves

Conjectures

Jordan curves

Figure 13.1 Two Jordan curves.
illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two points A^{\prime} and D^{\prime} inside J such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points B and C pairwise distinct from A and D such that A, B, C, and D appear in that order on one of the arcs going from A to D and $\overrightarrow{A D}=\overrightarrow{B C}$.

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two points A^{\prime} and D^{\prime} inside J such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points B and C pairwise distinct from A and D such that A, B, C, and D appear in that order on one of the arcs going from A to D and $\overrightarrow{A D}=\overrightarrow{B C}$.

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two points A^{\prime} and D^{\prime} inside J such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points B and C pairwise distinct from A and D such that A, B, C, and D appear in that order on one of the arcs going from A to D and $\overrightarrow{A D}=\overrightarrow{B C}$.

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two points A^{\prime} and D^{\prime} inside J such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points B and C pairwise distinct from A and D such that A, B, C, and D appear in that order on one of the arcs going from A to D and $\overrightarrow{A D}=\overrightarrow{B C}$.

Applying this Theorem solves case 5.

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two points A^{\prime} and D^{\prime} inside J such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points B and C pairwise distinct from A and D such that A, B, C, and D appear in that order on one of the arcs going from A to D and $\overrightarrow{A D}=\overrightarrow{B C}$.

Applying this Theorem solves case 5.

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two points A^{\prime} and D^{\prime} inside J such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points B and C pairwise distinct from A and D such that A, B, C, and D appear in that order on one of the arcs going from A to D and $\overrightarrow{A D}=\overrightarrow{B C}$.

Applying this Theorem solves case 5.

Winding number

Let $w n(J, z)$ be the winding number of a closed curve around z.

Figure 13.1 Two Jordan curves.
illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).

An interesting Lemma

Let $\exp :\left\{\begin{array}{rll}\mathbb{C} & \rightarrow \mathbb{C}-\{0\} \\ z & \rightarrow e^{2 i \pi z}\end{array}\right.$.
Lemma
Given an simple arc $\overparen{\curvearrowright B}$ such that $\overrightarrow{A B}=k \in \mathbb{N}$, we have:

$$
w n(\exp (\overparen{A B}), 0)=k
$$

Translation becomes rotation

$$
\exp :\left\{\begin{array}{rll}
\mathbb{C} & \rightarrow & \mathbb{C}-\{0\} \\
z & \rightarrow & e^{2 i \pi z}
\end{array}\right.
$$

Translation becomes rotation

$$
\exp :\left\{\begin{array}{cccc}
\mathbb{C} & \rightarrow & \mathbb{C}-\{0\} \\
z & \rightarrow & e^{2 i \pi} \pi z
\end{array}\right.
$$

An interesting characterization

Lemma

Given an simple arc $\overparen{A D}$ such that $\overrightarrow{A D}=1$, we have:

- $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$ iff $\exp (A D)$ is not a Jordan curve.

Jordan curves and winding numbers

Figure 13.1 Two Jordan curves.
illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications). Theorem: There is $k \in\{-1 ; 1\}$ such that the winding number of Jordan curve around a point in its interior is k, its winding number around a point in its exterior is 0 .

Proving the characterization

Lemma

Given an simple arc $\overparen{A D}$ such that $\overrightarrow{A D}=1$, we have:

- $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$ iff $\exp (\widetilde{A D})$ is not a Jordan curve.

Proof

Proving the characterization

Lemma

Given an simple arc $\overparen{A D}$ such that $\overrightarrow{A D}=1$, we have:

- $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$ iff $\exp (\widetilde{A D})$ is not a Jordan curve.

Proof

- by 1-periodicity of exp, if $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$, then $\exp (\overparen{A D})$ is not a Jordan curve,

Proving the characterization

Lemma

Given an simple arc $\overparen{A D}$ such that $\overrightarrow{A D}=1$, we have:

- $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$ iff $\exp (\widetilde{A D})$ is not a Jordan curve.

Proof

- by 1-periodicity of exp, if $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$, then $\exp (\overparen{A D})$ is not a Jordan curve,
- if $\exp (\overparen{A D})$ is not a Jordan curve:
- take the closed curve \mathcal{C} obtained by removing the closed subcurves of $\exp (\widetilde{A D})$ that have a negative winding number,

Proving the characterization

Lemma

Given an simple arc $\overparen{A D}$ such that $\overrightarrow{A D}=1$, we have:

- $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$ iff $\exp (\widetilde{A D})$ is not a Jordan curve.

Proof

- by 1-periodicity of exp, if $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$, then $\exp (\overparen{A D})$ is not a Jordan curve,
- if $\exp (\overparen{A D})$ is not a Jordan curve:
- take the closed curve \mathcal{C} obtained by removing the closed subcurves of $\exp (\widetilde{A D})$ that have a negative winding number,
- take a proper closed subcurve \mathcal{D} of \mathcal{C} that is minimal for inclusion,

Proving the characterization

Lemma

Given an simple arc $\overparen{A D}$ such that $\overrightarrow{A D}=1$, we have:

- $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$ iff $\exp (\widetilde{A D})$ is not a Jordan curve.

Proof

- by 1-periodicity of exp, if $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$, then $\exp (\overparen{A D})$ is not a Jordan curve,
- if $\exp (\overparen{A D})$ is not a Jordan curve:
- take the closed curve \mathcal{C} obtained by removing the closed subcurves of $\exp (\widetilde{A D})$ that have a negative winding number,
- take a proper closed subcurve \mathcal{D} of \mathcal{C} that is minimal for inclusion,
- \mathcal{D} is a Jordan curve winding positively (i.e. once) around 0 ,

Proving the characterization

Lemma

Given an simple arc $\overparen{A D}$ such that $\overrightarrow{A D}=1$, we have:

- $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$ iff $\exp (\widetilde{A D})$ is not a Jordan curve.

Proof

- by 1-periodicity of exp, if $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$, then $\exp (\overparen{A D})$ is not a Jordan curve,
- if $\exp (\stackrel{\overparen{A D}}{ })$ is not a Jordan curve:
- take the closed curve \mathcal{C} obtained by removing the closed subcurves of $\exp (\widetilde{A D})$ that have a negative winding number,
- take a proper closed subcurve \mathcal{D} of \mathcal{C} that is minimal for inclusion,
- \mathcal{D} is a Jordan curve winding positively (i.e. once) around 0 ,
- \mathcal{D} induces a proper subcurve \mathcal{J} of $\exp (\overparen{A D})$ whose winding number is 1 ,

Proving the characterization

Lemma

Given an simple arc $\overparen{A D}$ such that $\overrightarrow{A D}=1$, we have:

- $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$ iff $\exp (\widetilde{A D})$ is not a Jordan curve.

Proof

- by 1-periodicity of exp, if $\overparen{A D}$ contains a proper subarc $\overparen{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$, then $\exp (\overparen{A D})$ is not a Jordan curve,
- if $\exp (\stackrel{\overparen{A D}}{ })$ is not a Jordan curve:
- take the closed curve \mathcal{C} obtained by removing the closed subcurves of $\exp (\widetilde{A D})$ that have a negative winding number,
- take a proper closed subcurve \mathcal{D} of \mathcal{C} that is minimal for inclusion,
- \mathcal{D} is a Jordan curve winding positively (i.e. once) around 0 ,
- \mathcal{D} induces a proper subcurve \mathcal{J} of $\exp (\overparen{A D})$ whose winding number is 1 ,
- J I induces a proper subarc $\overparen{B C}$ of $\exp (\overparen{A D})$ such that $\overrightarrow{A D}=\overrightarrow{B C}$.

The characterization on the example

$$
\exp :\left\{\begin{array}{rll}
\mathbb{C} & \rightarrow \mathbb{C}-\{0\} \\
z & \rightarrow & e^{2 i \pi z}
\end{array}\right.
$$

The characterization on the example

$$
\exp :\left\{\begin{array}{rll}
\mathbb{C} & \rightarrow \mathbb{C}-\{0\} \\
z & \rightarrow & e^{2 i \pi z}
\end{array}\right.
$$

Yet another observation from algebraic topology

Let's suppose that $\overrightarrow{A D}=1$ and that $A_{0}=A^{\prime}=0, A_{1}=D^{\prime}=1, \ldots, A_{k}=k$ let $\exp :\left\{\begin{array}{rll}\mathbb{C} & \rightarrow & \mathbb{C}-\{0\} \\ z & \rightarrow & e^{2 i \pi z}\end{array}\right.$

exp sums up the winding number of a Jordan curve around the A_{i} 's as the winding number around $\exp \left(A_{0}\right)=\exp (0)=1$.

Proving the Theorem

Let's suppose that $\overrightarrow{A D}=1$,
Lemma
Given an simple arc $\overparen{A D}$ we have:

- $\stackrel{\overparen{A D}}{ }$ contains a proper subarc $\stackrel{\rightharpoonup}{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$ iff $\exp (\stackrel{\curvearrowright}{A D})$ is not a Jordan curve.

Proving the Theorem

Let's suppose that $\overrightarrow{A D}=1$,
Lemma
Given an simple arc $\overparen{A D}$ we have:

- $\overparen{A D}$ contains a proper subarc $\stackrel{\overparen{B C}}{ }$ such that $\overrightarrow{A D}=\overrightarrow{B C}$ iff $\exp (\stackrel{\curvearrowright}{A D})$ is not a Jordan curve.

Corollary: a simple path J from A to D (resp. D to A) does not contain B and C as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{1\}$ that winding 0 or 1 (resp. or -1) time around 1.

Proving the Theorem

Let's suppose that $\overrightarrow{A D}=1$,

Lemma

Given an simple arc $\overparen{A D}$ we have:

- $\stackrel{\overparen{A D}}{ }$ contains a proper subarc $\stackrel{\rightharpoonup}{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$ iff $\exp (\stackrel{\overparen{A D})}{ }$ is not a Jordan curve.

Corollary: a simple path J from A to D (resp. D to A) does not contain B and C as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{1\}$ that winding 0 or 1 (resp. or -1) time around 1.

Corollary: if J is a simple closed curve of \mathbb{C} composed with two curves J_{1} and J_{2} respectively going from A to D and D to A which do not contain points B and C as required in the Theorem then $|w n(\exp (J), 1)|=\left|w n\left(\exp \left(J_{1}\right), 1\right)+w n\left(\varphi\left(J_{2}\right), 1\right)\right| \leq 1$.

Proving the Theorem

Let's suppose that $\overrightarrow{A D}=1$,

Lemma

Given an simple arc $\overparen{A D}$ we have:

- $\stackrel{\overparen{A D}}{ }$ contains a proper subarc $\stackrel{\rightharpoonup}{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$ iff $\exp (\stackrel{\overparen{A D})}{ }$ is not a Jordan curve.

Corollary: a simple path J from A to D (resp. D to A) does not contain B and C as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{1\}$ that winding 0 or 1 (resp. or -1) time around 1.

Corollary: if J is a simple closed curve of \mathbb{C} composed with two curves J_{1} and J_{2} respectively going from A to D and D to A which do not contain points B and C as required in the Theorem then $|w n(\exp (J), 1)|=\left|w n\left(\exp \left(J_{1}\right), 1\right)+w n\left(\varphi\left(J_{2}\right), 1\right)\right| \leq 1$.

Lemma: if J is a simple closed curve of \mathbb{C} composed with two curves J_{1} and J_{2} respectively going from A to D and D to A such that 0 and 1 are in the interior of J, then $|w n(\varphi(J), 1)| \geq 2$.

Proving the Theorem

Let's suppose that $\overrightarrow{A D}=1$,

Lemma

Given an simple arc $\overparen{A D}$ we have:

- $\stackrel{\overparen{A D}}{ }$ contains a proper subarc $\stackrel{\rightharpoonup}{B C}$ such that $\overrightarrow{A D}=\overrightarrow{B C}$ iff $\exp (\stackrel{\overparen{A D})}{ }$ is not a Jordan curve.

Corollary: a simple path J from A to D (resp. D to A) does not contain B and C as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{1\}$ that winding 0 or 1 (resp. or -1) time around 1.

Corollary: if J is a simple closed curve of \mathbb{C} composed with two curves J_{1} and J_{2} respectively going from A to D and D to A which do not contain points B and C as required in the Theorem then $|w n(\exp (J), 1)|=\left|w n\left(\exp \left(J_{1}\right), 1\right)+w n\left(\varphi\left(J_{2}\right), 1\right)\right| \leq 1$.

Lemma: if J is a simple closed curve of \mathbb{C} composed with two curves J_{1} and J_{2} respectively going from A to D and D to A such that 0 and 1 are in the interior of J, then $|w n(\varphi(J), 1)| \geq 2$.

The Theorem follows by contradiction.

Outline

The group language of \mathbb{Z}^{2}

A similar problem in computational linguistics

Multiple Context Free Grammars (MCFGs)

A grammar for O_{2}

Proof of the Theorem

A Theorem on Jordan curves

Conjectures

Nederhof's conjecture

- Nederhof (2016)

Conjecture: for every k,

$$
O_{k}=\left\{w \in\left\{a_{1}, \overline{a_{1}} \ldots, a_{k}, \overline{a_{k}}\right\}^{*}\left|\forall 1 \leq i \leq k,|w|_{a_{i}}=|w| \overline{a_{i}}\right\}\right.
$$

is generated by the grammar with rules of the form:

$S\left(x_{1} \ldots x_{k}\right) \leftarrow \operatorname{Inv}\left(x_{1}, \ldots, x_{k}\right)$
$\operatorname{Inv}\left(s_{1}, \ldots, s_{k}\right) \leftarrow \operatorname{Inv}\left(x_{1}, \ldots, x_{k}\right), \operatorname{Inv}\left(y_{1}, \ldots, y_{k}\right)$
$s_{1} \ldots s_{k} \in \operatorname{perm}\left(x_{1} \ldots x_{k} y_{1} \ldots y_{k}\right)$

$$
\operatorname{Inv}(\epsilon, \ldots, \epsilon) \leftarrow
$$

Status of the conjecture

Positive arguments

- The conjecture has been tested on millions of examples

Status of the conjecture

Positive arguments

- The conjecture has been tested on millions of examples
- In the case of \mathbb{Z}^{3}, some cases can be solved using braiding arguments
Negative argument

Status of the conjecture

Positive arguments

- The conjecture has been tested on millions of examples
- In the case of \mathbb{Z}^{3}, some cases can be solved using braiding arguments
Negative argument
- for the case of \mathbb{Z}^{2} many arguments are strongly related to planarity \rightarrow no clear way of generalizing to higher dimensions

