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→ a topological approach for the study of rational languages.

A: finite alphabet

A∗: set of words

⊆

L: rational language

(A∗, d): metric space

⊆

L: subset satisfying some
topological properties� automata

� logic
� rational expressions
� monoids
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Monoid: a set with an associative operation and a neutral element.
Idempotent: e2 = e
bla In a finite monoid, every element has a unique idempotent power
bla x ∈ M −→ x |M|! is idempotent

A few things to know about monoids...

A monoid M recognises a language L if there is a morphism
ϕ : A∗ → M and P ⊆ M s.t. L = ϕ−1(P).

A∗ M
ϕ

⊆ ⊆

ϕ−1(P) = L P

A language is rational iff it is recognised by a finite monoid.
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A∗ M
ϕ

⊆ ⊆

ϕ−1(P) = L P

Example: L = {w ∈ A∗ | |w | is even}

(Z/2Z,+) - ϕ(A) = {1}

A∗ Z/2Z
ϕ

⊆ ⊆

ϕ−1({0}) = L {0}

Syntactic monoid: the smallest monoid recognising L.
= Monoid of transitions of a minimal deterministic automaton.
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A monoid M separates u and v if:
there is a morphism ϕ : A∗ → M such that ϕ(u) 6= ϕ(v).

Example 1: separate u 6= v?
Syntatic monoid of {u} (or {v}...)

Example 2: a ∈ A - separate a99 and a100?
Z/2Z

Example 3: u ∈ A∗, n ∈ N - separate un! and u(n+1)!?
x ∈ M then x |M|! = x (|M|+1)! = the idempotent power of x in M
=⇒ ϕ(u)|M|! = ϕ(u)(|M|+1)!

un! and u(n+1)! cannot be separated
by a monoid of size less than n

6/20
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A monoid M separates u and v if:
there is a morphism ϕ : A∗ → M such that ϕ(u) 6= ϕ(v).

d(u, v) = 2−n

where n is the minimal size of a monoid that separates u and v .

d is an ultrametric distance:
� d(u, v) = 0 iff u = v
� d(u, v) = d(v , u)
� d(u, v) 6 max(d(u,w), d(w , v))

The words un! and u(n+1)! are closer and closer...
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Profinite monoid Â∗ :
completion of A∗ with respect to the distance d .

Definition

� Monoid if u and v sequences of words, (u.v)n = unvn

� Metric space
� A∗ dense subset
� Compact

8/20

Profinite monoid



Idempotent power

uω = limn→∞ un!

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003)
|A| > 2
u0, u1, . . . an enumeration of the words of A∗

v0 = u0, vn+1 = (vnun+1vn)(n+1)!

ρA = limn→∞ vn

9/20
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Universal property
M a finite monoid.
Every morphism ϕ : A∗ → M can be uniquely extended to a

continuous morphism ϕ̂ : Â∗ → M.

Â∗ M
ϕ̂

⊆ ⊆

ϕ̂−1(P) = L P

A language L is rational iff L is open and closed in Â∗.

10/20
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10/20

Profinite monoid and rational languages



Universal property
M a finite monoid.
Every morphism ϕ : A∗ → M can be uniquely extended to a

continuous morphism ϕ̂ : Â∗ → M.
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Idempotent power
uω = limn→∞ un!

−→ For all morphisms ϕ : A∗ → M (finite monoid):
−→ ϕ̂(uω) is the idempotent power of ϕ̂(u) in M.

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003)
|A| > 2
u0, u1, . . . an enumeration of the words of A∗

v0 = u0, vn+1 = (vnun+1vn)(n+1)!

ρA = limn→∞ vn

−→ For all morphisms ϕ : A∗ → M (finite monoid):
−→ if M has a zero then ϕ̂(ρA) = 0.
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Birkhoff variety of monoids: class of monoids closed under:
� direct product
� submonoid
� quotient N quotient of M: M ϕ−→ N with ϕ a surjective morphism.

A monoid T satisfies a word-identity u = v with u, v ∈ A∗, if for all
morphisms ϕ : A∗ → T , ϕ(u) = ϕ(v).

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]
Pseudovariety of finite monoids: class of finite monoids closed under:

� finite direct product
� submonoid
� quotient

Varieties of finite monoids ←→ varieties of rational languages [Eilenberg]

→ Equations for pseudovarieties? Profinite equations! [Reiterman]

12/20

Study of classes of rational languages



Birkhoff variety of monoids: class of monoids closed under:
� direct product
� submonoid
� quotient N quotient of M: M ϕ−→ N with ϕ a surjective morphism.

A monoid T satisfies a word-identity u = v with u, v ∈ A∗, if for all
morphisms ϕ : A∗ → T , ϕ(u) = ϕ(v).

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]
Pseudovariety of finite monoids: class of finite monoids closed under:

� finite direct product
� submonoid
� quotient

Varieties of finite monoids ←→ varieties of rational languages [Eilenberg]

→ Equations for pseudovarieties? Profinite equations! [Reiterman]

12/20

Study of classes of rational languages



Birkhoff variety of monoids: class of monoids closed under:
� direct product
� submonoid
� quotient N quotient of M: M ϕ−→ N with ϕ a surjective morphism.

A monoid T satisfies a word-identity u = v with u, v ∈ A∗, if for all
morphisms ϕ : A∗ → T , ϕ(u) = ϕ(v).

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]

Pseudovariety of finite monoids: class of finite monoids closed under:
� finite direct product
� submonoid
� quotient

Varieties of finite monoids ←→ varieties of rational languages [Eilenberg]

→ Equations for pseudovarieties? Profinite equations! [Reiterman]

12/20

Study of classes of rational languages



Birkhoff variety of monoids: class of monoids closed under:
� direct product
� submonoid
� quotient N quotient of M: M ϕ−→ N with ϕ a surjective morphism.

A monoid T satisfies a word-identity u = v with u, v ∈ A∗, if for all
morphisms ϕ : A∗ → T , ϕ(u) = ϕ(v).

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]
Pseudovariety of finite monoids: class of finite monoids closed under:

� finite direct product
� submonoid
� quotient

Varieties of finite monoids ←→ varieties of rational languages [Eilenberg]

→ Equations for pseudovarieties? Profinite equations! [Reiterman]

12/20

Study of classes of rational languages



Birkhoff variety of monoids: class of monoids closed under:
� direct product
� submonoid
� quotient N quotient of M: M ϕ−→ N with ϕ a surjective morphism.

A monoid T satisfies a word-identity u = v with u, v ∈ A∗, if for all
morphisms ϕ : A∗ → T , ϕ(u) = ϕ(v).

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]
Pseudovariety of finite monoids: class of finite monoids closed under:

� finite direct product
� submonoid
� quotient

Varieties of finite monoids ←→ varieties of rational languages [Eilenberg]

→ Equations for pseudovarieties? Profinite equations! [Reiterman]

12/20

Study of classes of rational languages



Birkhoff variety of monoids: class of monoids closed under:
� direct product
� submonoid
� quotient N quotient of M: M ϕ−→ N with ϕ a surjective morphism.

A monoid T satisfies a word-identity u = v with u, v ∈ A∗, if for all
morphisms ϕ : A∗ → T , ϕ(u) = ϕ(v).

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]
Pseudovariety of finite monoids: class of finite monoids closed under:

� finite direct product
� submonoid
� quotient

Varieties of finite monoids ←→ varieties of rational languages [Eilenberg]

→ Equations for pseudovarieties? Profinite equations! [Reiterman]
12/20

Study of classes of rational languages



� Lattice (union, intersection)
� Boolean algebra (lattice, complement)
� Lattice closed under quotient
� Boolean algebra closed under quotient

quotient : u−1Lv−1 = {w | uwv ∈ L}

13/20

Classes of rational languages



Given two profinite words u, v , a rational language L satisfies

u → v

if u ∈ L̄ implies v ∈ L̄

Definition

a, b ∈ A
Equation ab → aba

{L ⊆ A∗ | ab /∈ L} ∪ {L ⊆ A∗ | ab, aba ∈ L}

14/20
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Given two profinite words u, v , a rational language L satisfies

u ↔ v
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Given two profinite words u, v , a rational language L satisfies

u 6 v

if for all w ,w ′ ∈ A∗,wuw ′ ∈ L̄ implies wvw ′ ∈ L̄

Definition

a, b ∈ A
Equation ab 6 aba

{L ⊆ A∗ | for all w ,w ′, if wabw ′ ∈ L then wabaw ′ ∈ L}
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Given two profinite words u, v , a rational language L satisfies

u = v

if for all w ,w ′ ∈ A∗,wuw ′ ∈ L̄ if and only if wvw ′ ∈ L̄

Definition

a, b ∈ A
Equation ab = aba

{L ⊆ A∗ | for all w ,w ′, wabw ′ ∈ L iff wabaw ′ ∈ L}

14/20

Equations



Classes of rational languages
� Lattice (union, intersection): →
� Boolean algebra (lattice, complement): ↔
� Lattice closed under quotient: 6
� Boolean algebra closed under quotient: =

Theorem [Gehrke, Grigorieff, Pin 2008]

quotient : u−1Lv−1 = {w | uwv ∈ L}

15/20

Characterisation by equations on profinite words



A alphabet

Example 1: Commutative languages
A language L is commutative if for all u ∈ L, com(u) ⊆ L.

uv = vu
→ Boolean algebra closed under quotient
Decidability?

A language L satisfies u = v if and only if ϕ(u) = ϕ(v) in M where
M is the syntactic monoid of L and ϕ is its syntactic morphism

Example 2: Existence of a zero
{ρAu = uρA = ρA | u ∈ A∗}

16/20
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Rational expressions:
� 1, a ∈ A,
� E ∪ F , E ∩ F , E .F , cE , E ∗

Given a rational language L, what is the minimal number of nested
stars needed to describe L by such an expression?

→ Star-height 0 [Schützenberger, McNaughton-Papert]
Star-free languages, aperiodic monoid xω+1 = xω, FO[<]

→ Star-height 1
Example: (aa)∗ - Is there a nontrivial identity for this class ?

17/20
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Pu =
⋃

p prefix of u
u∗p and Su =

⋃
s suffix of u

su∗

xωyω = 0 for x , y ∈ A∗ such that xy 6= yx (E1)
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x → x ` for x ∈ A∗, ` > 0 (E6)

xα ↔ xβ for all (α, β) ∈ Γ (E7)
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xα ↔ xβ for all (α, β) ∈ Γ (E7)

An example:

(a2)∗ − (a6)∗ = (a6)∗a2 ∪ (a6)∗a4

1 a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 . . .

2 ≡6 4 since gcd(2, 6) = 2 = gcd(4, 6)

(u6)∗u2 ⊆ L if and only if (u6)∗u4 ⊆ L
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xα ↔ xβ for all (α, β) ∈ Γ (E7)

An example:

(a2)∗ − (a6)∗ = (a6)∗a2 ∪ (a6)∗a4

1 a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 . . .

Γ is the set of all the pairs of profinite numbers (dzP , dpzP) s.t.:
� P is a cofinite sequence of prime numbers {p1, p2, . . .}
� zP = limn(p1p2 . . . pn)n!

� p ∈ P
� if q divides d then q /∈ P

xα ↔ xβ for all (α, β) ∈ Γ (E7)
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Thank you for your attention
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