The profinite theory of rational languages

Laure Daviaud

LIP, ENS Lyon

Toulouse, 22th June 2016

The 3 reasons I am here...

The 3 reasons I am here...

1 - Topology: metric space, limits of sequences of words...

The 3 reasons I am here...

1 - Topology: metric space, limits of sequences of words... 2 - Languages: classes of rational languages...

1 - Topology: metric space, limits of sequences of words...
2 - Languages: classes of rational languages...
3 - Toulouse...

Profinite theory

\rightarrow a topological approach for the study of rational languages.

Profinite theory

\rightarrow a topological approach for the study of rational languages.

A: finite alphabet

Profinite theory

\rightarrow a topological approach for the study of rational languages.

A: finite alphabet
A^{*} : set of words
UI
L: rational language

Profinite theory

\rightarrow a topological approach for the study of rational languages.

A: finite alphabet
A^{*} : set of words ------------> $\left(A^{*}, d\right)$: metric space UI UI
L: rational language
L: subset satisfying some topological properties

Profinite theory

\rightarrow a topological approach for the study of rational languages.

A: finite alphabet
A^{*} : set of words -------------> $\left(A^{*}, d\right)$: metric space UI
L: rational language
. automata
UI

- logic
- rational expressions
. monoids

Profinite theory

\rightarrow a topological approach for the study of rational languages.

A: finite alphabet
A^{*} : set of words ------------> $\left(A^{*}, d\right)$: metric space UI UI
L: rational language
. automata
L : subset satisfying some topological properties

- logic
- rational expressions
. monoids

Finite monoids and rational languages

- A few things to know about monoids

Monoid: a set with an associative operation and a neutral element. Idempotent: $e^{2}=e$

In a finite monoid, every element has a unique idempotent power $x \in M \longrightarrow x^{|M|!}$ is idempotent

Finite monoids and rational languages

- A few things to know about monoids

Monoid: a set with an associative operation and a neutral element. Idempotent: $e^{2}=e$

In a finite monoid, every element has a unique idempotent power $x \in M \longrightarrow x^{|M|!}$ is idempotent

A monoid M recognises a language L if there is a morphism $\varphi: A^{*} \rightarrow M$ and $P \subseteq M$ s.t. $L=\varphi^{-1}(P)$.

$$
\begin{aligned}
& A^{*} \xrightarrow{\varphi} M \\
& \text { UI } M \\
& \varphi^{-1}(P)=L-\cdots P
\end{aligned}
$$

Finite monoids and rational languages

- A few things to know about monoids

Monoid: a set with an associative operation and a neutral element. Idempotent: $e^{2}=e$

In a finite monoid, every element has a unique idempotent power $x \in M \longrightarrow x^{|M|!}$ is idempotent

A monoid M recognises a language L if there is a morphism $\varphi: A^{*} \rightarrow M$ and $P \subseteq M$ s.t. $L=\varphi^{-1}(P)$.

A language is rational iff it is recognised by a finite monoid.

Examples and syntactic monoid

$$
\begin{aligned}
& A^{*} \xrightarrow{\varphi} M \\
& \text { U। } M \\
& \varphi^{-1}(P)= U \cdots
\end{aligned}
$$

Example: $L=\left\{w \in A^{*}| | w \mid\right.$ is even $\}$

Examples and syntactic monoid

$$
\begin{aligned}
& A^{*} \xrightarrow{\varphi} M \\
& \text { UI } M \\
& \varphi^{-1}(P)= L \cdots
\end{aligned}
$$

Example: $L=\left\{w \in A^{*}| | w \mid\right.$ is even $\} \quad(\mathbb{Z} / 2 \mathbb{Z},+)-\varphi(A)=\{1\}$

$$
\begin{array}{rr}
A^{*} \xrightarrow{\varphi} \mathbb{Z} / 2 \mathbb{Z} \\
\cup I & \cup I \\
\varphi^{-1}(\{0\})=L \cdots & \{0\}
\end{array}
$$

Examples and syntactic monoid

$$
\begin{aligned}
& \begin{array}{l}
\text { A } \\
\text { UI }
\end{array} \\
& \varphi^{-1}(P)= U \\
& L \ldots+\cdots
\end{aligned}
$$

Example: $L=\left\{w \in A^{*}| | w \mid\right.$ is even $\} \quad(\mathbb{Z} / 2 \mathbb{Z},+)-\varphi(A)=\{1\}$

$$
\left.\begin{array}{rl}
& A^{*} \xrightarrow{\varphi} \\
\cup & \mathbb{Z} / 2 \mathbb{Z} \\
\cup & \cup I \\
= & L \cdots-\cdots
\end{array}\right)
$$

Syntactic monoid: the smallest monoid recognising L.
$=$ Monoid of transitions of a minimal deterministic automaton.

Separation of words

A monoid M separates u and v if: there is a morphism $\varphi: A^{*} \rightarrow M$ such that $\varphi(u) \neq \varphi(v)$.

Separation of words

A monoid M separates u and v if: there is a morphism $\varphi: A^{*} \rightarrow M$ such that $\varphi(u) \neq \varphi(v)$.

Example 1: separate $u \neq v$?

Separation of words

A monoid M separates u and v if: there is a morphism $\varphi: A^{*} \rightarrow M$ such that $\varphi(u) \neq \varphi(v)$.

Example 1: separate $u \neq v$?
Syntatic monoid of $\{u\}$ (or $\{v\} \ldots$)

Separation of words

A monoid M separates u and v if: there is a morphism $\varphi: A^{*} \rightarrow M$ such that $\varphi(u) \neq \varphi(v)$.

Example 1: separate $u \neq v$?
Syntatic monoid of $\{u\}$ (or $\{v\} \ldots$)
Example 2: $a \in A$ - separate a^{99} and a^{100} ?

Separation of words

A monoid M separates u and v if: there is a morphism $\varphi: A^{*} \rightarrow M$ such that $\varphi(u) \neq \varphi(v)$.

Example 1: separate $u \neq v$?
Syntatic monoid of $\{u\}$ (or $\{v\} \ldots$)
Example 2: $a \in A$ - separate a^{99} and a^{100} ?
$\mathbb{Z} / 2 \mathbb{Z}$

Separation of words

A monoid M separates u and v if: there is a morphism $\varphi: A^{*} \rightarrow M$ such that $\varphi(u) \neq \varphi(v)$.

Example 1: separate $u \neq v$?
Syntatic monoid of $\{u\}$ (or $\{v\} \ldots$)
Example 2: $a \in A$ - separate a^{99} and a^{100} ?
$\mathbb{Z} / 2 \mathbb{Z}$
Example 3: $u \in A^{*}, n \in \mathbb{N}$ - separate $u^{n!}$ and $u^{(n+1)!}$?

Separation of words

A monoid M separates u and v if: there is a morphism $\varphi: A^{*} \rightarrow M$ such that $\varphi(u) \neq \varphi(v)$.

Example 1: separate $u \neq v$?
Syntatic monoid of $\{u\}$ (or $\{v\} \ldots$)
Example 2: $a \in A$ - separate a^{99} and a^{100} ?
$\mathbb{Z} / 2 \mathbb{Z}$
Example 3: $u \in A^{*}, n \in \mathbb{N}$ - separate $u^{n!}$ and $u^{(n+1)!}$?
$x \in M$ then $x^{|M|!}=x^{(|M|+1)!}=$ the idempotent power of x in M
$\Longrightarrow \varphi(u)^{|M|!}=\varphi(u)^{(|M|+1)!}$
$u^{n!}$ and $u^{(n+1)!}$ cannot be separated by a monoid of size less than n

Distance over words

A monoid M separates u and v if: there is a morphism $\varphi: A^{*} \rightarrow M$ such that $\varphi(u) \neq \varphi(v)$.

Distance over words

A monoid M separates u and v if: there is a morphism $\varphi: A^{*} \rightarrow M$ such that $\varphi(u) \neq \varphi(v)$.

$$
d(u, v)=2^{-n}
$$

where n is the minimal size of a monoid that separates u and v.

Distance over words

A monoid M separates u and v if: there is a morphism $\varphi: A^{*} \rightarrow M$ such that $\varphi(u) \neq \varphi(v)$.

$$
d(u, v)=2^{-n}
$$

where n is the minimal size of a monoid that separates u and v.
d is an ultrametric distance:
. $d(u, v)=0$ iff $u=v$

- $d(u, v)=d(v, u)$
. $d(u, v) \leqslant \max (d(u, w), d(w, v))$

Distance over words

A monoid M separates u and v if: there is a morphism $\varphi: A^{*} \rightarrow M$ such that $\varphi(u) \neq \varphi(v)$.

$$
d(u, v)=2^{-n}
$$

where n is the minimal size of a monoid that separates u and v.
d is an ultrametric distance:
. $d(u, v)=0$ iff $u=v$

- $d(u, v)=d(v, u)$
. $d(u, v) \leqslant \max (d(u, w), d(w, v))$
The words $u^{n!}$ and $u^{(n+1)!}$ are closer and closer...

Profinite monoid

[Definition Profinite monoid $\widehat{A^{*}}$: completion of A^{*} with respect to the distance d.
. Monoid if u and v sequences of words, $(u . v)_{n}=u_{n} v_{n}$

- Metric space
- A^{*} dense subset
. Compact

V.I.P. words (very important profinite words)

Idempotent power

$$
u^{\omega}=\lim _{n \rightarrow \infty} u^{n!}
$$

V.I.P. words (very important profinite words)

Idempotent power

$$
u^{\omega}=\lim _{n \rightarrow \infty} u^{n!}
$$

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003)
$|A| \geqslant 2$
u_{0}, u_{1}, \ldots an enumeration of the words of A^{*}
$v_{0}=u_{0}, \quad v_{n+1}=\left(v_{n} u_{n+1} v_{n}\right)^{(n+1)!}$

$$
\rho_{A}=\lim _{n \rightarrow \infty} v_{n}
$$

Profinite monoid and rational languages

Universal property
M a finite monoid.
Every morphism $\varphi: A^{*} \rightarrow M$ can be uniquely extended to a continuous morphism $\widehat{\varphi}: \widehat{A^{*}} \rightarrow M$.

Profinite monoid and rational languages

Universal property
M a finite monoid.
Every morphism $\varphi: A^{*} \rightarrow M$ can be uniquely extended to a continuous morphism $\widehat{\varphi}: \widehat{A^{*}} \rightarrow M$.

$$
\begin{array}{rr}
A^{*} \xrightarrow{\varphi} M \\
\text { U। } & M \\
\varphi^{-1}(P)=L \ldots & U
\end{array}
$$

Profinite monoid and rational languages

Universal property
M a finite monoid.
Every morphism $\varphi: A^{*} \rightarrow M$ can be uniquely extended to a continuous morphism $\widehat{\varphi}: \widehat{A^{*}} \rightarrow M$.

$$
\begin{array}{rrr}
\widehat{A^{*}} \xrightarrow{\hat{\varphi}} & M \\
\cup I & \cup I \\
\hat{\varphi}^{-1}(P)=\bar{L} \ldots \ldots
\end{array}
$$

Profinite monoid and rational languages

Universal property
M a finite monoid.
Every morphism $\varphi: A^{*} \rightarrow M$ can be uniquely extended to a continuous morphism $\widehat{\varphi}: \widehat{A^{*}} \rightarrow M$.

$$
\begin{array}{ll}
\widehat{A^{*}} \xrightarrow{\hat{\varphi}} & M \\
\cup & \cup \\
\hat{\varphi}^{-1}(P)= \\
\bar{L} \ldots \ldots
\end{array}
$$

A language L is rational iff \bar{L} is open and closed in $\widehat{A^{*}}$.

V.I.P. words (very important profinite words)

Idempotent power

$$
u^{\omega}=\lim _{n \rightarrow \infty} u^{n!}
$$

V.I.P. words (very important profinite words)

Idempotent power

$$
u^{\omega}=\lim _{n \rightarrow \infty} u^{n!}
$$

\longrightarrow For all morphisms $\varphi: A^{*} \rightarrow M$ (finite monoid): $\widehat{\varphi}\left(u^{\omega}\right)$ is the idempotent power of $\widehat{\varphi}(u)$ in M.

V.I.P. words (very important profinite words)

Idempotent power

$$
u^{\omega}=\lim _{n \rightarrow \infty} u^{n!}
$$

\longrightarrow For all morphisms $\varphi: A^{*} \rightarrow M$ (finite monoid): $\widehat{\varphi}\left(u^{\omega}\right)$ is the idempotent power of $\widehat{\varphi}(u)$ in M.

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003) $|A| \geqslant 2$
u_{0}, u_{1}, \ldots an enumeration of the words of A^{*}
$v_{0}=u_{0}, \quad v_{n+1}=\left(v_{n} u_{n+1} v_{n}\right)^{(n+1)!}$

$$
\rho_{A}=\lim _{n \rightarrow \infty} v_{n}
$$

V.I.P. words (very important profinite words)

Idempotent power

$$
u^{\omega}=\lim _{n \rightarrow \infty} u^{n!}
$$

\longrightarrow For all morphisms $\varphi: A^{*} \rightarrow M$ (finite monoid): $\widehat{\varphi}\left(u^{\omega}\right)$ is the idempotent power of $\widehat{\varphi}(u)$ in M.

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003)
$|A| \geqslant 2$
u_{0}, u_{1}, \ldots an enumeration of the words of A^{*}
$v_{0}=u_{0}, \quad v_{n+1}=\left(v_{n} u_{n+1} v_{n}\right)^{(n+1)!}$

$$
\rho_{A}=\lim _{n \rightarrow \infty} v_{n}
$$

\longrightarrow For all morphisms $\varphi: A^{*} \rightarrow M$ (finite monoid): if M has a zero then $\widehat{\varphi}\left(\rho_{A}\right)=0$.

Study of classes of rational languages

Birkhoff variety of monoids: class of monoids closed under:
. direct product
. submonoid
. quotient N quotient of $M: M \xrightarrow{\varphi} N$ with φ a surjective morphism.

Study of classes of rational languages

Birkhoff variety of monoids: class of monoids closed under:
. direct product
. submonoid

- quotient N quotient of $M: M \xrightarrow{\varphi} N$ with φ a surjective morphism.

A monoid T satisfies a word-identity $u=v$ with $u, v \in A^{*}$, if for all morphisms $\varphi: A^{*} \rightarrow T, \varphi(u)=\varphi(v)$.

Study of classes of rational languages

Birkhoff variety of monoids: class of monoids closed under:
. direct product
. submonoid
. quotient N quotient of $M: M \xrightarrow{\varphi} N$ with φ a surjective morphism.
A monoid T satisfies a word-identity $u=v$ with $u, v \in A^{*}$, if for all morphisms $\varphi: A^{*} \rightarrow T, \varphi(u)=\varphi(v)$.

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]

Study of classes of rational languages

Birkhoff variety of monoids: class of monoids closed under:
. direct product
. submonoid
. quotient N quotient of $M: M \xrightarrow{\varphi} N$ with φ a surjective morphism.
A monoid T satisfies a word-identity $u=v$ with $u, v \in A^{*}$, if for all morphisms $\varphi: A^{*} \rightarrow T, \varphi(u)=\varphi(v)$.

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]
Pseudovariety of finite monoids: class of finite monoids closed under:

- finite direct product
. submonoid
- quotient

Study of classes of rational languages

Birkhoff variety of monoids: class of monoids closed under:
. direct product
. submonoid
. quotient N quotient of $M: M \xrightarrow{\varphi} N$ with φ a surjective morphism.
A monoid T satisfies a word-identity $u=v$ with $u, v \in A^{*}$, if for all morphisms $\varphi: A^{*} \rightarrow T, \varphi(u)=\varphi(v)$.

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]
Pseudovariety of finite monoids: class of finite monoids closed under:

- finite direct product
. submonoid
- quotient

Varieties of finite monoids \longleftrightarrow varieties of rational languages [Eilenberg]

Study of classes of rational languages

Birkhoff variety of monoids: class of monoids closed under:
. direct product
. submonoid
. quotient N quotient of $M: M \xrightarrow{\varphi} N$ with φ a surjective morphism.
A monoid T satisfies a word-identity $u=v$ with $u, v \in A^{*}$, if for all morphisms $\varphi: A^{*} \rightarrow T, \varphi(u)=\varphi(v)$.

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]
Pseudovariety of finite monoids: class of finite monoids closed under:

- finite direct product
. submonoid
- quotient

Varieties of finite monoids \longleftrightarrow varieties of rational languages [Eilenberg]
\rightarrow Equations for pseudovarieties? Profinite equations! [Reiterman]

Classes of rational languages

- Lattice (union, intersection)
. Boolean algebra (lattice, complement)
- Lattice closed under quotient
. Boolean algebra closed under quotient
quotient : $u^{-1} L v^{-1}=\{w \mid u w v \in L\}$

Equations

Definition Given two profinite words u, v, a rational language L satisfies
 $$
u \rightarrow v
$$
 $$
\text { if } u \in \bar{L} \text { implies } v \in \bar{L}
$$

$a, b \in A$
Equation $a b \rightarrow a b a$
$\left\{L \subseteq A^{*} \mid a b \notin L\right\} \cup\left\{L \subseteq A^{*} \mid a b, a b a \in L\right\}$

Equations

Definition Given two profinite words u, v, a rational language L satisfies
 $$
u \leftrightarrow v
$$
 $$
\text { if } u \in \bar{L} \text { if and only if } v \in \bar{L}
$$

$a, b \in A$
Equation $a b \leftrightarrow a b a$
$\left\{L \subseteq A^{*} \mid a b, a b a \notin L\right\} \cup\left\{L \subseteq A^{*} \mid a b, a b a \in L\right\}$

Equations

- Definition
 Given two profinite words u, v, a rational language L satisfies
 $$
u \leqslant v
$$
 if for all $w, w^{\prime} \in A^{*}, w u w^{\prime} \in \bar{L}$ implies $w v w^{\prime} \in \bar{L}$

$a, b \in A$
Equation $a b \leqslant a b a$
$\left\{L \subseteq A^{*} \mid\right.$ for all w, w^{\prime}, if $w a b w^{\prime} \in L$ then $\left.w a b a w^{\prime} \in L\right\}$

Equations

— Definition Given two profinite words u, v, a rational language L satisfies
 $$
u=v
$$
 if for all $w, w^{\prime} \in A^{*}, w u w^{\prime} \in \bar{L}$ if and only if $w v w^{\prime} \in \bar{L}$

$a, b \in A$
Equation $a b=a b a$
$\left\{L \subseteq A^{*} \mid\right.$ for all $w, w^{\prime}, w a b w^{\prime} \in L$ iff $\left.w a b a w^{\prime} \in L\right\}$

Characterisation by equations on profinite words

— Theorem [Gehrke, Grigorieff, Pin 2008]

Classes of rational languages

. Lattice (union, intersection): \rightarrow

- Boolean algebra (lattice, complement): \leftrightarrow
- Lattice closed under quotient: \leqslant
. Boolean algebra closed under quotient: =

$$
\text { quotient : } u^{-1} L v^{-1}=\{w \mid u w v \in L\}
$$

Examples

A alphabet
Example 1: Commutative languages
A language L is commutative if for all $u \in L, \operatorname{com}(u) \subseteq L$.

Examples

A alphabet
Example 1: Commutative languages
A language L is commutative if for all $u \in L, \operatorname{com}(u) \subseteq L$.
$u v=v u$
\rightarrow Boolean algebra closed under quotient
Decidability?

Examples

A alphabet
Example 1: Commutative languages
A language L is commutative if for all $u \in L, \operatorname{com}(u) \subseteq L$.
$u v=v u$
\rightarrow Boolean algebra closed under quotient
Decidability?
A language L satisfies $u=v$ if and only if $\varphi(u)=\varphi(v)$ in M where M is the syntactic monoid of L and φ is its syntactic morphism

Examples

A alphabet
Example 1: Commutative languages
A language L is commutative if for all $u \in L, \operatorname{com}(u) \subseteq L$.
$u v=v u$
\rightarrow Boolean algebra closed under quotient
Decidability?
A language L satisfies $u=v$ if and only if $\varphi(u)=\varphi(v)$ in M where M is the syntactic monoid of L and φ is its syntactic morphism

Example 2: Existence of a zero

Examples

A alphabet
Example 1: Commutative languages
A language L is commutative if for all $u \in L, \operatorname{com}(u) \subseteq L$.
$u v=v u$
\rightarrow Boolean algebra closed under quotient
Decidability?
A language L satisfies $u=v$ if and only if $\varphi(u)=\varphi(v)$ in M where M is the syntactic monoid of L and φ is its syntactic morphism

Example 2: Existence of a zero
$\left\{\rho_{A} u=u \rho_{A}=\rho_{A} \mid u \in A^{*}\right\}$

Generalised star-height problem

Rational expressions:
. $1, a \in A$,
. $E \cup F, E \cap F, E . F,{ }^{c} E, E^{*}$

Generalised star-height problem

Rational expressions:
. $1, a \in A$,
. $E \cup F, E \cap F, E . F,{ }^{c} E, E^{*}$
Given a rational language L, what is the minimal number of nested stars needed to describe L by such an expression?

Generalised star-height problem

Rational expressions:
. $1, a \in A$,
. $E \cup F, E \cap F, E . F,{ }^{c} E, E^{*}$
Given a rational language L, what is the minimal number of nested stars needed to describe L by such an expression?
\rightarrow Star-height 0 [Schützenberger, McNaughton-Papert]
Star-free languages, aperiodic monoid $x^{\omega+1}=x^{\omega}, F O[<]$

Generalised star-height problem

Rational expressions:
. $1, a \in A$,
. $E \cup F, E \cap F, E . F,{ }^{c} E, E^{*}$
Given a rational language L, what is the minimal number of nested stars needed to describe L by such an expression?
\rightarrow Star-height 0 [Schützenberger, McNaughton-Papert]
Star-free languages, aperiodic monoid $x^{\omega+1}=x^{\omega}, F O[<]$
\rightarrow Star-height 1
Example: $(a a)^{*}-$ Is there a nontrivial identity for this class ?

Equations for u^{*} (joint work with Charles Paperman)

$$
\begin{align*}
& P_{u}=\bigcup_{p \text { prefix of } u} u^{*} p \quad \text { and } \quad S_{u}=\bigcup_{s \text { suffix of } u} s u^{*} \\
& x^{\omega} y^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } x y \neq y x \tag{1}\\
& x^{\omega} y=0 \text { for } x, y \in A^{*} \text { such that } y \notin P_{x} \tag{2}\\
& y x^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } y \notin S_{x} \tag{3}\\
& x^{\omega} \leqslant 1 \text { for } x \in A^{*} \tag{4}\\
& x^{\ell} \leftrightarrow x^{\omega+\ell} \text { for } x \in A^{*}, \ell>0 \tag{5}\\
& x \rightarrow x^{\ell} \text { for } x \in A^{*}, \ell>0 \tag{6}\\
& x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{align*}
$$

Equations for u^{*} (joint work with Charles Paperman)

$$
\begin{align*}
& P_{u}=\bigcup_{p \text { prefix of } u} u^{*} p \quad \text { and } \quad S_{u}=\bigcup_{s \text { suffix of } u} s u^{*} \\
& x^{\omega} y^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } x y \neq y x \tag{1}\\
& x^{\omega} y=0 \text { for } x, y \in A^{*} \text { such that } y \notin P_{x} \tag{2}\\
& y x^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } y \notin S_{x} \tag{3}\\
& x^{\omega} \leqslant 1 \text { for } x \in A^{*} \tag{4}\\
& x^{\ell} \leftrightarrow x^{\omega+\ell} \text { for } x \in A^{*}, \ell>0 \tag{5}\\
& x \rightarrow x^{\ell} \text { for } x \in A^{*}, \ell>0 \tag{6}\\
& x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{align*}
$$

DECIDABLE Lattice

Equations for u^{*} (joint work with Charles Paperman)

$$
\begin{align*}
& P_{u}=\bigcup_{p \text { prefix of } u} u^{*} p \quad \text { and } \quad S_{u}=\bigcup_{s \text { suffix of } u} s u^{*} \\
& x^{\omega} y^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } x y \neq y x \tag{1}\\
& x^{\omega} y=0 \text { for } x, y \in A^{*} \text { such that } y \notin P_{x} \tag{2}\\
& y x^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } y \notin S_{x} \tag{3}\\
& x^{\omega} \leqslant 1 \text { for } x \in A^{*} \tag{4}\\
& x^{\ell} \leftrightarrow x^{\omega+\ell} \text { for } x \in A^{*}, \ell>0 \tag{5}\\
& x \rightarrow x^{\ell} \text { for } x \in A^{*}, \ell>0 \tag{6}\\
& x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{align*}
$$

DECIDABLE Lattice closed under quotients

Equations for u^{*} (joint work with Charles Paperman)

$$
\begin{align*}
& P_{u}=\bigcup_{p \text { prefix of } u} u^{*} p \quad \text { and } \quad S_{u}=\bigcup_{s \text { suffix of } u} s u^{*} \\
& x^{\omega} y^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } x y \neq y x \tag{1}\\
& x^{\omega} y=0 \text { for } x, y \in A^{*} \text { such that } y \notin P_{x} \tag{2}\\
& y x^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } y \notin S_{x} \tag{3}\\
& x^{\omega} \leqslant 1 \text { for } x \in A^{*} \tag{4}\\
& x^{\ell} \leftrightarrow x^{\omega+\ell} \text { for } x \in A^{*}, \ell>0 \tag{5}\\
& x \rightarrow x^{\ell} \text { for } x \in A^{*}, \ell>0 \tag{6}\\
& x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{align*}
$$

DECIDABLE Boolean algebra closed under quotients

Equations for u^{*} (joint work with Charles Paperman)

$$
\begin{align*}
& P_{u}=\bigcup_{p \text { prefix of } u} u^{*} p \quad \text { and } \quad S_{u}=\bigcup_{s \text { suffix of } u} s u^{*} \\
& x^{\omega} y^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } x y \neq y x \tag{1}\\
& x^{\omega} y=0 \text { for } x, y \in A^{*} \text { such that } y \notin P_{x} \tag{2}\\
& y x^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } y \notin S_{x} \tag{3}\\
& x^{\omega} \leqslant 1 \text { for } x \in A^{*} \tag{4}\\
& x^{\ell} \leftrightarrow x^{\omega+\ell} \text { for } x \in A^{*}, \ell>0 \tag{5}\\
& x \rightarrow x^{\ell} \text { for } x \in A^{*}, \ell>0 \tag{6}\\
& x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{align*}
$$

DECIDABLE Boolean algebra

The Boolean algebra

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

An example:

$$
\left(a^{2}\right)^{*}-\left(a^{6}\right)^{*}=\left(a^{6}\right)^{*} a^{2} \cup\left(a^{6}\right)^{*} a^{4}
$$

The Boolean algebra

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

An example:

$$
\left(a^{2}\right)^{*}-\left(a^{6}\right)^{*}=\left(a^{6}\right)^{*} a^{2} \cup\left(a^{6}\right)^{*} a^{4}
$$

$$
\begin{array}{llllllllllllllll}
1 & a & a^{2} & a^{3} & a^{4} & a^{5} & a^{6} & a^{7} & a^{8} & a^{9} & a^{10} & a^{11} & a^{12} & a^{13} & a^{14} & \ldots
\end{array}
$$

The Boolean algebra

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

An example:

$$
\left(a^{2}\right)^{*}-\left(a^{6}\right)^{*}=\left(a^{6}\right)^{*} a^{2} \cup\left(a^{6}\right)^{*} a^{4}
$$

$$
\begin{array}{llllllllllllllll}
1 & a & a^{2} & a^{3} & a^{4} & a^{5} & a^{6} & a^{7} & a^{8} & a^{9} & a^{10} & a^{11} & a^{12} & a^{13} & a^{14} & \ldots
\end{array}
$$

Equivalence relation over the integers
$r \equiv \equiv_{m} s$ if and only if $\operatorname{gcd}(r, m)=\operatorname{gcd}(s, m)$
$\left(u^{m}\right)^{*} u^{r} \subseteq L$ if and only if $\left(u^{m}\right)^{*} u^{s} \subseteq L$

The Boolean algebra

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

An example:

$$
\left(a^{2}\right)^{*}-\left(a^{6}\right)^{*}=\left(a^{6}\right)^{*} a^{2} \cup\left(a^{6}\right)^{*} a^{4}
$$

$$
\begin{array}{llllllllllllllll}
1 & a & a^{2} & a^{3} & a^{4} & a^{5} & a^{6} & a^{7} & a^{8} & a^{9} & a^{10} & a^{11} & a^{12} & a^{13} & a^{14} & \ldots
\end{array}
$$

Equivalence relation over the integers
$r \equiv{ }_{m} s$ if and only if $\operatorname{gcd}(r, m)=\operatorname{gcd}(s, m)$
$\left(u^{m}\right)^{*} u^{r} \subseteq L$ if and only if $\left(u^{m}\right)^{*} u^{s} \subseteq L$

$$
\begin{aligned}
& 2 \equiv_{6} 4 \text { since } \operatorname{gcd}(2,6)=2=\operatorname{gcd}(4,6) \\
& \left(u^{6}\right)^{*} u^{2} \subseteq L \text { if and only if }\left(u^{6}\right)^{*} u^{4} \subseteq L
\end{aligned}
$$

The Boolean algebra

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

An example:

$$
\left(a^{2}\right)^{*}-\left(a^{6}\right)^{*}=\left(a^{6}\right)^{*} a^{2} \cup\left(a^{6}\right)^{*} a^{4}
$$

$$
\begin{array}{llllllllllllllll}
1 & a & a^{2} & a^{3} & a^{4} & a^{5} & a^{6} & a^{7} & a^{8} & a^{9} & a^{10} & a^{11} & a^{12} & a^{13} & a^{14} & \ldots
\end{array}
$$

Equivalence relation over the integers
$r \equiv{ }_{m} s$ if and only if $\operatorname{gcd}(r, m)=\operatorname{gcd}(s, m)$
$\left(u^{m}\right)^{*} u^{r} \subseteq L$ if and only if $\left(u^{m}\right)^{*} u^{s} \subseteq L$
$x^{\alpha} \leftrightarrow x^{\beta}$ for α and β representing sequences of integers $(k m+r)_{k}$ and $(k m+s)_{k}$ with $r \equiv{ }_{m} s \ldots$

The Boolean algebra

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

An example:

$$
\left(a^{2}\right)^{*}-\left(a^{6}\right)^{*}=\left(a^{6}\right)^{*} a^{2} \cup\left(a^{6}\right)^{*} a^{4}
$$

$$
\begin{array}{lllllllllllllllll}
1 & a & a^{2} & a^{3} & a^{4} & a^{5} & a^{6} & a^{7} & a^{8} & a^{9} & a^{10} & a^{11} & a^{12} & a^{13} & a^{14} & \ldots
\end{array}
$$

Equivalence relation over the integers
$r \equiv{ }_{m} s$ if and only if $\operatorname{gcd}(r, m)=\operatorname{gcd}(s, m)$
$\left(u^{m}\right)^{*} u^{r} \subseteq L$ if and only if $\left(u^{m}\right)^{*} u^{s} \subseteq L$
$x^{\alpha} \leftrightarrow x^{\beta}$ for α and β profinite numbers in $\widehat{\mathbb{N}}=\widehat{\{a\}^{*}}$ satisfying some specific conditions...

The Boolean algebra

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

An example:

$$
\left(a^{2}\right)^{*}-\left(a^{6}\right)^{*}=\left(a^{6}\right)^{*} a^{2} \cup\left(a^{6}\right)^{*} a^{4}
$$

$$
\begin{array}{llllllllllllllll}
1 & a & a^{2} & a^{3} & a^{4} & a^{5} & a^{6} & a^{7} & a^{8} & a^{9} & a^{10} & a^{11} & a^{12} & a^{13} & a^{14} & \ldots
\end{array}
$$

Γ is the set of all the pairs of profinite numbers $\left(d z^{\mathcal{P}}, d p z^{\mathcal{P}}\right)$ s.t.:
. \mathcal{P} is a cofinite sequence of prime numbers $\left\{p_{1}, p_{2}, \ldots\right\}$
. $z^{\mathcal{P}}=\lim _{n}\left(p_{1} p_{2} \ldots p_{n}\right)^{n!}$

- $p \in \mathcal{P}$
- if q divides d then $q \notin \mathcal{P}$

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

Conclusion

Topology
Languages
r

Thank you for your attention

