Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Garside groups and some of their properties

Fabienne Chouraqui

University of Haifa, Campus Oranim

June 15, 2016

The example

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Let $X = \{x_1, x_2, x_3, x_4\}.$

The defining r	elations in G and in M generated by X
$x_1^2 = x_2^2$	$x_3^2 = x_4^2$
$x_1x_2 = x_3x_4$	$x_1x_3 = x_4x_2$
$x_2x_4=x_3x_1$	$x_2x_1 = x_4x_3$

・ロト ・回ト ・ヨト ・ヨト

Definition of left divisor

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Let M be a monoid and let X, Y be elements in M.

Left divisor

X is a *left divisor* of Y if there is an element T in M such that Y = XT.

Definition of left divisor

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Let M be a monoid and let X, Y be elements in M.

Left divisor

X is a *left divisor* of Y if there is an element T in M such that Y = XT.

Example: Left divisor

The element X_1X_2 is a left divisor of the element $X_3X_4X_5$ in *M*. Why?

Definition of left divisor

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Let M be a monoid and let X, Y be elements in M.

Left divisor

X is a *left divisor* of Y if there is an element T in M such that Y = XT.

Example: Left divisor	The defining re	elations:
The element X_1X_2 is a left	$x_1^2 = x_2^2$	$x_3^2 = x_4^2$
divisor of the element $X_3X_4X_5$	$x_1x_2 = x_3x_4$	$x_1x_3 = x_4x_2$
in <i>M</i> . Why?	$x_2x_4 = x_3x_1$	$x_2x_1 = x_4x_3$

Definition of Right least common multiple

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Right least common multiple - Right Icm

The element Z in M is the right lcm of X and Y if:

- X and Y are both left divisors of Z.
- If X and Y are both left divisors of W, then Z is a left divisor of W.

소리가 소문가 소문가 소문가

Definition of Right least common multiple

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Example 1: Right Icm

The element X_1^2 is the right lcm of X_1 and X_2 . Why? Since in M, $X_1^2 = X_2^2$ and:

- X_1 and X_2 are both left divisors of X_1^2 .
- X₁² is of minimal length amongst all right common multiples of X₁ and X₂.

소리가 소문가 소문가 소문가

Definition of Right least common multiple

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Example 2: Right Icm

Let $M = Mon\langle a, b | ab = ba, a^2 = b^2 \rangle$. Then a and b don't have a right lcm !!

・ロト ・回ト ・ヨト ・ヨト

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Complement at right of X and Y

The *complement at right* of X and Y, denoted by $X \setminus Y$, is defined to be an element in M such that $Z = X(X \setminus Y)$, where Z is the right lcm of X and Y.

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Complement at right of X and Y

The complement at right of X and Y, denoted by $X \setminus Y$, is defined to be an element in M such that $Z = X(X \setminus Y)$, where Z is the right lcm of X and Y.

Example 1: Complement at right

 $X_1 \setminus X_3$ is X_2 . Why?

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Complement at right of X and Y

The complement at right of X and Y, denoted by $X \setminus Y$, is defined to be an element in M such that $Z = X(X \setminus Y)$, where Z is the right lcm of X and Y.

Example 1: Complement at right

 $X_1 \setminus X_3$ is X_2 . Why? Since in M, $X_1X_2 = X_3X_4$

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

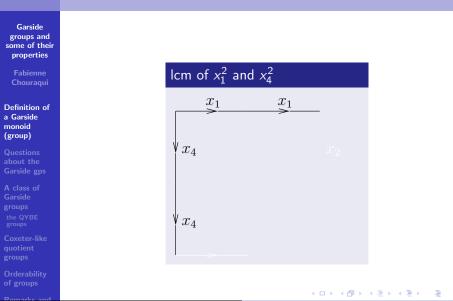
A class of Garside groups the QYBE groups

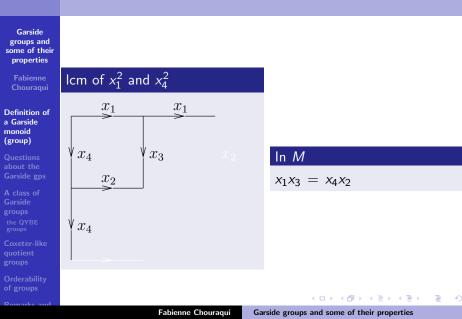
Coxeter-like quotient groups

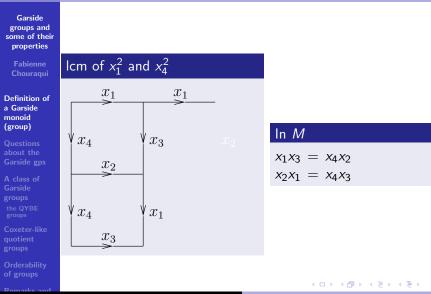
Orderability of groups

Complement at right of X and Y

The complement at right of X and Y, denoted by $X \setminus Y$, is defined to be an element in M such that $Z = X(X \setminus Y)$, where Z is the right lcm of X and Y.

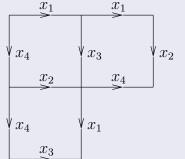

Example 1: Complement at right


 $X_1 \setminus X_3$ is X_2 . Why? Since in M, $X_1X_2 = X_3X_4$


Example 2: Complement at right [Picantin]

Let M = Mon(X, Y | XYYXYYX = YXYYXY). *M* is a Garside monoid and $X \setminus Y$ is *YYXYXYYX*.

イロト イポト イヨト イヨト



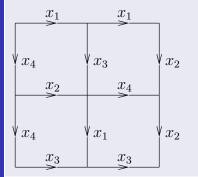
lcm of x_1^2 and x_4^2

In M	
$x_1x_3 = x_4x_2$	
$x_2x_1 = x_4x_3$	
$x_1x_2 = x_3x_4$	

イロン イヨン イヨン イヨン

Fabienne Chouraqui

Definition of a Garside monoid (group)


Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

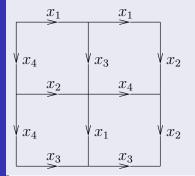
lcm of x_1^2 and x_4^2

In M	
$x_1x_3 = x_4x_2$	
$x_2x_1 = x_4x_3$	
$x_1x_2 = x_3x_4$	
$x_1x_3 = x_4x_2$	

イロン イヨン イヨン イヨン

Fabienne Chouraqui

Definition of a Garside monoid (group)


Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

lcm of x_1^2 and x_4^2

In M	$x_1^2 x_2^2 = x_1^4 =$
$x_1x_3 = x_4x_2$	$x_4^2 x_3^2 = x_4^4$
$\begin{aligned} x_2 x_1 &= x_4 x_3 \\ x_1 x_2 &= x_3 x_4 \end{aligned}$	$x_1^2 \setminus x_4^2 = x_2^2$
$x_1x_2 = x_3x_4$ $x_1x_3 = x_4x_2$	
	$x_4^2 \setminus x_1^2 = x_3^2$

イロン イヨン イヨン イヨン

Э

The lcm is:

Fabienne Chouraqui Garside groups and some of their properties

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Δ in *M* is a Garside element if

• Δ is balanced,

・ロト ・回ト ・ヨト ・ヨト

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Δ in *M* is a Garside element if

 Δ is balanced, i.e. the set of left divisors of Δ = the set of its right divisors = Div(Δ)

소리가 소문가 소문가 소문가

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Δ in *M* is a Garside element if

 Δ is balanced, i.e. the set of left divisors of Δ = the set of its right divisors = Div(Δ)

Div(Δ) is finite.

소리가 소문가 소문가 소문가

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Δ in *M* is a Garside element if

- Δ is balanced, i.e. the set of left divisors of Δ = the set of its right divisors = Div(Δ)
- Div(Δ) is finite.
- $Div(\Delta)$ is a generating set of M.

소리가 소문가 소문가 소문가

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Δ in *M* is a Garside element if

- Δ is balanced, i.e. the set of left divisors of Δ = the set of its right divisors = Div(Δ)
- Div(Δ) is finite.
- $Div(\Delta)$ is a generating set of M.

Example

 X_1^4 is a Garside element. Why?

ヘロン 人間 とくほど くほとう

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Δ in *M* is a Garside element if

- Δ is balanced, i.e. the set of left divisors of Δ = the set of its right divisors = Div(Δ)
- Div(Δ) is finite.
- $Div(\Delta)$ is a generating set of M.

Example

 X_1^4 is a Garside element. Why? Since in *M*, $X_1^4 = X_2^4 = X_3^4 = X_4^4 = ...$

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A monoid M is Garside if

1 is the unique invertible element.

・ロト ・回ト ・ヨト ・ヨト

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A monoid M is Garside if

- 1 is the unique invertible element.
- *M* is left and right cancellative.

・ロン ・回と ・ヨン ・ヨン

æ

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A monoid M is Garside if

- 1 is the unique invertible element.
- *M* is left and right cancellative.
- Any 2 elements in *M* have a right and left lcm.

・ロン ・回と ・ヨン・

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A monoid M is Garside if

- 1 is the unique invertible element.
- *M* is left and right cancellative.
- Any 2 elements in *M* have a right and left lcm.
- Any 2 elements in *M* have a right and left gcd.

э

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A monoid M is Garside if

- 1 is the unique invertible element.
- *M* is left and right cancellative.
- Any 2 elements in *M* have a right and left lcm.
- Any 2 elements in *M* have a right and left gcd.
- M has a Garside element.

イロト イポト イヨト イヨト

э

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A monoid M is Garside if

- 1 is the unique invertible element.
- *M* is left and right cancellative.
- Any 2 elements in *M* have a right and left lcm.
- Any 2 elements in *M* have a right and left gcd.
- M has a Garside element.

A Garside group is the group of fractions of a Garside monoid.

э

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Theorem (P.Dehornoy)

A monoid M is Garside if and only if

1 is the unique invertible element.

ヘロン 人間 とくほど くほとう

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Theorem (P.Dehornoy)

A monoid M is Garside if and only if

- 1 is the unique invertible element.
- *M* is left and right cancellative.

소리가 소문가 소문가 소문가

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Theorem (P.Dehornoy)

A monoid M is Garside if and only if

- 1 is the unique invertible element.
- *M* is left and right cancellative.
- Any two elements in M with a right common multiple admit a right lcm.

イロト イポト イヨト イヨト

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Theorem (P.Dehornoy)

A monoid M is Garside if and only if

- 1 is the unique invertible element.
- M is left and right cancellative.
- Any two elements in M with a right common multiple admit a right lcm.
- M has a finite generating set S closed under complement, that is if X, Y ∈ S then the complement X \ Y is in S.

イロト イポト イヨト イヨト

What are the advantages of being a Garside group?

Garside
groups and
some of thei
properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

・ロン ・回と ・ヨン ・ヨン

What are the advantages of being a Garside group?

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

If the group G is Garside, then

■ G is torsion-free [P.Dehornoy 1998]

소리가 소문가 소문가 소문가

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

If the group G is Garside, then

- *G* is torsion-free [P.Dehornoy 1998]
- G is bi-automatic [P.Dehornoy 2002]

소리가 소문가 소문가 소문가

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

If the group G is Garside, then

- G is torsion-free [P.Dehornoy 1998]
- G is bi-automatic [P.Dehornoy 2002]
- G has word and conjugacy problem solvable

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

If the group G is Garside, then

- G is torsion-free [P.Dehornoy 1998]
- G is bi-automatic [P.Dehornoy 2002]
- *G* has word and conjugacy problem solvable
- G has finite homological dimension [P.Dehornoy and Y.Lafont 2003][R.Charney, J. Meier and K. Whittlesey 2004]

イロト イポト イヨト イヨト

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

If the group G is Garside, then

- G is torsion-free [P.Dehornoy 1998]
- G is bi-automatic [P.Dehornoy 2002]
- G has word and conjugacy problem solvable
- G has finite homological dimension [P.Dehornoy and Y.Lafont 2003][R.Charney, J. Meier and K. Whittlesey 2004]

Examples of Garside groups

- Braid groups [Garside]
- Artin groups of finite type [Deligne, Brieskorn-Saito]
- Torus link groups [Picantin]

Some questions about the Garside groups

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

question raised by D.Bessis.

소리가 소문가 소문가 소문가

Some questions about the Garside groups

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

question raised by D.Bessis.

Are all the Garside groups left-orderable?

question raised by P.Dehornoy, I.Dynnikov, D.Rolfsen, B.Wiest.

Some questions about the Garside groups

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

question raised by D.Bessis.

Are all the Garside groups left-orderable?

question raised by P.Dehornoy, I.Dynnikov, D.Rolfsen, B.Wiest.

Are all the Garside groups linear groups?

question raised by M.Elder.

Fabienne Chouraqui Garside groups and some of their properties

・ロン ・回 と ・ 回 と ・ 回 と

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.

The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the *i*-th and *j*-th components.

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.

The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the *i*-th and *j*-th components.

A set-theoretical solution (X, S) of this equation [Drinfeld]

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.

The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the *i*-th and *j*-th components.

A set-theoretical solution (X, S) of this equation [Drinfeld]

V is a vector space spanned by a set X.

소리가 소문가 소문가 소문가

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.

The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the *i*-th and *j*-th components.

A set-theoretical solution (X, S) of this equation [Drinfeld]

- *V* is a vector space spanned by a set *X*.
- *R* is the linear operator induced by a mapping $S: X \times X \rightarrow X \times X$.

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i,j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

・ロト ・回ト ・ヨト ・ヨト

Garside groups and some of their properties

Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE

groups Coxeter-lik quotient

groups Orderability

Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i,j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [Etingof, Schedler, Soloviev - 1999]

• (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.

Garside groups and some of their properties

Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i,j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

- (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.
- (X, S) is involutive $\Leftrightarrow S^2 = Id_{X \times X}$.

Garside groups and some of their properties

Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i,j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

- (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.
- (X, S) is involutive $\Leftrightarrow S^2 = Id_{X \times X}$.
- (X, S) is braided $\Leftrightarrow S^{12}S^{23}S^{12} = S^{23}S^{12}S^{23}$

Garside groups and some of their properties

Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient

Orderability of groups

Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i,j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

- (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.
- (X, S) is involutive $\Leftrightarrow g_{g_i(j)}f_j(i) = i$ and $f_{f_j(i)}g_i(j) = j$, $1 \le i, j \le n$.
- (X, S) is braided $\Leftrightarrow g_i g_j = g_{g_i(j)} g_{f_j(i)}$ and $f_j f_i = f_{f_j(i)} f_{g_i(j)}$ and $f_{g_{f_j(i)}(k)} g_i(j) = g_{f_{g_j(k)}(i)} f_k(j), 1 \le i, j, k \le n.$

(ロ) (同) (E) (E) (E)

Garside groups and some of their properties

Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Assumption: (X, S) is a non-degenerate, involutive and braided solution.

소리가 소문가 소문가 소문가

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE

groups

quotient groups

Orderability of groups Assumption: (X, S) is a non-degenerate, involutive and braided solution.

The structure group G of (X, S) [Etingof, Schedler, Soloviev]

• The generators:
$$X = \{x_1, x_2, ..., x_n\}$$
.

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Assumption: (X, S) is a non-degenerate, involutive and braided solution.

The structure group G of (X, S) [Etingof, Schedler, Soloviev]

• The generators:
$$X = \{x_1, x_2, ..., x_n\}$$
.

The defining relations: x_ix_j = x_kx_l whenever S(i,j) = (k,l)

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-lik quotient

Orderability of groups Assumption: (X, S) is a non-degenerate, involutive and braided solution.

The structure group G of (X, S) [Etingof, Schedler, Soloviev]

• The generators:
$$X = \{x_1, x_2, ..., x_n\}$$
.

The defining relations: x_ix_j = x_kx_l whenever S(i,j) = (k,l)

There are exactly
$$\frac{n(n-1)}{2}$$
 defining relations.

The example

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE

groups

Coxeter-like quotient groups

Orderability of groups

Let
$$X = \{x_1, x_2, x_3, x_4\}.$$

The functions that define S

 $f_1 = g_1 = f_3 = g_3 = (1, 2, 3, 4)$ $f_2 = g_2 = f_4 = g_4 = (1, 4, 3, 2)$

(X, S) is a non-degenerate, involutive and braided solution.

・ロン ・回 と ・ ヨ と ・ ヨ と

The example

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Let
$$X = \{x_1, x_2, x_3, x_4\}.$$

The functions that define S

 $f_1 = g_1 = f_3 = g_3 = (1, 2, 3, 4) \\ f_2 = g_2 = f_4 = g_4 = (1, 4, 3, 2)$

(X, S) is a non-degenerate, involutive and braided solution.

The defining relations in G and in M		
$x_1^2 = x_2^2$	$x_3^2 = x_4^2$	
$x_1x_2 = x_3x_4$	$x_1x_3 = x_4x_2$	
$x_2x_4=x_3x_1$	$x_2x_1 = x_4x_3$	

・ロット (四) (日) (日)

The correspondence between QYBE groups and Garside groups

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Then G is Garside.

The correspondence between QYBE groups and Garside groups

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Then G is Garside.

Assume that $Mon\langle X | R \rangle$ is a **Garside monoid** such that:

- the cardinality of R is n(n-1)/2
- each side of a relation in R has length 2.
- if the word $x_i x_j$ appears in R, then it appears only once.

э

The correspondence between QYBE groups and Garside groups

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Then G is Garside.

Assume that $Mon\langle X | R \rangle$ is a **Garside monoid** such that:

- the cardinality of R is n(n-1)/2
- each side of a relation in R has length 2.

- if the word $x_i x_j$ appears in R, then it appears only once. Then $G = \text{Gp}\langle X \mid R \rangle$ is the structure group of a non-degenerate, involutive and braided solution (X, S), with $\mid X \mid = n$.

・ロン ・回と ・ヨン・

э

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

The original Coxeter group

There exits a short exact sequence: $1 \rightarrow P_n \rightarrow B_n \rightarrow S_n \rightarrow 1$

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

The original Coxeter group

There exits a short exact sequence: $1 \rightarrow P_n \rightarrow B_n \rightarrow S_n \rightarrow 1$ More generally, finite-type Artin groups have a finite quotient group: the finite Coxeter group.

・ロン ・回 と ・ ヨ と ・ ヨ と

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

The original Coxeter group

There exits a short exact sequence: $1 \rightarrow P_n \rightarrow B_n \rightarrow S_n \rightarrow 1$ More generally, finite-type Artin groups have a finite quotient group: the finite Coxeter group.

What is so special with this finite quotient group?

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

The original Coxeter group

There exits a short exact sequence: $1 \rightarrow P_n \rightarrow B_n \rightarrow S_n \rightarrow 1$ More generally, finite-type Artin groups have a finite quotient group: the finite Coxeter group.

What is so special with this finite quotient group?

There exits a bijection between the elements in the finite quotient group (S_n or finite Coxeter) and the set $Div(\Delta)$ in B_n or finite-type Artin group.

Garside groups and some of their properties

Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

The question raised by D.Bessis

・ロト ・回ト ・ヨト ・ヨト

э

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

The question raised by D.Bessis

Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

소리가 소문가 소문가 소문가

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

The question raised by D.Bessis

Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

Our answer: yes for QYBE groups with additional condition (C)

소리가 소문가 소문가 소문가

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

The question raised by D.Bessis

Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

Our answer: yes for QYBE groups with additional condition (*C*)

Dehornoy's extension 2014: condition (C) can be relaxed

QYBE groups with condition (C) admit Coxeter-like quotient groups

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Theorem (F.C and E.Godelle 2013)

Let (X, S) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

소리가 소문가 소문가 소문가

QYBE groups with condition (*C*) admit Coxeter-like quotient groups

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Theorem (F.C and E.Godelle 2013)

Let (X, S) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

■ N is a normal free abelian group of rank n

・ロト ・回ト ・ヨト ・ヨト

QYBE groups with condition (*C*) admit Coxeter-like quotient groups

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Theorem (F.C and E.Godelle 2013)

Let (X, S) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

- N is a normal free abelian group of rank n
- There exists a bijection between W and Div(Δ)

・ロト ・回ト ・ヨト ・ヨト

QYBE groups with condition (C) admit Coxeter-like quotient groups

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Theorem (F.C and E.Godelle 2013)

Let (X, S) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

- N is a normal free abelian group of rank n
- There exists a bijection between W and Div(Δ)
- W is a finite group of order 2ⁿ

소리가 소문가 소문가 소문가

QYBE groups with condition (C) admit Coxeter-like quotient groups

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Theorem (F.C and E.Godelle 2013)

Let (X, S) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

- N is a normal free abelian group of rank n
- There exists a bijection between W and Div(Δ)
- W is a finite group of order 2ⁿ

What is condition (C)?

Let $x_i, x_j \in X$. If S(i, j) = (i, j), then $f_i f_j = g_i g_j = Id_X$.

・ロン ・回と ・ヨン・

A remark about: QYBE groups admit Coxeter-like quotient groups

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Theorem (F.C and E.Godelle 2013)

Let (X, S) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

N is a normal free abelian group of rank n

イロト イポト イヨト イヨト

A remark about: QYBE groups admit Coxeter-like quotient groups

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Theorem (F.C and E.Godelle 2013)

Let (X, S) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

N is a normal free abelian group of rank n

T.Gateva-Ivanova and M. Van den Bergh show G is a Bieberbach group (i.e $G \leq Iso(\mathbb{R}^n)$). E.Jespers and J.Okninski call W a IYB group, but there is no

connection between W and $Div(\Delta)$.

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is *bi-orderable*

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups, torsion-free abelian groups,

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups,

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups, f.g of surfaces except the Klein bottle group and the projective plane's group Left-orderable: knot groups,

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups, f.g of surfaces except the Klein bottle group and the projective plane's group Left-orderable: knot groups, braid groups,

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups, f.g of surfaces except the Klein bottle group and the projective plane's group Left-orderable: knot groups, braid groups, Homeo⁺(\mathbb{R})

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

• A left order \prec in a countable group G is *recurrent* if for every $g \in G$ and every finite increasing sequence $h_1 \prec h_2 \prec \ldots \prec h_r$ with $h_i \in G$, there exists $n_i \to \infty$ such that $\forall i, h_1 g^{n_i} \prec h_2 g^{n_i} \prec \ldots \prec h_r g^{n_i}$.

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

• A left order \prec in a countable group G is *recurrent* if for every $g \in G$ and every finite increasing sequence $h_1 \prec h_2 \prec \ldots \prec h_r$ with $h_i \in G$, there exists $n_i \to \infty$ such that $\forall i, h_1 g^{n_i} \prec h_2 g^{n_i} \prec \ldots \prec h_r g^{n_i}$.

A left order ≺ is *Conradian* if for any strictly positive elements a, b ∈ G, there is a natural number n such that b ≺ abⁿ.

소리가 소문가 소문가 소문가

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

• A left order \prec in a countable group G is *recurrent* if for every $g \in G$ and every finite increasing sequence $h_1 \prec h_2 \prec \ldots \prec h_r$ with $h_i \in G$, there exists $n_i \to \infty$ such that $\forall i, h_1 g^{n_i} \prec h_2 g^{n_i} \prec \ldots \prec h_r g^{n_i}$.

A left order ≺ is *Conradian* if for any strictly positive elements a, b ∈ G, there is a natural number n such that b ≺ abⁿ. ≺ recurrent ⇒ Conradian (D. Witte-Morris).

소리가 소문가 소문가 소문가

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

• A left order \prec in a countable group G is *recurrent* if for every $g \in G$ and every finite increasing sequence $h_1 \prec h_2 \prec \ldots \prec h_r$ with $h_i \in G$, there exists $n_i \to \infty$ such that $\forall i, h_1 g^{n_i} \prec h_2 g^{n_i} \prec \ldots \prec h_r g^{n_i}$.

A left order ≺ is *Conradian* if for any strictly positive elements a, b ∈ G, there is a natural number n such that b ≺ abⁿ. ≺ recurrent ⇒ Conradian (D. Witte-Morris).

 LO(G) is a topological space (compact and totally disconnected and G acts on LO(G) by conjugation (A.Sikora).

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

• A left order \prec in a countable group G is *recurrent* if for every $g \in G$ and every finite increasing sequence $h_1 \prec h_2 \prec \ldots \prec h_r$ with $h_i \in G$, there exists $n_i \to \infty$ such that $\forall i, h_1 g^{n_i} \prec h_2 g^{n_i} \prec \ldots \prec h_r g^{n_i}$.

A left order ≺ is *Conradian* if for any strictly positive elements a, b ∈ G, there is a natural number n such that b ≺ abⁿ. ≺ recurrent ⇒ Conradian (D. Witte-Morris).

- LO(G) is a topological space (compact and totally disconnected and G acts on LO(G) by conjugation (A.Sikora).
- The set LO(G) cannot be countably infinite (P. Linnell). If G is a countable left-orderable group, LO(G) is either finite, or homeomorphic to the Cantor set, or homeomorphic to a subspace of the Cantor space with isolated points.

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

 $\begin{array}{l} \mathsf{Bi-orderable} \Rightarrow \mathsf{Recurrent} \; \mathsf{left-orderable} \Rightarrow \mathsf{Locally} \; \mathsf{indicable} \Rightarrow \\ \mathsf{Left-orderable} \Rightarrow \mathsf{Diffuse} \Rightarrow \mathsf{Unique} \; \mathsf{product} \Rightarrow \\ \mathsf{Torsion-free} \end{array}$

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

 $\begin{array}{l} \mathsf{Bi-orderable} \Rightarrow \mathsf{Recurrent} \; \mathsf{left-orderable} \Rightarrow \mathsf{Locally} \; \mathsf{indicable} \Rightarrow \\ \mathsf{Left-orderable} \Rightarrow \mathsf{Diffuse} \Rightarrow \mathsf{Unique} \; \mathsf{product} \Rightarrow \mathsf{Torsion-free} \end{array}$

G is *diffuse* if $\forall F \subseteq G$ finite, $\exists x \in F$ s.t $\forall g \in G \setminus \{1\}$, either *ga* or $g^{-1}a$ is not in *F*.

소리가 소문가 소문가 소문가

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

 $\begin{array}{l} \mathsf{Bi-orderable} \Rightarrow \mathsf{Recurrent} \ \mathsf{left-orderable} \Rightarrow \mathsf{Locally} \ \mathsf{indicable} \Rightarrow \\ \mathsf{Left-orderable} \Rightarrow \mathsf{Diffuse} \Rightarrow \mathsf{Unique} \ \mathsf{product} \Rightarrow \\ \mathsf{Torsion-free} \end{array}$

G is *diffuse* if $\forall F \subseteq G$ finite, $\exists x \in F$ s.t $\forall g \in G \setminus \{1\}$, either *ga* or $g^{-1}a$ is not in *F*.

G satisfies *the UPP*, if for any finite subsets $A, B \subseteq G$,

 $\exists x \in AB$ that can be uniquely written as x = ab, $a \in A$, $b \in B$.

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

 $\begin{array}{l} \mathsf{Bi-orderable} \Rightarrow \mathsf{Recurrent} \; \mathsf{left-orderable} \Rightarrow \mathsf{Locally} \; \mathsf{indicable} \Rightarrow \\ \mathsf{Left-orderable} \Rightarrow \mathsf{Diffuse} \Rightarrow \mathsf{Unique} \; \mathsf{product} \Rightarrow \mathsf{Torsion-free} \end{array}$

G is *diffuse* if $\forall F \subseteq G$ finite, $\exists x \in F$ s.t $\forall g \in G \setminus \{1\}$, either *ga* or $g^{-1}a$ is not in *F*.

G satisfies *the UPP*, if for any finite subsets $A, B \subseteq G$,

 $\exists x \in AB$ that can be uniquely written as x = ab, $a \in A$, $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied

・ロン ・回 と ・ ヨ と ・ ヨ と

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

 $\begin{array}{l} \mathsf{Bi-orderable} \Rightarrow \mathsf{Recurrent} \; \mathsf{left-orderable} \Rightarrow \mathsf{Locally} \; \mathsf{indicable} \Rightarrow \\ \mathsf{Left-orderable} \Rightarrow \mathsf{Diffuse} \Rightarrow \mathsf{Unique} \; \mathsf{product} \Rightarrow \mathsf{Torsion-free} \end{array}$

G is *diffuse* if $\forall F \subseteq G$ finite, $\exists x \in F$ s.t $\forall g \in G \setminus \{1\}$, either *ga* or $g^{-1}a$ is not in *F*.

G satisfies *the UPP*, if for any finite subsets $A, B \subseteq G$,

 $\exists x \in AB$ that can be uniquely written as x = ab, $a \in A$, $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied: there are no zero divisors in the group algebra

소리가 소문가 소문가 소문가

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

 $\begin{array}{l} \mathsf{Bi-orderable} \Rightarrow \mathsf{Recurrent} \; \mathsf{left-orderable} \Rightarrow \mathsf{Locally} \; \mathsf{indicable} \Rightarrow \\ \mathsf{Left-orderable} \Rightarrow \mathsf{Diffuse} \Rightarrow \mathsf{Unique} \; \mathsf{product} \Rightarrow \mathsf{Torsion-free} \end{array}$

G is *diffuse* if $\forall F \subseteq G$ finite, $\exists x \in F$ s.t $\forall g \in G \setminus \{1\}$, either *ga* or $g^{-1}a$ is not in *F*.

G satisfies *the UPP*, if for any finite subsets $A, B \subseteq G$,

 $\exists x \in AB$ that can be uniquely written as x = ab, $a \in A$, $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied \Rightarrow Kaplansky's Idempotent conjecture satisfied

소리가 소문가 소문가 소문가

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

 $\begin{array}{l} \mathsf{Bi-orderable} \Rightarrow \mathsf{Recurrent} \; \mathsf{left-orderable} \Rightarrow \mathsf{Locally} \; \mathsf{indicable} \Rightarrow \\ \mathsf{Left-orderable} \Rightarrow \mathsf{Diffuse} \Rightarrow \mathsf{Unique} \; \mathsf{product} \Rightarrow \mathsf{Torsion-free} \end{array}$

G is *diffuse* if $\forall F \subseteq G$ finite, $\exists x \in F$ s.t $\forall g \in G \setminus \{1\}$, either *ga* or $g^{-1}a$ is not in *F*.

G satisfies the UPP, if for any finite subsets $A, B \subseteq G$,

 $\exists x \in AB$ that can be uniquely written as x = ab, $a \in A$, $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied \Rightarrow Kaplansky's Idempotent conjecture satisfied: there are no non-trivial idempotents in the group algebra

ヘロン ヘロン ヘビン ヘリン

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Are all the Garside groups left-orderable?

Question from book *Ordering braids* of P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest

소리가 소문가 소문가 소문가

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Are all the Garside groups left-orderable?

Question from book *Ordering braids* of P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest

The short answer is: Not necessarily!!

소리가 소문가 소문가 소문가

э

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Are all the Garside groups left-orderable?

Question from book *Ordering braids* of P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest

The short answer is: Not necessarily!!

- There exist Garside groups:
 - with a recurrent left order

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Are all the Garside groups left-orderable?

Question from book *Ordering braids* of P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest

The short answer is: Not necessarily!!

- There exist Garside groups:
 - with a recurrent left order
 - with space of left orders homeomorphic to the Cantor set.

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Are all the Garside groups left-orderable?

Question from book *Ordering braids* of P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest

The short answer is: Not necessarily!!

- There exist Garside groups:
 - with a recurrent left order
 - with space of left orders homeomorphic to the Cantor set.
 - with all left orders Conradian .

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Are all the Garside groups left-orderable?

Question from book *Ordering braids* of P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest

The short answer is: Not necessarily!!

- There exist Garside groups:
 - with a recurrent left order
 - with space of left orders homeomorphic to the Cantor set.
 - with all left orders Conradian .

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Are all the Garside groups left-orderable?

Question from book *Ordering braids* of P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest

The short answer is: Not necessarily!!

The more detailed answer:

- There exist Garside groups:
 - with a recurrent left order
 - with space of left orders homeomorphic to the Cantor set.
 - with all left orders Conradian .
- There exist Garside groups that do not satisfy the unique product property (example of E. Jespers and I. Okninski).

Remarks and questions to conclude

Garside groups and some of their properties

> Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Some remarks to conclude

 G is a Bieberbach group (T. Gateva-Ivanova and M. Van den Bergh, P. Etingof et al.) i.e. it is a torsion free crystallographic group.

소리가 소문가 소문가 소문가

Remarks and questions to conclude

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Some remarks to conclude

- G is a Bieberbach group (T. Gateva-Ivanova and M. Van den Bergh, P. Etingof et al.) i.e. it is a torsion free crystallographic group.
- Bieberbach groups satisfy Kaplansky's zero divisor conjecture, as it holds for all torsion-free finite-by-solvable groups (P.H. Kropholler, P.A. Linnell, and J.A. Moody).

소리가 소문가 소문가 소문가

Remarks and questions to conclude

Garside groups and some of their properties

> Fabienne Chouraqui

Definition o a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Some remarks to conclude

- G is a Bieberbach group (T. Gateva-Ivanova and M. Van den Bergh, P. Etingof et al.) i.e. it is a torsion free crystallographic group.
- Bieberbach groups satisfy Kaplansky's zero divisor conjecture, as it holds for all torsion-free finite-by-solvable groups (P.H. Kropholler, P.A. Linnell, and J.A. Moody).
- B_n satisfy the zero divisor conjecture, as they are left-orderable (P. Dehornoy).

소리가 소문가 소문가 소문가

Some questions to conclude

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Question: does a Garside group satisfy Kaplansky's zero divisor conjecture?

소리가 소문가 소문가 소문가

э

Some questions to conclude

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Question: does a Garside group satisfy Kaplansky's zero divisor conjecture?

An intriguing question: amongst the solutions, are there special cases of groups? More specifically, are there groups that are unique product but not left-orderable? Or, diffuse but not left-orderable?

イロト イポト イヨト イヨト

Some questions to conclude

Garside groups and some of their properties

Fabienne Chouraqui

Definition of a Garside monoid (group)

Questions about the Garside gps

A class of Garside groups the QYBE groups

Coxeter-like quotient groups

Orderability of groups

Question: does a Garside group satisfy Kaplansky's zero divisor conjecture?

An intriguing question: amongst the solutions, are there special cases of groups? More specifically, are there groups that are unique product but not left-orderable? Or, diffuse but not left-orderable?

イロト イポト イヨト イヨト

	The end
Garside groups and some of their properties Fabienne Chouraqui	
Definition of a Garside monoid (group)	Thank you!
Questions about the Garside gps	i name you.
A class of Garside groups the QYBE groups	
Coxeter-like quotient groups	
Orderability of groups	
Romarks and	イロト イヨト イヨト イヨト モラ うらで Fabience Chouragui Garside groups and some of their properties