The word problem in Z?
and
formal language theory

Sylvain Salvati
INRIA Bordeaux Sud-Ouest

Topology and languages June 22-24



Outline

The group language of Z?

A similar problem in computational linguistics
Multiple Context Free Grammars (MCFGs)

A grammar for O,

Proof of the Theorem

A Theorem on Jordan curves

Conjectures



Outline

The group language of Z?



Group languages

Group finite presentation:
> a finite set of generators

> a finite set of defining equations E



Group languages

Group finite presentation:

> a finite set of generators

> a finite set of defining equations E
Word problem: given w in ¥*, is w =g 17
Group language: {w € X* | w =g 1}



Group languages

Group finite presentation:
> a finite set of generators
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Group languages

Group finite presentation:
> a finite set of generators
> a finite set of defining equations E
Word problem: given w in ¥, is w =g 1?7
Group language: {w € X* | w =g 1}
» the word problem is in general undecidable (Novikov 1955,
Boone 1958)

> the languages of different representation of a group a
rationally equivalent

> relate algebraic properties of groups to language-theoretic
properties of their group languages

Example: a group language is context free iff its underlying group
is virtually free (Muller Schupp 1983)



A simple presentation of Z?

» Generators: {a;a; b; b}

» Defining equations: a~! =3, b1 = b, xy = yx

Ll

The associated group language is

02 = {w € {a;3; b; b}"[|w|, = [w|5 A\ [w]p, = |wlz}



O, and computational group theory

» Gilman (2005)

It does
not even seem to be known whether or not the word problem of Z x Z is indexed.
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A similar problem in computational linguistics



MIX

MIX = {w € {a; b; c}*||w|s = |w|p = |w|c}

MIX and O, are rationally equivalent



The Bach language

» Bach (1981)

b rer
Exercise 2: et
But § POPeL L = {XIX = (apeyn
L Lc:ag‘);i {Hlnis et CF. For Tet 'L-L=ifoC; {inafhcg requtar),
a CF language and a is not CF, pyt since the_'a b'c®) _then
regular language is cr, | car:T'Ee;smtm" of
? e CF.

Wikipedia entry:
http://en.wikipedia.org/wiki/Bach_language



The MIX language

» Marsh (1985)

Conjecture: MIX is not an indexed language.

m (the
names ‘mix’ and ° — pronounced ‘little mix’ and ‘big mix” were the

happy invention of Bill Marsh; little mix’ is the scramble of (ab)*).



MIX and Tree Adjoining Grammars

> Joshi (1985)

[MIX] represents the extreme case of the degree of free word order
permitted in a language. This extreme case is linguistically not
relevant. [...] TAGs also cannot generate this language although
for TAGs the proof is not in hand yet.



MIX and Tree Adjoining Grammars

» Vijay Shanker, Weir, Joshi (1991)

case of free word order, It is not known yet whether TAG, HG, CCG and LIG can generate MIX.
This has turned out to be a very difficult problem. In fact, it is not even known whether an IG can

generate MIX,



MIX and mildly context sensitive languages

» Joshi, Vijay Shanker, Weir (1991)

O SOOI ) 1S G capture only certain
kinds of dependencies, e.g., nested dependencies and certain limited kinds of crossing dependencies
(e.g., in the subordinate clause constructions in Dutch or some variations of them, but perhaps not

in the so-called MIX (or Bach) language, which consists of equal numbers of a’s, b’s, and c¢’s in

any order 4) languages in MCSL have constant growth property, i.e., if the strings of a language
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Multiple Context Free Grammars (MCFGs)
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A generalization of context-free grammars

Rule of a context free grammar:
A— WlBl ce WanWn+1

with A, By, ..., B, non-terminals and wy, ... w41 string of
terminals.



A generalization of context-free grammars

Rule of a context free grammar:
A— WlBl ce WanWn+1

with A, By, ..., B, non-terminals and wy, ... w41 string of
terminals.

A bottom-up view:

A(WiX1 ... WaXpWnt1) < Bi(x1),. .., Bn(xn)
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A generalization of context-free grammars

Replace strings by tuple of strings:

B(si,...,5m) < Bi(xi, ... ,X,%l), vy Ba(xg o xE)

> the strings s; are made of terminals and of the variables XJ'
> the variables XJ’ are pairwise distinct (otherwise we get
Groenink’s Literal Movement Grammars),

> each variable xj’ has at most one occurrence in the string
Si...Sm (otherwise we get Parallel Multiple Context-Free
Grammars).



Formal definition

A m-MCFG(r) is a 4-tuple (N, T, P, S) such that:

» N is a ranked alphabet of non-terminals of max. rank m.
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Formal definition

A m-MCFG(r) is a 4-tuple (N, T, P, S) such that:
» N is a ranked alphabet of non-terminals of max. rank m.
» T is an alphabet of terminals

» P is a set of rules of the form:

1 1 n n
A(sty -y 8k) < Bi(xq, .o, X, )y o5 Bal(X(, -y XK)
where:
» Ais a non-terminal of rank k, B; is non-terminal of rank k;,
n<r,

> the variables xj’ are pairwise distinct,
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» the strings s; are in (TUuX)with X = U UL {x
» each variable xj’ has at most one occurrence in s;...5k



Formal definition

A m-MCFG(r) is a 4-tuple (N, T, P, S) such that:
» N is a ranked alphabet of non-terminals of max. rank m.
» T is an alphabet of terminals

» P is a set of rules of the form:

1 1 n n
A(sty -y 8k) < Bi(xq, .o, X, )y o5 Bal(X(, -y XK)
where:
» Ais a non-terminal of rank k, B; is non-terminal of rank k;,
n<r,

> the variables xj’ are pairwise distinct,

. . I o n ki i
» the strings s; are in (TUuX)with X = U UL {x
» each variable xj’ has at most one occurrence in s;...5k

» S is a non-terminal of rank 1, the starting symbol.



The language generated by an MCFG

Given an MCFG G = (N, T, P, S), if the following conditions
holds:

> Bi(st, .. Si)s - Ba(sf,...,si) are derivable,
> A(st,...,86) < Bi(xg, ... ,x,fl), oy Ba(X{s oy xg ) is a rule
in P

then A(ty, ..., tx) with t; = s,-[Xj — Sj]ie[l;n],jell:k,] is derivable.



The language generated by an MCFG

Given an MCFG G = (N, T, P, S), if the following conditions
holds:

> Bi(st, .. Si)s - Ba(sf,...,si) are derivable,
> A(st,...,86) < Bi(xg, ... ,x,fl), oy Ba(X{s oy xg ) is a rule
in P
then A(ty, ..., tx) with t; = s,-[Xj — Sj]ie[l;n],jell:k,] is derivable.

The language define by G, L(G) is:

{w | S(w) is derivable}



An example

S(xiyixeyn) < P(x1,x2), Q(y1,y2)
P(axl, bX2) — P(Xl,Xz)

P(e, €) +

Q(ex1, dx2) + Q(x1,x2)

Q(e, €)
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An example

S(xiyixeyn) < P(x1,x2), Q(y1,y2)
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Q(e, €)



An example

S(xiyixeyn) < P(x1,x2), Q(y1,y2)
P(axl, bX2) < P(Xl,Xz)

P(e, €) +

Q(cex, dx2) < Q(x1,x2)

Q(e, €)

Q(e,€)
Q(c, d)
Q(cc, dd)




An example

S(xiyixeyn) < P(x1,x2), Q(y1,y2)

P(axi, bxz) + P(x1, x2) Q(e,€)
P(e,€) < Q(c, d)
Q(ex1, dxe) + Q(xa, x2) Q(cc, dd)

Q(e, €)

P(e, €)



An example

S(xiyixeyn) < P(x1,x2), Q(y1,y2)
:D(aX].7 ng) <— P(X17X2)

P(e, €) +

Q(ex1, dx2) + Q(x1,x2)

Q(e, €)

Q(e,€)
Q(c, d) P(e, €)
Q(cc, dd) P(a, b)



An example

S(xiyixeyn) < P(x1,x2), Q(y1,y2)

P(axl, bX2) <« P(Xl,X2) 0(67 6)
P(e, €) + Q(c, d) P(e, €)
Q(ex1, dx2) + Q(x1,x2) Q(cc, dd) P(a, b)

Qe €) S(acchdd)



An example

S(xiyixeyn) < P(x1,x2), Q(y1,y2)

P(axi, bxz) + P(x1, x2) Q(e,€)

P(e, €) + Q(c, d) P(e, €)
Q(ex1, dx2) + Q(x1,x2) Q(cc, dd) P(a, b)
Q(e, €) S(accbdd)

S(a"c™b"d™) « P(a", b"), Q(c™,d™)
The language is: {a"c"b"d™ | n € NAm e N}



The well-nestedness constraint

/( \/1 Y2 )%J( ) ), K(_,Vl,,\/z)

A(x1z1, Zoxoy1, yay3x3)  B(xi, x2, x3) C(y1, y2,¥3) D(z1, z2)
T T T

A(z1x1, y1x020y2x3, ¥3) < B(x1, x2,x3) C(y1, ¥2,¥3) D(21, 22)
- N




MCFL,,, and MCFL

MCFL

(a0 n - N
{af ...a;, | n €N}

(w1 | w e {a;b}*, m € N}
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Staudacher 1993
Michaelis 2005
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MCFL,,, and MCFL

{Wi . WnzpWnzp—1 ... zzwizowy . .. w} |
neN,w € {cd}",z,...,2n € D}

Staudacher 1993
Michaelis 2005

MCFL

*
{af ...a}, | n € N} {wi#wiw | w e Di'}

[, m+1

fiow | we {a:b}*, m € N} Engelfriet, Skyum 1976




MCFL,,, and MCFL

{wi .. wpzgwpzp_1 .. zzwizgw] ... wy |
neN,w € {cd}",z,...,2n € D}

~

Staudacher 1993
Michaelis 2005

MCFLwn
{a7...a0 | n €N} {witwitw | w e D}

{Wm+1 | w e {a;b}*, m € N} Engelfriet, Skyum 1976

{w#w |weDl}

Kanazawa, S. 2010
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A 2-MCFG for O,

S(xy) + Inv(x,y)

/"V(lel, y2x2) < Inv(x1, x2), Inv(y1, y2)

Inv(x1y1y2, x2) < Inv(x1, x2), Inv(y1, y2)
Inv(x1, y1y2x2) < Inv(x1, x2), Inv(y1, y2)
Inv(x1x2y1, y2) < Inv(x1, x2), InvEyl,yg)

Inv(x1, xoy1y2) < Inv(x1, x2), Inv(y1, y2)

Inv(axia, x2) < Inv(xi, x2)
Inv(axy, @x2) + Inv(x1, x2)
Inv(axi, xo@) < Inv(x1, x2)
Inv(xia, @x2) + Inv(x1, x2)
Inv(xic, x0@) < Inv(x1, x2)
Inv(x1, axo@) < Inv(x1, x2)

Inv(x1y1x2, y2) < Inv(x1, x2), Inv(y1, y2)
Inv(x1, y1xoy2) < Inv(x1, x2), Inv(y1, y2)

Inv(e, €) +

where o € {a; b}



A 2-MCFG for O,

S(xy) + Inv(x,y)
lnv x1y1, y2x2) < Inv(xi, x2), Inv(y1, y2)
Inv

( (
Inv(x1y1y2, x2) < Inv(x1, x2), Inv(y1, y2)

(x1, y1y2x0) = Inv(x1, x2), Inv(y1, y2) well-nested binary rules
Inv(x1xoy1, y2) < Inv(x1, x2), Inv(y1, y2)

Inv(x1, xoy1y2) < Inv(x1, x2), Inv(y1, y2)

Inv(axia, x2) < Inv(xi, x2)

Inv(axy, @x2) + Inv(x1, x2)

Inv(axi, xo@) < Inv(x1, x2)

Inv(xia, @x2) + Inv(x1, x2)

Inv(xic, x0@) < Inv(x1, x2)

Inv(x1, axo@) < Inv(x1, x2)
Inv(x1y1x2, y2) < Inv(x1, x2), Inv(y1, y2)
Inv(x1, y1xoy2) < Inv(x1, x2), Inv(y1, y2)
Inv(e, €)

non well-nested rules

where o € {a; b}



A 2-MCFG for O,

S(xy) + Inv(x,y)
(x1y1, yox2) <= Inv(x1, x2), Inv(y1, y2)
Inv(x1y1y2, x2) < Inv(x1, x2), Inv(y1, y2)
(x1, y1y2x2) = Inv(x1, x2), Inv(y1, y2)
( (
(

Inv
Inv well-nested binary rules
Inv(x1xay1, y2) 4= Inv(x1, x2), Inv(y1, y2)

Inv(x1, xoy1y2) <= Inv(x1, x2), Inv(y1, y2)

Inv(axia, x2) < Inv(xi, x2) }

Inv(axy, @ix2) < Inv(x1, x2)

Inv(axy, xp@) < Inv(xi, x2)

Inv(x1c, @x2) — Inv(x1, x2)

Inv(xic, x0@) < Inv(x1, x2)

Inv(x1, axo@) < Inv(x1, x2)
Inv(x1y1x2, y2) < Inv(x1, x2), Inv(y1, y2)
Inv(x1, y1xoy2) < Inv(x1, x2), Inv(y1, y2)

Inv(e, €)

rules for constants

non well-nested rules

where o € {a; b}



A 2-MCFG for O,

S(xy) + Inv(x,y) terminal rule
(x1y1, yox2) <= Inv(x1, x2), /nV(y1,)/2)
Inv(x1y1y2, x2) <= Inv(x1, x2), Inv(y1, y2)
(x1, y1y2x2) <= Inv(x1, x2), Inv(y1, y2)
( (

(

Inv
Inv well-nested binary rules
Inv(x1xay1, y2) 4= Inv(x1, x2), Inv(y1, y2)

Inv(x1, xoy1y2) <= Inv(x1, x2), Inv(y1, y2)

Inv(axiar, x2) <= Inv(x1, x2) }
}

Inv(axy, @ix2) < Inv(x1, x2)

Inv(axy, xp@) < Inv(xi, x2)

Inv(x1c, @x2) — Inv(x1, x2)

Inv(xic, x0@) < Inv(x1, x2)

Inv(x1, axo@) < Inv(x1, x2)
Inv(x1y1x2, y2) < Inv(x1, x2), Inv(y1, y2)
Inv(x1, y1xoy2) < Inv(x1, x2), Inv(y1, y2)

Inv(e, €) +

rules for constants

non well-nested rules

initial rule

where o € {a; b}
Theorem: Given wy and wy such that wiws € Oz, Inv(wi, ws) is derivable.



A graphical interpretation of O,.

Graphical interpretation of the word a@abaabaabbbbbaabbabbbbaaaabbbbbbbbaaa:




A graphical interpretation of O,.

Graphical interpretation of the word a@abaabaabbbbbaabbabbbbaaaabbbbbbbbaaa:

NN

The words in O, are precisely the words that are represented as closed curves:
babbababbabbabbababbaaabbbabbaaaabbabbbaba

e
-

]



Parsing with the grammar

Rule Inv(axia, x2) < Inv(xi, x2)

Inv(abaabaaababbbabaaabbbabbbbaaaba, babbbbaaaaaababbaab)

Inv(baabaaababbbabaaabbbabbbbaaab, babbbbaaaaaababbaab)




Parsing with the grammar

Rule: Inv(xiy1, yox2) < Inv(x1, x2), Inv(y1, y2)

Inv(baabaaababbbabaaabbbabbbbaaab, babbbbaaaaaababbaab)

i

Inv(baabaaaba, bbaab)

Inv(bbbabaaabbbabbbbaaab, babbbbaaaaaaba)




Parsing with the grammar

Rule Inv(x1, yixays) < Inv(x1, x2), Inv(y1, y2)

Inv(bbbabaaabbbabbbbaaab, babbbbaaaaaaba)

&

Inv(babb, ba)

Inv(bbbabaaabbbabbbbaaab, bbaaaaaa)




Parsing with the grammar

Rule: Inv(x1b, bxo) < Inv(x1, x2)

Inv(bbbabaaabbbabbbbaaab, bbaaaaaa)

Inv(bbbabaaabbbabbbbaaa, baaaaaa)




Parsing with the grammar

Rule: Inv(bxy, bxo) < Inv(x1, x2)

Inv(bbbabaaabbbabbbbaaa, baaaaaa)

Inv(bbabaaabbbabbbbaaa, aaaaaa)




Parsing with the grammar

Rule: Inv(xiy1, yax2) < Inv(x1, x2), Inv(y1, y2)

Inv(bbabaaabbbabbbbaaa, 3aaaaa)

0

I

Inv(bbabaaabbbabbbb, aaa)

Inv(aaa, aaa)




Parsing with the grammar

Rule: Inv(bxib,x2) < Inv(xy, x2)

3

Inv(bbabaaabbbabbbb, aaa)

P

Inv(babaaabbbabbb, aa)
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|wiwa|, max(|wil, [w2])) -
There are five cases:

Case 1: wy or wy equal e



The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs

(Iwawzl], max(|wil, [w2])) .

There are five cases:

Case 1: wy or wy equal e

w.l.0.g., wi # €, then by induction hypothesis, for any v; and v, different from € such
that wi = viva, Inv(vi, v2) is derivable then:

Inv(vi, va) Inv(e,€)

Inv(x1x2, y1y2) < Inv(x1, x2), Inv(y1, y2)
Inv(viva = wy,¢€)



The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|wawa|, max(|wil, [wal)) -

There are five cases:

Case 2: w; = s;wysz and wo = s3wysz and for i, j € {1;2;3;4}, s.t. i #J,

{siis} € {{aa}; {b:b}}:



The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|wawa|, max(|wil, [wal)) -
There are five cases:

Case 2: w; = s;wysz and wo = s3wysz and for i, j € {1;2;3;4}, s.t. i #J,
{si;s;} € {{a:a}; {b; b}}:

eg., ifi=1,j=2, 51 =aand s; = a then by induction hypothesis Inv(wj, w») is
derivable and:

Inv(wy, wp)

Inv(ax13, x2) < Inv(x1, x2)
Inv(aw{a, wy)



The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|wiwa|, max(|wil, [w2])) -
There are five cases:

Case 3: the curves representing wi; and ws have a non-trivial intersection point:



The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|wiwa|, max(|wil, [w2])) -
There are five cases:

Case 3: the curves representing wi; and ws have a non-trivial intersection point:

Inv(vi,va) Inv(va,v3)
\/ Inv(viva = wi, vavg = wn)

Q)
()




The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|wiwa|, max(|wil, [w2])) -
There are five cases:

Case 4: the curve representing wy or wy starts or ends with a loop:



The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|wiwa|, max(|wil, [w2])) -
There are five cases:

Case 4: the curve representing wy or wy starts or ends with a loop:
U1 U2

Inv(vi,e)  Inv(va, wa)

Inv(vive = wi, wa)



The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|wawa|, max(|wil, [wal)) -
There are five cases:

Case 5: wy and ws do not start or end with compatible letters, the curve representing
then do not intersect and do not start or end with a loop.



Case b

No rule other than

Inv(xiy1xa,y2) < Inv(xy,x2), Inv(y1, y2)
Inv(xi, y1xay2) < Inv(xy,x2), Inv(y1, y2)

can be used.

mumn




Case b

No rule other than

Inv(xiy1xa,y2) < Inv(xy,x2), Inv(y1, y2)
Inv(xi, y1xay2) < Inv(xy,x2), Inv(y1, y2)

can be used.




The relevance of case b

The word
abbaabaaabbbbaaaba

it

is not in the language of the grammar only containing the
well-nested rules.
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The relevance of case 5: a proof is now in hand

> Joshi (1985)

[MIX] represents the extreme case of the degree of free word order
permitted in a language. This extreme case is linguistically not
relevant. [...] TAGs also cannot generate this language although
for TAGs the proof is not in hand yet.

Theorem (Kanazawa, S. 12)
There is no 2-MCFL,,, (or TAG) generating MIX or O,.



Solving case 5: towards geometry
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Solving case 5: towards geometry
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Solving case 5: a geometrical invariant
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Solving case 5: a geometrical invariant
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Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing wywj:

RRER R A

! 11 ! 1 ! 11 ! 11
wy = aw;’a and wy = awy'a | wy = aw;’a and w, = awy'b

o
]y

! 1! ! 1 ! 1! ! 1/
wy = awj’a and wy = bwy'a | wy = aw;’a and w; = bwy'b




Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing wywj:

S

! 1" ! 1 ! 1 ! 1
wy = aw;'b and wy, = aw,’b | wy = awy’b and w, = bw;'a

% g

! 1" ! ! 1" A
wi =awj’aand w; =a wi =awj’aand w, =b




Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing wywj:

T e

! 1 ! ! 11 /e
wj =aw;’band wy =a | wy =aw;’band w, = b
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Figure 13.1 Two Jordan curves.

illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).



A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that /ﬁ = A’D’, then there are two points B and C
pairwise distinct from A and D such that A, B, C, and D appear in that order on one
of the arcs going from A to D and ,ﬁ = B_C>
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Winding number

Let wn(J, z) be the winding number of a closed curve around z.

Qutside

Qutside
Figure 13.1 Two Jordan curves.

illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).



An interesting Lemma

Let exp : { (S : (52,-;2{0} :

Lemma -
Given an simple arc AB such that /ﬁ =k € N, we have:

N

wn(exp(AB),0) = k
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An interesting characterization

Lemma
(%
Given an simple arc AD such that /ﬁ =1, we have:

» AD contains a proper subarc BC such that /ﬁ = ﬁ iff

exp(AD) is not a Jordan curve.



Jordan curves and winding numbers

OQutside

Qutside
Figure 13.1 Two Jordan curves.

illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).
Theorem: There is k € {—1;1} such that the winding number of Jordan curve around
a point in its interior is k, its winding number around a point in its exterior is O.
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Proving the characterization

Lemma
m
Given an simple arc AD such that /ﬁ =1, we have:

e N m
» AD contains a proper subarc BC such that ﬁ = ﬁ iff exp(AD) is not a
Jordan curve.

Proof

N (&3
» by 1-periodicity of exp, if AD contains a proper subarc BC such that /ﬁ = B_C),
.

then exp(AD) is not a Jordan curve,

m
» if exp(AD) is not a Jordan curve:
> take the closed curve C obtained by removing the closed subcurves of
m
exp(AD) that have a negative winding number,

> take a proper closed subcurve D of C that is minimal for inclusion,
D is a Jordan curve winding positively (i.e. once) around 0,

v

~
» D induces a proper subcurve J of exp(AD) whose winding number is 1,

(% e
> 7 induces a proper subarc BC of exp(AD) such that AD — BC.
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Yet another observation from algebraic topology

Let's suppose that ﬁ =1landthat A=A =0, A, =D"=1,..., Ac =k
{ cC — C-{0}
let exp :

z N e2i7rz

exp sums up the winding number of a Jordan curve around the A;'s as the winding
number around exp(Ap) = exp(0) = 1.
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Proving the Theorem

Let's suppose that /ﬁ =1,

Lemma
m
Given an simple arc AD we have:

~ (% (%
» AD contains a proper subarc BC such that /ﬁ = B_C) iff exp(AD) is not a
Jordan curve.

Corollary: a simple path J from A to D (resp. D to A) does not contain B and C as
required in the Theorem iff ©(J) is a Jordan curve of C — {1} that winding 0 or 1
(resp. or —1) time around 1.

Corollary: if J is a simple closed curve of C composed with two curves J; and J»
respectively going from A to D and D to A which do not contain points B and C as
required in the Theorem then |wn(exp(J), 1)| = |wn(exp(J1),1) + wn(p(J),1)] < 1.

Lemma: if J is a simple closed curve of C composed with two curves J; and J,
respectively going from A to D and D to A such that 0 and 1 are in the interior of J,
then |wn(p(J),1)] > 2.

The Theorem follows by contradiction.
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Conjectures



Nederhof's conjecture

» Nederhof (2016) A"?
Conjecture: for every k,

Ok ={we {an, ... a3 | V1< i<k |wly = |wlz)}

is generated by the grammar with rules of the form:

S(x1...xk) < Inv(xi,...,xk)
Inv(si,...,sk) < Inv(xy,...,xk), Inv(y1,...,yk)
Si...S € perm(Xy ... XkY1i---Yk)
Inv(xi,...,axi, ..., ¢, ..., xk) < Inv(xy, ..., xk)

Inv(e,... €)«
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Status of the conjecture

Positive arguments
» The conjecture has been tested on millions of examples

» In the case of Z3, some cases can be solved using braiding
arguments

Negative argument

» for the case of Z? many arguments are strongly related to
planarity — no clear way of generalizing to higher dimensions
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