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Douady’s conjecture

Let € R\ Q, pn/gn — 6 its continued fraction convergents. Let B3 be the set
of 0 such that B(6) < 4+o00 where B(0) = > log(gn+1)/qn- Let f be a
holomorphic map with £(0) = 0 and f'(0) = /277,

Theorem (Brjuno)

If 0 € B then the fixed point is linearizable.

Theorem (Yoccoz)

If0 ¢ B and f is a degree 2 polynomial then the fixed point is not linearizable.

v

(it is also true for periodic points of degree 2 polynomials)

Conjecture (Douady)

It also holds for polynomials of higher degree.
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Proof by the speaker of Yoccoz's thm

Let Qp(z) = €™z 4 22.
The Brjuno sum B(#) is comparable to

I — Fn n

‘1/Qn

The quantity |6 — pn/qn controls the distance at which the parabolic

cycle of Q,, /4, explodes.
The product comes from the fact that these cycles can not collide.

[Explain on the board if there is one]
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6 =1[0;2,2,2000,1,1,1,...] = 2/5
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Toy model

.,
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Degree 3
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Setting

A degree 3 polynomial with a fixed point of multiplier p is
affine-conjugated to

foa(2) = p(z+ 22" + 2%)
In this family, the only affine conjugacies fixing the origin are

fpza ~ fb7_a
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Slices

Fixing p, what does the bifurcation locus of the family (f,.)acc look like?

It has the symmetry a — —a so we may fold it by mapping a to a°. Let

b= a?

The next slide shows the bifurcation locus for p = 2™ with 6 = the
golden mean, viewed in the b-plane.
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Another parameterization

Allowing to label the critical points:
£(2) 1+ct 2 1
z)=plz——7—2z"+—2
) =p 2 3c

Its critical points c1, o are:
@ ¢ = 1 (the blue critical point),

@ ¢ = c (the red critical point).

In the c-coordinate, the previous bifurcation locus looks like this:
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Mariie Sad Sullivan:
Bif(J) = Bif(c1) U Bif(¢)

Color convention:
white: one critical point escapes

orange/cyan: red/blue crit. pt. — attr. cycle
light red/blue: crit. orbit captured by Siegel disk
dark red/blue: crit. orbit bifurcates
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The boundary of the Siegel disk as a
function of ¢

When 6 € B, the Siegel disk moves continuously for the Caratheodory
topology.

When 6 has bounded type, we have K(6)-quasicircles with K(6)
independent of ¢ (Shishikura).

[Show Java Applet Golden]

Theorem (Zakeri)

If 6 has bounded type then the set of parameters c for which both critical

points belong to the boundary of the Siegel disk, is a Jordan curve.
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c=1,a=+V3,b=3

order 3 symmetry around the
c=-1,a=0,b=0 double critical point
order 2 symmetry around
the indifferent fixed point
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both critical points on the boundary red critical point escapes
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Captures
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The size of Siegel disks

Brjuno's theorem has a more precise version by Yoccoz: If f is univalent in
B(0, r) then its Siegel disk contains B(0, reB(?)=C),

Yoccoz also proved that this lower bound is optimal, in that there exists
for all 6 an f univalent in B(0, r) such that its Siegel disk does not contain
B(0, re B(O)+C),

Yoccoz almost proved (this was finished by Buff and :) that this is the

case for f = Qp : z — €2z 4+ 22,

The function B(0) is positive, highly discontinuous and takes arbitrarily
high values (aside o).
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Abnormally big Siegel disks

An example via semi-conjugacy

This optimality cannot hold anymore for higher degree polynomials:

Let p = €™ The polynomial p(z + z9) is semi-conjugated to
p@ (1 + u)@1 by u = 291,
Lukas Geyer generalized Yoccoz's theorem of non-linearizability to a class

of polynomials called saturated: the number of infinite critical orbit tails
within the Julia set is equal to the number of indifferent cycles

Buff and | generalized the upper bound on the inner size of the Siegel disk
to a slightly smaller class: the number of infinite critical orbit tails is equal
to the number of indifferent cycles.

This class contains p9=1u(1 4 u)?-1.
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Hence for p9=1u(1 4 u)?=1, the inner radius of the Siegel disk is
comparable to B((d — 1)), its rotation number being (d — 1)6.

Hence for p(z + z9), the inner radius of the Siegel disk is comparable to

B((d —1)0)

1 But its rotation number is 6 and not (d — 1)6.

Arithmetical lemma: (C depends on d)

B(6) — C < B((d — 1)) < (d — 1)B(8) + C

@ There are values of 6 for which B(0) is big and for which
B((d —1)08)/B(0) is close to 1.

@ There are values of § for which B(6) is big and for which
B((d —1)0)/B(#) is close to d — 1.
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The rational p/q is a good approximant of 6 if and only if (d —1)p/q is a
good approximant of (d — 1)#.

B(Q) ~ Z In ‘9 — pn/q”‘

; Gn

N0 — pn/qn| . / dn
B((d -—1)0) ~ Y ——— " withq, = ———"——
E,,: qan gn A (d —1)

Roughly, B((d —1)8)/B(6) is close to d — 1 for those 6 that have enough
good approximants p/q for which d — 1|q.
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0=0/2~1/60u2/3 ' =[0;3,100,1,1,1,...] = 1/3
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Explosion

Where does the proof via explosion of parabolic points fail?

Fatou's theorem = a parabolic point of a degree d polynomial can have
up to d — 1 cycles of petals.

When there is k > 1 cycles of petals, then the size of the exploded cycle is

asymptotically controlled by |6 — p,/qn|**% > |6 — py/qa|*/9". When
does this happen?

Next slide: slice of cubic polynomials in the c-coordinate for p = e/27P/a
and p/q = 3/5.
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When there is k > 1 cycles of petals, then the size of the exploded cycle is
asymptotically controlled by |8 — pn/qn|/%% > 10 — pp/qn|*/ 9.

The idea is that this is better than just asymptotical and that this is the
worst case:

Conjecture (Buff)

There exists a constant C = C(d) such that for all polynomial of f of
degree d with an indifferent fixed point at the origin,

log R(f) < —% + log min|c;| + C

where the c; are the critical points of f and 0 is the rotation number at
the origin.

This can be viewed as a refinement over Douady's conjecture.
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More modest objectives

Understand the behaviour of perturbations of § = p/q from a parameter ¢
that is close to one of the roots of the lemniscates.

This should yield toy models of hedgehogs in higher degree.
[Show Java Applet Other]

From this, one should be able to guess the inner size of the Siegel disk for
parameters on the Zakeri curve, as a function of the inner angle between
the two critical points.
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Cremer points

What happens for very liouvillian values of 67

Theorem (Okuyama)

log qn+1

If lim sup > 0 and f is a rational map of degree d then it is not

/mear/zable.

Is there an analog of the blue and red regions? Of the Zakeri arc? Is there
also a hairy arc?

Natural idea: approach the parameter slice of p = €2 by slices of

p = €™ where 0, = p,/qn = [a0; a1, . . ., an] OF

0n = [a0; @1,...,an,1,1,1,...] and figure out how the arc changes from 0,
to 0, whether there is a limit, and what that limit means.
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What is the analog of the arc for parabolic points?
Introduce also the parabolic checkerboard (chessboard).

Picture on next slide.
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We get something interesting if we turn  =3/5 =[0;1,1,1,1] into
9 =1[0;1,1,1,1,100,1,1,...].
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Challenge

Explain why it follows so closely the checkerboard.
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Renormalization

This hints at the persitence of Zakeri's Jordan curve even for liouvillian 6.
[use board if there is one]

The parabolic renormalization operator now seems to have a one
dimensional repelling direction. So the near parabolic renormalization of
Inou and Shishikura should have two repelling directions for cubic
polynomials, instead of one for quadratic polynomials.
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Potential theory approach
The conformal radius of the Siegel disk A is conf(f) = |¢'(0)| where
¢ :(D,0) — (A,0) is a conformal map.

conformal radius
1<

inner radius

For a fixed Brjuno number 6, the function
V : b+— —log conf(f, )

is subharmonic, continuous. Its laplacian u = AV is therefore a measure.
The mass of  is one. The function V is harmonic wherever the critical
point accumulating the boundary is not bifurcating, for instance for b big.

Prove that the support of the measure is the Zakeri arc for bounded type 6.

[Show McShane’s movie]
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Brjuno numbers

Assume 6 € B.

Lemma: (Folk. + Avila) V is harmonic for ¢ in some open set U <=
the boundary of the Siegel disk undergoes a holomorphic motion when ¢
varies in U.

Lemma: supp(p) C Bif(c1) N Bif(c2). In particular it has empty interior.
What about the converse: Bif(c1) N Bif(c2) C supp(p)?

Maiie: for all # € R and c, there is a recurrent critical point whose w-limit
set contains the boundary of the Siegel disk, the Cremer point, or the
parabolic point.
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Other Irrationals

Natural idea: approximate irrational 8 by a sequence 8,, — 6 of bounded
type numbers. By compactness of the set of measures, one can take weak
limits, even for very Liouvillian 8. What do they mean? What are their
properties?

For b big we have a quadratic-like map and the size of the Siegel disk is
approximately 1/|b| times the size of the quadratic Siegel disk r:

V(b) = log |b| — log(r) 4+ o(1). So the idea is to consider the limit of
Vi, + log r(0m).
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Rationals

When 6 is rational, the analog of the conformal radius is the asymptotic
size L (it has been proved that they are related, by taking limits). For
0 = p/q, write s = z+ P(a)z9"1 +.... Then P is a polynomial and

1 (Ve

qP(a)

L(a) = ‘

so —logL(a) = %Iogq + % log |P(a)| is also harmonic, and its laplacian is
a set of dirac masses at the roots of P.
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