The profinite theory of rational languages

Laure Daviaud

LIP, ENS Lyon

Toulouse, 22th June 2016

1 - Topology: metric space, limits of sequences of words...

- 1 Topology: metric space, limits of sequences of words...
- 2 Languages: classes of rational languages...

- 1 Topology: metric space, limits of sequences of words...
- 2 Languages: classes of rational languages...
- 3 Toulouse...

A: finite alphabet

- A: finite alphabet
- A^* : set of words \cup
- L: rational language

A: finite alphabet A^* : set of words -----> (A^*, d) : metric space \cup I \cup IL: rational languageL: subset satisfying some
topological properties

A: finite alphabet

- L: rational language
 - automata
 - logic
 - rational expressions
 - monoids

L: subset satisfying some topological properties

A few things to know about monoids...
Monoid: a set with an associative operation and a neutral element.
Idempotent: e² = e
In a finite monoid, every element has a unique idempotent power x ∈ M → x^{|M|!} is idempotent

A few things to know about monoids...
Monoid: a set with an associative operation and a neutral element.
Idempotent: e² = e
In a finite monoid, every element has a unique idempotent power
x ∈ M → x^{|M|!} is idempotent

A monoid *M* recognises a language *L* if there is a morphism $\varphi: A^* \to M$ and $P \subseteq M$ s.t. $L = \varphi^{-1}(P)$.

$$\begin{array}{c} \varphi \\ A^* \xrightarrow{\varphi} M \\ \cup I & \cup I \\ \varphi^{-1}(P) = L \xrightarrow{\varphi} P \end{array}$$

A few things to know about monoids...
 Monoid: a set with an associative operation and a neutral element.
 Idempotent: e² = e
 In a finite monoid, every element has a unique idempotent power
 x ∈ M → x^{|M|!} is idempotent

A monoid *M* recognises a language *L* if there is a morphism $\varphi: A^* \to M$ and $P \subseteq M$ s.t. $L = \varphi^{-1}(P)$.

$$\begin{array}{ccc} \varphi \\ A^* & & \longrightarrow M \\ & & & \cup \\ \varphi^{-1}(P) = L & & \cup \\ P \end{array}$$

A language is rational iff it is recognised by a finite monoid.

Examples and syntactic monoid

Example: $L = \{w \in A^* \mid |w| \text{ is even}\}$

Examples and syntactic monoid

$$\begin{array}{c} \varphi \\ A^* \xrightarrow{\varphi} M \\ \cup I & \cup I \\ \varphi^{-1}(P) = L \xrightarrow{\varphi} P \end{array}$$

Example: $L = \{ w \in A^* \mid |w| \text{ is even} \}$ $(\mathbb{Z}/2\mathbb{Z}, +) - \varphi(A) = \{1\}$

$$\begin{array}{c} \varphi \\ A^* \xrightarrow{\varphi} \mathbb{Z}/2\mathbb{Z} \\ \cup | \qquad \cup | \\ \varphi^{-1}(\{0\}) = L \xrightarrow{\varphi} \{0\} \end{array}$$

Examples and syntactic monoid

Example: $L = \{ w \in A^* \mid |w| \text{ is even} \}$ $(\mathbb{Z}/2\mathbb{Z}, +) - \varphi(A) = \{1\}$

$$\begin{array}{c} \varphi \\ A^* \xrightarrow{\varphi} \mathbb{Z}/2\mathbb{Z} \\ \cup | \qquad \cup | \\ \varphi^{-1}(\{0\}) = L \xrightarrow{} \{0\} \end{array}$$

Syntactic monoid: the smallest monoid recognising *L*. = Monoid of transitions of a minimal deterministic automaton.

A monoid *M* separates *u* and *v* if: there is a morphism $\varphi : A^* \to M$ such that $\varphi(u) \neq \varphi(v)$.

A monoid *M* separates *u* and *v* if: there is a morphism $\varphi : A^* \to M$ such that $\varphi(u) \neq \varphi(v)$.

```
Example 1: separate u \neq v?
```

A monoid *M* separates *u* and *v* if: there is a morphism $\varphi : A^* \to M$ such that $\varphi(u) \neq \varphi(v)$.

Example 1: separate $u \neq v$? Syntatic monoid of $\{u\}$ (or $\{v\}...$)

A monoid *M* separates *u* and *v* if: there is a morphism $\varphi : A^* \to M$ such that $\varphi(u) \neq \varphi(v)$.

Example 1: separate $u \neq v$? Syntatic monoid of $\{u\}$ (or $\{v\}...$) Example 2: $a \in A$ - separate a^{99} and a^{100} ?

A monoid *M* separates *u* and *v* if: there is a morphism $\varphi : A^* \to M$ such that $\varphi(u) \neq \varphi(v)$.

Example 1: separate $u \neq v$? Syntatic monoid of $\{u\}$ (or $\{v\}...$) Example 2: $a \in A$ - separate a^{99} and a^{100} ? $\mathbb{Z}/2\mathbb{Z}$

A monoid *M* separates *u* and *v* if: there is a morphism $\varphi : A^* \to M$ such that $\varphi(u) \neq \varphi(v)$.

Example 1: separate $u \neq v$? Syntatic monoid of $\{u\}$ (or $\{v\}...$) Example 2: $a \in A$ - separate a^{99} and a^{100} ? $\mathbb{Z}/2\mathbb{Z}$

Example 3: $u \in A^*$, $n \in \mathbb{N}$ - separate $u^{n!}$ and $u^{(n+1)!}$?

A monoid *M* separates *u* and *v* if: there is a morphism $\varphi : A^* \to M$ such that $\varphi(u) \neq \varphi(v)$.

Example 1: separate $u \neq v$? Syntatic monoid of $\{u\}$ (or $\{v\}...$)

```
Example 2: a \in A - separate a^{99} and a^{100}? \mathbb{Z}/2\mathbb{Z}
```

Example 3: $u \in A^*$, $n \in \mathbb{N}$ - separate $u^{n!}$ and $u^{(n+1)!}$? $x \in M$ then $x^{|M|!} = x^{(|M|+1)!}$ = the idempotent power of x in M $\implies \varphi(u)^{|M|!} = \varphi(u)^{(|M|+1)!}$

> $u^{n!}$ and $u^{(n+1)!}$ cannot be separated by a monoid of size less than n

 $d(u,v)=2^{-n}$

where n is the minimal size of a monoid that separates u and v.

 $d(u,v)=2^{-n}$

where n is the minimal size of a monoid that separates u and v.

d is an ultrametric distance:

•
$$d(u, v) = 0$$
 iff $u = v$

$$d(u,v) = d(v,u)$$

 $\cdot d(u,v) \leqslant \max(d(u,w),d(w,v))$

 $d(u,v)=2^{-n}$

where n is the minimal size of a monoid that separates u and v.

d is an ultrametric distance:

•
$$d(u, v) = 0$$
 iff $u = v$

$$d(u,v) = d(v,u)$$

• $d(u, v) \leq \max(d(u, w), d(w, v))$

The words $u^{n!}$ and $u^{(n+1)!}$ are closer and closer...

Definition

Profinite monoid $\widehat{A^*}$:

completion of A^* with respect to the distance d.

- Monoid if u and v sequences of words, $(u.v)_n = u_n v_n$
- . Metric space
- . A^* dense subset
- . Compact

V.I.P. words (very important profinite words)

Idempotent power

$$u^{\omega} = \lim_{n \to \infty} u^{n!}$$

V.I.P. words (very important profinite words)

Idempotent power

$$u^{\omega} = \lim_{n \to \infty} u^n$$

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003) $|A| \ge 2$ u_0, u_1, \ldots an enumeration of the words of A^* $v_0 = u_0, v_{n+1} = (v_n u_{n+1} v_n)^{(n+1)!}$

$$\rho_A = \lim_{n \to \infty} v_n$$

M a finite monoid.

Every morphism $\varphi: A^* \to M$ can be uniquely extended to a continuous morphism $\widehat{\varphi}: \widehat{A^*} \to M$.

M a finite monoid.

Every morphism $\varphi: A^* \to M$ can be uniquely extended to a continuous morphism $\widehat{\varphi}: \widehat{A^*} \to M$.

M a finite monoid.

Every morphism $\varphi : A^* \to M$ can be uniquely extended to a continuous morphism $\widehat{\varphi} : \widehat{A^*} \to M$.

M a finite monoid.

Every morphism $\varphi: A^* \to M$ can be uniquely extended to a continuous morphism $\widehat{\varphi}: \widehat{A^*} \to M$.

A language L is rational iff \overline{L} is open and closed in $\widehat{A^*}$.

V.I.P. words (very important profinite words)

Idempotent power

$$u^{\omega} = \lim_{n \to \infty} u^{n!}$$
V.I.P. words (very important profinite words)

Idempotent power

$$u^{\omega} = \lim_{n \to \infty} u^{n!}$$

 $\longrightarrow \text{ For all morphisms } \varphi: A^* \to M \text{ (finite monoid):} \\ \widehat{\varphi}(u^{\omega}) \text{ is the idempotent power of } \widehat{\varphi}(u) \text{ in } M.$

V.I.P. words (very important profinite words)

Idempotent power

$$u^{\omega} = \lim_{n \to \infty} u^n$$

 $\longrightarrow \text{ For all morphisms } \varphi: A^* \to M \text{ (finite monoid):} \\ \widehat{\varphi}(u^{\omega}) \text{ is the idempotent power of } \widehat{\varphi}(u) \text{ in } M.$

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003) $|A| \ge 2$ u_0, u_1, \ldots an enumeration of the words of A^* $v_0 = u_0, v_{n+1} = (v_n u_{n+1} v_n)^{(n+1)!}$

 $\rho_{\mathcal{A}} = \lim_{n \to \infty} \mathbf{v}_n$

V.I.P. words (very important profinite words)

Idempotent power

$$u^{\omega} = \lim_{n \to \infty} u^n$$

 $\longrightarrow \text{ For all morphisms } \varphi: A^* \to M \text{ (finite monoid):} \\ \widehat{\varphi}(u^{\omega}) \text{ is the idempotent power of } \widehat{\varphi}(u) \text{ in } M.$

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003) $|A| \ge 2$ u_0, u_1, \ldots an enumeration of the words of A^* $v_0 = u_0, v_{n+1} = (v_n u_{n+1} v_n)^{(n+1)!}$

$$\rho_A = \lim_{n \to \infty} v_n$$

 \longrightarrow For all morphisms $\varphi : A^* \to M$ (finite monoid): if M has a zero then $\widehat{\varphi}(\rho_A) = 0$.

Birkhoff variety of monoids: class of monoids closed under:

- direct product
- submonoid
- quotient N quotient of M: $M \xrightarrow{\varphi} N$ with φ a surjective morphism.

Birkhoff variety of monoids: class of monoids closed under:

- direct product
- submonoid

• quotient N quotient of M: $M \xrightarrow{\varphi} N$ with φ a surjective morphism.

A monoid T satisfies a word-identity u = v with $u, v \in A^*$, if for all morphisms $\varphi : A^* \to T$, $\varphi(u) = \varphi(v)$.

Birkhoff variety of monoids: class of monoids closed under:

- direct product
- submonoid
- quotient N quotient of M: $M \xrightarrow{\varphi} N$ with φ a surjective morphism.

A monoid T satisfies a word-identity u = v with $u, v \in A^*$, if for all morphisms $\varphi : A^* \to T$, $\varphi(u) = \varphi(v)$.

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]

Birkhoff variety of monoids: class of monoids closed under:

- direct product
- submonoid
- quotient N quotient of M: $M \xrightarrow{\varphi} N$ with φ a surjective morphism.

A monoid T satisfies a word-identity u = v with $u, v \in A^*$, if for all morphisms $\varphi : A^* \to T$, $\varphi(u) = \varphi(v)$.

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]

Pseudovariety of finite monoids: class of finite monoids closed under:

- finite direct product
- submonoid
- quotient

Birkhoff variety of monoids: class of monoids closed under:

- direct product
- submonoid
- quotient N quotient of M: $M \xrightarrow{\varphi} N$ with φ a surjective morphism.

A monoid T satisfies a word-identity u = v with $u, v \in A^*$, if for all morphisms $\varphi : A^* \to T$, $\varphi(u) = \varphi(v)$.

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]

Pseudovariety of finite monoids: class of finite monoids closed under:

- finite direct product
- submonoid
- quotient

Varieties of finite monoids \longleftrightarrow varieties of rational languages [Eilenberg]

Birkhoff variety of monoids: class of monoids closed under:

- direct product
- submonoid
- quotient N quotient of M: $M \xrightarrow{\varphi} N$ with φ a surjective morphism.

A monoid T satisfies a word-identity u = v with $u, v \in A^*$, if for all morphisms $\varphi : A^* \to T$, $\varphi(u) = \varphi(v)$.

Birkhoff varieties of monoids are defined by a set of identities. [Birkhoff]

Pseudovariety of finite monoids: class of finite monoids closed under:

- finite direct product
- submonoid
- quotient

Varieties of finite monoids \longleftrightarrow varieties of rational languages [Eilenberg]

 \rightarrow Equations for pseudovarieties? Profinite equations! [Reiterman]

- . Lattice (union, intersection)
- . Boolean algebra (lattice, complement)
- . Lattice closed under quotient
- . Boolean algebra closed under quotient

quotient : $u^{-1}Lv^{-1} = \{w \mid uwv \in L\}$

– Definition –

Given two profinite words u, v, a rational language L satisfies

 $u \rightarrow v$

 $\text{ if } u \in \overline{L} \text{ implies } v \in \overline{L} \\$

a, *b* ∈ *A*

Equation $ab \rightarrow aba$

 $\{L \subseteq A^* \mid ab \notin L\} \cup \{L \subseteq A^* \mid ab, aba \in L\}$

— Definition — Given two profinite words *u*, *v*, a rational language *L* satisfies

 $u \leftrightarrow v$

 $\text{ if } u \in \bar{L} \text{ if and only if } v \in \bar{L} \\$

 $a, b \in A$ Equation $ab \leftrightarrow aba$ $\{L \subseteq A^* \mid ab, aba \notin L\} \cup \{L \subseteq A^* \mid ab, aba \in L\}$

Definition ·

Given two profinite words u, v, a rational language L satisfies

 $u \leqslant v$

if for all $w, w' \in A^*, wuw' \in \overline{L}$ implies $wvw' \in \overline{L}$

 $a, b \in A$

Equation $ab \leq aba$

 $\{L \subseteq A^* \mid \text{for all } w, w', \text{ if } wabw' \in L \text{ then } wabaw' \in L\}$

Definition Given two profinite words u, v, a rational language L satisfies

u = v

if for all $w, w' \in A^*, wuw' \in \overline{L}$ if and only if $wvw' \in \overline{L}$

 $a, b \in A$ Equation ab = aba $\{L \subseteq A^* \mid \text{for all } w, w', wabw' \in L \text{ iff } wabaw' \in L\}$

Characterisation by equations on profinite words

- . Lattice (union, intersection): \rightarrow
- Boolean algebra (lattice, complement): \leftrightarrow
- . Lattice closed under quotient: \leqslant
- Boolean algebra closed under quotient: =

quotient : $u^{-1}Lv^{-1} = \{w \mid uwv \in L\}$

Example 1: Commutative languages A language L is commutative if for all $u \in L$, $com(u) \subseteq L$.

Example 1: Commutative languages A language L is commutative if for all $u \in L$, $com(u) \subseteq L$.

uv = vu

 \rightarrow Boolean algebra closed under quotient Decidability?

Example 1: Commutative languages

A language L is commutative if for all $u \in L$, $com(u) \subseteq L$.

uv = vu

 \rightarrow Boolean algebra closed under quotient Decidability?

A language *L* satisfies u = v if and only if $\varphi(u) = \varphi(v)$ in *M* where *M* is the syntactic monoid of *L* and φ is its syntactic morphism

Example 1: Commutative languages

A language L is commutative if for all $u \in L$, $com(u) \subseteq L$.

uv = vu

 \rightarrow Boolean algebra closed under quotient Decidability?

A language *L* satisfies u = v if and only if $\varphi(u) = \varphi(v)$ in *M* where *M* is the syntactic monoid of *L* and φ is its syntactic morphism

Example 2: Existence of a zero

Example 1: Commutative languages

A language L is commutative if for all $u \in L$, $com(u) \subseteq L$.

uv = vu

 \rightarrow Boolean algebra closed under quotient Decidability?

A language L satisfies u = v if and only if $\varphi(u) = \varphi(v)$ in M where M is the syntactic monoid of L and φ is its syntactic morphism

Example 2: Existence of a zero $\{\rho_A u = u\rho_A = \rho_A \mid u \in A^*\}$

- . 1, *a* ∈ *A*,
- $E \cup F$, $E \cap F$, E.F, ^cE, E^*

- . 1, *a* ∈ *A*,
- $E \cup F$, $E \cap F$, E.F, ^cE, E^*

Given a rational language L, what is the minimal number of nested stars needed to describe L by such an expression?

- . 1, *a* ∈ *A*,
- $E \cup F$, $E \cap F$, E.F, ^cE, E^*

Given a rational language L, what is the minimal number of nested stars needed to describe L by such an expression?

→ Star-height 0 [Schützenberger, McNaughton-Papert] Star-free languages, aperiodic monoid $x^{\omega+1} = x^{\omega}$, FO[<]

- . 1, *a* ∈ *A*,
- $E \cup F$, $E \cap F$, E.F, ^cE, E^*

Given a rational language L, what is the minimal number of nested stars needed to describe L by such an expression?

 \rightarrow Star-height 0 [Schützenberger, McNaughton-Papert] Star-free languages, aperiodic monoid $x^{\omega+1} = x^{\omega}$, FO[<]

 \rightarrow Star-height 1 Example: (aa)* - Is there a nontrivial identity for this class ?

$$P_{u} = \bigcup_{p \text{ prefix of } u} u^{*}p \text{ and } S_{u} = \bigcup_{s \text{ suffix of } u} su^{*}$$

$$x^{\omega}y^{\omega} = 0 \text{ for } x, y \in A^{*} \text{ such that } xy \neq yx \qquad (E_{1})$$

$$x^{\omega}y = 0 \text{ for } x, y \in A^{*} \text{ such that } y \notin P_{x} \qquad (E_{2})$$

$$yx^{\omega} = 0 \text{ for } x, y \in A^{*} \text{ such that } y \notin S_{x} \qquad (E_{3})$$

$$x^{\omega} \leq 1 \text{ for } x \in A^{*} \qquad (E_{4})$$

$$x^{\ell} \leftrightarrow x^{\omega+\ell} \text{ for } x \in A^{*}, \ \ell > 0 \qquad (E_{5})$$

$$x \rightarrow x^{\ell} \text{ for } x \in A^{*}, \ \ell > 0 \qquad (E_{6})$$

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma \qquad (E_{7})$$

$$P_{u} = \bigcup_{p \text{ prefix of } u} u^{*}p \text{ and } S_{u} = \bigcup_{s \text{ suffix of } u} su^{*}$$

$$x^{\omega}y^{\omega} = 0 \text{ for } x, y \in A^{*} \text{ such that } xy \neq yx \qquad (E_{1})$$

$$x^{\omega}y = 0 \text{ for } x, y \in A^{*} \text{ such that } y \notin P_{x} \qquad (E_{2})$$

$$yx^{\omega} = 0 \text{ for } x, y \in A^{*} \text{ such that } y \notin S_{x} \qquad (E_{3})$$

$$x^{\omega} \leqslant 1 \text{ for } x \in A^{*} \qquad (E_{4})$$

$$x^{\ell} \leftrightarrow x^{\omega+\ell} \text{ for } x \in A^{*}, \ \ell > 0 \qquad (E_{5})$$

$$x \to x^{\ell} \text{ for } x \in A^{*}, \ \ell > 0 \qquad (E_{6})$$

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma \qquad (E_{7})$$

$$P_{u} = \bigcup_{p \text{ prefix of } u} u^{*}p \text{ and } S_{u} = \bigcup_{s \text{ suffix of } u} su^{*}$$

$$x^{\omega}y^{\omega} = 0 \text{ for } x, y \in A^{*} \text{ such that } xy \neq yx \qquad (E_{1})$$

$$x^{\omega}y = 0 \text{ for } x, y \in A^{*} \text{ such that } y \notin P_{x} \qquad (E_{2})$$

$$yx^{\omega} = 0 \text{ for } x, y \in A^{*} \text{ such that } y \notin S_{x} \qquad (E_{3})$$

$$x^{\omega} \leqslant 1 \text{ for } x \in A^{*} \qquad (E_{4})$$

$$x^{\ell} \leftrightarrow x^{\omega+\ell} \text{ for } x \in A^{*}, \ \ell > 0 \qquad (E_{5})$$

$$x \rightarrow x^{\ell} \text{ for } x \in A^{*}, \ \ell > 0 \qquad (E_{6})$$

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma \qquad (E_{7})$$

DECIDABLE Lattice closed under quotients

$$P_{u} = \bigcup_{p \text{ prefix of } u} u^{*}p \text{ and } S_{u} = \bigcup_{s \text{ suffix of } u} su^{*}$$

$$x^{\omega}y^{\omega} = 0 \text{ for } x, y \in A^{*} \text{ such that } xy \neq yx \qquad (E_{1})$$

$$x^{\omega}y = 0 \text{ for } x, y \in A^{*} \text{ such that } y \notin P_{x} \qquad (E_{2})$$

$$yx^{\omega} = 0 \text{ for } x, y \in A^{*} \text{ such that } y \notin S_{x} \qquad (E_{3})$$

$$x^{\omega} \leqslant 1 \text{ for } x \in A^{*} \qquad (E_{4})$$

$$x^{\ell} \leftrightarrow x^{\omega+\ell} \text{ for } x \in A^{*}, \ \ell > 0 \qquad (E_{5})$$

$$x \to x^{\ell} \text{ for } x \in A^{*}, \ \ell > 0 \qquad (E_{6})$$

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma \qquad (E_{7})$$

DECIDABLE Boolean algebra closed under quotients

$$P_{u} = \bigcup_{p \text{ prefix of } u} u^{*}p \text{ and } S_{u} = \bigcup_{s \text{ suffix of } u} su^{*}$$

$$x^{\omega}y^{\omega} = 0 \text{ for } x, y \in A^{*} \text{ such that } xy \neq yx \qquad (E_{1})$$

$$x^{\omega}y = 0 \text{ for } x, y \in A^{*} \text{ such that } y \notin P_{x} \qquad (E_{2})$$

$$yx^{\omega} = 0 \text{ for } x, y \in A^{*} \text{ such that } y \notin S_{x} \qquad (E_{3})$$

$$x^{\omega} \leq 1 \text{ for } x \in A^{*} \qquad (E_{4})$$

$$x^{\ell} \leftrightarrow x^{\omega+\ell} \text{ for } x \in A^{*}, \ \ell > 0 \qquad (E_{5})$$

$$x \to x^{\ell} \text{ for } x \in A^{*}, \ \ell > 0 \qquad (E_{6})$$

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma \qquad (E_{7})$$

DECIDABLE Boolean algebra

$$x^{\alpha} \leftrightarrow x^{\beta}$$
 for all $(\alpha, \beta) \in \Gamma$ (*E*₇)

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

$$x^{\alpha} \leftrightarrow x^{\beta}$$
 for all $(\alpha, \beta) \in \Gamma$ (*E*₇)

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

$$1 \ a \ a^2 \ a^3 \ a^4 \ a^5 \ a^6 \ a^7 \ a^8 \ a^9 \ a^{10} \ a^{11} \ a^{12} \ a^{13} \ a^{14} \ \dots$$

$$x^{lpha} \leftrightarrow x^{eta}$$
 for all $(\alpha, \beta) \in \Gamma$ (E₇)

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

$$1 \ a \ a^2 \ a^3 \ a^4 \ a^5 \ a^6 \ a^7 \ a^8 \ a^9 \ a^{10} \ a^{11} \ a^{12} \ a^{13} \ a^{14} \ \dots$$

Equivalence relation over the integers

 $r \equiv_m s$ if and only if gcd(r, m) = gcd(s, m) $(u^m)^*u^r \subseteq L$ if and only if $(u^m)^*u^s \subseteq L$

$$x^{lpha} \leftrightarrow x^{eta}$$
 for all $(\alpha, \beta) \in \Gamma$ (E₇)

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

$$1 \ a \ a^2 \ a^3 \ a^4 \ a^5 \ a^6 \ a^7 \ a^8 \ a^9 \ a^{10} \ a^{11} \ a^{12} \ a^{13} \ a^{14} \ \dots$$

Equivalence relation over the integers

 $r \equiv_m s$ if and only if gcd(r, m) = gcd(s, m) $(u^m)^*u^r \subseteq L$ if and only if $(u^m)^*u^s \subseteq L$

$$2 \equiv_6 4 \text{ since } \gcd(2,6) = 2 = \gcd(4,6)$$
$$(u^6)^* u^2 \subseteq L \text{ if and only if } (u^6)^* u^4 \subseteq L$$

$$x^{lpha} \leftrightarrow x^{eta}$$
 for all $(\alpha, \beta) \in \Gamma$ (E₇)

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

$$1 \ a \ a^2 \ a^3 \ a^4 \ a^5 \ a^6 \ a^7 \ a^8 \ a^9 \ a^{10} \ a^{11} \ a^{12} \ a^{13} \ a^{14} \ \dots$$

Equivalence relation over the integers

 $r \equiv_m s$ if and only if gcd(r, m) = gcd(s, m) $(u^m)^*u^r \subseteq L$ if and only if $(u^m)^*u^s \subseteq L$

 $x^{\alpha} \leftrightarrow x^{\beta}$ for α and β representing sequences of integers $(km + r)_k$ and $(km + s)_k$ with $r \equiv_m s \dots$

$$x^{\alpha} \leftrightarrow x^{\beta}$$
 for all $(\alpha, \beta) \in \Gamma$ (*E*₇)

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

$$1 \ a \ a^2 \ a^3 \ a^4 \ a^5 \ a^6 \ a^7 \ a^8 \ a^9 \ a^{10} \ a^{11} \ a^{12} \ a^{13} \ a^{14} \ \dots$$

Equivalence relation over the integers

 $r \equiv_m s$ if and only if gcd(r, m) = gcd(s, m) $(u^m)^*u^r \subseteq L$ if and only if $(u^m)^*u^s \subseteq L$

> $x^{\alpha} \leftrightarrow x^{\beta}$ for α and β profinite numbers in $\widehat{\mathbb{N}} = \{a\}^*$ satisfying some specific conditions...

$$x^{\alpha} \leftrightarrow x^{\beta}$$
 for all $(\alpha, \beta) \in \Gamma$ (E₇)

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

1
$$a a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^{10} a^{11} a^{12} a^{13} a^{14} \dots$$

Γ is the set of all the pairs of profinite numbers $(dz^{\mathcal{P}}, dpz^{\mathcal{P}})$ s.t.: • \mathcal{P} is a cofinite sequence of prime numbers $\{p_1, p_2, \ldots\}$

$$z^{\mathcal{P}} = \lim_{n} (p_1 p_2 \dots p_n)^n$$

- . $p \in \mathcal{P}$
- if q divides d then $q \notin \mathcal{P}$

 $x^{lpha} \leftrightarrow x^{eta}$ for all $(lpha, eta) \in \Gamma$

 (E_{7})

Thank you for your attention