The (poly)topologies of provability logic

David Fernández-Duque

CIMI, Toulouse University

Topologie et Langages 2016, Toulouse

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Gödel-Löb logic

Language:

 ρ $\neg \varphi$ $\varphi \land \psi$ $\Box \varphi$

Axioms:

$$\blacktriangleright \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$

 $\blacktriangleright \square(\square\varphi \to \varphi) \to \square\varphi \qquad \qquad (L\"ob's axiom)$

Second incompleteness theorem:

$$\Box \Diamond \top \to \Box \bot$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Arithmetical interpretation

An arithmetical interpretation assigns a formula p^* in the language of arithmetic to each propositional variable p.

▶
$$p \mapsto p^*$$

▶ $\Box \varphi \mapsto \exists x \operatorname{Proof}_{\mathsf{PA}}(x, \ulcorner \varphi^* \urcorner)$

Theorem (Solovay)

If $GL \vdash \varphi$ if and only if, for every arithmetical interpretation *, $PA \vdash \varphi^*$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Relational semantics

Kripke models:

- Frames: Well-founded partial orders $\langle W, \langle \rangle$
- Valuations: $\llbracket \varphi \rrbracket \subseteq \mathcal{P}(W)$,

$$\textit{\textbf{W}} \in [\![\Box \varphi]\!] \Leftrightarrow \forall \textit{\textbf{V}} < \textit{\textbf{W}}, \textit{\textbf{V}} \in [\![\varphi]\!]$$

Theorem

GL is sound for $\langle W, \langle \rangle$ if and only if \langle is well-founded.

Further, GL is complete for the class of well-founded frames and enjoys the finite model property.

Topological semantics:

- GL-spaces: scattered topological spaces (X, T)
 Scattered: Every non-empty subset contains an isolated point.
- Valuations: dA is the set of limit (or accumulation) points of A.

$$\llbracket \Diamond \varphi \rrbracket = \boldsymbol{d} \llbracket \varphi \rrbracket.$$

(ロ) (同) (三) (三) (三) (○) (○)

GL is also sound and complete for this interpretation.

Some scattered spaces

• A finite partial order $\langle W, \langle \rangle$ with the downset topology

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- An ordinal ξ with the initial segment topology
- An ordinal ξ with the order topology

Non-scattered:

- The real line
- The rational numbers
- The Cantor set

Ordinal numbers

Ordinals serve as canonical representatives of well-orders.

Well-order: Structure $\langle A, \preccurlyeq \rangle$ such that

- A is any set,
- $\blacktriangleright \preccurlyeq$ is a linear order on A, and
- if $B \subseteq A$ is non-empty, then it has a \preccurlyeq -minimal element.

The class Ord of ordinals is itself well-ordered:

$$\xi \leq \zeta \Leftrightarrow \xi \subseteq \zeta.$$

Examples:

- Every interval [0, n) is an ordinal for $n \in \mathbb{N}$.
- The set of natural numbers can itself be seen as the first infinite ordinal, and is denoted ω.

Ordinal topologies

Intervals on ordinals are defined in the usual way, e.g.

$$[\alpha,\beta) = \{\xi : \alpha \le \xi < \beta\}.$$

Initial topologies: Topology *I*₀ on an ordinal Θ generated by sets of the form [0, *α*).

Interval topologies: Topology *I*₁ on an ordinal Θ generated by sets of the form [0, *α*) and (*α*, *β*).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Ordinal recursion

There are three kinds of ordinals ξ :

- 1. $\xi = 0$ (the empty well-order)
- **2**. $\xi = \zeta + 1$ (successor ordinals)
- 3. $\xi = \bigcup_{\zeta < \xi} \zeta$ (limit ordinals).

We can use this to define addition recursively:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1.
$$\xi + 0 = \xi$$

2. $\xi + (\zeta + 1) = (\xi + \zeta) + 1$
3. $\xi + \lambda = \bigcup_{\eta < \lambda} (\xi + \eta)$ if λ is a limit.

Ordinal arithmetic

Other arithmetical operations can be generalized similarly.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Multiplication:

1.
$$\xi \cdot 0 = 0$$

2. $\xi \cdot (\zeta + 1) = (\xi \cdot \zeta) + \zeta$
3. $\xi \cdot \lambda = \bigcup_{\eta < \lambda} (\xi \cdot \eta)$ if λ is a limit.

Exponentiation:

1.
$$\xi^0 = 1$$

2. $\xi^{\zeta+1} = \xi^{\zeta} \cdot \xi$
3. $\xi^{\lambda} = \bigcup_{\eta < \lambda} \xi^{\eta}$ if λ is a limit.

Iterated derived sets

Recall that if $\langle X, \mathcal{T} \rangle$ is any topological space and $A \subseteq X$, dA denotes the set of limit points of A.

If ξ is an ordinal, define $d^{\xi}A$ recursively by:

1.
$$d^{0}A = A$$

2. $d^{\zeta+1}A = dd^{\zeta}A$
3. $d^{\lambda}A = \bigcap_{\zeta < \lambda} d^{\zeta}A$ (λ a limit).

Ranks on a scattered space

Theorem

The following are equivalent:

- $\langle X, T \rangle$ is scattered
- there exists an ordinal \wedge such that $d^{\wedge}X = \emptyset$.

Let $\mathfrak{X} = \langle X, \mathcal{T} \rangle$ be a scattered space.

- Define $\rho(x)$ to be the least ordinal such that $x \notin d^{\rho(x)+1}X$.
- Define $\rho(\mathfrak{X})$ to be the least ordinal such that $d^{\rho(\mathfrak{X})}X = \emptyset$.

(日) (日) (日) (日) (日) (日) (日)

Fact: The rank on $\langle \Theta, \mathcal{I}_0 \rangle$ is the identity.

Cantor normal forms

Theorem *Every ordinal* $\xi > 0$ *can be uniquely written in the form*

$$\xi = \omega^{\alpha_0} + \ldots + \omega^{\alpha_n}$$

with the α_i 's non-increasing.

Define $\ell \xi = \alpha_n$ (the last exponent or least logarithm of ξ).

CNFs allow us to write many ordinals using $0, \omega, +$ and exponentiation, up to the ordinal

$$\varepsilon_0 = \bigcup_{n < \omega} \underbrace{\omega}_n^{\omega}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ranks on the interval topology

Theorem

If $\langle \Theta, \mathcal{I}_1 \rangle$ is an ordinal with the interval topology, then $\rho(\theta) = \ell \theta$ for all $\theta < \Theta$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Henceforth:

- ρ_0 is the rank with respect to \mathcal{I}_0
- ρ_1 is the rank with respect to \mathcal{I}_1 .

Completeness

Observation:

The initial topology validates

$$\Diamond p \land \Diamond q \rightarrow \Diamond (p \land q) \lor \Diamond (p \land \Diamond q) \lor \Diamond (q \land \Diamond p).$$

- Any space of rank $n < \omega$ validates $\Box^{n+1} \bot$.
- The first ordinal with infinite ρ_1 is ω^{ω} .

```
Theorem (Abashidze, Blass)
If \Theta \ge \omega^{\omega}, then GL is complete for \langle \Theta, \mathcal{I}_1 \rangle.
```

Polymodal Gödel-Löb

GLP: Contains one modality [*n*] for each $n < \omega$. Axioms:

$$\begin{split} & [n](\varphi \to \psi) \to ([n]\varphi \to [n]\psi) & (n < \omega) \\ & [n]([n]\varphi \to \varphi) \to [n]\varphi & (n < \omega) \\ & [n]\varphi \to [m]\varphi & (n < m < \omega) \\ & \langle n \rangle \varphi \to [m] \langle n \rangle \varphi & (n < m < \omega) \end{split}$$

(Possible) arithmetical interpretation:

 $[n]\varphi \equiv "\varphi$ is provable using *n* instances of the ω -rule".

Introduced by Japaridze in 1988.

Kripke semantics

Frames:

 $\langle \pmb{W}, \langle <_{\pmb{n}} \rangle_{\pmb{n} < \omega} \rangle$

 $[n]([n]\varphi \to \varphi) \to [n]\varphi:$

Valid iff $<_n$ is well-founded

 $[n]\varphi \rightarrow [n+1]\varphi$:

Valid iff $w <_{n+1} v \Rightarrow w <_n v$

 $\langle n \rangle \varphi \rightarrow [n+1] \langle n \rangle \varphi$:

Valid iff

 $v <_n w$ and $u <_{n+1} w \Rightarrow v <_n u$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Even GLP₂ has no non-trivial Kripke models.

Topological semantics

Spaces:

$$\mathfrak{X} = \langle X, \langle \mathcal{T}_n \rangle_{n < \omega} \rangle$$

Write d_n for the limit point operator on T_n .

 $[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi$: Valid iff \mathcal{T}_n is scattered $[n]\varphi \rightarrow [n+1]\varphi$: Valid iff $\mathcal{T}_n \subseteq \mathcal{T}_{n+1}$ $\langle n \rangle \varphi \rightarrow [n+1]\langle n \rangle \varphi$: Valid iff

$$A \subseteq X \Rightarrow d_n A \in \mathcal{T}_{n+1}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Canonical ordinal spaces

For a topological space $\langle X, \mathcal{T} \rangle$, define \mathcal{T}^+ to be the least topology containing

 $\mathcal{T} \cup \{ dA : A \subseteq X \}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Denote the join of topologies by [.

The canonical polytopology on Θ is given by

1.
$$\mathcal{T}_0 = \mathcal{I}_1$$

 $2. \ \mathcal{T}_{\xi+1} = \mathcal{T}_{\xi}^+$

3. $\mathcal{T}_{\lambda} = \bigsqcup_{\xi < \lambda} \mathcal{T}_{\xi}$ for λ a limit.

Independence results

Blass: It is consistent with ZFC that GLP₂ is incomplete for the class of canonical ordinal spaces

Beklemishev: It is also consistent with ZFC that GLP₂ is complete for this class

Bagaria, Beklemishev For all n > 1 it is consistent with ZFC that GLP_n has non-trivial canonical ordinal spaces but GLP_{n+1} does not.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

lcard topologies

Icard defined a structure

$$\mathfrak{I} = \langle \varepsilon_{\mathbf{0}}, \langle \mathcal{I}_{\mathbf{n}} \rangle_{\mathbf{n} < \omega} \rangle.$$

Generalized intervals:

$$(\alpha,\beta)_{n} = \{\vartheta : \alpha < \ell^{n}\vartheta < \beta\}.$$

- *I*₀ is generated by intervals of the form [0, β)
- ▶ \mathcal{I}_{n+1} is generated by sets of the form $(\alpha, \beta)_m$ for $m \leq n$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Topological conditions

Icard's model does not satisfy all frame conditions either. $[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi$:

 \mathcal{I}_n is scattered since \mathcal{I}_0 is.

 $[n]\varphi \rightarrow [n+1]\varphi$: \mathcal{I}_{n+1} is always a refinement of \mathcal{I}_n . $\langle n \rangle \varphi \rightarrow [n+1]\langle n \rangle \varphi$: The point

$$\omega^{\omega} = \lim_{n \to \omega} \omega^n$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

should be isolated in \mathcal{I}_2 .

Provability ambiances

Ambiance:

 $\mathfrak{X} = \langle X, \mathcal{A}, \langle \mathcal{T}_n \rangle_{n < \omega} \rangle,$

where:

- *T_n* is scattered
- $\mathcal{T}_n \subseteq \mathcal{T}_{n+1}$
- $\mathcal{A} \subseteq \mathcal{P}(X)$ is such that
 - $\blacktriangleright \ \varnothing \in \mathcal{A}$
 - A is closed under finite unions, complements and d_n
 - $A \in \mathcal{A} \Rightarrow d_n A \in \mathcal{T}_{n+1}$

Models: Ambiances with a valuation such that $\llbracket \varphi \rrbracket \in \mathcal{A}$ for all φ .

(日) (日) (日) (日) (日) (日) (日)

The simple ambiance

A subset of Θ is simple if it is of the form

$$\bigcup_{i< n} \bigcap_{j< m_i} (\alpha_{ij}, \beta_{ij})_{k_{ij}}.$$

The family of simple sets is denoted S.

Theorem If Θ is any ordinal then

 $\langle \Theta, \mathcal{S}, \langle \mathcal{I}_n \rangle_{n < \omega} \rangle$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

is a provability ambiance.

The closed fragment

The variable-free fragment of GLP is denoted GLP^0 (the only atom is \perp).

Beklemishev: GLP⁰ may be used to perform ordinal analysis of PA, its natural subtheories and some extensions.

(日) (日) (日) (日) (日) (日) (日)

Theorem (lcard) GLP⁰ is complete for the class of simple ambiances.

Lime topologies

If $\mathcal{T} \subseteq \mathcal{S}$ are two scattered topologies on X, we say that \mathcal{S} is:

- a rank-preserving extension if $\rho_{S} = \rho_{T}$
- a limit extension if it is rank-preserving and

 $\textit{Id} \colon \langle X, \mathcal{T} \rangle \to \langle X, \mathcal{S} \rangle$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is only discontinuous on points of limit rank

a lime topology if it is a LImit, Maximal Extension.

Zorn's lemma: Lime extensions always exist.

Beklemishev-Gabelaia spaces

A polytopology $\langle \Theta, \langle \mathcal{T}_n \rangle \rangle$ is a Beklemishev-Gabelaia space if \mathcal{T}_0 is a lime of \mathcal{I}_1 and for every *n*, \mathcal{T}_{n+1} is a lime of \mathcal{T}_n^+ .

Theorem Given any BG-space $\langle \Theta, \langle T_n \rangle \rangle$ and any $n < \omega$, T_n is a lime of \mathcal{I}_{n+1} .

Theorem (Beklemishev, Gabelaia)

GLP is complete for the class of BG-spaces based on ε_0 .

Idyllic ambiances

An ambiance $\mathfrak{X} = \langle \Theta, \mathcal{A}, \langle \mathcal{T}_n \rangle_{n < \omega} \rangle$ is idyllic if

• $T_n = T_{n+1}$ for all *n*, and

► there is a BG polytopology on ⊖ with derived set operators d_n such that

$$d_n \upharpoonright \mathcal{A} = d_{\mathcal{I}_{n+1}} \upharpoonright \mathcal{A}.$$

Theorem (DFD)

GLP is complete for the class of idyllic ambiances.

・ロト・日本・日本・日本・日本

Transfinite Gödel-Löb

 Λ is an arbitrary ordinal.

GLP_{Λ}: One modality [λ] for each ordinal $\lambda < \Lambda$. Axioms:

$$\begin{split} [\xi](\varphi \to \psi) &\to ([\xi]\varphi \to [\xi]\psi) & (\xi < \Lambda) \\ [\xi]([\xi]\varphi \to \varphi) &\to [\xi]\varphi & (\xi < \Lambda) \\ [\xi]\varphi \to [\zeta]\varphi & (\xi < \zeta < \Lambda) \\ \langle \xi \rangle \varphi \to [\zeta] \langle \xi \rangle \varphi & (\xi < \zeta < \Lambda) \end{split}$$

DFD, Joosten: Proof-theoretic interpretations using iterated ω -rules in second-order arithmetic.

Can we generalize lcard topologies?

Icard topologies are generated by intervals

 $\{\xi: \alpha < \ell^n \xi < \beta\}.$

We could define \mathcal{I}_{λ} if we had transfinite iterations of ℓ .

These should satisfy:

▶ l⁰ = id

$$\blacktriangleright \ \ell^1 = \ell$$

$$\blacktriangleright \ \ell^{\xi+\zeta} = \ell^{\zeta} \circ \ell^{\xi}$$

• ℓ^{ξ} is always initial.

Initial functions map initial segments to initial segments.

Cohyperations

Definition:

The cohyperation of an initial function *f* is the unique family of initial functions $\langle f^{\xi} \rangle_{\xi \in On}$ such that

- ► $f^1 = f$
- $f^{\xi+\zeta} = f^{\zeta} \circ f^{\xi}$
- *f^ξ* is always initial
- ► f^ξ is pointwise maximal among all such families of functions.

Theorem (DFD, Joosten)

Every initial function admits a unique cohyperation.

We define $\langle \ell^{\xi} \rangle_{\xi \in On}$ to be the cohyperation of ℓ and call it the hyperlogarithm.

Generalized lcard topologies

We can now define

$$\mathfrak{I}^{\Theta}_{\Lambda} = \langle \Theta, \langle \mathcal{I}_{\lambda} \rangle_{\lambda < \Lambda} \rangle.$$

Generlized intervals:

$$(\alpha,\beta)_{\xi} = \{\vartheta : \alpha < \ell^{\xi}\vartheta < \beta\}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\mathcal{I}_{1+\lambda}$ is generated by intervals of the form $(\alpha, \beta)_{\xi}$ for $\xi < \lambda$.

Original lcard space: $\mathfrak{I}_{\omega}^{\varepsilon_0}$

Hyperations

The hyperation of a normal function *f* is the unique family of normal functions $\langle f^{\xi} \rangle_{\xi \in On}$ such that

- ► $f^1 = f$
- $f^{\xi+\zeta} = f^{\xi} \circ f^{\zeta}$
- f^{ξ} is always normal
- ► f^ξ is pointwise minimal among all such families of functions.

Normal: Strictly increasing and continuous.

Theorem (DFD, Joosten)

Every normal function admits a unique hyperation.

Computing hyperations

Let
$$\varphi(\alpha) = \omega^{\alpha}$$
 and $e(\alpha) = -1 + \omega^{\alpha}$.

•
$$\varphi^3(0) = e^2(1) = \omega^{\omega}$$

•
$$\varphi^3(1) = e^3(1) = \omega^{\omega^{\omega}}$$

•
$$\varphi^{\omega^{\xi}} = \varphi_{\xi}$$
 (Veblen functions)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

•
$$\varphi^{\omega}(\mathbf{0}) = e^{\omega}(\mathbf{1}) = \varepsilon_{\mathbf{0}}$$

$$\blacktriangleright \varphi^{\Gamma_0}(\mathbf{0}) = e^{\Gamma_0}(\mathbf{1}) = \Gamma_0$$

Completeness

Theorem (DFD, Joosten) GLP^0_{\Lambda} is complete for $\mathfrak{T}^{\Theta}_{\Lambda}$ if and only if $\Theta > e^{\Lambda}1$.

Theorem (DFD)

If Λ is countable, then GLP_{Λ} is complete for the set of idyllic ambiances over any $\Theta > e^{1+\Lambda}1$.

Theorem (Aguilera, DFD)

If Λ is arbitrary, then GL is complete for $\langle \Theta, T_{\lambda} \rangle$, provided $\Theta > e^{1+\Lambda}1$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Concluding remarks

Provability logics give rise to an unexpected link between formal theories and point-set topology.

The study of this link has led to new constructions in proof theory, topology and set theory.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 Many open questions remain (e.g., completeness for canonical ordinal topologies).

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●