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Finite monoids and rational languages

A few things to know about monoids...

Monoid: a set with an associative operation and a neutral element.
Idempotent: €? = e
In a finite monoid, every element has a unique idempotent power

x € M — xIMI'is idempotent
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A few things to know about monoids...
Monoid: a set with an associative operation and a neutral element.
Idempotent: €? = e

In a finite monoid, every element has a unique idempotent power

x € M — xIMI'is idempotent

A monoid M recognises a language L if there is a morphism
@:A* > Mand PC Mst. L=y }(P).

A* M
Ul Ul
pHP) = L--mn P

A language is rational iff it is recognised by a finite monoid.
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Examples and syntactic monoid

¥
A* M
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Example: L ={w € A* | |w| is even}
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Examples and syntactic monoid

¥
A* M
Ul Ul
pUPY =L P

Example: L={w € A* | |w|is even} (Z/2Z,+) - (A) = {1}

¢
A* ——— 7,27,
Ul Ul

e {0 =L------ {0}

Syntactic monoid: the smallest monoid recognising L.
= Monoid of transitions of a minimal deterministic automaton.
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Separation of words

A monoid M separates u and v if:
there is a morphism ¢ : A* — M such that ¢(u) # ¢(v).
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Separation of words

A monoid M separates u and v if:
there is a morphism ¢ : A* — M such that ¢(u) # ¢(v).

Example 1: separate u # v?
Syntatic monoid of {u} (or {v}...)

Example 2: a € A - separate a®° and a'0?

7.)27.

Example 3: u € A*, n € N - separate u™ and u("t1'?
x € M then xIMI' = x(IMI+1)! — the idempotent power of x in M

— p(u)M' = p(u)(IMI+1)!

u™ and u(™D! cannot be separated
by a monoid of size less than n
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Distance over words

A monoid M separates u and v if:
there is a morphism ¢ : A* — M such that p(u) # ¢(v).

d(u,v)=27"

where n is the minimal size of a monoid that separates u and v.

d is an ultrametric distance:
d(u,v)=0iffu=v
«d(u,v) =d(v,u)
« d(u, v) < max(d(u, w), d(w, v))

n+1)!

|
The words u™ and uf are closer and closer...
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Profinite monoid

Definition
Profinite monoid A* :
completion of A* with respect to the distance d.

. Monoid if u and v sequences of words, (u.v), = u,vy
» Metric space
. A" dense subset

. Compact
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V.I.P. words (very important profinite words)

Idempotent power
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V.1.P. words (very important profinite words)

Idempotent power

w n!

u’ = lim u
n—00
Zero (Reilly-Zhang 2000, Almeida-Volkov 2003)
Al =2
g, U1, ... an enumeration of the words of A*

1)!
Vo = Upg, Vp41 = (Vnun+1Vn)(n+ )

9/20



Profinite monoid and rational languages

Universal property

M a finite monoid.
Every morphism ¢ : A* — M can be uniquely extended to a
continuous morphism o : A* — M.
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Profinite monoid and rational languages

Universal property

M a finite monoid.
Every morphism ¢ : A* — M can be uniquely extended to a
continuous morphism o : A* — M.

-
A* M
Ul Ul
PP =L P

A language L is rational iff L is open and closed in A*.
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V.1.P. words (very important profinite words)

Idempotent power
. [
u¥ = lim u™
n—00
— For all morphisms ¢ : A* — M (finite monoid):
@(u”) is the idempotent power of @(u) in M.

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003)
Al =2
g, U1, ... an enumeration of the words of A*

— — 1)!
Vo = Ug, Vp+1 = (Vnun—l—an)(rH— )

pa = fim, vn

— For all morphisms ¢ : A* — M (finite monoid):
if M has a zero then $(pa) = 0.
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Study of classes of rational languages

Birkhoff variety of monoids: class of monoids closed under:
. direct product
. submonoid

. quotient N quotient of M: M %> N with ¢ a surjective morphism.
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Birkhoff variety of monoids: class of monoids closed under:
. direct product
. submonoid

. quotient N quotient of M: M £ N with ¢ a surjective morphism.

A monoid T satisfies a word-identity v = v with u,v € A*, if for all
morphisms ¢ : A* — T, p(u) = ¢(v).

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]
Pseudovariety of finite monoids: class of finite monoids closed under:

. finite direct product

. submonoid

. quotient

Varieties of finite monoids «— varieties of rational languages [Eilenberg]

— Equations for pseudovarieties? Profinite equations! [Reiterman]
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Classes of rational languages

. Lattice (union, intersection)
. Boolean algebra (lattice, complement)
. Lattice closed under quotient

. Boolean algebra closed under quotient

quotient : v Lv! = {w | uwv € L}
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Equations

— Definition
Given two profinite words u, v, a rational language L satisfies

u—v

if ue L implies v e L

a,beA
Equation ab — aba

{LCA*|ab¢ L} U{L C A* | ab,aba € L}
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— Definition
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Equations

— Definition
Given two profinite words u, v, a rational language L satisfies

u<v

if for all w, w’ € A*, wuw’ € L implies wvw’ € L

a,beA
Equation ab < aba

{L C A* | for all w,w’, if wabw’ € L then wabaw’ € L}
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Equations

— Definition
Given two profinite words u, v, a rational language L satisfies

u=yv

if for all w, w’ € A*, wuw’ € L if and only if www' € L

a,beA
Equation ab = aba

{L C A* | for all w,w’, wabw' € L iff wabaw’ € L}
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Characterisation by equations on profinite words

— Theorem [Gehrke, Grigorieff, Pin 2008]
Classes of rational languages
. Lattice (union, intersection): —
. Boolean algebra (lattice, complement): <>
. Lattice closed under quotient: <

. Boolean algebra closed under quotient: =

quotient : uLv=t = {w | uwv € L}
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Examples

A alphabet

Example 1: Commutative languages
A language L is commutative if for all u € L, com(u) C L.
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Examples

A alphabet

Example 1: Commutative languages
A language L is commutative if for all u € L, com(u) C L.

uv = vu

— Boolean algebra closed under quotient
Decidability?

A language L satisfies v = v if and only if o(u) = ©(v) in M where
M is the syntactic monoid of L and ¢ is its syntactic morphism

Example 2: Existence of a zero
{pau=upa=palue A}

16/20



Generalised star-height problem

Rational expressions:
.1, ac A
.EUF, ENF, EF,°E, E*
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Generalised star-height problem

Rational expressions:
.1, ac A,
.EUF, ENF, E.F, °E, E*

Given a rational language L, what is the minimal number of nested
stars needed to describe L by such an expression?

— Star-height 0 [Schitzenberger, McNaughton-Papert]
Star-free languages, aperiodic monoid x“*1 = x*, FO[<]

— Star-height 1
Example: (aa)* - Is there a nontrivial identity for this class ?
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Equations for u* (joint work with Charles Paperman)

P, = U u*p and S, = U su*

p prefix of u s suffix of u

x¥y* =0 for x,y € A* such that xy # yx (E1)
x“y =0 for x,y € A* such that y ¢ Py (E2)
yx“ =0 for x,y € A* such that y ¢ S (E3)
x¥ <1 for x € A* (Ea)
X' x4t for x € A*, £ >0 (Es)
x — x‘ for x € A*, £ >0 (Es)
x* ¢ xP for all (a,8) €T (E7)

DECIDABLE
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Equations for u* (joint work with Charles Paperman)

P, = U u*p and S, = U su*

p prefix of u s suffix of u

x¥y* =0 for x,y € A* such that xy # yx (E1)
x“y =0 for x,y € A* such that y ¢ Py (E2)
yx“ =0 for x,y € A* such that y ¢ S (E3)
x¥ <1 for x € A* (Ea)
xt e xtfor x € A%, £>0 (Es)
x — x‘ for x € A*, £ >0 (Es)
X% ¢ xP for all (a,8) € T (E7)

DECIDABLE | Boolean algebra
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The Boolean algebra

x* ¢ xP for all (a, ) € T (E7)
An example:

(32)* . (36)* — (36)*32 U (86)*84
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An example:

(32)* . (36)* — (36)*32 U (86)*84

1 a a 3 a° 3 a° a' a° a’ a a 312 313 214

Equivalence relation over the integers

r =m s if and only if ged(r, m) = ged(s, m)
(u™)*u” C L if and only if (u™)*u® C L

2 =¢ 4 since gcd(2,6) = 2 = gcd(4,6)
(u8)*u? C L if and only if (u®)*u* C L
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The Boolean algebra

x* < x? for all (a, ) €T (E7)
An example:

(32)* . (36)* — (36)*32 U (86)*84
133233343536789101112

Equivalence relation over the integers

r =m s if and only if ged(r, m) = ged(s, m)
(u™)*u” C L if and only if (u™)*u® C L

x® <+ x” for a and f3 representing sequences of
integers (km + r), and (km + s)x with r =, s...

19/20



The Boolean algebra

x* < x? for all (a, ) € T (E7)
An example:

(32)* . (36)* — (36)*32 U (36)*34

2 3 4 5

1 238 23 1a% 2° [3% a7 a8 29 [al® L1l gl 513 i |

Equivalence relation over the integers

r =m s if and only if ged(r, m) = ged(s, m)
(u™*u"” C Lif and only if (u™)*v* C L

x® 5 x” for a and 3 profinite numbers in N = {/a?*

satisfying some specific conditions...
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The Boolean algebra

x® ¢ xP for all (a,8) €T (E7)
An example:
(32)* o (36)* — (36)*32 U (26)*34
1 a 32 33 a4 a5 a6 37 38 a9 alO a11 312 313 a14

I is the set of all the pairs of profinite numbers (dz”, dpz”) s.t.:
. P is a cofinite sequence of prime numbers {p1, p2,...}
. 2P = limp(p1p2 ... pn)"
.pEP
. if g divides d then g ¢ P

x® < x? for all (a, 8) € T (E7)
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Conclusion

Topology /
v

Languages

Thank you for your attention
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