Workshop « Topology and language », Toulouse, June 22-24, 2016

Dismantlings in graphs and a relation with

evasiveness conjecture for simplicial complexes

Etienne Fieux Institut de mathématiques de Toulouse

Boolean functions and query complexity

Let F a given (=known) boolean function

 $F:\{0,1\}^n\to\{0,1\}$

For every unknown $\sigma = (x_1, ..., x_n) \in \{0, 1\}^n$, we want to know the value of $F(\sigma)$, the only questions possible being «what is the value of x_i ? »

Our goal is to ask as few questions as possible and D(F) is the minimum number of questions which permits to know the value of $F(\sigma)$ for every σ . If F is not constant (trivial case : D(F) = 0), we have

$$1 \leq D(F) \leq n$$

The function F is said evasive if D(F) = n (maximal «complexity»); it means that there is at least one σ for which there is no strategy which permits to know $F(\sigma)$ in less than n questions.

 Complexity
 Motivation
 simplicial approach
 Topology
 dismantlabilities in graphs
 weak evasiveness conjecture

 Definitions
 decision tree
 Examples

Decision tree (example)

 Complexity
 Motivation
 simplicial approach
 Topology
 dismantlabilities in graphs
 weak evasiveness conjecture

 Definitions
 decision tree
 Examples

Boolean functions and evasiveness, examples

- $\langle F(x) = x_1 + x_2 + \ldots + x_n \mod 2 \rangle$ is evasive.
- ► $(n = N^2)$: $\langle f((x_{ij})_{1 \le i,j \le N}) = \bigwedge_i \bigvee_j x_{ij} \rangle$ is evasive
- ▶ «having at least k 1 » is evasive if, and only if, $1 \le k \le n$
- For n ≥ 3, the property «to have three consecutive 1 » is evasive if, and only if, n ≡ 0 or n ≡ 3 modulo 4

Complexity Motivation simplicial approach Topology dismantlabilities in graphs weak evasiveness conjecture Graph properties examples AKR Conjectures

Motivation for evasiveness : graph properties

Let \mathcal{V} a set of k elements. If $n = \binom{k}{2} = \frac{k(k-1)}{2}$, every $\mathcal{E} \subset 2^{[n]}$ represents a graph with vertex set \mathcal{V} and edge set \mathcal{E} ($x_i = 1$ denotes the presence of the edge x_i).

A graph property \mathcal{P} is a set of graphs such that

$$(S, A) \simeq (S, A') \Longrightarrow A, A' \in \mathcal{P} \text{ ou } A, A' \notin \mathcal{P}$$

or may be seen as a boolean function

$$F_{\mathcal{P}}: [n] = \{x_{ij}, \ 1 \le i < j \le k\} \longrightarrow \{0, 1\}$$

such that, for all permutation $\sigma \in \mathcal{S}_k$:

$$F_{\mathcal{P}}((x_{ij})_{1 \le i < j \le k}) = F_{\mathcal{P}}((x_{\sigma(i)\sigma(j)})_{1 \le i < j \le k})$$

DEFINITION: \mathcal{P} is evasive $\iff F_{\mathcal{P}}$ is evasive

 Complexity
 Motivation
 simplicial approach
 Topology
 dismantlabilities in graphs
 weak evasiveness conjecture

 Graph properties
 examples
 AKR Conjectures
 AKR
 A

Many graph properties are evasive, but not all... Evasive Proprerties

- being planar (with $n \ge 5$ vertices...)
- having at most j edges with $j < \binom{k}{2}$
- being acyclic
- being connected

Non evasive properties

• (k = 6) to be one of the three following graphs :

▶ to be a tournament with k vertices with a source $(c(P) \le 3k - 4)$

▶ to be a scorpion-graph with $k \ge 11$ vertices $(c(P) \le 6k - 13)$

Conjectures about hereditary properties

A graph property \mathcal{P} is *monotone increasing* if it is preserved by addition of edges, i.e. G = (S, A) verifies $\mathcal{P} \implies G - e := (S, A - \{e\})$ verifies \mathcal{P} (and *monotone decreasing* if it is preserved by deletion of edges).

Aanderaa-Karp-Rosenberg conjecture

Any *monotone* and non trivial graph property is evasive.

 $F: \{0,1\}^n \to \{0,1\}$ is weakly symmetric if there is a subgroup Γ of S_n transitive on $\{1,2,\ldots,n\}$ such that F is Γ -invariant, i.e. for all $g \in \Gamma$ and all $(x_i)_{1 \le i \le n} \in \{0,1\}^n$, $F((x_i)_{1 \le i \le n}) = F((x_{g(i)})_{1 \le i \le n})$.

Generalized AKR conjecture

others versions

Any *monotone*, non trivial and weakly symmetric boolean function is evasive.

Simplicial complexes

An abstract simplicial complex $K = (V(K), \Sigma(K))$ is given by :

- ► V(K), a set of vertices
- $\Sigma(K) \subset 2^{V(K)}$ a set of simplices such that

 $\tau \subset \sigma \text{ and } \sigma \in \Sigma(K) \Rightarrow \tau \in \Sigma(K)$

DÉFINITIONS/NOTATIONS :

- If $\tau \subset \sigma \in \Sigma(K)$ and $\tau \neq \sigma$, one says that τ is a *face* of σ .
- ▶ |K|: geometric realization of K (if #V(K) = n, $|K| \subset \mathbf{R}^n$).

From monotone boolean functions to simplicial complexes

For $S \subset [n] := \{1, 2, ..., n\}$, $\chi^S \in 2^{[n]}$ is its characteristic function (defined by $\chi_S(i) = 1$ if and only if $i \in S$).

A monotone decreasing boolean function F defines a simplicial complex

$$\mathcal{K}_{\mathcal{F}} := \{ S \subset [n], \ \mathcal{F}(\chi_{S}) = 1 \}$$

(and a monotone increasing boolean function F defines a simplicial complex $\mathcal{K}_{\overline{F}}$ where $\overline{F} = 1 - F$).

Reciprocally, a simplicial complex K defines a monotone (decreasing) boolean function F_K such that $K = \mathcal{K}_{F_K}$ (and also $F_{\mathcal{K}_F} = F$ if F is monotone decreasing) and

 $K = \mathcal{K}_F$ is said evasive if, and only if, F is evasive

Note that : F trivial $\iff K$ is a simplex

Example with F associated to « (at least) 3 consecutive 1 »

Example with F associated to « (at least) 3 consecutive 1 »

Example with F associated to « (at least) 3 consecutive 1 »

(face poset of the) simplicial complex \mathcal{K}_F obtained for $\langle F : 3 \rangle$ consecutive 1 \rangle :

Collapsibility

If τ is a maximal face of σ and is not a strict face of another simplex, one says that τ is free face and that $\{\sigma, \tau\}$, is a collapsible pair.

- ► The deletion of a collapsible pair is an elementary simplicial collapse
- Notation : $K \searrow^{sc} K \{\sigma, \tau\}$
- ► A collapse K \sc L is a succession of elementary collapses transforming K in L
- K is said collapsible if $K \searrow^{c} pt$ where pt is a simplicial complex reduced to a point

A criterion for collapsibility

Let x a vertex of the simplicial complex K

•
$$\operatorname{lk}_{\mathcal{K}}(x) = \{ \sigma \in \mathcal{K}, \{x\} \cup \sigma \in \mathcal{K} \text{ et } x \notin \sigma \}$$

Theorem : For every vertex x of K,

 $lk_{\mathcal{K}}(x)$ et $del_{\mathcal{K}}(x)$ collapsible \implies \mathcal{K} collapsible

non evasive \implies collapsible

Theorem

A simplicial complex K is non evasive if, and only if, it has a vertex x such that $lk_{K}(x)$ and $del_{K}(x)$ are non evasive.

Theorem (Kahn, Saks, Sturtevant, 1984) :

If K is a non evasive simplicial complex, then K is collapsible.

Simplicial collapsing of \mathcal{K}_F :

decision tree

Simplicial collapsing of \mathcal{K}_F : $\mathcal{K}_F \searrow^{c} \mathcal{K}_F - \{3\} \searrow^{c} pt$

vertex-collapsibilities

Let K a simplicial complex and x a vertex (i.e. a 0-simplex) of K

- ➤ x is 0-collapsible if lk_K(x) is a cone Coll₀(K) is the set of 0-collapsible vertices of K.
- K is strong collapsible if it is a reducible to a single vertex by successive deletions of 0-collapsible vertices Coll₀ is the set of strong collapsible finite complexes.
- For k > 0 integer, x is k-collapsible if $lk_{\mathcal{K}}(x) \in Coll_{k-1}$
- A complex K is k-collapsible if it is reducible to a vertex by successive deletions of k-collapsible vertices
 Coll_k is the set of strong collapsible finite complexes.

Proposition (J. Barmak, G. Minian, 2009)

 $NE = \bigcup_k Coll_k$ (where NE is the set of non evasive simplicial complexes)

Evasiveness conjecture

A simplicial complex K is said vertex-homogeneous if Aut(K), the group of simplicial automorphisms of K, acts transitively on the vertices of K.

We get the following reformulations of the generalized AKR conjecture:

Generalized AKR conjecture, version 2

If K is a non evasive and vertex homogeneous simplicial complex, then K is a simplex.

Generalized AKR conjecture, version 3

If $K \in Coll_k$ for some integer $k \ge 0$ and if K is vertex homogeneous, then K is a simplex.

Topological considerations

The topological space X is said *contractible* if there is a continuous map $H: X \times [0,1] \to X$ such that, for all x in X, H(x,0) = x and $H(x,1) = x_0$ for some point x_0 of X.

Theorem K collapsible \implies K contractible

Brouwer theorem

Let K a simplicial complex and $\varphi : |K| \to |K|$ continue.

$$|\mathcal{K}| \quad \text{contractile} \implies \quad \text{fix}(\varphi) \neq \emptyset$$

where $Fix(\varphi) := \{x \in |\mathcal{K}|, \ \varphi(x) = x\}$ is the set of fixed points of φ .

NOTE : Every simplicial $f : K \to K$ (i.e. $f(\sigma)$ is a simplex for any simplex σ), induces $\varphi := |f| : |K| \to |K|$. Nevertheless

|K| contractible \Rightarrow Fix $(f) \neq \emptyset$

Group actions and fixed points

Let K a vertex homogeneous complexe simplicial for the action of a finite group Γ .

Proposition $|K|^{\Gamma} \neq \emptyset \implies K$ is a simplex

Theorem (Oliver, 1975)

If 1) |K| is contractible
2) Γ has a normal subgroup H which is a p-group
3) Γ/H is cyclic

then, $|K|^{\Gamma} \neq \emptyset$.

APPLICATION : with $\#S = p^r$, p prime ; $S = \mathbf{F}_{p^r}$.

►
$$f_{a,b}: S \to S$$
, $x \mapsto ax + b$
► $\Gamma := \{f_{a,b}; a, b \in \mathbf{F}_{p^r}, a \neq 0\}$ acts transitively on S
► $H := \{f_{1,b}; b \in \mathbf{F}_{p^r}\} \lhd \Gamma$ et $\#H = p^r$
► $\Gamma/H \cong (\mathbf{F}_{p^r})^*$ is cyclic

Evasiveness conjecture is proved when $n = p^r$

Theorem (Kahn, Saks, Sturtevant, 1984) :

Every non trivial monotone graph property on graphs with p^r vertices with p prime and $r \in \mathbf{N}^*$ is evasive.

IDEA OF THE PROOF

- ▶ non evasive graph property $\mathcal{P} \implies \mathcal{K}_{\mathcal{P}}$ contractible simplicial complex
- ► graph property $\implies K_{\mathcal{P}}$ invariant for the action of $\Gamma := \{f_{a,b}; a, b \in \mathbf{F}_{p^r}, a \neq 0\}$
- Oliver theorem $\Longrightarrow |K|^{\Gamma} \neq \emptyset$
- ► Γ is transitive on V(K_P) ⇒ K_P is a simplex (i.e. P is a trivial graph property)

0-dismantlability («classical » dismantlability) Graphs G = (V(G), E(G)) are finite.

A vertex $a \in V(G)$ is called 0-dismantlable if there is another vertex $b \in V(G)$ such that every neighbour of a is also a neighbour of b:

 $N_G[a] \subset N_G[b]$

Then, we say that G is 0-dismantlable on G - a; notation : $G \searrow G - a$. A graph G is called 0-dismantlable if $V(G) = \{x_1, x_2, \dots, x_n\}$ with

$$G = G_1 \bigvee_{i} G_2 \bigvee_{i} G_3 \dots \bigvee_{i} G_i \bigvee_{i} G_{i-1} \bigvee_{i} \dots \bigvee_{i} G_n = \{x_n\}$$

where G_i is the subgraph of G induced by $\{x_i, x_{i+1}, \ldots, x_n\}$.

Theorem (Quilliot 1978, Nowakowski, Winkler 1983, ...) Let G be a *reflexive* finite graph

G is cop-win $\iff G$ is dismantlable $\iff G$ is contractible

Complexity Motivation simplicial approach Topology dismantlabilities in graphs weak evasiveness conjecture strict hierarchy

k-dismantlability

Inductively, for k integer ≥ 1 : a vertex $a \in V(G)$ is called k-dismantlable if its open neighbourhood is a (k-1)-dismantlable graph. Then, we say that G is k-dismantlable on G - a; notation : $G \searrow G - a$.

A graph G is called k-dismantlable if $V(G) = \{x_1, x_2, \dots, x_n\}$ with

$$G = G_1 \searrow_k G_2 \searrow_k G_3 \dots \searrow_k G_i \searrow_k G_{i-1} \searrow_k \dots \searrow_k G_n = \{x_n\}$$

where $G_i := G[x_i, x_{i+1}, \dots, x_n].$

NOTATIONS : $D_k := \{k \text{-dismantlable graphs}\}$

a is 1-dismantlable

G is 1-dismantlable and minimal in $D_1 \setminus D_0$ (in number of vertices)

a strict hierachy

Theorem (E. F.; B. Jouve)

The sequence $(D_k)_{k\geq 1}$ is strictly increasing and $D_{\infty} := \bigcup_{k\geq 0} D_k \subsetneq D_{coll}$:

$$D_0 \subsetneqq D_1 \subsetneqq D_2 \subsetneqq \dots \dots \subsetneqq D_k \subsetneqq D_{k+1} \subsetneqq \dots \dots \subsetneqq D_{coll}$$

where D_{coll} is the set of graphs whose clique complex is collapsible.

proof :

- For $k \ge 0$, $\mathfrak{Q}_{k+1} \in D_k \setminus D_{k-1}$ (cubions)
- For $n \ge 7$, $\widehat{T}_n \in D_{coll} \setminus D_{\infty} := \bigcup_{k \ge 0} D_k$

The cubions \mathfrak{Q}_n , $n \in \mathbf{N}$

Definition of the *n*-Cubion \mathfrak{Q}_n

 $V(\mathfrak{Q}_n) = \{\alpha_{i,\epsilon}, i = 1, \cdots, n \text{ and } \epsilon = 0, 1\} \cup \{x = (x_1, \cdots, x_n), x_i = 0, 1\}$ and $E(\mathfrak{Q}_n)$ defined by:

• $\forall i \neq j, \alpha_{i,\epsilon} \sim \alpha_{j,\epsilon'}$ • $\forall x \neq x', x \sim x'$ • $\forall i \in [n], \alpha_{i,1} \sim (x_1, \cdots, x_{i-1}, 1, x_{i+1}, \cdots, x_n)$ and $\alpha_{i,0} \sim (x_1, \cdots, x_{i-1}, 0, x_{i+1}, \dots, x_n)$

Complexity Motivation simplicial approach Topology dismantlabilities in graphs weak evasiveness conjecture Cliques complexes First direction of results Second direction of results

Back to evasiveness

This conjecture may be seen as the particular case of evasiveness conjecture restricted to flag complexes (or clique complexes):

First direction of results

Let X a graph and k an integer ≥ 0 .

Let $C_k(X)$ denote the set of (k + 1)-subsets of V(X) which induce a complete subgraph of X (e.g. $C_0(X) = V(X)$ and $C_1(X) = E(X)$).

X will be called k-transitive if Aut(X) acts transitively on $C_k(X)$, i.e.:

$$\forall (\{a_0, a_1, a_2, \ldots, a_k\}, \{b_0, b_1, b_2, \ldots, b_k\}) \in \mathcal{C}_k(X) \times \mathcal{C}_k(X),$$

$$\exists \varphi \in \operatorname{Aut}(X) \ s.t. \ \varphi(a_u) = b_u, \ \text{ for all } u \in \{0, 1, 2, \dots, k\}$$

Exemples : Johnson graphs J(v, k, i) ; for i = 0 : Kneser graphs

Theorem 1 (E. F.; B. Jouve)

Let X a finite graph and k an integer ≥ 0 . If $X \in D_k$ and X is *j*-transitive for all $j \in \{0, 1, 2, ..., k\}$, then X is a complete graph.

Second direction of results

Theorem 2

If a Cayley graph $X = Cay(\mathbf{Z}/n\mathbf{Z}, S)$ is k-dismantlable for some integer $k \ge 0$, then X is a complete graph.

In particular, if a vertex transitive graph with a prime number of vertices is k-dismantlable for some integer $k \ge 0$, then it is a complete graph.

proof :

- ▶ By non evasiveness, $|\Delta X|^{\Gamma} \neq \emptyset$ (where $|\Delta X|^{\Gamma}$ the set of fixed points of $|\Delta X|$ under the action of Γ).
- By vertex transitivity, V(X) is the unique orbit.
- ► So, X is a complete.

Thanks for your attention !

 $\label{eq:complexity} \mbox{ Motivation simplicial approach Topology dismantlabilities in graphs weak evasiveness conjecture cop and rob$

\ll cop and rob \gg game

- Player 1 (the cop) chooses a vertex
- ► Then, player 2 (the robber) chooses a vertex
- Then, cop and rob move to an adjacent vertex alternatively (first cop, next rob); and so on...
- ► The cop wins if he « catches» the robber (they are on the same vertex)

Theorem (Quilliot 1978, Nowakowski, Winkler 1983, ...)

Let G be a reflexive finite graph

G is cop-win $\iff G$ is dismantlable $\iff G$ is contractible

dismantlable graph