
The (poly)topologies of provability logic

David Fernández-Duque

CIMI, Toulouse University

Topologie et Langages 2016, Toulouse



Gödel-Löb logic

Language:

p ¬ϕ ϕ ∧ ψ �ϕ

Axioms:
I �(ϕ→ ψ)→ (�ϕ→ �ψ)

I �(�ϕ→ ϕ)→ �ϕ (Löb’s axiom)

Second incompleteness theorem:

�♦> → �⊥



Arithmetical interpretation

An arithmetical interpretation assigns a formula p∗ in the
language of arithmetic to each propositional variable p.

I p 7→ p∗

I �ϕ 7→ ∃x ProofPA(x , pϕ∗q)

Theorem (Solovay)
If GL ` ϕ if and only if, for every arithmetical interpretation ∗,
PA ` ϕ∗.



Relational semantics

Kripke models:
I Frames: Well-founded partial orders 〈W , <〉
I Valuations: JϕK ⊆ P(W ),

w ∈ J�ϕK⇔ ∀v < w , v ∈ JϕK

Theorem
GL is sound for 〈W , <〉 if and only if < is well-founded.

Further, GL is complete for the class of well-founded frames
and enjoys the finite model property.



Topological semantics:

I GL-spaces: scattered topological spaces 〈X , T 〉
Scattered: Every non-empty subset contains an isolated
point.

I Valuations: dA is the set of limit (or accumulation) points of
A.

J♦ϕK = d JϕK .

GL is also sound and complete for this interpretation.



Some scattered spaces

I A finite partial order 〈W , <〉 with the downset topology

I An ordinal ξ with the initial segment topology

I An ordinal ξ with the order topology

Non-scattered:

I The real line

I The rational numbers

I The Cantor set



Ordinal numbers

Ordinals serve as canonical representatives of well-orders.

Well-order: Structure 〈A,4〉 such that

I A is any set,
I 4 is a linear order on A, and
I if B ⊆ A is non-empty, then it has a 4-minimal element.

The class Ord of ordinals is itself well-ordered:

ξ ≤ ζ ⇔ ξ ⊆ ζ.

Examples:

I Every interval [0,n) is an ordinal for n ∈ N.
I The set of natural numbers can itself be seen as the first

infinite ordinal, and is denoted ω.



Ordinal topologies

Intervals on ordinals are defined in the usual way, e.g.

[α, β) = {ξ : α ≤ ξ < β}.

I Initial topologies: Topology I0 on an ordinal Θ generated
by sets of the form [0, α).

I Interval topologies: Topology I1 on an ordinal Θ generated
by sets of the form [0, α) and (α, β).



Ordinal recursion

There are three kinds of ordinals ξ:

1. ξ = 0 (the empty well-order)
2. ξ = ζ + 1 (successor ordinals)
3. ξ =

⋃
ζ<ξ ζ (limit ordinals).

We can use this to define addition recursively:

1. ξ + 0 = ξ

2. ξ + (ζ + 1) = (ξ + ζ) + 1
3. ξ + λ =

⋃
η<λ(ξ + η) if λ is a limit.



Ordinal arithmetic

Other arithmetical operations can be generalized similarly.

Multiplication:

1. ξ · 0 = 0
2. ξ · (ζ + 1) = (ξ · ζ) + ζ

3. ξ · λ =
⋃
η<λ(ξ · η) if λ is a limit.

Exponentiation:

1. ξ0 = 1
2. ξζ+1 = ξζ · ξ
3. ξλ =

⋃
η<λ ξ

η if λ is a limit.



Iterated derived sets

Recall that if 〈X , T 〉 is any topological space and A ⊆ X , dA
denotes the set of limit points of A.

If ξ is an ordinal, define dξA recursively by:

1. d0A = A
2. dζ+1A = ddζA
3. dλA =

⋂
ζ<λ dζA (λ a limit).



Ranks on a scattered space

Theorem
The following are equivalent:
I 〈X , T 〉 is scattered
I there exists an ordinal Λ such that dΛX = ∅.

Let X = 〈X , T 〉 be a scattered space.

I Define ρ(x) to be the least ordinal such that x 6∈ dρ(x)+1X .
I Define ρ(X) to be the least ordinal such that dρ(X)X = ∅.

Fact: The rank on 〈Θ, I0〉 is the identity.



Cantor normal forms

Theorem
Every ordinal ξ > 0 can be uniquely written in the form

ξ = ωα0 + . . .+ ωαn

with the αi ’s non-increasing.

Define `ξ = αn (the last exponent or least logarithm of ξ).

CNFs allow us to write many ordinals using 0, ω,+ and
exponentiation, up to the ordinal

ε0 =
⋃

n<ω

ω·
··
ω︸︷︷︸

n

.



Ranks on the interval topology

Theorem
If 〈Θ, I1〉 is an ordinal with the interval topology, then ρ(θ) = `θ
for all θ < Θ.

Henceforth:

I ρ0 is the rank with respect to I0

I ρ1 is the rank with respect to I1.



Completeness

Observation:

I The initial topology validates

♦p ∧ ♦q → ♦(p ∧ q) ∨ ♦(p ∧ ♦q) ∨ ♦(q ∧ ♦p).

I Any space of rank n < ω validates �n+1⊥.

I The first ordinal with infinite ρ1 is ωω.

Theorem (Abashidze, Blass)
If Θ ≥ ωω, then GL is complete for 〈Θ, I1〉.



Polymodal Gödel-Löb

GLP: Contains one modality [n] for each n < ω.

Axioms:

[n](ϕ→ ψ)→ ([n]ϕ→ [n]ψ) (n < ω)

[n]([n]ϕ→ ϕ)→ [n]ϕ (n < ω)

[n]ϕ→ [m]ϕ (n < m < ω)

〈n〉ϕ→ [m]〈n〉ϕ (n < m < ω)

(Possible) arithmetical interpretation:

[n]ϕ ≡ “ϕ is provable using n instances of the ω-rule”.

Introduced by Japaridze in 1988.



Kripke semantics

Frames:
〈W , 〈<n〉n<ω〉

[n]([n]ϕ→ ϕ)→ [n]ϕ:

Valid iff <n is well-founded

[n]ϕ→ [n + 1]ϕ:

Valid iff w <n+1 v ⇒ w <n v

〈n〉ϕ→ [n + 1]〈n〉ϕ:

Valid iff

v <n w and u <n+1 w ⇒ v <n u

Even GLP2 has no non-trivial Kripke models.



Topological semantics

Spaces:
X = 〈X , 〈Tn〉n<ω〉

Write dn for the limit point operator on Tn.

[n]([n]ϕ→ ϕ)→ [n]ϕ: Valid iff Tn is scattered

[n]ϕ→ [n + 1]ϕ: Valid iff Tn ⊆ Tn+1

〈n〉ϕ→ [n + 1]〈n〉ϕ: Valid iff

A ⊆ X ⇒ dnA ∈ Tn+1



Canonical ordinal spaces

For a topological space 〈X , T 〉, define T + to be the least
topology containing

T ∪ {dA : A ⊆ X}.

Denote the join of topologies by
⊔

.

The canonical polytopology on Θ is given by

1. T0 = I1

2. Tξ+1 = T +
ξ

3. Tλ =
⊔
ξ<λ Tξ for λ a limit.



Independence results

Blass: It is consistent with ZFC that GLP2 is incomplete
for the class of canonical ordinal spaces

Beklemishev: It is also consistent with ZFC that GLP2 is
complete for this class

Bagaria, Beklemishev For all n > 1 it is consistent with ZFC
that GLPn has non-trivial canonical ordinal spaces
but GLPn+1 does not.



Icard topologies

Icard defined a structure

I = 〈ε0, 〈In〉n<ω〉.

Generalized intervals:

(α, β)n = {ϑ : α < `nϑ < β}.

I I0 is generated by intervals of the form [0, β)

I In+1 is generated by sets of the form (α, β)m for m ≤ n



Topological conditions

Icard’s model does not satisfy all frame conditions either.
[n]([n]ϕ→ ϕ)→ [n]ϕ:

In is scattered since I0 is.

[n]ϕ→ [n + 1]ϕ: In+1 is always a refinement of In.

〈n〉ϕ→ [n + 1]〈n〉ϕ: The point

ωω = lim
n→ω

ωn

should be isolated in I2.



Provability ambiances

Ambiance:
X = 〈X ,A, 〈Tn〉n<ω〉,

where:

I Tn is scattered

I Tn ⊆ Tn+1

I A ⊆ P(X ) is such that
I ∅ ∈ A

I A is closed under finite unions, complements and dn

I A ∈ A ⇒ dnA ∈ Tn+1

Models: Ambiances with a valuation such that JϕK ∈ A for all ϕ.



The simple ambiance

A subset of Θ is simple if it is of the form⋃
i<n

⋂
j<mi

(αij , βij)kij .

The family of simple sets is denoted S.

Theorem
If Θ is any ordinal then

〈Θ,S, 〈In〉n<ω〉

is a provability ambiance.



The closed fragment

The variable-free fragment of GLP is denoted GLP0 (the only
atom is ⊥).

Beklemishev: GLP0 may be used to perform ordinal analysis of
PA, its natural subtheories and some extensions.

Theorem (Icard)
GLP0 is complete for the class of simple ambiances.



Lime topologies

If T ⊆ S are two scattered topologies on X , we say that S is:

I a rank-preserving extension if ρS = ρT
I a limit extension if it is rank-preserving and

Id : 〈X , T 〉 → 〈X ,S〉

is only discontinuous on points of limit rank
I a lime topology if it is a LImit, Maximal Extension.

Zorn’s lemma: Lime extensions always exist.



Beklemishev-Gabelaia spaces

A polytopology 〈Θ, 〈Tn〉〉 is a Beklemishev-Gabelaia space if T0
is a lime of I1 and for every n, Tn+1 is a lime of T +

n .

Theorem
Given any BG-space 〈Θ, 〈Tn〉〉 and any n < ω, Tn is a lime of
In+1.

Theorem (Beklemishev, Gabelaia)
GLP is complete for the class of BG-spaces based on ε0.



Idyllic ambiances

An ambiance X = 〈Θ,A, 〈Tn〉n<ω〉 is idyllic if

I Tn = In+1 for all n, and

I there is a BG polytopology on Θ with derived set operators
dn such that

dn � A = dIn+1 � A.

Theorem (DFD)
GLP is complete for the class of idyllic ambiances.



Transfinite Gödel-Löb

Λ is an arbitrary ordinal.

GLPΛ: One modality [λ] for each ordinal λ < Λ.

Axioms:

[ξ](ϕ→ ψ)→ ([ξ]ϕ→ [ξ]ψ) (ξ < Λ)

[ξ]([ξ]ϕ→ ϕ)→ [ξ]ϕ (ξ < Λ)

[ξ]ϕ→ [ζ]ϕ (ξ < ζ < Λ)

〈ξ〉ϕ→ [ζ]〈ξ〉ϕ (ξ < ζ < Λ)

DFD, Joosten: Proof-theoretic interpretations using iterated
ω-rules in second-order arithmetic.



Can we generalize Icard topologies?

Icard topologies are generated by intervals

{ξ : α < `nξ < β}.

We could define Iλ if we had transfinite iterations of `.

These should satisfy:

I `0 = id

I `1 = `

I `ξ+ζ = `ζ ◦ `ξ

I `ξ is always initial.

Initial functions map initial segments to initial segments.



Cohyperations
Definition:
The cohyperation of an initial function f is the unique family of
initial functions 〈f ξ〉ξ∈On such that

I f 1 = f

I f ξ+ζ = f ζ ◦ f ξ

I f ξ is always initial

I f ξ is pointwise maximal among all such families of
functions.

Theorem (DFD, Joosten)
Every initial function admits a unique cohyperation.

We define 〈`ξ〉ξ∈On to be the cohyperation of ` and call it the
hyperlogarithm.



Generalized Icard topologies

We can now define

IΘ
Λ = 〈Θ, 〈Iλ〉λ<Λ〉.

Generlized intervals:

(α, β)ξ = {ϑ : α < `ξϑ < β}.

I1+λ is generated by intervals of the form (α, β)ξ for ξ < λ.

Original Icard space: Iε0
ω



Hyperations

The hyperation of a normal function f is the unique family of
normal functions 〈f ξ〉ξ∈On such that

I f 1 = f

I f ξ+ζ = f ξ ◦ f ζ

I f ξ is always normal

I f ξ is pointwise minimal among all such families of
functions.

Normal: Strictly increasing and continuous.

Theorem (DFD, Joosten)
Every normal function admits a unique hyperation.



Computing hyperations

Let ϕ(α) = ωα and e(α) = −1 + ωα.

I ϕ3(0) = e2(1) = ωω

I ϕ3(1) = e3(1) = ωω
ω

I ϕω
ξ

= ϕξ (Veblen functions)

I ϕω(0) = eω(1) = ε0

I ϕΓ0(0) = eΓ0(1) = Γ0



Completeness

Theorem (DFD, Joosten)
GLP0

Λ is complete for TΘ
Λ if and only if Θ > eΛ1.

Theorem (DFD)
If Λ is countable, then GLPΛ is complete for the set of idyllic
ambiances over any Θ > e1+Λ1.

Theorem (Aguilera, DFD)
If Λ is arbitrary, then GL is complete for 〈Θ,Tλ〉, provided
Θ > e1+Λ1.



Concluding remarks

I Provability logics give rise to an unexpected link between
formal theories and point-set topology.

I The study of this link has led to new constructions in proof
theory, topology and set theory.

I Many open questions remain (e.g., completeness for
canonical ordinal topologies).
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