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Boolean functions and query complexity

Let F a given (=known) boolean function

F : {0, 1}n → {0, 1}

For every unknown σ = (x1, . . . , xn) ∈ {0, 1}n , we want to know the value
of F (σ), the only questions possible being 〈〈what is the value of xi ? 〉〉

Our goal is to ask as few questions as possible and D(F ) is the minimum
number of questions which permits to know the value of F (σ) for every σ.

If F is not constant (trivial case : D(F ) = 0), we have

1 ≤ D(F ) ≤ n

The function F is said evasive if D(F ) = n (maximal 〈〈 complexity 〉〉) ; it
means that there is at least one σ for which there is no strategy which
permits to know F (σ) in less than n questions.



Complexity Motivation simplicial approach Topology dismantlabilities in graphs weak evasiveness conjecture
Definitions decision tree Examples

Decision tree (example)

Let P the property:

〈〈 having 3 consecutive 1
in a chain of 5 bits 〉〉

yes no

yes no

yes no yes no

yes no yes no

0

1 0

1 0 1 0

3

2

4 4

1 5
KP

D(P) = 4 < 5
P is non evasive
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Boolean functions and evasiveness, examples

◮ 〈〈F (x) = x1 + x2 + . . .+ xn mod 2〉〉 is evasive.

◮ (n = N2) : 〈〈 f
(

(xij)1≤i ,j≤N

)

=
∧

i

∨

j xij〉〉 is evasive

◮ 〈〈 having at least k 1 〉〉 is evasive if, and only if, 1 ≤ k ≤ n

◮ For n ≥ 3, the property 〈〈 to have three consecutive 1 〉〉 is evasive if,
and only if, n ≡ 0 or n ≡ 3 modulo 4
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Motivation for evasiveness : graph properties

Let V a set of k elements. If n =
(

k
2

)

= k(k−1)
2 , every E ⊂ 2[n] represents a

graph with vertex set V and edge set E (xi = 1 denotes the presence of the
edge xi ).

A graph property P is a set of graphs such that

(S ,A) ≃ (S ,A′) =⇒ A,A′ ∈ P ou A,A′ 6∈ P

or may be seen as a boolean function

FP : [n] = {xij , 1 ≤ i < j ≤ k} −→ {0, 1}

such that, for all permutation σ ∈ Sk :

FP
(

(xij)1≤i<j≤k

)

= FP
(

(xσ(i)σ(j))1≤i<j≤k

)

definition: P is evasive ⇐⇒ FP is evasive
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Many graph properties are evasive, but not all...

Evasive Proprerties

◮ being planar (with n ≥ 5 vertices...)

◮ having at most j edges with j <
(

k
2

)

◮ being acyclic

◮ being connected

Non evasive properties

◮ (k = 6) to be one of the three following graphs :

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

◮ to be a tournament with k vertices with a source (c(P) ≤ 3k − 4)

◮ to be a scorpion-graph with k ≥ 11 vertices (c(P) ≤ 6k − 13)
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Conjectures about hereditary properties

A graph property P is monotone increasing if it is preserved by addition of
edges, i.e. G = (S ,A) verifies P =⇒ G − e := (S ,A− {e}) verifies P (and
monotone decreasing if it is preserved by deletion of edges).

Aanderaa-Karp-Rosenberg conjecture

Any monotone and non trivial graph property is evasive.

F : {0, 1}n → {0, 1} is weakly symmetric if there is a subgroup Γ of Sn
transitive on {1, 2, . . . , n} such that F is Γ-invariant, i.e. for all g ∈ Γ and
all (xi )1≤i≤n ∈ {0, 1}n , F

(

(xi )1≤i≤n

)

= F
(

(xg(i))1≤i≤n

)

.

Generalized AKR conjecture others versions

Any monotone, non trivial and weakly symmetric boolean func-
tion is evasive.
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Simplicial complexes

An abstract simplicial complex K = (V (K ),Σ(K )) is given by :

◮ V (K ), a set of vertices

◮ Σ(K ) ⊂ 2V (K) a set of simplices such that

τ ⊂ σ and σ ∈ Σ(K ) ⇒ τ ∈ Σ(K )

Définitions/notations :

◮ If τ ⊂ σ ∈ Σ(K ) and τ 6= σ, one says that τ is a face of σ.

◮ |K | : geometric realization of K (if #V (K ) = n, |K | ⊂ Rn).
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•
s1

• •
s1 s2

• •

•

s1 s2

s3

• •

•

•
s1 s2

s3

s4

{s1}

{s1, s2}

{s1, s2, s3}

{s1, s2, s3, s4}

0-simplex

1-simplex

2-simplex

3-simplex

abstract
simplices

geometrical
simplices
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From monotone boolean functions to simplicial complexes

For S ⊂ [n] := {1, 2, . . . , n}, χS ∈ 2[n] is its characteristic function (defined
by χS(i) = 1 if and only if i ∈ S).

A monotone decreasing boolean function F defines a simplicial complex

KF := {S ⊂ [n], F (χS) = 1}

(and a monotone increasing boolean function F defines a simplicial
complex KF where F = 1− F ).

Reciprocally, a simplicial complex K defines a monotone (decreasing)
boolean function FK such that K = KFK

(and also FKF
= F if F is

monotone decreasing) and

K = KF is said evasive if, and only if, F is evasive

Note that : F trivial ⇐⇒ K is a simplex
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Example with F associated to 〈〈 (at least) 3 consecutive 1 〉〉

11111

00000

11110 11101 10111 0111111011

11100 01110 0011111010 11001 10110 10101 10011 01101 01011

11000 10100 10010 10001 01100 01010 01001 00110 00101 00011

10000 01000 00100 00010 00001
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Example with F associated to 〈〈 (at least) 3 consecutive 1 〉〉

11111

00000

11110 11101 10111 0111111011

11100 01110 0011111010 11001 10110 10101 10011 01101 01011

11000 10100 10010 10001 01100 01010 01001 00110 00101 00011

10000 01000 00100 00010 00001
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Example with F associated to 〈〈 (at least) 3 consecutive 1 〉〉

11111

∅

11110 11101 10111 011111245

11100 01110 00111124 125 134 135 145 235 245

12 13 14 15 23 24 25 34 35 45

1 2 3 4 5
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(face poset of the) simplicial complex KF obtained for 〈〈 F : 3
consecutive 1 〉〉 :

∅

1245

124 125 134 135 145 235 245

12 13 14 15 23 24 25 34 35 45

1 2 3 4 5
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Collapsibility

If τ is a maximal face of σ and is not a strict face of another simplex, one
says that τ is free face and that {σ, τ}, is a collapsible pair.

τ
σK K − {σ, τ}

◮ The deletion of a collapsible pair is an elementary simplicial collapse

◮ Notation : K ցsc K − {σ, τ}

◮ A collapse K ցsc L is a succession of elementary collapses transforming
K in L

◮ K is said collapsible if K ցsc pt where pt is a simplicial complex
reduced to a point
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A criterion for collapsibility

Let x a vertex of the simplicial complex K

◮ lkK (x) = {σ ∈ K , {x} ∪ σ ∈ K et x /∈ σ}

◮ delK (x) = {σ ∈ K , x /∈ σ}

x
lkK (x)

staroK (x)
K

•

Theorem : For every vertex x of K ,

lkK (x) et delK (x) collapsible =⇒ K collapsible
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non evasive =⇒ collapsible

Theorem

A simplicial complex K is non evasive if, and only if, it has a vertex x such
that lkK (x) and delK (x) are non evasive.

Theorem (Kahn, Saks, Sturtevant, 1984) :

If K is a non evasive simplicial complex, then K is collapsible.
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Simplicial collapsing of KF : decision tree

KF ցsc K1 := KF − {23, 235}
ցsc K2 := K1 − {34, 134}
ցsc K2 − {34, 134} − {3, 13} = K − {3}

∅

1245

124 125 134 135 145 235 245

12 13 14 15 23 24 25 34 35 45

1 2 3 4 5

235

23

134

34

135

35

3

13
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Simplicial collapsing of KF : KF ցsc KF − {3} ցsc pt

∅

1245
KF − {3}

124 125 145 245

12 14 15 24 25 45

1 2 4 5
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vertex-collapsibilities

Let K a simplicial complex and x a vertex (i.e. a 0-simplex) of K

◮ x is 0-collapsible if lkK (x) is a cone
Coll0(K ) is the set of 0-collapsible vertices of K .

◮ K is strong collapsible if it is a reducible to a single vertex by
successive deletions of 0-collapsible vertices
Coll0 is the set of strong collapsible finite complexes.

◮ For k > 0 integer, x is k-collapsible if lkK (x) ∈ Collk−1

◮ A complex K is k-collapsible if it is reducible to a vertex by successive
deletions of k-collapsible vertices
Collk is the set of strong collapsible finite complexes.

Proposition (J. Barmak, G. Minian, 2009)

NE =
⋃

k Collk (where NE is the set of non evasive simplicial complexes)
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Evasiveness conjecture

A simplicial complex K is said vertex-homogeneous if Aut(K ), the group of
simplicial automorphisms of K , acts transitively on the vertices of K .

We get the following reformulations of the generalized AKR conjecture:

Generalized AKR conjecture, version 2

If K is a non evasive and vertex homogeneous simplicial complex,
then K is a simplex.

Generalized AKR conjecture, version 3

If K ∈ Collk for some integer k ≥ 0 and if K is vertex homoge-
neous, then K is a simplex.

AKR versions
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Topological considerations

The topological space X is said contractible il there is a continuous map
H : X × [0, 1] → X such that, for all x in X , H(x , 0) = x and H(x , 1) = x0
for some point x0 of X .

Theorem K collapsible =⇒ K contractible

Brouwer theorem

Let K a simplicial complex and ϕ : |K | → |K | continue.

|K | contractile =⇒ fix(ϕ) 6= ∅

where Fix(ϕ) := {x ∈ |K |, ϕ(x) = x} is the set of fixed points of ϕ.

note : Every simplicial f : K → K (i.e. f (σ) is a simplex for any simplex
σ), induces ϕ := |f | : |K | → |K |. Nevertheless

|K | contractible 6=⇒ Fix(f ) 6= ∅
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Group actions and fixed points

Let K a vertex homogeneous complexe simplicial for the action of a finite
group Γ.

Proposition |K |Γ 6= ∅ =⇒ K is a simplex

Theorem (Oliver, 1975)

If 1) |K | is contractible
2) Γ has a normal subgroup H which is a p-group
3) Γ/H is cyclic

then, |K |Γ 6= ∅.

Application : with #S = pr , p prime ; S = Fpr .

◮ fa,b : S → S , x 7→ ax + b

◮ Γ := {fa,b ; a, b ∈ Fpr , a 6= 0} acts transitively on S

◮ H := {f1,b ; b ∈ Fpr }⊳ Γ et #H = pr

◮ Γ/H ∼= (Fpr )
∗ is cyclic
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Evasiveness conjecture is proved when n = pr

Theorem (Kahn, Saks, Sturtevant, 1984) :

Every non trivial monotone graph property on graphs with pr vertices with
p prime and r ∈ N∗ is evasive.

Idea of the proof

◮ non evasive graph property P =⇒ KP contractible simplicial complex

◮ graph property =⇒ KP invariant for the action of
Γ := {fa,b ; a, b ∈ Fpr , a 6= 0}

◮ Oliver theorem =⇒ |K |Γ 6= ∅

◮ Γ is transitive on V (KP) =⇒ KP is a simplex (i.e. P is a trivial graph
property)
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0-dismantlability (〈〈classical 〉〉 dismantlability)

Graphs G = (V (G ),E (G )) are finite.

A vertex a ∈ V (G ) is called 0-dismantlable if there is another vertex
b ∈ V (G ) such that every neighbour of a is also a neighbour of b :

NG [a] ⊂ NG [b]

Then, we say that G is 0-dismantlable on G − a; notation : G ց0 G − a.

A graph G is called 0-dismantlable if V (G ) = {x1, x2, . . . , xn} with

G = G1 ց0 G2 ց0 G3 . . . ց0 Gi ց0 Gi−1 ց0 . . . ց0 Gn = {xn}

where Gi is the subgraph of G induced by {xi , xi+1, . . . , xn}.

Theorem (Quilliot 1978, Nowakowski, Winkler 1983, ...)
Let G be a reflexive finite graph

G is cop-win ⇐⇒ G is dismantlable ⇐⇒ G is contractible C-strategy
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k-dismantlability

Inductively, for k integer ≥ 1 : a vertex a ∈ V (G ) is called k-dismantlable if
its open neighbourhood is a (k-1)-dismantlable graph. Then, we say that G
is k-dismantlable on G − a; notation : G ցk G − a.

A graph G is called k-dismantlable if V (G ) = {x1, x2, . . . , xn} with

G = G1 ցk G2 ցk G3 . . . ցk Gi ցk Gi−1 ցk . . . ցk Gn = {xn}

where Gi := G [xi , xi+1, . . . , xn].

notations : Dk := {k-dismantlable graphs}

a

a is 1-dismantlable

G is 1-dismantlable
and minimal in D1 \D0

(in number of vertices)

Q2
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a strict hierachy

Theorem (E. F.; B. Jouve)

The sequence (Dk)k≥1 is strictly increasing and D∞ :=
⋃

k≥0 Dk $ Dcoll :

D0 $ D1 $ D2 $ . . . ... $ Dk $ Dk+1 $ . . . ... $ Dcoll

where Dcoll is the set of graphs whose clique complex is collapsible.

proof :

◮ For k ≥ 0, Qk+1 ∈ Dk \ Dk−1 (cubions)

◮ For n ≥ 7, n ∈ Dcoll \ D∞ :=
⋃

k≥0 Dk
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The cubions Qn, n ∈ N

Definition of the n-Cubion Qn

V (Qn) = {αi ,ǫ, i = 1, · · · , n and ǫ = 0, 1} ∪ {x = (x1, · · · , xn), xi = 0, 1}
and E (Qn) defined by:

• ∀i 6= j , αi ,ǫ ∼ αj ,ǫ′

• ∀x 6= x ′, x ∼ x ′

• ∀i ∈ [n], αi ,1 ∼ (x1, · · · , xi−1, 1, xi+1, · · · , xn) and
αi ,0 ∼ (x1, · · · , xi−1, 0, xi+1, . . . , xn)

• • • •

Q1

α1,1 α1,0(1) (0)
α1,0

α2,1

α1,1

α2,0

(0,0)

(0,1)(1,1)

(1,0)

•

•

•

•

•

•

•

•

Q2
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8 ∈ Dcoll \ D∞

• •

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

A

B

C

D

E

F

G

H

a

b
c

d

e

f g
h

x

big-top 8

N 8(A)

h

H

a

B

G C

••

••

••

and

∆( 8) ցց ∆( 8))− {HB ,HAB}
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Back to evasiveness

a weak evasiveness conjecture

Let X a graph

∃ k ∈ N, X ∈ Dk

X vertex transitive

}

=⇒ X complete

This conjecture may be seen as the particular case of evasiveness conjecture
restricted to flag complexes (or clique complexes):
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First direction of results

Let X a graph and k an integer ≥ 0.

Let Ck(X ) denote the set of (k + 1)-subsets of V (X ) which induce a
complete subgraph of X (e.g. C0(X ) = V (X ) and C1(X ) = E (X )).

X will be called k-transitive if Aut(X ) acts transitively on Ck(X ), i.e.:

∀ ({a0, a1, a2, . . . , ak}, {b0, b1, b2, . . . , bk}) ∈ Ck(X )× Ck(X ),

∃ ϕ ∈ Aut(X ) s.t. ϕ(au) = bu , for all u ∈ {0, 1, 2, . . . , k}

Exemples : Johnson graphs J(v , k , i) ; for i = 0 : Kneser graphs

Theorem 1 (E. F.; B. Jouve)

Let X a finite graph and k an integer ≥ 0.
If X ∈ Dk and X is j-transitive for all j ∈ {0, 1, 2, . . . , k}, then X is a
complete graph.



Complexity Motivation simplicial approach Topology dismantlabilities in graphs weak evasiveness conjecture
Cliques complexes First direction of results Second direction of results

Second direction of results

Theorem 2
If a Cayley graph X = Cay(Z/nZ,S) is k-dismantlable for some integer
k ≥ 0, then X is a complete graph.
In particular, if a vertex transitive graph with a prime number of vertices is
k-dismantlable for some integer k ≥ 0, then it is a complete graph.

proof :

◮ By non evasiveness, |∆X |Γ 6= ∅ (where |∆X |Γ the set of fixed points of
|∆X | under the action of Γ).

◮ By vertex transitivity, V (X ) is the unique orbit.

◮ So, X is a complete.



Thanks for your attention !
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〈〈 cop and rob 〉〉 game

◮ Player 1 (the cop) chooses a vertex

◮ Then, player 2 (the robber) chooses a vertex

◮ Then, cop and rob move to an adjacent vertex alternatively (first cop,
next rob) ; and so on...

◮ The cop wins if he 〈〈 catches〉〉 the robber (they are on the same vertex)

Theorem (Quilliot 1978, Nowakowski, Winkler 1983, ...)

Let G be a reflexive finite graph

G is cop-win ⇐⇒ G is dismantlable ⇐⇒ G is contractible



H : G × IN → G from H0 = Cx0 to HN = 1G gives a winning strategy :

R1 R2 . . . RN−1 RN

C0 C1 C2 . . . CN−1 CN
with Ci = Hi(Ri ), for i = 1, . . . ,N.

• C0 = x0

•R1

•C1

•
R2

•
C2

•RN−1

•CN−1

RN
•

= CN
•

G × 0

G × 1

G × 2

G × N − 1

G × N

dismantlable graph
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