
DYNAMICS AND GEOMETRY OF THE RAUZY-VEECH INDUCTION
FOR QUADRATIC DIFFERENTIALS

CORENTIN BOISSY, ERWAN LANNEAU

Abstract. Interval exchange maps are related to geodesic flows on translation surfaces;
they correspond to the first return maps of the vertical flow on a transverse segment. The
Rauzy-Veech induction on the space of interval exchange maps provides a powerful tool to
analyze the Teichmüller geodesic flow on the moduli space of Abelian differentials. Several
major results have been proved using this renormalization.

Danthony and Nogueira introduced in 1988 a natural generalization of interval ex-
change transformations, namely the linear involutions. These maps are related to general
measured foliations on surfaces (orientable or not). In this paper we are interested by
such maps related to geodesic flow on (orientable) flat surfaces with Z/2Z linear holo-
nomy. We relate geometry and dynamics of such maps to the combinatorics of generalized
permutations. We study an analogue of the Rauzy-Veech induction and give an efficient
combinatorial characterization of its attractors. We establish a natural bijection between
the extended Rauzy classes of generalized permutations and connected components of the
strata of meromorphic quadratic differentials with at most simple poles, which allows, in
particular, to classify the connected components of all exceptional strata.
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Introduction

A geodesic flow in a given direction on a translation surface induces on a transverse
segment an interval exchange map. Dynamic of such transformations has been exten-
sively studied during these last thirty years providing applications to billiards in rational
polygons, to measured foliations on surfaces, to Teichmüller geometry and dynamics, etc.

Interval exchange transformations are closely related to Abelian differentials on Rie-
mann surfaces. It is well known that the continued fractions encode cutting sequences
of hyperbolic geodesics on the Poincaré upper half-plane. Similarly, the Rauzy-Veech in-
duction (analogous to Euclidean algorithm) provides a discrete model for the Teichmüller
geodesics flow ([Rau79, Vee82, Arn94]).

Using this relation H. Masur in [Mas82] and W. A. Veech in [Vee82] have indepen-
dently proved the Keane’s conjecture (unique ergodicity of almost all interval exchange
transformations). Using combinatorics of Rauzy classes, Kontsevich and Zorich classified
the connected components of strata of the moduli spaces of Abelian differentials [KZ03].
More recently, Avila, Gouëzel and Yoccoz proved the exponential decay of correlations for
the Teichmüller geodesic flow also using a renormalization of the Rauzy-Veech induction
(see [Zor96, AGY06]). Avila and Viana used combinatorics of Rauzy-Veech induction to
prove the simplicity of the essential part of the Lyapunov spectrum of the Teichmüller
geodesic flow on the strata of Abelian differentials (see [AV07]). Recently Bufetov and
Gurevich proved the existence and uniqueness of the measure of maximal entropy for the
Teichmüller geodesic flow on the moduli space of Abelian differentials [BG07]. Avila and
Forni proved the weak mixing for almost all interval exchange transformations and trans-
lation flows [AF07].

These examples show that Rauzy-Veech induction which was initially elaborated to prove
ergodicity of interval exchange transformations and ergodicity of the Teichmüller geodesic
flow is, actually, very efficient far beyond these initial problems.

However, all the aforementioned results concern only the moduli space of Abelian dif-
ferentials. The corresponding questions for strata of strict quadratic differentials (i.e. of
those, which are not global squares of Abelian differentials) remain open.

Note that the (co)tangent bundle to the moduli space of curves is naturally identified
with the moduli space of quadratic differentials. From this point of view, the strata of
Abelian differentials represent special orbifolds of high codimension in the total space of
the tangent bundle. Our interest in Teichmüller dynamics and geometry of the strata of
strict quadratic differentials was one of the main motivations for developing Rauzy-Veech
induction for quadratic differentials.

Natural generalizations of interval exchange transformations were introduced by Dan-
thony and Nogueira in [DN88, DN90] (see also [Nog89]) as cross sections of measured
foliations on surfaces. They introduced the notion of linear involutions, as well as the
notion of Rauzy induction on these maps.

Studying Lyapunov spectrum of the Teichmüller geodesic flow Kontsevich and Zorich
have performed series of computer experiments with linear involutions corresponding to
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quadratic differentials [KZ97]. These experiments indicated appearance of attractors for
the Rauzy-Veech induction, as well as examples of generalized permutations such that
the corresponding linear involutions are minimal for a domain of parameters of positive
measure, and non minimal for a complementary domain of parameters also of positive
measure (examples of this type are presented in Figure 14 and Figure 15 in Appendix A).
But at this point, there was no combinatorial explanation.

Thus, in order to generalize technique of Rauzy-Veech induction to quadratic differentials
in a consistent way it was necessary to find combinatorial criteria allowing to identify
generalized permutations, which belong to attractors and those ones, which represents cross
sections of vertical foliations of quadratic differentials. It was also necessary to distinguish
those generalized permutation which give rise to minimal linear involution, and to specify
the domains of appropriate parameters.

In this paper we establish corresponding combinatorial criteria, which enable us to de-
velop technique of Rauzy-Veech induction for quadratic differentials. Partial results in this
direction were obtained by the second author in [Lan04]. We also study relations between
combinatorics, geometry and dynamics of linear involutions.

To compare similarities and differences between linear involutions corresponding to
Abelian and to quadratic differentials let us first briefly review the situation in the classical
case.

An interval exchange transformation is encoded by a combinatorial data (permutation π
on d elements) and by a continuous data (lengths λ1, . . . , λd of the intervals). Recall that the
Keane’s property (see below) is a criterion of “irrationality” (which, in particular, implies
minimality) of an interval exchange transformation. This property is satisfied for almost all
parameters λ when the permutation π is irreducible (i.e. π({1, . . . , k}) 6= {1, . . . , k}, 1 ≤
k ≤ d − 1), while when π is reducible, the corresponding interval exchange map is never
minimal. On the other hand the irrational interval exchange maps are precisely those that
arise as cross sections of minimal vertical flows on well chosen transverse intervals.

The Rauzy-Veech induction consists in taking the first return map of an interval exchange
transformation to an appropriate smaller interval. This induction can be viewed as a
dynamical system on a finite-dimensional space of interval exchange maps. The behavior
of an orbit of the induction provides important information on dynamics of the interval
exchange transformation representing the starting point. This information is especially
useful when all iterates are well defined and when the length of the underlying subintervals
tends to zero. An interval exchange transformation satisfying the latter conditions is said
to have Keane’s property. For a given irreducible permutation π, the subset of parameters λ
which give rise to interval exchange transformations satisfying Keane’s property contains all
irrational parameters, and so it is a full Lebesgue measure subset. Moreover, for the space
of interval exchange transformations with irreducible combinatorial data, the renormalized
induction process is recurrent with respect to the Lebesgue measure (and even ergodic by a
theorem of Veech). Note that the corresponding invariant measure has infinite total mass.
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In this paper we use the definition of linear involution 1 proposed by Danthony and
Nogueira (see [DN88, DN90]).

As above, a linear involution is encoded by a combinatorial data (“generalized permuta-
tion”) and by continuous data. A generalized permutation of type (l, m) (with l +m = 2d)
is a two-to-one map π : {1, . . . , 2d} → A to an alphabet A.

A generalized permutation is called irreducible if there exists a linear involution asso-
ciated to this generalized permutation, which represents an appropriate cross section of
the vertical foliation of some quadratic differential. A generalized permutation is called
dynamically irreducible if there exists a minimal linear involution associated to this gen-
eralized permutation. It is easy to show that any irreducible generalized permutation is
dynamically irreducible; the converse is not true in general as we will see.

Theorem A. Irreducible and dynamically irreducible generalized permutations can be char-
acterized by natural criteria expressed in elementary combinatorial terms.

The corresponding criteria are stated as Definitions 3.1 and Definition 4.3 respectively.
Consider a dynamically irreducible generalized permutation π. The parameter space of

normalized linear involutions associated to π is represented by a hyperplane section of a
simplex. We describe an explicit procedure which associates to each generalized permu-
tation π an open subset in the parameter space defined by a system of linear inequalities
determined by π. This subset is called the set of admissible parameters. When π is irre-
ducible, the set of admissible parameters coincides with entire parameter space; in general
it is smaller. The next result gives a more precise statement than Theorem A in the
dynamically irreducible case.

Theorem B.

(1) If π is not dynamically irreducible, or if π is dynamically irreducible, but λ does
not belong to the set of admissible parameters, the linear involution T = (π, λ) is
not minimal.

(2) If π is dynamically irreducible, then for almost all admissible parameters λ the
linear involution T = (π, λ) satisfies the Keane’s property, and hence is minimal.

Since the Rauzy-Veech induction commutes with dilatations, it projectivizes to a map
Rr on the space of normalized linear involutions; we shall call this map the renormalized
Rauzy-Veech induction.

Theorem C. Let T be a linear involution on the unit interval and let us consider a sequence(
R

(n)
r (T ) = (π(n), λ(n))

)
n∈N

of iterates by the renormalized Rauzy-Veech induction Rr.

(1) If T has the Keane’s property, then there exists n0 such that π(n) is irreducible for
all n ≥ n0.

1Let f be the involution of X × {0, 1} given by f(x, ε) = (x, 1 − ε). A linear involution is a map T ,
from X × {0, 1} into itself, of the form f ◦ T̃ , where T̃ is an involution of X × {0, 1} without fixed point,
continuous except in finitely many points, and which preserves the Lebesgue measure. In this paper we
will only consider linear involutions with the additional condition. The derivative of T̃ is −1 at (x, ε) if
(x, ε) and T (x, ε) belong to the same connected component, and −1 otherwise; see also Convention 2.2.
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(2) The renormalized Rauzy-Veech induction, defined on the set {(π, λ) | π irreducible},
is recurrent.

Having a generalized permutation π we can define one or two other generalized per-
mutations R0(π) and R1(π) reflecting the possibilities for the image of the Rauzy-Veech
induction R(T ). These combinatorial Rauzy operations define a partial order in the set of
irreducible permutations represented by an oriented graph. A Rauzy class is a connected
component of this graph.

Note that geometry of the Rauzy graphs is very different and more complicated than
in the case of “true” permutations since for some irreducible generalized permutations one
of the Rauzy operations might be not defined. From Theorem C we will deduce that a
Rauzy class is an equivalence class for the equivalence relation given by these combinatorial
operations (see Proposition 6.1).

In analogy with the case of the “true” permutations, we introduce one more combinato-
rial operation on generalized permutations and define extended Rauzy classes as minimal
subsets of irreducible generalized permutations invariant under these corresponding three
operations.

The moduli spaces of Abelian differentials and of quadratic differentials are stratified by
multiplicities of the zeroes of the corresponding differentials. We denote a stratum of the
moduli space of strict quadratic differentials (with at most simple poles) by Q(k1, . . . , kn),
where ki ≥ −1 are the multiplicities of the zeroes (ki = −1 corresponds to a pole).

Theorem D. Extended Rauzy classes of irreducible generalized permutations are in one-to-
one correspondence with connected components of strata in the moduli spaces of quadratic
differentials.

Historically, extended Rauzy classes where used to prove the non-connectedness of some
strata of Abelian differentials. For permutations of a small number of elements, it is easy
to construct explicitly the subset of irreducible permutations and then using the Rauzy
operations to decompose it into a disjoint union of extended Rauzy classes. Using this
approach Veech proved that the minimal stratum in genus 3 has two connected components
and Arnoux proved that the minimal stratum in genus 4 has three connected components
(for Abelian differentials).

Having established an explicit combinatorial criterion of irreducibility of a generalized
permutation (namely Theorem A) one can apply Theorem D to classify the connected
components of all strata of quadratic differentials of sufficiently small dimension. This
justifies, in particular, the following experimental result of Zorich.

Theorem (Zorich). Each of the following four exceptional strata of quadratic differentials
Q(−1, 9),Q(−1, 3, 6),Q(−1, 3, 3, 3) and Q(12) contains exactly two connected components.

Note that a theorem of the second author [Lan04] classifies all connected components of
all other strata of meromorphic quadratic differentials with at most simple poles. These
strata are either connected, or contain exactly two connected components one of which
being hyperelliptic. The same theorem [Lan04] proves that each of the remaining four
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exceptional strata might have at most two connected components. However, the only
currently available proof of the fact they are disconnected is the one based on explicit
calculation of the extended Rauzy classes and corresponds to the theorem of Zorich. It
would be interesting to have an algebraic-geometrico proof of the last theorem; namely a
topological invariant as in the Kontsevich-Zorich’s classification [KZ03]. Note also that a
paper of Zorich [Zor07] gives explicits representatives elements for each extended Rauzy
class. See also [Zor06] for programs concerning calculations of these Rauzy classes.

Reader’s guide. In Section 1 we recall basic properties of flat surfaces, moduli spaces and
interval exchange maps. In particular we recall the Rauzy-Veech induction and its dynam-
ical properties. We relate these properties to irreducibility.
In section 2 we recall the definition of a linear involution and give basics properties. Then
in section 3 we define a combinatorial notion of irreducibility, and prove the first part of
Theorem A. The main tool we use to prove this theorem is the presentation proposed by
Marmi, Moussa and Yoccoz which appears in [MMY05]
In section 4 we introduce the Keane’s property for the linear involutions and prove the
second part of Theorem A, that is Theorem B. For that we prove that T satisfies the
Keane’s property if and only if the Rauzy-Veech induction is always well defined and the
length parameters tends to zero. Then if T does not satisfy the Keane’s property we show
that there exists n0 such that Rn0(T ) is dynamically reducible which then implies that T
is also dynamically reducible.
In section 5, we study the dynamics of the renormalized Rauzy-Veech map on the space of
the linear involutions, and prove Theorem C. For that we use the Teichmüller geometry and
the finiteness of the volume of the strata proved by Masur and Veech (see [Mas82, Vee90]).
Section 6 is devoted to a proof of Theorem D on extended Rauzy classes; we present a
result of Zorich based on an explicit calculation of these classes in low genera.
In the Appendix we present some explicit Rauzy classes as illustration of the problems
which appear in the general case. We also give a property concerning the extended Rauzy
classes.

Acknowledgments. We thank Anton Zorich for useful discussions. We thank Arnaldo
Nogueira for comments and remarks on a preliminary version of this text.
This work was partially supported by the ANR “Teichmüller projet blanc” ANR-06-BLAN-
0038.

1. Background

In this section we review basic notions concerning flat surfaces, moduli spaces and
interval exchange maps. For general references see say [Mas82, Rau79, Vee78, Vee82,
Zor96] and [MT02]. In this paper we will mostly follows notations presented in the pa-
per [MMY05], or equivalently [Yoc03].

1.1. Flat surfaces. A flat surface is a (real, compact, connected) genus g surface equipped
with a flat metric (with isolated conical singularities) such that the holonomy group belongs
to {±Id}. Here holonomy means that the parallel transport of a vector along a long loop
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brings the vector back to itself or to its opposite. This implies that all cone angles are
integer multiples of π. Equivalently a flat surface is a triple (S,U , Σ) such that S is
a topological compact connected surface, Σ is a finite subset of S (whose elements are
called singularities) and U = {(Ui, zi)} is an atlas of S \ Σ such that the transition maps
zj ◦ z−1

i : zi(Ui ∩Uj) → zj(Ui ∩Uj) are translations or half-turns: zi = ±zj + const, and for
each s ∈ Σ, there is a neighborhood of s isometric to a Euclidean cone. Therefore we get
a quadratic differential defined locally in the coordinates zi by the formula q = dz2

i . This
form extends to the points of Σ to zeroes, simple poles or marked points (see [MT02]). We
will sometimes use the notation (S, q) or simply S.

Observe that the holonomy is trivial if and only if there exists a sub-atlas such that all
transition functions are translations or equivalently if the quadratic differentials q is the
global square of an Abelian differential. We will then say that S is a translation surface.

1.2. Moduli spaces. For g ≥ 1, we define the moduli space of Abelian differentials Hg

as the set of pairs (S, ω) modulo the equivalence relation generated by: (S, ω) ∼ (S ′, ω′) if
there exists an analytic isomorphism f : S → S ′ such that f ∗ω′ = ω.
For g ≥ 0, we also define the moduli space of quadratic differentials Qg as the moduli space
of pairs (S, q) (where q is not the global square of any Abelian differential) modulo the
equivalence relation generated by: (S, q) ∼ (S ′, q′) if there exists an analytic isomorphism
f : S → S ′ such that f ∗q′ = q.

The moduli space of Abelian differentials (respectively quadratic differentials) is strat-
ified by the multiplicities of the zeroes. We will denote by H(k1, . . . , kn) (respectively
Q(k1, . . . , kn)) the stratum consisting of holomorphic one-forms (respectively quadratic
differentials) with n zeroes (or poles) of multiplicities (k1, . . . , kn). These strata are non-
connected in general (for a complete classification see [KZ03] in the Abelian differentials
case and [Lan04] in the quadratic differentials case).

The linear action of the 1-parameter subgroup of diagonal matrices gt := diag(et/2, e−t/2)
on the flat surfaces presents a particular interest. It gives a measure-preserving flow with
respect to a natural measure µ(1), preserving each stratum of area one flat surfaces. This
flow is known as the Teichmüller geodesic flow. Masur and Veech proved the following
theorem.

Theorem (Masur; Veech). The Teichmüller geodesic flow acts ergodically on each con-
nected component of each stratum of the moduli spaces of area one Abelian and quadratic
differentials (with respect to a finite measure in the Lebesgue class).

This theorem was proved by Masur [Mas82] and Veech [Vee82] for the H(k1, . . . , kn) case
and for the Q(4g − 4) case.
The ergodicity of the Teichmüller geodesic flow is proved in full generality in [Vee86], The-
orem 0.2. The finiteness of the measure appears in two 1984 preprints of Veech: Dynamical
systems on analytic manifolds of quadratic differentials I,II (see also [Vee86] p.445). These
preprints have been published in 1990 [Vee90].
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1.3. Interval exchange maps. In this section we recall briefly the theory of interval
exchange maps. We will show that, under simple combinatorial conditions, such trans-
formations arise naturally as Poincaré return maps of measured foliations and geodesic
flows on translation surfaces. Moreover we will present the Rauzy-Veech induction and its
geometric and dynamical properties (see [Vee82] for more details).

Let I ⊂ R be an open interval and let us choose a finite subset {sing} of I. Its
complement is a union of d ≥ 2 open subintervals. An interval exchange map is a one-to-
one map T from I\{sing} to a co-finite subset of I that is a translation on each subinterval
of its definition domain. It is easy to see that T is precisely determined by the following
data: a permutation π that encodes how the intervals are exchanged (expressing that the
k-th interval, when numerated from the left to the right, is sent by T to the place π(k)),
and a vector with positive entries that encodes the lengths of the intervals.

Following Marmi, Moussa, Yoccoz [MMY05], we denote these intervals by {Iα, α ∈ A},
with A a finite alphabet. The length of the intervals is a vector λ = (λα)α∈A, and the
combinatorial data is a pair π = (π0, π1) of one-to-one maps πǫ : A → {1, . . . , d}. Then
π is a one-to-one map from {1, . . . , d} into itself given by π = π1 ◦ π−1

0 . We will usually
represent such a permutation by a table:

π =

(
1 2 . . . n

π−1(1) π−1(2) . . . π−1(n)

)
=

=

(
π−1

0 (1) π−1
0 (2) . . . π−1

0 (n)
π−1

1 (1) π−1
1 (2) . . . π−1

1 (n)

)
.

Example 1.1. Let us consider the following alphabet A = {A, B, C, D} with d = 4. Then
we define a permutation π as follows.

π =

(
A B C D
D C B A

)
.

I

I
T

IA IB IC ID

T (IA)T (IB)T (IC)T (ID)

Figure 1. An interval exchange map.

1.3.1. Rauzy-Veech induction. In this section we introduce the notion of winner and loser,
following the terminology of the paper of Avila, Gouëzel and Yoccoz [AGY06]. For T =
(π, λ) we define the type ε of T by λπ−1

ε (d) > λπ−1
1−ε(d). We will then say that Iπ−1

ε (d) is the
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winner and Iπ−1
1−ε(d) is the loser. Then we define a subinterval J of I by removing the loser

of I as follows. {
J = I\T (Iπ−1

1 (d)) if T is of type 0

J = I\Iπ−1
0 (d) if T is of type 1.

The Rauzy-Veech induction R(T ) of T is defined as the first return map of T to the
subinterval J . It is easy to see that this is again an interval exchange transformation,
defined on d letters (see e.g. [Rau79]). We now see how to compute the data of the new
map.

There are two cases to distinguish depending on whether T is of type 0 or 1; the com-
binatorial data of R(T ) only depends on π and on the type of T . This defines two maps
R0 and R1 by R(T ) = (Rε(π), λ′), with ε the type of T .

(1) T has type 0; equivalently the winner is Iπ−1
0 (d).

In that case, we define k by π−1
1 (k) = π−1

0 (d) where k ≤ d − 1. In an equivalent
way k = π1 ◦ π−1

0 (d) = π(d). Then R0(π0, π1) = (π′
0, π

′
1) where π0 = π′

0 and

π′−1
1 (j) =






π−1
1 (j) if j ≤ k

π−1
1 (d) if j = k + 1

π−1
1 (j − 1) otherwise.

We have λ′
α = λα if α 6= π−1

0 (d) and λ′
π−1
0 (d)

= λπ−1
0 (d) − λπ−1

1 (d).

(2) T has type 1; equivalently the winner is Iπ−1
1 (d).

In that case, we define k by π−1
0 (k) = π−1

1 (d) where k ≤ d − 1. In an equivalent
way k = π0 ◦ π−1

1 (d) = π−1(d). Then R1(π0, π1) = (π′
0, π

′
1) where π1 = π′

1 and

π′−1
0 (j) =






π−1
0 (j) if j ≤ k

π−1
0 (d) if j = k + 1

π−1
0 (j − 1) otherwise.

We have λ′
α = λα if α 6= π−1

1 (d) and λ′
π−1
1 (d)

= λπ−1
1 (d) − λπ−1

0 (d).

Example 1.2. Let A = {A, B, C, D} be an alphabet. Let us consider the permutation π of
Example 1.1. Then

R0π =

(
A B C D
D A C B

)
and R1π =

(
A D B C
D C B A

)
.

We stress that the Rauzy-Veech induction is well defined if and only if the two rightmost
intervals do not have the same length i.e. λπ−1

0 (d) 6= λπ−1
1 (d). In the next, we want to

study the Rauzy-Veech induction as a dynamical system defined on the space of interval
exchange transformations. Thus we want the iterates of the Rauzy-Veech induction on
T to be always well defined. We also want this induction to be a good renormalization
process, in the sense that the iterates correspond to inductions on subintervals that tend
to zero. This leads to the definition of reducibility and to the Keane’s property.
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1.3.2. Rauzy-Veech induction and Keane’s property. We will say that π = (π0, π1) is re-
ducible if there exists 1 ≤ k ≤ d − 1 such that {1, . . . , k} is invariant under π = π1 ◦ π−1

0 .
This means exactly that T splits into two interval exchange transformations.

We will say that T satisfies the Keane’s property (also called the infinite distinct orbit
condition or i.d.o.c. property), if the orbits of the singularities of T−1 by T are infinite.
This ensures that π is irreducible and the iterates of the Rauzy-Veech induction are always
well defined.

If the λα are rationally independent vectors, that is
∑

rαλα 6= 0 for all nonzero integer
vectors (rα), then T satisfies the Keane’s property (see [Kea75]). However the converse is
not true. Note that if T satisfies the Keane’s property then T is minimal.

Let T = (π, λ) be an interval exchange map. Let us denote by λ
(n)
α the length of

the interval associated to the symbol α ∈ A for the n-th iterate of T by R; we denote
Rn(T ) =: (π(n), λ(n)) if it is well defined.

Proposition. The following are equivalent.

(1) T satisfies the Keane’s property.
(2) The Rauzy-Veech induction R is always well-defined and for any α ∈ A, the length

of the intervals λ
(n)
α goes to zero as n tends to infinity.

As we will see this situation is very similar in the case of linear involutions.

If we want to study the Rauzy-Veech induction as a dynamical system on the space
of interval exchange maps, it is useful to consider the Rauzy-Veech renormalisation on
the projective space of lengths parameters space. The natural associated object is the
renormalized Rauzy-Veech induction defined on length one intervals:

if R(π, λ) = (π′, λ′) then Rr(π, λ) := (π′, λ′/|λ′|).

1.3.3. Rauzy classes. Given a permutation π, we can define two other permutations Rε(π)
with ε = 0, 1. Conversely, any permutation π′ has exactly two predecessors: there exist
exactly two permutations π0 and π1 such that Rε(π

ε) = π′. Note that π is irreducible if
and only if Rε(π) is irreducible. Thus the relation generated by π ∼ Rε(π) is a partial
order on the set of irreducible permutations; we represent it as a directed graph G. We
call Rauzy classes the connected components of this graph.

Proposition (Rauzy). The above relation is an equivalence relation on the set of permu-
tations. In particular, the equivalent class of a permutation is the Rauzy class.

Proof. The key remark is the following: if π′ = Rε(π) then there exists n > 0 such
that π = Rn

ε (π′). Now assume there exists an oriented path in G joining π and π′, i.e.
there exist ε1, . . . , εr such that π′ = Rε1 ◦ · · · ◦ Rεr

(π). Then there exists n1 such that
Rn1

ε1
(π′) = Rε2 ◦ · · · ◦ Rεr

(π). Iterating this argument, there exist n1, . . . , nr such that
π = Rnr

εr
◦ · · · ◦ Rn1

ε1
(π′). Thus there is an oriented path in G that joins π′ and π. �

We will see that there is an analogous proposition in the case of generalized permutations
although the situation is much more complicated.
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1.3.4. Suspension data over an interval exchange transformation. Here we describe the
construction of a suspension over an interval exchange map T , that is a flat surface for
which T is the first return map of the vertical flow on a well chosen segment.

Let T = (π, λ) be an interval exchange transformation. A suspension data for T is a
collection of vectors (ζα)α∈A such that:

(1) ∀α ∈ A, Re(ζα) = λα.
(2) ∀1 ≤ k ≤ d − 1, Im(

∑
π0(α)≤k ζα) > 0.

(3) ∀1 ≤ k ≤ d − 1, Im(
∑

π1(α)≤k ζα) < 0.

Given a suspension datum ζ , we consider the broken line L0 on C = R2 defined by
concatenation of the vectors ζπ−1

0 (j) (in this order) for j = 1, . . . , d with starting point at

the origin (see Figure 2). Similarly, we consider the broken line L1 defined by concatenation
of the vectors ζπ−1

1 (j) (in this order) for j = 1, . . . , d with starting point at the origin. If the

lines L0 and L1 have no intersections other than the endpoints, then we can construct a
translation surface S as follows: we can identify each side ζα on L0 with the side ζα on L1 by
a translation (in the general case, we must use the Veech zippered rectangle construction,
see section 1.3.5). Let I ⊂ S be the horizontal interval defined by I = (0,

∑
α∈A λα)×{0}.

Then the interval exchange map T is precisely the one defined by the first return map to
I of the vertical flow on S.

ζA

ζA
ζB

ζB
ζC

ζC

ζD

ζD

Figure 2. Suspension over an interval exchange transformation.

We have not yet discussed the existence of such a suspension datum for a general interval
exchange map. A necessary condition for T to have suspension data is that π is irreducible.
Indeed, if we have 1 ≤ k ≤ d − 1 such that π1 ◦ π−1

0 ({1, . . . , k}) = {1, . . . , k}, and let
ζ = (ζα)α be a collection of complex numbers, then:

∑

π0(α)≤k

ζα =
∑

π1(α)≤k

ζα.

So the imaginary part of this number cannot be both positive and negative, and ζ is not
a suspension data for T . If π is irreducible, the existence of a suspension data is given by
Masur and Veech independently (see [Mas82] page 174 and [Vee82] formula 3.7 page 207).
We explain the construction here.

First, let us remark that π = (π0, π1) is irreducible if and only if

(1)
k∑

i=1

π1 ◦ π−1
0 (i) − i > 0 for any 1 ≤ k ≤ d − 1.
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Of course if π is irreducible, then so is π−1, therefore

(2)

k∑

i=1

π0 ◦ π−1
1 (i) − i > 0 for any 1 ≤ k ≤ d − 1.

Let us define a collection of complex number ζ = (ζα)α as follows:

ζα = λα + i(π1(α) − π0(α)) for any α ∈ A.

Then following (1) and (2), the collection (ζα)α∈A is a suspension data over T .

1.3.5. Zippered rectangles. Here we describe an alternative construction of the suspension
over an interval exchange transformation that works for any suspension data, namely the
so called zippered rectangles construction due to Veech [Vee82]. Let T = (π, λ) be an
interval exchange map, and let us assume that π is irreducible. Let ζ be any suspension
over T . Then we define h = (hα)α∈A by

hα =
∑

π0(β)<π0(α)

Im(ζβ) −
∑

π1(β)<π1(α)

Im(ζβ) > 0.

For each α ∈ A let us consider a rectangle Rα of width Re(ζα) and of height hα based
on Iπ0(α) ⊂ I. The zippered rectangle construction is the translation surface

⋃
α∈A Rα/ ∼

where ∼ is the following equivalence relation: we identify the top and the bottom of these
rectangles by (x, hα) ∼ (T (x), 0) for x ∈ Iπ0(α). Then we “zip” the vertical boundaries
of these rectangles that are adjacent (see figure 3; see also [Vee82] for a more precise
description).

A

A

B

B

C

C

D

D

Figure 3. Zippered rectangles construction.

1.3.6. Rauzy-Veech induction on suspensions. We can define the Rauzy-Veech induction on
the space of suspensions, as well as on the space of zippered rectangles. Let T = (π, λ) be an
interval exchange map and let ζ be a suspension over T . Then we define R(π, ζ) = (π′, ζ ′)
as follows.

We define (π′, Re(ζ ′)) = R(π, Re(ζ)) (the standard Rauzy-Veech induction). If Iπ−1
ε (d)

is the winner for T = (π, Re(ζ)) then
{

ζ ′
π−1

ε (d)
= ζπ−1

ε (d) − ζπ−1
1−ε(d)

ζ ′
α = ζα otherwise.
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Remark 1.3. Since (π′, ζ ′) is obtained from (π, ζ) by “cutting” and “gluing”, these two
surfaces differ by an element of the mapping class group, hence they define the same point
in the moduli space (see Figure 4 for an example).

ζA

ζA

ζB

ζB

ζC

ζC

ζD

ζD

ζ ′A

ζ ′A

ζ ′B

ζ ′B

ζ ′C

ζ ′C

ζ ′D

ζ ′D

Figure 4. Rauzy-Veech induction on a suspension over an interval exchange
transformation. The corresponding map is of type 0 hence the new suspen-
sion data are ζ ′

A = ζA, ζ ′
B = ζB, ζ ′

C = ζC and ζ ′
D = ζD − ζA.

If C is a Rauzy class, we define

TC = {(π, ζ), π ∈ C, ζ is a suspension data for π}.

We have thus defined the Rauzy-Veech map on the space TC . It is easy to check that
it defines an almost everywhere invertible map: If

∑
Im(ζ ′

α) 6= 0 then every (π′, ζ ′) has
exactly one preimage for R.

1.3.7. Moduli spaces and Rauzy-Veech induction. We define the quotient HC = TC/ ∼
of TC by the equivalence relation generated by (π, ζ) ∼ R(π, ζ). The zippered rectangle
construction, provides a mapping p from HC to a stratum H(k1, . . . , kn) of the moduli space
of Abelian differentials (see Remark 1.3). Observe that (k1, . . . , kn) can be calculated in
terms of C ∋ π. One can also show that HC is connected and so the image belongs to a
connected component of a stratum.

We will denote by m the natural Lebesgue measure on TC i.e. m = dπdζ , were dπ is the
counting measure on C and dζ is the Lebesgue measure. The mapping R preserves m, so
it induces a measure, denoted again by m on HC .

There is natural action of the matrix

gt =

(
e

t
2 0

0 e−
t
2

)

on TC by gt(π, ζ) = (π, (gt(ζα))α), where gt acts on ζα ∈ C = R2 linearly. This action
preserves the measure m on TC and commutes with R, so it descends to a 1-parameter
action on HC called the Teichmüller flow. Since the action of gt on HC preserves the
area of the corresponding flat surface, the Teichmüller flow also acts on the subset H1

C

corresponding to area one surfaces, and preserves the measure m(1) induced by the measure
m on that subset. Note also that{

(π, ζ) ∈ TC ; 1 ≤ |Re(ζ)| ≤ 1 + min
(
Re(ζπ−1

0 (d)), Re(ζπ−1
1 (d)

)}
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is a fundamental domain of TC for the relation ∼ and the Poincaré map of the Teichmüller
flow on

S = {(π, ζ); π irreducible, |Re(ζ)| = 1}/ ∼

is precisely the renormalized Rauzy-Veech induction on suspensions.
One can show (see [Vee82]) that the mapping p is a finite covering from H1

C onto a subset
of full measure in a connected component of a stratum and the measure m projects to the
measure µ(1) defined in section 1.2. Moreover the action of gt is equivariant with respect
to p, that is p ◦ gt(π, ζ) = gt ◦ p(π, ζ). Hence if we restrict to area one surfaces, the result
of Masur and Veech (finiteness of the measure) implies that the measure m(1) is finite on
H1

C .

Corollary 1.4. The renormalized Rauzy-Veech induction is recurrent on S.

Remark 1.5. Veech proved a stronger result, that is the ergodicity of gt (on the level of HC

for any Rauzy class C), which implies the ergodicity of the Teichmüller flow for Abelian
differentials (see [Vee82]). He also proved that the induced measure on S is always infinite.

2. Linear involutions

2.1. linear involutions and generalized permutations. Let S be a (compact, con-
nected, oriented) flat surface with Z/2Z linear holonomy and let X be a horizontal seg-
ment with a choice of a positive vertical direction (or equivalently, a choice of left and right
ends). We consider the first return map T0 : X → X of vertical geodesics starting from
X in the positive direction. Any vertical geodesic which start from X and doesn’t hit a
singularity will intersect X again. Therefore, the map T0 is well defined outside a finite
number of points {sing} (called singular points) that correspond to vertical geodesics that
stop at a singularity before intersecting again the interval X. The set X\{sing} is a finite
union of open intervals (Xi) and the restriction of T0 on each of these intervals is of the
kind x 7→ ±x + ci.

The map T0 alone does not properly correspond to the dynamics of vertical geodesics
since when T0(x) = −x + ci on the interval Xi, then T 2

0 (x) = x, and (x, T0(x), T 2
0 (x)) does

not correspond to the successive intersections of a vertical geodesic with X starting from
x. To fix this problem, we have to consider T1 the first return map of the vertical geodesics
starting from X in the negative direction. Now if T0(x) = −x + ci then the successive
intersections with X of the vertical geodesic starting from x will be x, T0(x), T1(T0(x)). . .

We get a dynamical system on X×{0, 1}. Following Danthony and Nogueira (see [Nog89,
DN88, DN90]) we will call such a dynamical system a linear involution. We recall here the
definition that we have restricted to our purpose.

Definition 2.1. Let X be an open interval and let X̂ = X × {0, 1} be two disjoint copies

of X. A linear involution on X is a map T := f ◦ T̃ , where:

• T̃ is a smooth involution without fixed point defined on X̂\{sing}, where {sing}

is a finite subset of X̂.
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• If p = (x, ε) and T (p) belong to the same connected component of X̂ then the
derivative of T̃ at p is −1 otherwise the derivative of T̃ at p is 1.

• f is the involution (x, ε) 7→ (x, 1 − ε).

Convention 2.2. In this paper, we are interested with non oriented measured foliations
defined on oriented surfaces. Observe that the orientability of the surface S forces the
second condition on the derivative of T in Definition 2.1.

1

1

1

1
22

22

3

3

3

3

4

4

4

4

5

5

5

5

(x, ε)(x, ε)

X
T̃ (x, ε)T (x, ε)?

Figure 5. Linear involution defined by the vertical foliation of a flat surface.

The previous definition is motivated by the following remark.

Remark 2.3. The first return map of the vertical geodesic foliation on a horizontal segment
X in a flat surface S defines a linear involution in the following way. Choose a positive
vertical direction in a neighborhood of X, and replace X be two copies of X as in Figure 5.
We denote by X × {0} the one on the top and by X × {1} the one on the bottom. Then
we consider the first return map on X × {0, 1} of vertical geodesics, where a geodesic
starting from X × {0} is taken in the positive vertical direction, and a geodesic starting
from X ×{1} is taken in the negative direction. We obtain a map T̃ and it is easy to check

that T̃ satisfies the condition of Definition 2.1. Then it is clear that the map T = f ◦ T̃
encodes the successive intersections of a vertical geodesic with X.

Recall that interval exchange maps are encoded by combinatorial and metric data: these
are a permutation and a vector with positive entries. We define an analogous object for
linear involutions.

Definition 2.4. Let A be an alphabet of d letters. A generalized permutation of type
(l, m), with l + m = 2d, is a two-to-one map π : {1, . . . , 2d} → A. We will usually
represent such generalized permutation by the table:

(
π(1) . . . π(l)

π(l + 1) . . . π(l + m)

)
.

A generalized permutation π defines an involution σ without fixed points by the following
way

π−1({π(i)}) = {i, σ(i)}.
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1

1
22

3

3

4

4

5

5

A

A BB

C

C

D

D

E E

(a)

XA

XA

XC

XC

XB XB

XD

XD

XE XE T (XA)

T (XA)

T (XC)

T (XC)

T (XB)T (XB) T (XD)

T (XD) T (XE)T (XE)
X×{0}

X×{1}

T

(x,0)
(y,1)

T (x,0)

T (y,1)

(b)

Figure 6. A linear involution associated to a measured foliation on a flat surface.

Note that a permutation defines in a natural way a generalized permutation.
We now describe how a linear involution naturally defines a generalized permutation. Let

T be a linear involution and let T̃ be the corresponding involution as in Definition 2.1. The
domain of definition of T̃ is a finite union X1, . . . , Xl+m of open intervals, where X1, . . . , Xl

are subintervals of X × {0} and Xl+1, . . . , Xl+m are subintervals of X × {1}. Since T̃ is
an isometric involution without fixed point, each Xi is mapped isometrically to a Xj , with

j 6= i , hence T̃ induces an involution without fixed point σT on {1, . . . , l+m}. As in section
1, we choose a name αi ∈ A to each pair {i, σT (i)} and we get a generalized permutation
in the sense of the above definition which is defined up to a one-to-one map of A.

Example 2.5. In view of Figure 6, let us consider the following alphabet A = {A, B, C, D}
with d = 5. Then we define a generalized permutation π as follows.

l = m = 5, π(1) = π(8) = A, π(2) = π(4) = B,

π(3) = π(9) = C, π(5) = π(6) = D, π(7) = π(10) = E.

In an equivalent way, we can define an involution without fixed point in order to define π.

σ(1) = 8, σ(2) = 4, σ(3) = 9, σ(5) = 6, σ(7) = 10.

We represent π by the following table

π =

(
A B C B D
D E A C E

)
.
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One can check that the discrete datum associated to the linear involution described in
Figure 6 is the generalized permutation π.

Example 2.6. Note that π is a “true” permutation on d letters if and only if l = m = d and
for any i ≤ l, σ(i) > l. In this case (if A = {1, . . . , d}):

π =

(
1 2 . . . d

σ(1) − d σ(2) − d . . . σ(d) − d

)
.

Conversely, let π be a generalized permutation of type (l, m) and let σ be the associated
involution. If π is not a “true” permutation, then an obvious necessary and sufficient
condition for π to come from a linear involution is that there exist at least two indices i ≤ l
and j > l such that σ(i) ≤ l and σ(j) > l.

Convention 2.7. From now, unless explicitly stated (in particular in section 3.2), we will
always assume that generalized permutations will satisfy the following convention. There
exist at least two indices i ≤ l and j > l such that σ(i) ≤ l and σ(j) > l.

Let (λα)α∈A be a collection of positive real numbers such that

L :=

l∑

i=1

λπ(i) =

l+m∑

i=l+1

λπ(i).(3)

It is easy to construct a linear involution on the interval X = (0, L) with combinatorial
data (π, λ). As in section 1, we will denote by T = (π, λ) a linear involution.

2.2. Rauzy-Veech induction on linear involutions. We recall the Rauzy-Veech induc-
tion on linear involutions introduced by Danthony and Nogueira (see [DN90] p. 473).

Let T = (π, λ) be a linear involution on X = (0, L), with π of type (l, m). If λπ(l) 6=
λπ(l+m), then the Rauzy-Veech induction R(T ) of T is the linear involution obtained by
the first return map of T to

(
0, max(L − λπ(l), L − λπ(l+m))

)
× {0, 1}.

As in the case of interval exchange maps, the combinatorial data of the new linear involution
depends only on the combinatorial data of T and whether λπ(l) > λπ(l+m) or λπ(l) < λπ(l+m).
As before, we say that T has type 0 or type 1 respectively. The corresponding combinatorial
operations are denoted by Rε for ε = 0, 1 respectively. Note that if π is a given generalized
permutation, the subsets {T = (π, λ), λπ(l) > λπ(l+m)} and {T = (π, λ), λπ(l) < λπ(l+m)}
can be empty because π(l) = π(l+m) or because of the linear relation on the λi that must
be satisfied.

We first describe the combinatorial Rauzy operations Rε. Let σ be the associated invo-
lution to π.

(1) map R0.
• If σ(l) > l and if π(l) 6= π(l + m) then we define R0π to be of type (l, m) and
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such that:

R0π(i) =






π(i) if i ≤ σ(l)
π(l + m) if i = σ(l) + 1
π(i − 1) otherwise.

• If σ(l) ≤ l, and if there exists a pair {x, σ(x)} included in {l + 1, . . . , l + m − 1}
then we define R0π to be of type (l + 1, m − 1) and such that:

R0π(i) =






π(i) if i < σ(l)
π(l + m) if i = σ(l)
π(i − 1) otherwise.

• Otherwise R0π is not defined.
(2) map R1.

• If σ(l + m) ≤ l and if π(l) 6= π(l + m) then we define R1π to be of type (l, m)
such that:

R1π(i) =






π(l) if i = σ(l + m) + 1
π(i − 1) If σ(l + m) + 1 < i ≤ l
π(i) otherwise.

• If σ(l + m) > l and if there exists a pair {x, σ(x)} included in {1, . . . , l − 1} then
R1π is of type (l − 1, m + 1) and:

R1π(i) =






π(i + 1) if l ≤ i < σ(l + m) − 1
π(l) If i = σ(l + m) − 1
π(i) otherwise.

• Otherwise R1π is not defined.

We now describe the Rauzy-Veech induction R(T ) of T :

• If T = (π, λ) has type 0, then R(T ) = (R0π, λ′), with λ′
α = λα if α 6= π(l) and

λ′
π(l) = λπ(l) − λπ(l+m).

• If T = (π, λ) has type 1, then R(T ) = (R1π, λ′), with λ′
α = λα if α 6= π(l + m) and

λ′
π(l+m) = λπ(l+m) − λπ(l).

Example 2.8. Let us consider the permutation of Example 2.5, namely π = ( A B C B D
D E A C E ).

Then

R0(π) =

(
A B C B D
D E E A C

)
and R1(π) =

(
A B C B
D D E A C E

)
.

Example 2.9. Let us consider the permutation π defined on the alphabet A = {A, B, C, D}
by π = ( A B A

B D C C D ). Then

R0(π) =

(
D A B A
B D C C

)

and R1(π) is not defined. Indeed, consider any linear involution with π as combinatorial
data. Then we must have

2λA + λB = λB + 2λC + 2λD.
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Therefore we necessarily have λD < λA and λD > λA never happens.

Example 2.10. Consider the permutation π defined on the alphabet A = {A, B, C} by
π = ( A B A

B C C ). Then Rε(π) is not defined for any ε. Indeed, consider any linear involution
with π as combinatorial data. Then we must have λA = λC , hence the Rauzy-Veech
induction of T is not defined for any parameters.

In the case of interval exchange maps, one usually define the Rauzy-Veech induction only
for irreducible combinatorial data. Here we have not yet defined irreducibility. However,
it will appear in section 3 that some interesting phenomena with respect to Rauzy-Veech
induction appear also in the reducible case.

In the next section we will define a notion of irreducibility which is equivalent to have a
suspension data. It is easy to see that a generalized permutation π such that neither R0(π)
nor R1(π) is defined is necessarily reducible. However, the permutation π of Example 2.9
is irreducible (see Definition 3.1 and Theorem 3.2) while R1(π) is not defined.

2.3. Suspension data and zippered rectangles construction. Starting from a linear
involution T , we want to construct a flat surface and a horizontal segment whose corre-
sponding first return maps (T0, T1) of the vertical foliation give T . Such surface will be
called a suspension over T , and the parameters encoding this construction will be called
suspension data.

Definition 2.11. Let T be a linear involution and let (λα)α∈A be the lengths of the
corresponding intervals. Let {ζα}α∈A be a collection of complex numbers such that:

(1) ∀α ∈ A Re(ζα) = λα.
(2) ∀1 ≤ i ≤ l − 1 Im(

∑
j≤i ζπ(j)) > 0

(3) ∀1 ≤ i ≤ m − 1 Im(
∑

1≤j≤i ζπ(l+j)) < 0

(4)
∑

1≤i≤l ζπ(i) =
∑

1≤j≤m ζπ(l+j).

The collection ζ = {ζα}α∈A is called a suspension data over T .

We will also speak in an obvious manner of a suspension data for a generalized permu-
tation.

Let L0 be a broken line (with a finite number of edges) on the plane such that the edge
number i is represented by the complex number ζπ(i), for 1 ≤ i ≤ l, and L1 be a broken
line that starts on the same point as L0, and whose edge number j is represented by the
complex number ζπ(l+j) for 1 ≤ j ≤ m (Figure 7).

If L0 and L1 only intersect on their endpoints, then L0 and L1 define a polygon whose
sides comes by pairs and for each pair the corresponding sides are parallel and have the
same length. Then identifying these sides together, one gets a flat surface. It is easy to
check that the first return map of the vertical foliation on the segment corresponding to
X in S defines the same linear involution as T , so we have constructed a suspension over
T . We will say in this case that ζ defines a suitable polygon.

The broken lines L0 and L1 might intersect at other points (see Figure 8). However, we
can still define a flat surface by using an analogous construction as the zippered rectangles
construction. We now give a sketch of this construction (see e.g. [Vee82, Yoc03] for the
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ζA

ζA

ζB

ζB

ζC

ζC

ζD

ζD

ζE

ζE

Figure 7. A suspension over a linear involution.

ζA

ζA

ζB
ζB

ζC

ζC

ζD

ζD

ζE

ζE

Figure 8. Suspension data that does not give a suitable polygon.

case of interval exchange maps, or section 1.3.5). This construction is very similar to the
usual one, although its precise description is very technical. Still, for completeness, we give
an equivalent but rather implicit formulation.

We first consider the previous case when L0 and L1 define a suitable polygon. For
each pair of interval Xi, Xσ(i) on X, the return time hπ(i) of the vertical foliation starting
from x ∈ Xi and returning in y ∈ Xσ(i) is constant. This value depends only on the
generalized permutation and on the imaginary part of the suspension data ζ . There is a
natural embedding of the open rectangle Rπ(i) = (0, λi) × (0, hπ(i)) into the flat surface
S and this surface is obtained from ⊔αRα by identifications on the boundaries of the
Rα. Identifications for the horizontal sides [0, λα] are given by the linear involution and
identifications for the vertical sides only depend on the generalized permutation and of
{Im(ζα)}α∈A.

For the general case, we construct the rectangles Rα using the same formulas. Identi-
fications for the horizontal sides are straightforward. Identifications for the vertical sides,
that do not depends on the horizontal parameters, will be well defined after the following
lemma.

Lemma 2.12. Let ζ be a suspension data for a linear involution T , and let π be the
corresponding generalized permutation. There exists a linear involution T ′ and a suspension
data ζ ′ for T ′ such that:

• The generalized permutation associated to T ′ is π.
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R{1,10}

R{2,4}

1

1

2

2

Figure 9. Zippered rectangle construction of the flat surface of Figure 7.

• For any α the complex numbers ζα and ζ ′
α have the same imaginary part.

• The suspension data ζ ′ defines a suitable polygon.

Proof. We can assume that
∑l

k=1 Im(ζπ(k)) > 0 (the negative case is analogous and there
is nothing to prove when the sum is zero). It is clear that σ(l + m) 6= l otherwise there
would be no possible suspension data. If σ(l + m) < l, then we can shorten the real part
of ζπ(l+m), keeping conditions (1)–(4) satisfied, and get a suspension data ζ ′ with the same
imaginary part as ζ , and such that Re(ζ ′

π(l+m)) < Re(ζ ′
π(l)). This last condition implies

that ζ ′ defines a suitable polygon.
If σ(l + m) > l, then condition (4) implies that Re(ζπ(l+m)) is necessary bigger than

Re(ζπ(l)). However, we can still change ζ into a suspension data ζ ′, with same imaginary
part, and such that Re(ζ ′

π(l+m)) is very close to Re(ζ ′
π(l)). In that case, ζ ′ also defines a

suitable polygon. See [Boi07], Lemma 2.1 for more details. �

We have therefore defined the zippered rectangle construction for any suspension data.
Note that we have not yet discussed the existence of a suspension data. This will be done
in the upcoming section. This notion is natural. See [Vee82] and the following Proposition.

Proposition 2.13. Let S be a flat surface with no vertical saddle connections and let X be
a horizontal interval attached to a singularity on the left. Let γ be the vertical leaf passing
through the right endpoint of X, we assume that γ meets a singularity before returning to
X, in positive or negative direction. Let T = (π, λ) be the linear involution given by the
cross section on X of the vertical flow. There exists a suspension data ζ such that (π, ζ)
defines a surface isometric to S.

Proof. See the construction given in the proof of Proposition 2.2 in [Boi07]. �

We can define the Rauzy-Veech induction on the space of suspensions, as well as on the
space of zippered rectangles. Let T = (π, λ) be a linear involution and let ζ be a suspension
over T . Then we define R(π, ζ) = (π′, ζ ′) as follows.

• If T = (π, λ) has type 0, then R(π, ζ) = (R0π, ζ ′), with ζ ′
α = ζα if α 6= π(l) and

ζ ′
π(l) = ζπ(l) − ζπ(l+m).
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• If T = (π, λ) has type 1, then R(π, ζ) = (R1π, ζ ′), with ζ ′
α = ζα if α 6= π(l + m)

and ζ ′
π(l+m) = ζπ(l+m) − ζπ(l).

We can show that (π′, ζ ′) is a suspension over R(T ) and defines a surface isometric to
the one corresponding to (π, ζ).

As in the case of interval exchange maps we consider the renormalized Rauzy-Veech
induction defined on lengths one intervals:

if R(π, λ) = (π′, λ′) then Rr(π, λ) := (π′, λ′/|λ′|).

One can define obviously the corresponding renormalized Rauzy-Veech induction on the
suspensions data by contracting the imaginary parts by a factor |λ′| which preserves the
area of the corresponding flat surface.

3. Geometry of generalized permutations

In this section we give a necessary and sufficient condition for a generalized permutation
to admit a suspension; this will prove the first part of Theorem A. Let us first introduce
some notations to make clear the definition.

Notation: If A = {α1, . . . , αd} is an alphabet, we will denote by A ⊔ A the set with
multiplicities {α1, α1, . . . , αd, αd} of cardinal 2d, and we will use analogous notations for
subsets of A.

We will also call top (respectively bottom) the restriction of a generalized permutation
π to {1, . . . , l} (respectively {l + 1, . . . , l + m}) where (l, m) is the type of π.

Notation: Let F1, F2, F3, F4 be (possibly empty) unordered subsets of A or A ⊔A. We
say that a generalized permutation π of type (l, m) is decomposed if

π =

(
F1 ∗ ∗ ∗ F2

F3 ∗ ∗ ∗ F4

)
,

and there exist 0 ≤ i1 ≤ i2 ≤ l and l ≤ i3 ≤ i4 ≤ l + m = 2d such that

• {π(1), . . . , π(i1)} = F1

• {π(i2), . . . , π(l)} = F2

• {π(l + 1), . . . , π(i3)} = F3

• {π(i4), . . . , π(2d)} = F4.

The sets F1, F2, F3, and F4 will be referred as top-left, top-right, bottom-left and bottom-
right corners respectively.

We do not assume that card(F1) = card(F3), or card(F2) = card(F4).

Definition 3.1. We will say that π is reducible if π admits a decomposition

(∗)

(
A ∪ B ∗ ∗ ∗ D ∪ B
A ∪ C ∗ ∗ ∗ D ∪ C

)
, A, B, C, D disjoint subsets of A,

where the subsets A, B, C, D are not all empty and one of the following statements holds

i- No corner is empty
ii- Exactly one corner is empty and it is on the left.
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iii- Exactly two corners are empty and they are either both on the left, either both on
the right.

A permutation that is not reducible is irreducible.

The main result of this section is the next theorem which, being combined with Propo-
sition 2.13 implies first part of Theorem A. We make clear that in this section, we only
speak of suspensions given by the construction of section 2.3.

Theorem 3.2. Let T = (π, λ) be a linear involution. Then T admits a suspension ζ if
and only if the underlying generalized permutation π is irreducible.

Remark 3.3. Note that the existence or not of a suspension is independent of the length
data λ.

Remark 3.4. One can see that this reducibility notion is not symmetric with respect to
the left/right, contrary to the case of interval exchange maps. Therefore, the choice of
attaching a singularity on the left end of the segment in the construction of section 2.3 is a
real choice. This will have an important consequence in terms of extended Rauzy classes.

Remark 3.5. In the usual case of interval exchange maps, one can always choose ζ in such
a way that Im(

∑l
i=1 ζπ(i)) = 0 (i.e. there is a singularity on the left and on the right of

the interval). Here it is not always possible. More precisely one can show that T admits
such a suspension with this extra condition if and only if for any decomposition of π as in
equation (∗) above, all the corners are empty.

3.1. Necessary condition.

Proposition 3.6. A reducible generalized permutation does not admit any suspension data.

Proof of the Proposition. Let us consider π a reducible generalized permutation. It is con-
venient to introduce some notations. Let us assume that there exists a suspension ζ over
π. Then we define a the real number a =

∑
j∈A Im(ζπ(j)); we define a = 0 if the set A

is empty. Finally we define b, c and d in an analogous manner for B, C and D. We also
define t =

∑l
i=1 Im(ζπ(i)). We distinguish three cases following Definition 3.1.

i- No corner is empty.
Then the following inequalities hold






a + b > 0
a + c < 0
t − d − b > 0
t − d − c < 0

Subtracting the second one from the first one, and the fourth one from the third one,
we get: {

b − c > 0
c − b > 0

which is a contradiction.
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ii- Exactly one corner is empty, and it is on the left.
We can assume without loss of generality that it is the top-left one. That means that A,
B are empty, and C, D are nonempty. Therefore the following inequalities holds:





c < 0
t − d > 0
t − d − c < 0

Subtracting the third inequality from the second one, we get c > 0, which contradicts the
first one.

iii- Exactly two corners are empty.
If they are both on the left side, then we have B and C empty and D non empty. This
implies that t − d is both positive and negative, which is impossible.
If they are both on the right side, it is similar. If the two corners forming a diagonal were
empty, then it is easy to see that all the corners would be empty, hence this case doesn’t
occur by assumption. The proposition is proven. �

3.2. Sufficient condition. In this section, we will not necessarily assume that generalized
permutations satisfy Convention 2.7, since for technical reasons, some intermediary results
of this section must be stated for an arbitrary generalized permutation.

We will have to work only on the imaginary part of the ζi in order to built a suspension.
Hence, in order to simplify the notations we will use the following ones. We will use this
vocabulary only in this section.

Definition 3.7. A pseudo-suspension is a collection of real numbers {τi}i∈A such that:

• For all k ∈ {1, . . . , l}
∑

i≤k τπ(i) ≥ 0 .
• For all k ∈ {1, . . . , m}

∑
l<i≤l+k τπ(i) ≤ 0 .

•
∑

i≤l τπ(i) =
∑

l<i≤l+m τπ(i) = 0

A pseudo-suspension is strict if all the previous inequalities are strict except for the
extremal ones.

A vanishing index on the top (respectively bottom) of a pseudo-suspension is an integer
k0 < l (respectively k0 < m) such that

∑
i≤k0

τπ(i) = 0 (respectively
∑

l<i≤l+k0
τπ(i) = 0).

A pseudo-suspension τ ′ is better than τ if the set of vanishing indices of τ ′ is strictly
included into the set of vanishing indices of τ .

We will say that π is strongly irreducible if for any decomposition of π as in (∗) of Defi-
nition 3.1, all the corners are empty. Of course strong irreducibility implies irreducibility.

The following lemma is obvious and left to the reader.

Lemma 3.8. Let π be generalized permutation satisfying Convention 2.7 that admits a
strict pseudo-suspension. Then π admits a suspension ζ with Im(

∑
1≤i≤l ζπ(i)) = 0.

Let us assume that π is any irreducible permutation. One has to find a suspension ζ over
π. We will first assume that π is strongly irreducible and we will show that π admits such
a suspension with the extra equality Im(

∑
1≤i≤l ζπ(i)) = 0. This corresponds to a special

case of Proposition 3.16. We will then relax the condition on the irreducibility of π and
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prove our main result. Note that one can extend the proof of Proposition 3.6 to show that
if ζ is a suspension data such that Im(

∑
1≤i≤l ζπ(i)) = 0, then π is strongly irreducible.

From Lemma 3.8 we have reduced the problem to the construction of a strict pseudo-
suspension. As we have seen in section 1, in the case of true permutations, there is an
explicit formula, due to Masur and Veech, that gives a suspension when the permutation
is irreducible. We will first build a pseudo-suspension τMV by extending this formula to
generalized permutations. This will not give in general a strict pseudo-suspension.

Let π : {1, . . . l + m} → A be a generalized permutation. We can decompose A into
three disjoint subsets

• The subset A01 of elements α ∈ A such that π−1({α}) contains exactly one element
in {1, . . . , l} and one element in {l+1, . . . , l+m}. The restriction of π on π−1(A01)
defines a true permutation.

• The subset A0 of elements α ∈ A such that π−1({α}) contains exactly two elements
in {1, . . . , l} (and hence no elements in {l + 1, . . . , l + m}).

• The subset A1 of elements α ∈ A such that π−1({α}) contains exactly two elements
in {l + 1, . . . , l + m} (and hence no elements in {1, . . . , l}).

The next lemma is just a reformulation of the construction of a suspension data in
section 1.3.4

Lemma 3.9 (Masur; Veech). Let π be a true permutation defined on {1, . . . , d}, then the
integers τi = π(i) − i for 1 ≤ i ≤ d define a pseudo-suspension over π. Furthermore, we
have: ∑

i≤i0

τi = 0 ⇔
∑

i≤i0

τπ−1(i) = 0 ⇔ π({1, . . . , i0}) = {1, . . . , i0}.

Recall that we do not assume any more that a generalized permutation satisfies Con-
vention 2.7.

Lemma 3.10. Let π be a generalized permutation of type (l, m) = (2d, 0) and σ the asso-
ciated involution. There exists a collection of real numbers (τ1, . . . , τ2d) with

∑
i≤i0

τi ≥ 0
for all i0 and such that

∑

i≤i0

τi = 0 ⇔ σ({1, . . . , i0}) = {2d, . . . , 2d − i0 + 1}).

Proof. We will construct from π0 := π a new permutation π̃ on d symbols. Let us consider
the “mirror symmetry” π1 of π0 as follows. In tabular representation π0 is (τ(1), . . . , τ(2d));
π1 is of type (0, 2d) and its tabular representation is (τ(2d), . . . , τ(1)).

Then π̃ is in tabular representation
(

L0
L1

)
with Li is obtained from πi by removing the

second occurrence of each letter. For instance, if π0 = (A B C C D D A B) then
π1 = (B A D D C C B A) and π̃ = ( A B C D

B A D C ). It is easy to check that π̃ is reducible if
and only if there exists i0 such that σ({1, . . . , i0}) = {2d − i0 + 1, . . . , 2d}. Moreover the
solution of Lemma 3.9 gives the desired collection of numbers τi. �
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Definition/Lemma 3.11. We define the pseudo-suspension τMV over π by the collection
of real numbers given by

• The solutions given by Lemma 3.9 and Lemma 3.10 for the restrictions of π on
π−1(A01) and on π−1(A0).

• The solution of Lemma 3.10 for the restriction of π on π−1(A1), taken with opposite
sign.

Lemma 3.12. Let k ∈ {1, . . . , l} be any vanishing index on the top of τMV . Setting
A = π({1, . . . , k})∩A01 and B = π({1, . . . , k})∩ (A0 ⊔A0), there exists C ⊂ A1 ⊔A1 and
D ⊂ A01 such that the generalized permutation π decomposes as

(
A ∪ B ∗ ∗ ∗ D ∪ B′

A ∪ C ∗ ∗ ∗ ∗ ∗ ∗

)

with A∪B 6= ∅ and with one of the following properties: either B = B′ ⊂ A or there exist
i1, i2 ≤ k such that π(i1) = π(i2) ∈ B and B′ ⊂ B.

There is an analogous decomposition for vanishing indices in {l + 1, . . . , l + m} but with
different subsets A′ B′, C ′ and D′ a priory.

Proof. It follows from Lemmas 3.9 and 3.10.
�

Remark 3.13. If τ is a pseudo-suspension of π = ( α1 α2 ∗∗∗ αl
αl+1 αl+2 ∗∗∗ αl+m ) then τ ′ = −τ is a

pseudo-suspension of π′ = ( αl+1 αl+2 ∗∗∗ αl+m
α1 α2 ∗∗∗ αl

) , and τ is a pseudo-suspension of the gener-
alized permutation π′′ =

( αl αl−1 ∗∗∗ α1
αl+m αl+m−1 ∗∗∗ αl+1

)
.

Hence we can “flip” the generalized permutation π by top/bottom or left/right without loss
of generality.

In the next two lemmas, we denote by τ a pseudo-suspension that is better than τMV

and maximal (i.e. there is no better pseudo-suspensions).

Lemma 3.14. Let i1 and i2 be the two first top and bottom vanishing indices for τ (possibly
i1 = l, i2 = m). Let A = π({1, . . . , i1}) ∩ A01 and A′ = π({l + 1, . . . , l + i2}) ∩ A01. Then
either A = A′ or A = ∅ or A′ = ∅.

Proof. We assume that neither A nor A′ is empty. Lemma 3.12 implies that one of this set
is a subset of the other one.

Without loss of generality, we can assume that A ⊆ A′. Let us assume A 6= A′; we will
get a contradiction. So there exist j1, j2 in π−1(A01) such that 1 ≤ j1 ≤ i1 < j2 ≤ l. But
by definition of A and A′, we also have σ(j1) < σ(j2).

The definition of i2 implies that there exists c < 0 such that, for l + 1 ≤ k < i2, the
following inequality holds: ∑

1+l≤i≤l+k

τπ(i) ≤ c < 0.

Now we replace τπ(j1) (respectively τπ(j2)) by τπ(j1) −
c
2

(respectively τπ(j2) + c
2
) and get a

vector τ ′, see Figure 10. We have
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Figure 10. Construction of a pseudo-suspension τ ′ better than τ .

•
∑

1≤i≤k τ ′
π(i) > 0 for k < j2.

•
∑

1≤i≤k τ ′
π(i) =

∑
1≤i≤k τπ(i) for k ≥ j2.

•
∑

1+l≤i≤k τ ′
π(i) ≤ c/2 < 0 for l + 1 ≤ k < σ(j2).

•
∑

1+l≤i≤k τ ′
π(i) =

∑
1+l≤i≤k τπ(i) for k ≥ σ(j2) (since σ(j1) < σ(j2)).

Hence, τ ′ is a pseudo-suspension better than τ , contradicting its maximality. Therefore
A = A′ and the lemma is proven. �

Lemma 3.15. Let i1 and i2 be the first and last top vanishing indices of π. Let B =
π({1, . . . , i1})∩(A0⊔A0) and B′ = π({i2+1, . . . , l})∩(A0⊔A0). Then either B′ = B ⊂ A0

or B = ∅ or B′ = ∅. Moreover if there exist ib1 6= ib2 in {1, . . . , i1} such that π(ib1) = π(ib2)
then B = A0 ⊔ A0.

Proof. We sketch the proof here. We assume that there exist ib1 and ib2 in {1, . . . , i1} such
that π(ib1) = π(ib2). If there exists ib3 > i1 such that π(ib3) ∈ B, then we set:

τ ′
π(ib1 ) = τπ(ib1 ) + ε

τ ′
π(ib3 ) = τπ(ib3 ) − ε.

Then is is easy to see that, for ε small enough, τ ′ is a pseudo-suspension and is better than
τ , contradicting its maximality. Remark 3.13 implies that the same statement is true for
B′; hence, we can assume that B, B′ ⊂ A0. We conclude using the same argument as the
one of the proof of the previous Lemma 3.14. �
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Proposition 3.16. Let π be a strongly irreducible generalized permutation. Let τ be any
pseudo-suspension which is better than τMV and maximal. Then τ is a strict pseudo-
suspension.

Proof of Proposition 3.16. Let us assume that τ is not strict. From Lemmas 3.14 and 3.15
and Remark 3.13 we have the following decomposition of π.

(
A ∪ B ∗ ∗ ∗ D ∪ B′

A′ ∪ C ∗ ∗ ∗ D′ ∪ C ′

)

with A, A′, D, D′ ⊂ A01, B, B′ ⊂ A0 and C, C ′ ⊂ A1 by assumption, and with the condition
that either A, A′ are equal, or at least one of them is empty (and similar statement for
the pair (D, D′)); and the condition that if B, B′ ⊂ A0 then they are either equal, or at
least one of them is empty, otherwise one of them is A0 ⊔ A0 (and similar statements for
C, C ′). By convention from now on, we will keep the notation B or C only when they are
not equal to A0 ⊔ A0 or A1 ⊔ A1, and therefore subsets of A0 or A1.

Let us note that if there is no vanishing index in {1, . . . , l−1} or in {l+1, . . . , l+m−1},
the corresponding right corner is just empty. But if τ is not strict, then there exists at
least a pair of nonempty corners in the top or in the bottom.

If there is a vanishing index on the top, then the two corresponding corners are non-
empty. Then it is easy to see that either there is a corner with only A, B or D, or the
corners are respectively A∪B or D∪B, with A, B, D nonempty. In this case Lemma 3.14
implies that there must be a vanishing index in {l + 1, . . . , l + m}.

Since there must be a vanishing index in the top, or in the bottom, the previous argument
implies that either π is not strongly irreducible, or there is one corner that only consists of
one set A, B, C or D. Thanks to Remark 3.13, we assume that this is the top-left corner;
this leads to the two next cases.

The general idea of the next part of the proof is first to remove the cases that correspond
to not strongly irreducible permutations, and then show that the other cases correspond
to a non-maximal pseudo-solution.

First case: The top-left corner is B.
There is necessary a vanishing index in {1, . . . , l − 1}, and hence the top-right corner is
not empty. It also does not contains all A0 ⊔ A0, hence it is necessary B, D or D ∪ B.
Recall that π is assumed to be strongly irreducible, so the top-right corner is not B. If the
bottom-right corner were D, the generalized permutation π would decompose as

(
B ∗ ∗ ∗ D ∪ B

∗ ∗ ∗ D

)
,

or (
B ∗ ∗ ∗ D

∗ ∗ ∗ D

)

which are not strongly irreducible. Hence the bottom-right corner is not D. This also
implies that A1 cannot be empty.



RAUZY-VEECH INDUCTION FOR QUADRATIC DIFFERENTIALS 29

Let us assume that there are no vanishing indices in the bottom line. We choose any
element b ∈ B, c ∈ A1, and d ∈ D and change τb by τb +ε, τc by τc+ε and τd by τd−2ε. If ε
is small enough, then the new vector τ ′ is better than τ , which contradicts its maximality.

So, the bottom admits vanishing indices; then the bottom-left corner can be C,A1 ⊔
A1,A1 ⊔A1 ∪ A, A or A ∪ C. Let us discuss these cases in details.

• C: the bottom-right corner is C, D or C ∪ D. In the first and second cases, π is
not strongly irreducible. If for instance, the top-right is D ∪B, then π decomposes
as (

B ∗ ∗ ∗ D ∪ B
C ∗ ∗ ∗ D ∪ C

)
,

and therefore π is not strongly irreducible. The other case is similar.
• A1 ⊔A1 or A1 ⊔A1 ∪ A: in that case, the bottom-right corner is necessary D and

we have already proved that π is not strongly irreducible in this situation.
• A or A ∪ C: We construct a better pseudo-suspension τ ′.

Let j1 ≤ l be the smallest index such that σ(j1) > l and let j2 ≤ l be the largest one.
Let i1 be the first vanishing index. There exists jb ∈ {1, . . . , i1} such that σ(jb) < j2

otherwise the top-line would have a decomposition as B| ∗ ∗ ∗ |B, and π would be
not strongly irreducible. Let jc be the first index in π−1(A1) (see Figure 11).

Now we define τ ′ in the following way:

τ ′
π(j1) = τπ(j1) − ε

τ ′
π(j2) = τπ(j2) − ε

τ ′
π(jb)

= τπ(jb) + ε

τ ′
π(jc) = τπ(jc) + ε

∀α /∈ π({j1, j2, jb, jc}) τ ′
α = τα.

In the extremal case j1 = j2, the following arguments will work similarly if we define
τ ′
π(j1)

by τπ(j1) − 2ε. We have

∀k ∈ {1, . . . , l}
k∑

i=1

τ ′
π(i) =

k∑

i=1

τπ(i) + nkε

∀k ∈ {1, . . . , m}
l+k∑

i=l+1

τ ′
π(i) =

l+k∑

i=l+1

τπ(i) + mkε

Here nk is the difference between the number of indices in {jb, σ(jb)} smaller than or
equal to k, and number of indices in {j1, j2} smaller than or equal to k. This value
is always greater than or equal to zero for k ∈ {1, . . . , l}, and is strictly greater
than zero when k is the first vanishing index.

Similarly mk is the difference between the number of indices in {jc, σ(jc)} that are
in {l + 1, . . . , k}, and number of indices in {σ(j1), σ(j2)} that are in {l + 1, . . . , k}.
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This value might be positive. Let i3 ≤ i4 < l + m be respectively the first and last
bottom vanishing indices. We have the following facts:

– σ(j1) ≤ i3 otherwise the bottom-left corner is C.
– σ(jc) > i4 otherwise the bottom-right corner is D.

Hence it is easy to check that mk can be strictly positive only for l < k < i3 or
i4 < k < l + m.

Then if ε is small enough, τ ′ is a pseudo-suspension, and is better than τ (see
Figure 11), which contradicts the maximality of τ .
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Figure 11. Construction a pseudo-solution τ ′ better than τ .

Second case: The top-left corner is A.
We assume that there are no corners B or C, since this case has already been discussed.

Let us assume that there is no vanishing index in the bottom line. Then, according to
Lemma 3.14, A = A01; therefore the top-right corner is A0 ⊔A0 or B. If A1 is empty, then
π decomposes as (

A A0 ⊔ A0

A

)

so π is not strongly irreducible. If A1 is not empty, we choose any element a ∈ A, b ∈ A0,
c ∈ A1, and replace τa by τa +2ε, τb by τb−ε, and τc by τc−ε. This new pseudo-suspension
we have constructed is better that the old one for ε small enough.
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If there are vanishing indices in the bottom, then the bottom-left corner belongs to the
list: A, A ∪ C, A ∪ A1 ⊔A1 or A1 ⊔ A1.

• A: the permutation π is then obviously not strongly irreducible.
• A ∪ C: the bottom-right corner is necessary D or D ∪ C. If the top-right corner

where D, then π would be not strongly irreducible. In particular, that means
A0 is not empty. Hence there exists jd < j1 ≤ l such that d = π(jd) ∈ D and
b = π(j1) ∈ A0. Then we choose any index a ∈ A and any index c ∈ C, and set:

τ ′
a = τa + ε

τ ′
d = τd + ε

τ ′
b = τb − ε

τ ′
c = τc − ε

∀i /∈ {a, b, c, d} τ ′
i = τi.

Then τ ′ is better than τ for ε > 0 small enough, which contradicts its maximality.
• A ∪A1 ⊔A1, or A1 ⊔A1. The bottom-right corner is necessary D. If A0 is empty,

then the top-right corner is also D, and therefore π is not strongly irreducible. If
A0 is not empty, then we choose a ∈ A, b ∈ A0 and c ∈ A1, and set:

τ ′
a = τa + 2ε

τ ′
b = τb − ε

τ ′
c = τc − ε

∀i /∈ {a, b, c} τ ′
i = τi

And τ ′ is better than τ .

The proposition is proved. �

We now have all necessary tools for proving our main result.

Proof of Theorem 3.2. We only have to prove the sufficient condition. We consider a
pseudo-suspension τ better than τMV and maximal for this property. We can assume that
π : {1, . . . , l + m} → A is not strongly irreducible (i.e. at least one corner is non empty in
the decomposition) otherwise the theorem follows from Lemma 3.8 and Proposition 3.16.
Let us consider a decomposition of π as

(
A ∪ B U D ∪ B
A ∪ C V D ∪ C

)
.

where A ∪ B ∪ C ∪ D is maximal. Note that π′ =
(

U
V

)
defines a generalized permutation

which is not strongly irreducible by assumption. Note also that π′ does not necessary
satisfy Convention 2.7, even if π satisfies that convention.

We define A′ = A\
(
A ∪B ∪C ∪D

)
; from Proposition 3.16, the restriction of τ to A′ is

strict for π′.
Since π is irreducible, there is one or two empty corners in the decomposition.
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• If only one corner is empty, then it is on the right. So we can assume that π
decomposes as: (

A ∪ B U B
A V

)

with π′ =
(

U
V

)
strongly irreducible.

Let i1 be the first vanishing index in the top line of π and i2 be the first vanishing
index of the second line. Consider ib the first index such that b = π(ib) ∈ B. Then
ib ≤ i1 otherwise there would be a subdecomposition of π as

(
A′ ∗ ∗ ∗
A′ ∗ ∗ ∗

)

and π would be reducible. Now let a = π(l + 1) ∈ A and let c ∈ A1. We set:

τ ′
b = τb + 2ε

τ ′
c = τc + 2ε

τ ′
a = τa − ε

∀j /∈ {a, b, c} τ ′
j = τj

If ε is small enough, then τ ′ satisfies:
– For all k ∈ {1, . . . , l}

∑
i≤k τ ′

π(i) > 0 .

– For all k ∈ {1, . . . , m − 1}
∑

l<i≤l+k τ ′
π(i) < 0 .

And then, we can deduce from τ ′ a suspension over π.
• If two corner are empty, then we can assume that π decomposes as:

(
B U B

V

)

with π′ =
(

U
V

)
irreducible. Now we choose b ∈ B and c ∈ A1, and then set:

τ ′
b = τb + 2ε

τ ′
c = τc + 2ε

∀j /∈ {b, c} τ ′
j = τj .

Then τ ′ defines a suspension over π for ε small enough. The theorem is proven. �

4. Irrationality of linear involutions

For an interval exchange map T = (π, λ) either the underlying permutation is reducible
and then the transformation is never minimal or π is irreducible and T has the Keane’s
property (and hence is minimal) for almost every λ (see section 1). Furthermore T admits
a suspension if and only if π is irreducible.
Hence the combinatorial set for which the dynamics of T is good coincides with the one
for which the geometry is good. As we will see, the situation is more complicated in the
general case. In this section we prove Theorem B and the second half of Theorem A.
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4.1. Keane’s property.

Definition 4.1. A linear involution has a connection (of length r) if there exist (x, ε) ∈
X × {0, 1} and r ≥ 0 such that

• (x, ε) is a singularity for T−1.
• T r(x, ε) is a singularity for T .

A linear involution with no connection is said to have the Keane’s property.

Note that, by definition of a singularity, if we have a connection of length r starting from
(x, ε), then ∀r′ < r, T r′(x, ε) is not a singularity for T .

We first prove the following proposition:

Proposition 4.2. Let T be a linear involution. The following statements are equivalent.

(1) T satisfies the Keane’s property.
(2) Rn(T ) is well defined for any n ≥ 0 and the lengths of the intervals λ(n) tends to 0

as n tends to infinity.

Moreover in the above situation the transformation T is minimal.

Proof of Proposition 4.2. We denote by λ(n) the length parameters of the map R(n)(T ), by
π(n), σ(n), (l(n), m(n)) the combinatorial data, and by X(n) the subinterval of X correspond-
ing to R(n)(T ). Let us assume that T has no connection. Then all the iterates of T by the
Rauzy-Veech induction are well defined. Indeed it is easy to see that T has the Keane’s
property if and only if its image R(T ) by the Rauzy-Veech induction is well defined and
has the Keane’s property. Hence if T has the Keane’s property, then by induction, all its
iterates by R are well defined and have the Keane’s property.

Now we have to prove that λ(n) goes to zero as n tends to infinity. Let A′ be the subset

of elements α ∈ A such that (λ
(n)
α )n decreases an infinite number of time in the sequence

{Rn(T ))}n, and let A′′ be its complement.
Repeating the arguments for the Proposition and Corollary 1 and 2 of section 4.3

in [Yoc03], we have that:

• For n large enough, the permutation π(n) can be written as:
(

α1 . . . αi0 ∗ ∗ ∗
β1 . . . βj0 ∗ ∗ ∗

)
,

with {α1, . . . , βj0} = A′′ ⊔ A′′

• For all α ∈ A′, λ
(n)
α tends to zero.

If A′ = A, then the proposition is proven. So we can assume that A′ is a strict subset
of A. Note that A′ cannot be empty. Therefore, we must have

i0∑

i=1

λαi
=

j0∑

j=1

λβj
,

for some 1 ≤ i0 ≤ l(n) − 1 and 1 ≤ j0 ≤ m(n) − 1. This means that Rn(T ) has a connection
of length zero, hence T has a connection. This contradicts the hypothesis. So we have
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proven that if T has no connections, then the sequence {Rn(T ))}n of iterates of T by the
Rauzy-Veech induction is infinite and all length parameters of Rn(T ) tend to zero when n
tends to infinity.

Now we assume that T has a connection. So, there exists u0 = (x, ε) in X ×{0, 1} which
is a singularity of T−1, and such that its sequence u1, . . . , um of iterates by T is finite, with
um a singularity of T . We denote by u1, . . . , um the projections of u0, . . . , um on X. Let
umin be the element of {u0, . . . , um} whose corresponding projection to X is minimal. We
have umin > 0. If for all n ≥ 0, the map Rn(T ) is well defined and umin ∈ X(n), then X(n)

does not tend to zero, and hence there exists α ∈ A such that λ
(n)
α does not tend to zero.

Hence we can assume that there exists a maximal n0 such that Rn0(T ) is well defined, and
X(n0) contains umin. We want to show that Rn0+1(T ) is not defined.

Assume that Rn0+1(T ) is defined, then umin /∈ X(n0+1). Since Rn0(T ) is an acceleration
of T , there must exists an iterate of umin by T , say uk which is a singularity for Rn0(T ).
Either uk is in X(n0+1), either it is its right end. However, X(n0+1) does not contain umin,
and umin ≤ uk. Therefore, we must have umin = uk, so umin is a singularity for Rn0(T ).

We prove in the same way that umin is also a singularity for Rn0(T )−1. This implies
that we are precisely in the case when the Rauzy-Veech induction is not defined. Hence we
have proven that if T has a connection, then either the sequence (Rn(T ))n is finite, either
the length parameters do not all tend to zero.

This proves the first part of the proposition. Now let T be a linear involution on X
satisfying the Keane’s property. Recall that T is defined on the set X × {0, 1}. Let us
consider the first return map T0 on X × {0}. By definition of T0, one has for each (x, ε)
some return time k = k(x, ε) > 0 such that T0(x, ε) = T k(x, ε). But T is piecewise linear
thus for any (y, ε) in a small neighborhood of (x, ε), the return time k(y, ε) = k(x, ε).
Since the derivative of T is 1 if (x, ε) and T (x, ε) belong to the same connected component
and −1 otherwise, the derivative of T0 is necessary 1. Hence T0 is an interval exchange
map. Obviously T0 has no connexion since it is an acceleration of T , hence T0 is minimal.
Similarly, the first return map T1 of T on X × {1} is also minimal. Since T satisfies
Convention 2.7, any orbit of T is dense on X × {0} and X × {1} therefore T is minimal.
The proof is complete. �

4.2. Dynamical irreducibility.

Definition 4.3. Let T = (π, λ) be a linear involution. We will say that λ is admissible for
π (or T has admissible parameters) if none of the following assertions holds:

(1) π decomposes as
(

A| ∗∗∗
A| ∗∗∗

)
,
(

∗∗∗ |D
∗∗∗ |D

)
or

(
A∪B| D∪B
A∪C| D∪C

)

with A, D ⊂ A01 and B = A0, C = A1 and A, D non empty in the two first cases.

(2) There is a decomposition of π as
(

A∪B| ∗∗∗ |B∪D
A∪C| α0 ∗∗∗ α0 |C∪D

)
, with (up to switching the

top and the bottom of π) A, D ⊂ A01 and ∅ 6= B ⊂ A0, C ⊂ A1 and the length



RAUZY-VEECH INDUCTION FOR QUADRATIC DIFFERENTIALS 35

parameters λ satisfy the following inequality
∑

α∈C

λα ≤
∑

α∈B

λα ≤ λα0 +
∑

α∈C

λα.

A generalized permutation π will be called dynamically irreducible if the corresponding set
of admissible parameters is nonempty.

The set of admissible parameters of a generalized permutation is always open.

Remark 4.4. These two combinatorial notions of reducibility were introduced by the second
author (see [Lan04]). Observe that if λ is not admissible for π, then T = (π, λ) have a
connection of length 0 or 1 depending on cases (1) or (2) of Definition 4.3, and is never
minimal. More precisely there exist two invariant sets of positive measure.
One can also note that if π is irreducible then π is dynamically irreducible (the set of
admissible parameters being the entire parameters space).

The length parameters for T cannot be linearly independent over Q since they must
satisfy a nontrivial relation with integer coefficients. A linear involution T = (λ, π) is said
to have irrational parameters if {λα} generates a Q-vector space of dimension #A − 1.
Almost all linear involutions have irrational parameters, and this property is preserved by
the Rauzy-Veech induction.

Proof of Theorem B. If π is dynamical reducible, the non minimality comes from Re-
mark 4.4. Conversely let us assume that π is a dynamical irreducible permutation and
let T = (π, λ) be a linear involution with irrational parameters and λ admissible for π.

We still denote by λ(n) the length parameters of R(n) and by π(n), σ(n), (l(n), m(n)) the
combinatorial data.

The proof has two steps: first we show using Proposition 4.2 that if T does not have
the Keane’s property, then there exists n0 such that Rn0(T ) does not have admissible
parameter (case (1) of Definition 4.3). Then we show that in this case λ is not admissible
for π. This will imply the theorem.

First step: We assume that the sequence is finite. Then there exists Rn0(T ) that admits
no Rauzy-Veech induction. Since λ(n0) is irrational then either σ(n0)(l(n0)) = l(n0) + m(n0),
or l(n0) belongs to the only pair {i, σ(n0)(i)} on the top of the permutation and l(n0) +m(n0)

belongs to the only pair {j, σ(n0)(j)} on the bottom of the permutation. In each case,
Rn0(T ) does not have admissible parameter (case (1)).

Now we assume that the lengths parameters do not all tend to zero. As in the proof of
Proposition 4.2, for n large enough, the generalized permutation π(n) decomposes as:

(
a1 . . . ai0 ∗ ∗ ∗
b1 . . . bj0 ∗ ∗ ∗

)
,

with {a1, . . . , bj0} = A′′ ⊔ A′′, for some ∅ 6= A′′ ⊂ A and some 1 ≤ i0 < l(n) and 1 ≤ j0 <
m(n). Recall that

i0∑

i=1

λπ(n)(i) =

j0∑

j=1

λπ(n)(j).
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The map Rn(T ) has irrational parameters, therefore π(n) must decompose as:
(

A ∗ ∗ ∗
A ∗ ∗ ∗

)
, or

(
∗ ∗ ∗ D
∗ ∗ ∗ D

)
,

so Rn(T ) does not have admissible parameter (case (1)).

Second step: It is enough to prove that if T ′ = R(T ) does not have admissible parameter,
then so is T . We can assume without loss of generality that the combinatorial Rauzy-Veech
transformation is R0. We denote by π, σ, λ the data of T and by π′, σ′, λ′ the data of T ′.
If π′ decomposes as: (

∗ ∗ ∗ D
∗ ∗ ∗ D

)
,

let us consider l′ the last element of the top line. Its twin σ′(l′) is on the bottom-right
corner, but is not l′ + m′. We denote by β = π′(σ′(l′) + 1). Then it is clear that we obtain
π by removing β from that place and putting it at the right-end of the bottom line. Then
T does not have admissible parameter (case (1)).

Now we assume that π′ decomposes as:
(

A ∗ ∗ ∗
A ∗ ∗ ∗

)
.

If σ′(l′) is on the bottom line, the situation is analogous to the previous case. If not, then
we denote by β = π′(σ′(l′)− 1) and α = π′(l′), and we get π by removing β from σ′(l′)− 1
and putting it on the right-end of the bottom line. If this place is in the top-right corner,
then clearly, T does not have admissible parameter (case (1)). However, it might be the
last element of the top-left corner. In that case, setting A = A′ ∪ {β}, the generalized
permutation π decomposes as:

(
A′ α ∗ ∗ ∗ α

A′ ∪ {β} ∗ ∗ ∗ β

)
,

with λβ = λ′
β > 0 and λα = λ′

α + λ′
β > λβ, hence T does not have admissible parameter

(case (2)).
Now we assume that π′ decomposes as

(
A ∪ B B ∪ D
A ∪ C C ∪ D

)
.

Then we obtain π from π′ by removing an element on the top-left corner or on the bottom-
right corner, and putting it at the right-end of the bottom line. Then T does not have
admissible parameter (case (1)). The other cases are similar. �

5. Dynamics of the renormalized Rauzy-Veech induction

As we have seen previously, there are two notions of irreducibility for a linear involution.

• “Geometrical irreducibility” as stated in section 3, that we just called irreducibility.
• Dynamical irreducibility as stated in section 4.
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In this section, we first prove that the set of irreducible linear involutions in an attractor
for the renormalized Rauzy-Veech induction. Then we show that (analogously to the case
of interval exchange transformations) the renormalized Rauzy-Veech induction is recurrent
for almost all irreducible linear involutions.

5.1. An attraction domain.

Proof of the first part of Theorem C. We can find a non-zero pseudo-suspension (τα)α∈A

(see Definition 3.7) otherwise it is easy to show that T does not have admissible parameter
(case (1)). For all α, we denote by ζα the complex number ζα = λα + iτα. Then, as in
section 4.2, we consider a broken line L0 which starts at 0, and whose edge number i is
represented by the complex number ζπ(i), for 1 ≤ i ≤ l. Then we consider a broken line
L1, which starts on the same point as L0, and whose edge number j is represented by the
complex number ζπ(l+j) for 1 ≤ j ≤ m.
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Figure 12. The transformation T is the first return map of the vertical
foliation on a union of saddle connections.

Special case: We assume that L0 and L1 only intersect on their endpoints. Then they
define a flat surface S, and T appears as a first return map of the vertical foliation on
a segment X which is a union of horizontal saddle connections (see Figure 12). After n
steps of the Rauzy-Veech induction, the resulting linear involution Rn(T ) is the first return
map of the vertical flow of S on a shorter segment X(n), which is adjacent to the same
singularity as X. Since T has no connection, then the length of X(n) tends to zero when n
tends to infinity by the first part of Proposition 4.2. Hence for n large enough, Rn(T ) is
the first return map of the vertical flow of S on a segment, adjacent to a singularity, and
with no singularities in its interior. With our construction of S, it is clear that any vertical
saddle connection would intersect X and would give a connexion on S. Since T has no
connection, the surface S has no vertical saddle connection (note that this is not true in
general for a first return map on a transverse segment). According to Proposition 2.13,
(π(n), λ(n)) admits a suspension and hence Theorem 3.2 implies that π(n) is irreducible. The
theorem is proven for that case.

General case: The two broken lines L0 and L1 might have other intersection points. We
first show this still defines a flat surface. We consider the line Lε

0 that starts at the complex
number 2iε. Then we join the first points of Lε

0 and L1 by a vertical segment, and do the
same for their ends points (see Figure 13). This defines a polygon and the non vertical sides
come by pairs, so we can glue them as previously. There are two vertical segments left. We
decompose each vertical segment into a pair of vertical segments of the same length and
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Figure 13. Constructing T as a first return map on a regular segment of a
surface Sε.

glue them together (see the figure). This creates a pole for each initial segment. We denote
by Sε the resulting flat surface. The first return map of the vertical flow on the horizontal
segment Xε joining the two poles is T . The surface Sε has two vertical saddle connections
of length ε starting from the poles, but there is no other vertical saddle connection on Sε

since T has no connections. When ε tends to zero, the two vertical saddle connections are
the only ones that shrink to zero. Hence there is no loop that shrink to zero. Furthermore,
the initial pseudo-suspension is nonzero, so the area of Sε is bounded from below. Hence,
the surface Sε does not degenerate when ε tends to zero and so there exists a sequence (εk)
that tends to zero such that (Sεk

) tends to a surface S.
The segment X ⊂ S corresponding to the limit of Xεk

, as k tends to infinity, might be
very complicated and the first return map on X is not well defined.

The transformation Rn(T ) is the first return map of the vertical flow of Sεk
on a shortest

horizontal segment X
(n)
ε , adjacent to one of the poles. If n is large enough, then the segment

X(n) ⊂ S corresponding to the limit of X
(n)
εk has no singularity on its interior. Since the

surgery corresponding to contracting ε does not change the the vertical foliation, the first
return map of the vertical foliation of S on X(n) is precisely Rn(T ).

As in the special case, the surface S does not have any vertical saddle connection, so
the generalized permutation corresponding to Rn(T ) is irreducible and the proposition is
proven.

�

5.2. Recurrence. The following lemma is analogous to Proposition 9.1 in [Vee82].

Lemma 5.1. Let T be a linear involution on X = (0, L) with no connection and let
(x, ε) ∈ X × {0, 1} be a singularity for T . Let X(n) ⊂ X be the subinterval corresponding
to the linear involution Rn(T ). There exists n > 0 such that X(n) = (0, x).
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Proof. Since T has no connection, there exists a first n > 0 such that x /∈ X(n). So
x ∈ X(n−1), and (x, ε) is still a singularity for Rn−1(T ). We obtain Rn(T ) from Rn−1(T )
by considering the first return map on the largest subinterval X(n) ⊂ X(n−1) whose right
endpoint corresponds to a singularity of Rn−1(T ). So X(n) = (0, x). �

Let π0 be an irreducible generalized permutation, and let C be the set of generalized
permutations that can be obtained by iterations of the maps R0 and R1 (when possible).

We define TC = {(π, ζ), π ∈ C, ζ is a suspension data for π}. We have defined the
Rauzy-Veech map on the space TC . It defines an almost everywhere invertible map: If∑l

i=1 Im(ζπ(i)) 6= 0 then (π, ζ) has exactly one preimage for R.
We define the quotient QC of TC by the equivalence relation generated by (π, ζ) ∼

R(π, ζ).
One will denote by m the natural Lebesgue measure on TC i.e. m = dπdζ , where dζ is

the natural Lebesgue measure on the hyperplane
∑l

i=1 ζπ(i) =
∑2d

j=l+1 ζπ(j), and dπ is the
counting measure. The mapping R preserves m, so it induces a measure, again denoted
by m on QC .

The matrix gt acts on TC by gt(π, ζ) = (π, (gt(ζα))α), where gt acts on ζα ∈ C = R2

linearly. This action preserves the measure m on TC and commutes with R, so it descends
to a measure preserving flow on QC called the Teichmüller flow.

If (π, ζ) is a suspension data, we denote by |Re(ζ)|π the length of the corresponding

interval, i.e.
∑l

i=1 Re(ζπ(i)). The subset
{
(π, ζ) ∈ TC ; 1 ≤ |Re(ζ)|π ≤ 1 + min

(
Re(ζπ(l)), Re(ζπ(2d))

)}

is a fundamental domain of TC for the relation ∼ and the first return map of the Teichmüller
flow on

S = {(π, ζ); π ∈ C, |Re(ζ)|π = 1}/ ∼

is the renormalized Rauzy-Veech induction on suspensions.

Proposition 5.2. The zippered rectangle construction provides a finite covering Z from
QC to a subset of full measure in a connected component of a stratum Q(k1, . . . , kn) of
the moduli space of quadratic differentials. The degree of this cover is h! where h is the
dimension of the stratum. Moreover h = 2g + n − 2 (g is the genus of the surfaces).

Proof. Let S be a (generic) flat surface in Q(k1, . . . , kn) with no vertical and no horizontal
saddle connection. Consider a horizontal separatrix l adjacent to a given singularity P .
We call admissible a segment X adjacent to P , such that the vertical geodesic passing
through the right endpoint of X meets a singularity before returning to X, in positive
or negative direction. Then Proposition 2.13 implies that there exists a corresponding
suspension datum ζ such that S = Z(π, ζ). Conversely, any ζ such that S = Z(π, ζ) is
obtained by this construction.

Now let X0, X1 be two admissible segments, and let ζ0, ζ1 be the corresponding suspension
data. One can assume without loss of generality that X0 ⊂ X1 and their left endpoint is
the singularity P . Let T0, T1 be the linear involutions corresponding to X0, X1. The right
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endpoint of X0 corresponds to a singularity of T1. Hence there exists n ≥ 0 such that
Rn(T1) = T0, and therefore Rn(ζ1) = ζ0.

So we have proven that for each separatrix l adjacent to a singularity, there is only one
preimage of S by the mapping Z. So Z is a finite covering. The degree of Z is obvious
by construction. If 2h is the number of possible choices of horizontal separatrices then the
degree of Z is h! (choices of labels and the choice of the intervals X × {0, 1}).

For each singularity, one has ki + 2 separatrices. Thus

2h =
n∑

i=1

(ki + 2) = 4g − 4 + 2n = 2(2g + n − 2).

The proposition is proven. �

Proof of the second part of Theorem C. The subset Q1
C corresponding to surfaces of area 1

is a finite ramified cover of a connected component of a stratum of quadratic differentials,
and the corresponding Lebesgue measures are proportional.

By Theorem 0.2 in [Vee90] the volume of the moduli space of quadratic differentials
is finite, and so, Q1

C has finite measure. Hence the Teichmüller geodesic flow on QC is
recurrent for the Lebesgue measure. Recall that the Rauzy-Veech renormalization for
suspensions Rr is the cross section of the Teichmüller geodesic flow on S; therefore the
Rauzy-Veech renormalization for suspension is recurrent.

We have dζ = dλdτ , and the Rauzy-Veech induction commutes with the projection
(π, ζ) 7→ (π, λ). So, for almost all parameters λ, the sequence (Rn

r (π, λ))n is recurrent. �

Remark 5.3. Note that the proof of theorem C does not use the fact that a linear involution
satisfying the Keane’s property is minimal. We can use this theorem to give an alternative
proof of the minimality of such map. let T be a linear involution with the Keane’s property.
From Theorem C, there exists n ≥ 0 such that Rn(T ) = (π, λ) is the cross section of the
vertical foliation on a flat surface with no vertical saddle connection. Any infinite vertical
geodesic on such a surface is dense (see e.g. [MT02]). Thus Rn(T ) is minimal and so is T .

6. Rauzy classes

As we have seen previously, the irreducible generalized permutations are an attractor
for the Rauzy-Veech induction. In this section, we prove that there is no smaller attractor.
We also prove Theorem D.

We first define the Rauzy classes and then the extended Rauzy classes.

Given a permutation π, we can define at most two other permutations Rε(π) with ε = 0, 1
when Rε is well defined. The relation π ∼ Rε(π) generates a partial order on the set of
generalized permutations; we represent it as a directed graph G, and as for permutations,
we will call Rauzy classes the connected components of this graph.

In the case of interval exchanges, the periodicity of the maps R0 and R1 gives an easy
proof of the fact that the above relation is an equivalence relation (proposition of sec-
tion 1.3.3). Here the argument fails because these maps are not always defined, and it may
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happen that R0(π) is well defined, but not R2
0(π). However, the corresponding statement

is still true.

Proposition 6.1. The above partial order is an equivalence relation on the set of irreducible
generalized permutations.

Proof. Let π and π′ be two generalized permutations. Assume that there is a sequence of
maps R0 and R1 that sends π to π′. If π′ = Rε(π

′′), then for any parameters λ′, there exist
parameters λ′′ such that R(π′′, λ′′) = (π′, λ′). Iterating this argument, there exists (π, λ0)
and n0 such that Rn0(π, λ0) = (π′, λ′). But for any λ in a sufficiently small neighborhood
U of λ0, the generalized permutation corresponding to Rn0(π, λ0) is π′.

Recall that renormalized Rauzy-Veech induction map is recurrent (Theorem C) thus
one can find λ ∈ U such that the sequence (Rn

r (π, λ))n come back in a neighborhood of
(π, λ) infinitely many time. Furthermore, Rn0

r (π, λ) = (π′, λ(n0)). Thus (Rn
r (π, λ))n gives

a sequence of generalized permutations that reach π′ and then reach π. So, it gives a
combination of the maps R0 and R1 that sends π′ to π. This proves the proposition. �

Definition 6.2. Let 2d = l+m. We define the symmetric permutation s of {1, . . . , 2d} by
s(i) = 2d + 1 − i, ∀i = 1, . . . , 2d. If π is a generalized permutation of type (l, m) defined
over an alphabet A of d letters, we define the generalized permutation sπ to be of type
(m, l) by

(sπ)(k) := π ◦ s(k).

We start from an irreducible generalized permutation π and we construct the subset of
irreducible generalized permutation that can be obtained from π by some composition of
the maps R0, R1, and s. The quotient of this set by the equivalence relation generated by
π ∼ f ◦ π for any bijective map f from A onto A is called the extended Rauzy class of π.

Remark 6.3. The quotient by the equivalence relation generated by π ∼ f ◦π means that we
look at generalized permutations defined up to renumbering. This is needed for technical
reasons in the proof of Theorem D.

Remark 6.4. In opposite to the case of interval exchange maps, the definition of irre-
ducibility we gave in section 3 is not invariant by the map s: for instance, the generalized
permutation π = ( 1 2 1

2 3 3 4 4 ) is irreducible while sπ = ( 4 4 3 3 2
1 2 1 ) is reducible.

So an extended Rauzy class is obtained after considering the set of generalized permu-
tations obtained from π by the extended Rauzy operations, and intersecting this set by
irreducible generalized permutations. The results from the previous section shows that our
definition of irreducibility is the good one with respect to the Rauzy-Veech induction, but
we see that the convention of the “left-end singularity” is a real choice.

Remark 6.5. Let T be a linear involution defined on an interval X = (0, L). Recall that
Rauzy-Veech induction applied on T consists in considering the first return map on (0, L′),
where L′ is the maximal element of (0, L) that corresponds to a singularity of T . In terms
of generalized permutation, this corresponds to the Rε mapping.

One can consider the first return map of T on the interval (L′′, L), where L′′ is the
minimal element of (0, L) that corresponds to a singularity of T . In terms of generalized
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permutations, this corresponds to the the conjugaison of s ◦ Rε ◦ s map. We will call this
the “Rauzy-Veech induction of T by cutting on the left of X”, while the usual Rauzy-Veech
induction will on the opposite called the “Rauzy-Veech induction of T by cutting on the
right of X”.

Proof of Theorem D. Let π1 be an irreducible generalized permutation. The correspond-
ing set of suspension data is connected (even convex), so the set of surfaces constructed
from a suspension data, using the zippered rectangle construction, belongs to a connected
component of the moduli space of quadratic differentials.

It is also open and invariant by the action of the Teichmüller geodesic flow, hence it is
a subset of full measure by ergodicity.

Let π2 be a generalized permutation that corresponds to the same connected component
of the moduli space. Then there exists a surface S and two segments X1 and X2, each
one being adjacent to a singularity x1 and x2, such that for each i, the linear involution
Ti given by the first return maps on Xi has combinatorial data πi. We can assume that S
has no vertical saddle connection.

We recall that each Xi has an orientation so that the corresponding singularity xi is in
its left end. Consider the vertical separatrix l starting from x2, in the positive direction
and let y1 be its first intersection point with X1 ∪ {x1}.

Applying the usual Rauzy-Veech induction for T2, the map Rn(T2) is a first return map

of the vertical flow on a subinterval X
(n)
2 ⊂ X2, adjacent to x2. If n is large enough, then

Rn(T2) is isomorphic to the first return map on the subinterval (y1, y2) ⊂ X1, of the same

length as X
(n)
2 . We assume first that y1 < y2, hence this first return map is consistent with

the positive direction on X1.
We now have to apply Rauzy-Veech inductions (on the right and on the left) on T1 until

we get a first return map on (y1, y2) with corresponding generalized permutation π3. Since
π3 is by construction, up to renumbering the alphabet, in the same Rauzy class as π2, we
will therefore find some composition of the maps Rε, s ◦ Rε ◦ s that send π1 to π2.

Note that y2 might not correspond a priory to some singularities of T1, so naive Rauzy-
Veech induction on X1 might miss the interval (y1, y2). But (y1, 0) or (y1, 1) is a singularity,
so we can cut the interval on the left until y1 is the left end, this will eventually occurs
because of Lemma 5.1. Then after cutting on the right y2 will become the right end of the
corresponding interval.

If y2 < y1, then similarly, by cutting on the right and then on the left, we get two linear
involutions corresponding to first returns maps that only differ by a different choice of
orientation. Hence we have found some composition of the maps Rε, s ◦ Rε ◦ s that send
π1 to some π3, such that sπ3 is in the same Rauzy class as π2.

Hence we have proved that if two irreducible generalized permutations correspond to the
same connected component, then they are in the same extended Rauzy class. To prove the
converse, we must consider a slightly more general kind of suspensions that do not necessary
corresponds to a singularity on the left. The corresponding “extended” suspension data
satisfy

(1) ∀α ∈ A Re(ζα) > 0.
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(2) ∀1 ≤ i ≤ l − 1 t + Im(
∑

j≤i ζπ(j)) > 0

(3) ∀1 ≤ i ≤ m − 1 t + Im(
∑

1≤j≤i ζπ(l+j)) < 0

(4)
∑

1≤i≤l ζπ(i) =
∑

1≤j≤m ζπ(l+j)

for some t ∈ R (the case t = 0 corresponds to suspension data as seen previously).

Then we can extend the zippered rectangle construction to these extended suspension
data. As in the usual case, the space of extended suspension data corresponding to a gen-
eralized permutation is convex, so the set of surfaces corresponding to a given generalized
permutation belong to a connected component of stratum. Then it is easy to see that if π′

is obtained from π by the map R0, R1 or s, then the corresponding connected component
is the same. �

Historically, extended Rauzy classes have been used to prove the non connectedness of
some stratum of Abelian differentials (see for instance [Vee90]). For this case, some topo-
logical invariants were found by Kontsevich and Zorich [KZ03] (hyperellipticity and spin
structure). For the case of quadratic differentials, all non-connected components (except
four special cases) are distinguished by hyperellipticity [Lan04]. For the four “exceptional
ones”, the only known proof up to now is an explicit computation of the corresponding
extended Rauzy classes. Theorem D, which is now formally proven complete the proof of
the following

Theorem (Zorich). The strata Q(−1, 9), Q(−1, 3, 6), Q(−1, 3, 3, 3) and Q(12) are non
connected.

Proof. The generalized permutations ( 1 1 2 3 2 3 4
5 4 5 6 7 6 7 ) and ( 1 1 2 3 4 5 6

3 2 7 5 7 6 4 ) are irreducible. The
corresponding suspension surfaces belong to the stratum Q(−1, 9). According to Zorich’s
computation, these two permutations do not belong to the same extended Rauzy classes
(see Table 1 in the Appendix). Hence the stratum Q(−1, 9) is not connected. In fact this
stratum has precisely two connected components corresponding to the two extended Rauzy
classes.
We have similar conclusions for other strata with the following generalized permutations.
For the stratum Q(−1, 3, 6) one can consider the generalized permutations

( 1 1 2 3 2 3 4 5
4 6 5 6 7 8 7 8 ) and ( 1 2 3 4 5 6 2 3

7 1 7 6 5 4 8 8 ) .

For the stratum Q(−1, 3, 3, 3) one can consider the generalized permutations

( 1 1 2 3 4 5 6 7 6
7 8 5 8 2 4 9 3 9 ) and ( 1 1 2 3 2 3 4 5 6

4 7 8 9 7 8 6 5 9 ) .

For the stratum Q(12) one can consider the generalized permutations

( 1 2 1 2 3 4 5 3
6 7 6 7 5 8 4 8 ) and ( 1 2 3 4 5 6 7 6

8 7 5 8 4 3 2 1 ) .

The theorem is proven. �
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Appendix A. Computation of the Rauzy classes

Here we give explicit examples of reduced Rauzy classes (i.e. up to the equivalence
π ∼ f ◦ π, for any permutation f of A).

It is easy to see that there is only one Rauzy class filled by (irreducible) generalized
permutations defined over 3 letters. In that case the Rauzy class contains 4 generalized
permutations and a permutation is irreducible if and only if it is dynamically irreducible.
Thus there is no interesting phenomenon in this “simple” case.

If we consider a slightly more complicated case, for instance permutations defined over
4 letters we get some interesting phenomenon. Figure 14 illustrates such a Rauzy class.
It corresponds to the stratum Q(2,−1,−1). The generalized permutations ( 1 1 2 2 3

4 3 4 ) and
( 1 2 1

3 3 4 4 2 ) are not formally in the Rauzy class since they are reducible, but we can see there
is concretely the “attraction” phenomenon. As we can see the (reduced) Rauzy classes for
generalized permutations are in general much more complicated than the one for usual
permutation since the vertex are either of valence one or of valence two. In Figure 15 we
present a more complicated case with an “unstable” set of permutations.

We end this section with an explicit calculation of the cardinality of the Rauzy classes
of the four exceptional strata (performed with Anton Zorich’s software [Zor06]).

connected representatives cardinality of
components elements extended Rauzy classes
Q(−1, 9)adj ( 1 1 2 3 2 3 4

5 4 5 6 7 6 7 ) 95944
Q(−1, 9)irr ( 1 1 2 3 4 5 6

3 2 7 5 7 6 4 ) 12366

Q(−1, 3, 6)adj ( 1 1 2 3 2 3 4 5
4 6 5 6 7 8 7 8 ) 531674

Q(−1, 3, 6)irr ( 1 2 3 4 5 6 2 3
7 1 7 6 5 4 8 8 ) 72172

Q(−1, 3, 3, 3)adj ( 1 1 2 3 4 5 6 7 6
7 8 5 8 2 4 9 3 9 ) 612838

Q(−1, 3, 3, 3)irr ( 1 1 2 3 2 3 4 5 6
4 7 8 9 7 8 6 5 9 ) 88374

Q(12)adj ( 1 2 1 2 3 4 5 3
6 7 6 7 5 8 4 8 ) 881599

Q(12)irr ( 1 2 3 4 5 6 7 6
8 7 5 8 4 3 2 1 ) 146049

Table 1. Representatives elements for the special strata.
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`

1 1 2 2
3 4 3 4

´

`

1 1 2
3 2 4 3 4

´

`

1 1
2 3 3 4 2 4

´

`

1 2 2
3 4 4 1 3

´

`

1 2 3 3
2 4 4 1

´

`

1 2 3 2
3 4 4 1

´

`

1 2 2 3
3 4 4 1

´

`

1 1 2 3 3
4 2 4

´

`

1 1 2 3
3 4 2 4

´

`

1 1 2
3 3 4 2 4

´

`

1 1
2 2 3 4 3 4

´

`

1 2 2
3 3 4 1 4

´

`

1 2 3 3
4 4 2 1

´

`

1 2 1 3 3
4 4 2

´

`

1 2 1 2 3 3
4 4

´

`

1 2 1 2 3
3 4 4

´

`

1 1 2 3
3 4 4 2

´

`

1 1 2
3 2 4 4 3

´

`

1 1
2 3 2 4 4 3

´

`

1 2 2
3 1 3 4 4

´

`

1 2 3 3
4 1 4 2

´

`

1 2 2 3 3
4 1 4

´

`

1 2 1 2
3 3 4 4

´

`

1 2 3 1 3
4 4 2

´

`

1 2 2 3 1 3
4 4

´

`

1 2 2 3 1
3 4 4

´

`

1 2 2 3
3 1 4 4

´

`

1 2 2 3
3 4 1 4

´

`

1 2 1
3 3 2 4 4

´

`

1 2 3 2
4 4 3 1

´

`

1 1 2 3 2
4 4 3

´

`

1 1 2 3 2 3
4 4

´

`

1 1 2 3 2
3 4 4

´

`

1 1 2 3
3 2 4 4

´

`

1 1 2
3 2 3 4 4

´

`

1 1
2 3 2 3 4 4

´

`

1 2 2
3 4 3 4 1

´

`

1 2 2 3
4 4 3 1

´

`

1 2 3 3 1
4 4 2

´

`

1 2 1 3 3 2
4 4

´

`

1 2 1 3 3
2 4 4

´

`

1 2 1 3
2 3 4 4

´

`

1 2 1
2 3 3 4 4

´

`

1 1 2 2 3
4 3 4

´

`

1 2 1
3 3 4 4 2

´

0

1

Figure 14. A (reduced) Rauzy class in Q(2,−1,−1).
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`

1 2 2 3 3 4 1
5 6 7 7 5 6 4

´

`

1 2 3 3 4 4 1 2
5 6 7 7 5 6

´

`

1 2 3 3 4 4 1
5 2 6 7 7 5 6

´

`

1 2 3 3 4 4
5 2 1 6 7 7 5 6

´

`

1 2 3 4 4 5 5 2
6 3 1 7 7 6

´

`

1 2 3 4 5 5 6 6 3
2 4 1 7 7

´

“

1 2 3 4 | 5 5 6 6
2 4 1 3 | 7 7

”

`

1 2 3 4 4 5 5 1 3
6 2 7 7 6

´

`

1 2 3 4 5 5 1 3
3 2 7 7

´

`

1 2 3 4 5 5 1
3 2 3 7 7

´

`

1 2 3 4 4 5 5 1
3 6 2 7 7 6

´

`

1 2 3 4 5 5 6 6 2
4 1 3 7 7

´

`

1 2 3 4 4 5 5
2 6 3 1 7 7 6

´`

1 2 3 4 4 5 5
3 1 6 2 7 7 6

´

“

1 2 3 4 | 5 5
3 2 3 1 | 7 7

”

“

1 2 3 4 | 5 5 6 6
4 1 3 2 | 7 7

”

28884 irreducible generalized permutations

12 reducible generalized permutations

0

1

Figure 15. An example of a Rauzy class. The corresponding stratum is
Q(−1,−1,−1, 7). There are 28906 permutations in the whole “class” and
28884 permutations in the “good” Rauzy class. The 28906 − 28884 = 22
remaining permutations belong to the reducible part (12 permutations) and
the “unstable” part (10 permutations). Note that there is no smaller attractor
set: the three irreducible permutations belong to the same Rauzy class. Let
us also note that the extended Rauzy class has 38456 elements.

Appendix B. An other definition of the extended Rauzy class

In section 6, we have defined an extended Rauzy class by considering the set of gener-
alized permutations obtained from an irreducible permutation π by the extended Rauzy
operations. This set is not in general a subset of the irreducible generalized permutations,
therefore we must intersect it with the set of irreducible generalized permutations to get
an extended Rauzy class.

One could also define an extended Rauzy class in the following way: it is a minimal
subset of the irreducible generalized permutations stable by the operations R0, R1, and
s. It is equivalent to say that we forbid the operation s for π′ such that sπ′ is reducible.
For the purpose of this section, let us call this new class a weakly extended Rauzy class.
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A priory, an extended Rauzy class is a union of weakly extended Rauzy classes. We will
prove:

Proposition B.1. The extended Rauzy classes and the weakly extended Rauzy classes
coincide.

Proof. All we have to prove is that if two irreducible generalized permutations π1 and π2

correspond to the same connected component of a stratum of quadratic differentials, then
we can join them (up to relabelling) by a combination of the maps R0, R1, and s, such
that all the corresponding intermediary generalized permutations are irreducible. Recall
that if π is irreducible, then so are R0(π) and R1(π) (when defined).

The idea is now to modify the proof of Theorem D, by using the three following elemen-
tary remarks. Let ζ be a suspension datum over an irreducible generalized permutation π
(of type (l, m)).

(1) In Remark 3.5 we gave a condition in order to have Im(
∑l

i=1 ζπ(i)) = 0. Equiva-
lently if a decomposition of π holds then there is no empty corner. It is obvious to
check that, under this condition, sπ is irreducible.

(2) Let us assume that the two lines joining the end points of L0 and the end points
of L1 do not have any other intersection point with L0 and L1. Then applying to
ζi the matrix ( 1 0

t 1 ) for a suitable t, we get a new suspension data ζ ′ over T with

Im(
∑l

i=1 ζ ′
π(i)) = 0. Hence sπ is irreducible.

(3) Let k ≤ l minimize the value Im(
∑

i≤k ζπ(i)). Lemma 5.1 implies that there
exists n > 0 such that Rn(T ) is the first return map of T to the subinterval(
0, Re(

∑k
i=1 λi)

)
. Let us consider (π(n), ζ (n)) = Rn(π, ζ). By construction ζ (n)

satisfies the previous condition, hence sπ(n) is irreducible.

Let us now prove the proposition. Let π1 and π2 be two generalized permutations in the
same extended Rauzy class. The proof of Theorem D asserts that there exists a surface S
and two segments X1 and X2, each one being adjacent to a singularity x1 and x2, such that
for each i, the linear involution Ti given by the first return maps on Xi has combinatorial
datum πi. We can assume that S has no vertical saddle connection.

The previous remark implies that, up to replacing T1 by some Rn0(T1) for some well
chosen n0, one can and do assume that sπ1 is irreducible. Let (π1, ζ) be the suspension over
T1 that corresponds to the surface S, then up to applying to ζ the matrix ( 1 0

t 1 ) for a suitable

t (which does not change the vertical foliation), we can assume that Im(
∑l

i=1 ζπ(i)) = 0.
For n large enough, Rn(T2) is isomorphic to the first return map on a subinterval (y1, y2)

of X1, with (y1, 0) or (y1, 1) a singularity of T1. Let k ≤ l that minimizes the value
Im(

∑
i≤k ζπ(i)) and let x ∈ X1 be the corresponding point. If y1 < x then we also have

y2 < x (since y2 can be chosen arbitrarily close to y1). We then apply the Rauzy-Veech
induction to T1 until we get a first return map on (x1, x). If y1 > x then we also have
y2 > x. By definition ζ is a suspension data over (λ, sπ1) (i.e. we are “rotating by 180◦” the
polygon and the linear involution T1). We apply the Rauzy-Veech induction on (λ, sπ1)
until we get a a first return map on (x′

1, x) that contains y1, y2. The result is a linear
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involution T ′
1 = (λ′, π′) such that sπ′ is irreducible, and a suspension ζ ′ over T ′

1. As before

we can assume that Im(
∑l

i=1 ζ ′
π′(i)) = 0 and then (ζ ′, sπ′

1) is a suspension over (λ′, sπ′
1)

that corresponds to a first return map of T1 on the subinterval X ′
1 = (x, x′

1). Moreover the
sequence of generalized permutations joining π1 to sπ′

1 corresponding to our description
consists entirely of irreducible elements.

Iterating this argument, there will be a step where the point x′′ minimizing the value
Im(

∑
i≤k ζ ′′

π′′(i)) is precisely y1 (because the surface admits a finite number of vertical

separatrices starting from the singularities). The same argument produces a sequence of
irreducible generalized permutations joining π′′ to π2.

This proves the equivalence of the two definitions of the extended Rauzy classes. �
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