
CLASSIFICATION OF RAUZY CLASSES IN THEMODULI SPACE OF ABELIAN AND QUADRATICDIFFERENTIALSCORENTIN BOISSYAbstra
t. We study relations between Rauzy 
lasses 
oming froman interval ex
hange map and the 
orresponding 
onne
ted 
om-ponents of strata of the moduli spa
e of Abelian di�erentials. Thisgives a 
riterion to de
ide whether two permutations are in thesame Rauzy 
lass or not, without a
tually 
omputing them. Weprove a similar result for Rauzy 
lasses 
orresponding to quadrati
di�erentials. Introdu
tionRauzy indu
tion was �rst introdu
ed as a tool to study the dynami
sof interval ex
hange transformations [Rau79℄. These mappings appearnaturally as �rst return maps on a transverse segment, of the dire
-tional �ow on a translation surfa
e. The Vee
h 
onstru
tion presentstranslation surfa
es as suspensions over interval ex
hange maps, andextends the Rauzy indu
tion to these suspensions [Vee82℄. This pro-vides a powerful tool in the study of the Tei
hmüller geodesi
 �ow andwas widely studied in the last 30 years.An interval ex
hange map is en
oded by a permutation and a 
ontin-uous datum. A Rauzy 
lass is a minimal subset of irredu
ible permuta-tions whi
h is invariant by the two 
ombinatorial operations asso
iatedto the Rauzy indu
tion. The Vee
h 
onstru
tion enables us to asso-
iate to a Rauzy 
lass a 
onne
ted 
omponent of the moduli spa
eof Abelian di�erentials with pres
ribed singularities. Su
h 
onne
ted
omponents are in one-to-one 
orresponden
e with the extended Rauzy
lasses, whi
h are unions of Rauzy 
lasses and are de�ned by addinga third 
ombinatorial operation. Histori
ally, these extended Rauzy
lasses were used to prove the non
onne
tedness of some strata in lowDate: January 23, 2012.2000 Mathemati
s Subje
t Classi�
ation. Primary: 37E05. Se
ondary: 37D40.Key words and phrases. Interval ex
hange maps, Linear involutions, Rauzy
lasses, Quadrati
 di�erentials, Moduli spa
es.1



2 CORENTIN BOISSYgenera [Vee90℄, before Kontsevi
h and Zori
h performed the 
omplete
lassi�
ation [KZ03℄.One 
an also 
onsider �rst return maps of the verti
al foliation ontransverse segments for �at surfa
es de�ned by a quadrati
 di�erentialon a Riemann surfa
e. We obtain a parti
ular 
ase of linear invo-lutions, that were de�ned by Danthony and Nogueira [DN90℄ as �rstreturn maps of measured foliations on surfa
es. In this paper, we speakonly of linear involutions 
orresponding to quadrati
 di�erentials. Asbefore, a linear involution is en
oded by a 
ombinatorial datum, thegeneralized permutation and a 
ontinuous datum. For linear involu-tions with irredu
ible generalized permutations, we 
an generalize theVee
h 
onstru
tion and Rauzy 
lasses [BL09℄.In this paper, we give a pre
ise relation between Rauzy 
lasses andthe 
onne
ted 
omponents of the moduli spa
e of Abelian or quadrati
di�erentials. We prove the following:Theorem A. Let Q be a stratum in the moduli spa
e of Abelian dif-ferentials or in the moduli spa
e of quadrati
 di�erentials. Let r be thenumber of distin
t orders of singularities of an element of Q. For any
onne
ted 
omponent C of Q, there are exa
tly r distin
t Rauzy 
lassesthat 
orrespond to this 
onne
ted 
omponent.This gives a positive answer to Conje
ture 2 stated in [Zor08℄. Notethat in the previous theorem, r is not the number of singularities: forinstan
e, in the stratum that 
onsists of translation surfa
es with twosingularities of degree 1 (i.e. the stratum H(1, 1)), we have r = 1.Theorem A will be obtained as a dire
t 
ombination of Proposi-tions 3.4 and 4.1 for the 
ase of Abelian di�erentials, and Proposi-tions 3.4 and 4.4 for the 
ase of quadrati
 di�erentials.A �at surfa
e obtained from a permutation or a generalized permuta-tion π using the Vee
h 
onstru
tion admits a marked singularity. Theorder of this singularity α(π) is preserved by the Rauzy indu
tion, andwe 
an therefore asso
iate to a Rauzy 
lass an integer, whi
h is theorder of a singularity in the 
orresponding stratum. Hen
e, a 
orollaryof Theorem A is the following 
riteria:Corollary B. Let π1 and π2 be two irredu
ible permutations or gen-eralized permutations. They are in the same Rauzy 
lass if and only ifthey 
orrespond to the same 
onne
ted 
omponent and α(π1) = α(π2).See Appendix A for further 
omments 
on
erning this 
orollary.



RAUZY CLASSES 3Reader's guide. In se
tion 1, we re
all the de�nition and some fa
tsabout �at surfa
es. In parti
ular, we present the �breaking up singu-larities" surgeries on �at surfa
es that will be an essential tool for theproof of the main result. Note that the surgery presented in se
tion 1.6is more te
hni
al and 
an be skipped in a �rst reading.In se
tion 2, we re
all the de�nitions about interval ex
hange, linearinvolutions, and Rauzy 
lasses.In se
tion 3, we show that there is a one-to-one 
orresponden
e be-tween Rauzy 
lasses and 
onne
ted 
omponents of the moduli spa
e of�at surfa
es with a marked singularity. This is Proposition 3.4 .In se
tion 4, we 
lassify the 
onne
ted 
omponents of the moduli spa
eof �at surfa
es with a marked singularity. This will 
orrespond toProposition 4.1 for Abelian di�erential and Proposition 4.4 for qua-drati
 di�erentials. Then, Theorem A will follow dire
tly from themain results of Se
tion 3 and Se
tion 4.A
knowledgments. I thank Anton Zori
h, Pas
al Hubert and ErwanLanneau for en
ouraging me to write this paper, and for many dis-
ussions. I am gratefull to the Max-Plan
k-Institut at Bonn for itshospitality. I also thank the anonymous referee for 
omments and re-marks. 1. Flat surfa
es1.1. De�nition. A �at surfa
e is a real, 
ompa
t, 
onne
ted surfa
eof genus g equipped with a �at metri
 with isolated 
oni
al singulari-ties and su
h that the linear holonomy group belongs to Z/2Z. Hereholonomy means that the parallel transport of a ve
tor along any loopbrings the ve
tor ba
k to itself or to its opposite. This implies that all
one angles are integer multiples of π. We also �x a 
hoi
e of a parallelline �eld in the 
omplement of the 
oni
al singularities. This parallelline �eld will be usually referred as the verti
al dire
tion. Equivalentlya �at surfa
e is a triple (S,U ,Σ) su
h that S is a topologi
al 
ompa
t
onne
ted surfa
e, Σ is a �nite subset of S (whose elements are 
alledsingularities) and U = {(Ui, zi)} is an atlas of S \ Σ su
h that thetransition maps zj ◦ z−1
i : zi(Ui ∩ Uj) → zj(Ui ∩ Uj) are translations orhalf-turns: zi = ±zj + c, and for ea
h s ∈ Σ, there is a neighborhoodof s isometri
 to a Eu
lidean 
one. Therefore, we get a quadrati
 dif-ferential de�ned lo
ally in the 
oordinates zi by the formula q = dz2i .This quadrati
 di�erential extends to the points of Σ to zeroes, simplepoles or marked points (see [MT02℄). Slightly abusing vo
abulary, apole will be referred to as a zero of order −1, and a marked point will



4 CORENTIN BOISSYbe referred to as a zero of order 0. Then, a zero of order k ≥ −1
orresponds to a 
oni
al singularity of angle (k + 2)π.Observe that the linear holonomy given by the �at metri
 is trivialif and only if there exists a sub-atlas su
h that all transition fun
tionsare translations or equivalently if the quadrati
 di�erential q is theglobal square of an Abelian di�erential. We will then say that S is atranslation surfa
e. In this 
ase, we 
an 
hoose a parallel ve
tor �eldinstead of a parallel line �eld, whi
h is equivalent in �xing a squareroot ω of q. Also, a zero of degree k ≥ 0 of ω 
orresponds to a 
oni
alsingularity of angle (k + 1)2π.When a �at surfa
e is not a translation surfa
e, i.e. if the 
orrespond-ing quadrati
 di�erential is not the square of an Abelian di�erential, weoftently use the terminology half-translation surfa
es, sin
e the 
hangeof 
oordinates are either translations or half-turns.Following a 
onvention of Masur and Zori
h (see [MZ08℄, se
tion 5.2),we will speak of the degree of a singularity in a translation surfa
e,and of the order of a singularity in half-translation surfa
e, sin
e oneof them refer to a zero of an Abelian di�erential and the other to aquadrati
 di�erential.Example 1.1. Consider a polygon whose sides 
ome by pairs, and su
hthat, for ea
h pair, the 
orresponding sides are parallel and have thesame length. We identify ea
h pair of sides by a translation or a half-turn so that it preserves the orientation of the polygon. We obtain a �atsurfa
e, whi
h is a translation surfa
e if and only if all the identi�
ationsare done by translation. One 
an show that any �at surfa
e 
an berepresented by su
h a polygon (see [Boi08℄, Se
tion 2).A saddle 
onne
tion is a geodesi
 segment (or geodesi
 loop) joiningtwo singularities (or a singularity to itself) with no singularities in itsinterior. Even if q is not globally a square of an Abelian di�erential, we
an �nd a square root of q along the interior of any saddle 
onne
tion.Integrating q along the saddle 
onne
tion we get a 
omplex number(de�ned up to multipli
ation by −1). Considered as a planar ve
tor,this 
omplex number represents the a�ne holonomy ve
tor along thesaddle 
onne
tion. In parti
ular, its Eu
lidean length is the modulusof its holonomy ve
tor.1.2. Moduli spa
es. For g ≥ 0, we de�ne the moduli spa
e of qua-drati
 di�erentials Qg as the moduli spa
e of pairs (X, q) where X is agenus g (
ompa
t, 
onne
ted) Riemann surfa
e and q a non-zero qua-drati
 di�erential X . The term moduli spa
e means that we identifythe points (X, q) and (X ′, q′) if there exists an analyti
 isomorphism



RAUZY CLASSES 5
f : X → X ′ su
h that f ∗q′ = q. Equivalently, in terms of polygonrepresentations, two �at surfa
es are identi�ed in the moduli spa
e ofquadrati
 di�erentials if and only if the 
orresponding polygons 
anbe obtained from ea
h other by some �nite number of �
utting andgluing�, preserving the identi�
ations. The moduli spa
e of Abeliandi�erentials Hg, for g ≥ 1 is de�ned in a analogous way.We 
an asso
iate to a quadrati
 di�erential the set with multipli
i-ties {kα1

1 , . . . , kαr
r } of orders {k1, . . . , kr} of its poles and zeros, where

ki 6= kj for i 6= j, and ki ≥ −1 and αi ≥ 1 is the multipli
ity of
ki. The Gauss�Bonnet formula asserts that ∑

i αiki = 4g − 4. Con-versely, if we �x a set with multipli
ities {kα1

1 , . . . , kαr
r } of integers,greater than or equal to −1 satisfying the previous equality, we de-note by Q(kα1

1 , . . . , kαr
r ) the moduli spa
e of quadrati
 di�erentialswhi
h are not globally squares of Abelian di�erentials, and whi
h have

{kα1

1 , . . . , kαr
r } as orders of poles and zeros. By a result of Masurand Smilie [MS93℄, this spa
e is nonempty ex
ept for Q(∅), Q(3, 1),

Q(4) and Q(−1, 1). In the nonempty 
ase, it is well known that
Q(kα1

1 , . . . , kαr
r ) is a 
omplex analyti
 orbifold, whi
h is usually 
alled astratum of the moduli spa
e of quadrati
 di�erentials on a Riemann sur-fa
e of genus g. In a similar way, we denote byH(nα1

1 , . . . , nαr
r ) the mod-uli spa
e of Abelian di�erentials having zeroes of degree {nα1

1 , . . . , nαr
r },where ni ≥ 0 and ∑r

i=1 αini = 2g − 2.There is a natural a
tion of SL2(R) on ea
h strata: let (Ui, φi)i∈Ibe an atlas of �at 
oordinates of S, with Ui open subset of S and
φi(Ui) ⊂ R2. An atlas of A.S is given by (Ui, A ◦ φi)i∈I . The a
tion ofthe diagonal subgroup of SL2(R) is 
alled the Tei
hmüller geodesi
 �ow.In order to spe
ify notations, we denote by gt the matrix (

et/2 0
0 e−t/2

).Lo
al 
oordinates for a stratum of Abelian di�erentials are obtainedby integrating the holomorphi
 1�form along a basis of the relativehomology H1(S,Σ;Z), where Σ denotes the set of 
oni
al singularitiesof S. Equivalently, this means that lo
al 
oordinates are de�ned by therelative 
ohomology H1(S,Σ;C).Lo
al 
oordinates in a stratum of quadrati
 di�erentials are obtainedin the following way (see for instan
e [DH75℄): one 
an naturally as-so
iate to a quadrati
 di�erential (S, q) ∈ Q(kα1

1 , . . . , kαr
r ) a double
over p : Ŝ → S su
h that p∗q is the square of an Abelian di�eren-tial ω. Let Σ̂ = p−1(Σ). The surfa
e Ŝ admits a natural involution

τ , that indu
es on the relative homology H1(Ŝ, Σ̂;Z) an involution τ ∗.It de
omposes H1(Ŝ, Σ̂;Z) into an invariant subspa
e H+
1 (Ŝ, Σ̂;Z) andan anti-invariant subspa
e H−

1 (Ŝ, Σ̂;Z). Then lo
al 
oordinates for a



6 CORENTIN BOISSYstratum of quadrati
 di�erential are obtained by integrating ω along abasis of H−
1 (Ŝ, Σ̂;Z).1.3. Conne
ted 
omponents of the moduli spa
e of Abeliandi�erentials. Here, we re
all the 
lassi�
ation of the 
onne
ted 
om-ponents of the strata of the moduli spa
e of Abelian di�erentials, dueto Kontsevi
h and Zori
h [KZ03℄.De�nition 1.2. A �at surfa
e S is 
alled hyperellipti
 if there existsan orientation preserving involution τ whi
h preserves the �at metri
su
h that S/τ is a (�at) sphere.Sometimes, a 
onne
ted 
omponent of a stratum 
onsists only ofhyperellipti
 �at surfa
es. In this situation it is 
alled a hyperellipti

onne
ted 
omponent.Let γ be a smooth 
urve in S that does not 
ontains any singularity.We parametrize γ by ar
 length. In a translation surfa
e, there is anatural identi�
ation between C and the tangent spa
e of a regularpoint. Hen
e, one 
an identify γ′ to a 
losed path in the unit 
ir
leof C, e.g. using the Gauss map, and 
ompute its index that we denoteby Ind(γ).De�nition 1.3 (Kontsevi
h-Zori
h). Let (αi, βi)i∈{1,...,g} be a 
olle
tionof paths representing a symple
ti
 basis for the homologyH1(S;Z). Wede�ne the parity of the spin stru
ture of S to be:

g∑

i=1

(Ind(αi) + 1) (Ind(βi) + 1) mod 2.If all the singularities of the surfa
e are of even degree, one 
an showthat the parity of the spin stru
ture does not depend on the 
hoi
eof the paths and is an invariant of the 
onne
ted 
omponent of the
orresponding stratum. Now we 
an state the 
lassi�
ation of these
onne
ted 
omponents.Theorem (Kontsevi
h-Zori
h). Let H = H(kα1

1 , . . . , kαr
r ) be a stratumin the moduli spa
e of Abelian di�erentials, with ki 6= kj for i 6= j, andwith ki > 0 and αi > 0 for all i. Let g be the 
orresponding genus. Thestratum H admits one, two, or three 
onne
ted 
omponents a

ordingto the following rules:(1) If H = H(2g − 2) or H(g − 1, g − 1), then H 
ontains onehyperellipti
 
onne
ted 
omponent. If g = 2, this 
omponentis the whole stratum, and if g = 3, there is exa
tly one other
onne
ted 
omponent.



RAUZY CLASSES 7(2) If g ≥ 4 and if k1, . . . , kr are even, then there are exa
tly two
onne
ted 
omponents of H, with di�erent parity of spin stru
-tures, and that are not hyperellipti
 
omponents.(3) In any other 
ase, the stratum H is 
onne
ted.Note that in the previous statement, the 
ases 1 and 2 
an o

ursimultaneously. For instan
e, the stratum H(6) has three 
onne
ted
omponents: one hyperellipti
, and two others that are distinguishedby the parities of the 
orresponding spin stru
tures.Remark 1.4. The theorem above is given for strata with no markedpoints. The 
lassi�
ation for strata with marked points, i.e. where weauthorize ki = 0, is dedu
ed in an obvious way.1.4. Conne
ted 
omponents of the moduli spa
e of quadrati
di�erentials. In this se
tion, we re
all the 
lassi�
ation of 
onne
ted
omponents of the strata in the moduli spa
e of quadrati
 di�erentials,that will be needed (see [Lan04, Lan08℄).Theorem (E. Lanneau). The hyperellipti
 
onne
ted 
omponents aregiven by the following list:(1) The subset of surfa
es in Q(k1, k1, k2, k2), that are a double 
ov-ering of a surfa
e in Q(k1, k2,−1s) rami�ed over s poles. Here
k1 and k2 are odd, k1 ≥ −1 and k2 ≥ 1, and k1 + k2 − s = −4.(2) The subset of surfa
es in Q(k1, k1, 2k2 + 2), that are a double
overing of a surfa
e in Q(k1, k2,−1s) rami�ed over s poles andover the singularity of order k2. Here k1 is odd and k2 is even,
k1 ≥ −1 and k2 ≥ 0, and k1 + k2 − s = −4.(3) The subset of surfa
es in Q(2k1 + 2, 2k2 + 2), that are a dou-ble 
overing of a surfa
e in Q(k1, k2,−1s) rami�ed over all thesingularities. Here k1 and k2 are even, k1 ≥ 0 and k2 ≥ 0, and
k1 + k2 − s = −4.Theorem (E. Lanneau). In the moduli spa
e of quadrati
 di�erentials,the non
onne
ted strata have two 
onne
ted 
omponents and are in thefollowing list (up to marked points):

• The strata that 
ontain a hyperellipti
 
onne
ted 
omponent, ex-
ept the following ones, that are 
onne
ted: Q(−1,−1,−1,−1),
Q(−1,−1, 1, 1), Q(−1,−1, 2), Q(1, 1, 1, 1), Q(1, 1, 2) andQ(2, 2).

• The ex
eptionnal strata Q(−1, 9), Q(−1, 3, 6), andQ(−1, 3, 3, 3)and Q(12).1.5. Breaking up a singularity: lo
al 
onstru
tion. Here we de-s
ribe a surgery, introdu
ed by Eskin, Masur and Zori
h (see [EMZ03℄,Se
tion 8.1) for Abelian di�erentials, that �break up� a singularity of



8 CORENTIN BOISSYdegree k1 + k2 ≥ 2 into two singularities of degree k1 ≥ 1 and k2 ≥ 1respe
tively. This surgery is lo
al, sin
e the metri
 is modi�ed only ina neighborhood of the singularity of degree k1 + k2. The 
ase k1 = 0or k2 = 0 is trivial.PSfrag repla
ements
ρ

ρ
ρ

ρ
ρ

ρ
ρ− ε

ρ− ερ− ε

ρ− ε
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4π + 4π6π
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P ′
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Figure 1. Breaking up a zero, after Eskin, Masur and Zori
hWe start from a singularity of degree k1 + k2. A neighborhood ofsu
h singularity is obtained by gluing (2k1 + 2k2 + 2) Eu
lidean halfdisks in a 
y
li
 order. The singularity breaking pro
edure 
onsists in
hanging 
ontinuously the way these half disks are glued together, as inFigure 1. This breaks the singularity of degree k1+k2 into singularitiesof degree k1 and k2 respe
tively, and with a small saddle 
onne
tionjoining them.Note that sin
e the previous pro
edure purely lo
al, it is also validfor quadrati
 di�erentials, as soon as we break up a singularity of evenorder into two singularities of even order. One 
an also in a similarway break up a singularity of odd order into a pair of singularities (see[MZ08℄ for instan
e) although we will not need that 
ase. One 
anshow that it is not possible to break a singularity of even order intotwo singularities of odd order by a lo
al surgery. We need for this anonlo
al 
onstru
tion.1.6. Breaking up a singularity: nonlo
al 
onstru
tions. Herewe des
ribe a surgery, introdu
ed by Masur and Zori
h (see [MZ08℄,Se
tion 6) for quadrati
 di�erentials, that �break up� a singularity oforder k1 + k2 into two singularities of order k1 and k2 respe
tively. Itis valid for any k1, k2 ≥ −1, with (k1, k2) 6= (−1,−1).We start from a surfa
e S0 with a singularity of order k1 + k2, andother singularities of order n1, . . . , ns. Consider an angular se
tor ofangle π between two 
onse
utive verti
al separatri
es of P . We denoteby I this se
tor and by II the image of I by a rotation of angle (k1+1)π,



RAUZY CLASSES 9and of 
enter P . Then, 
hoose a 
losed path ν transverse to the verti
alfoliation that starts from the singularity P , se
tor I and ends at P ,se
tor II. We also ask that the path ν does not interse
t any singularityex
ept P in its end points. Then, we 
ut the surfa
e along this path andpaste in a �
urvilinear annulus� with two opposite sides isometri
 to ν,and with verti
al height of length ε (see Figure 2). We get a surfa
ewith singularities of order k1, k2, n1, . . . , ns, with the same holonomyas S0, and with a simple saddle 
onne
tion γ joining the two newly
reated singularities of order k1 and k2 . We denote this �at surfa
e by
S = Ψ(S0, ν, ε). Similarly, we 
an perform the same 
onstru
tion, usingthe foliation Fθ of angle θ, and a path ν transverse to the foliation Fθ.We get a surfa
e Ψθ(S0, ν, ε).Note that giving an orientation to ν gives an orientation to γ in thefollowing way: ν de�nes a element [ν] in the homotopy group of S\Σ,where Σ is the set of 
oni
al singularities of S. The interse
tion numberbetween γ and [ν] is ±1 depending on the orientation of γ. We then �xthe orientation of γ su
h that this interse
tion number is one. Then,we 
an 
onsider S = Ψ(S0, ν, ε) as an element of the moduli spa
e ofquadrati
 di�erentials with a marked singularity by saying that themarked point of S is the starting point of γ.This 
onstru
tion was generalized by the author to polygonal 
urvesin [Boi08℄, se
tion 3. Su
h 
urve must still be transverse to the verti
alfoliation in a neighborhood of the singularity P and must have non-trivial linear holonomy (if k is odd). If ν is su
h path, then for ε smallenough, we get a surfa
e S = Ψ(S0, ν, ε) as des
ribed in the previousparagraph (by a surgery performed in a neighborhood of ν). This new
onstru
tion is more �exible and we have the following fa
ts.(1) Ψ(S0, ν, ε) depends 
ontinuously on ε and on S0.(2) If γ ⊂ S is a verti
al saddle 
onne
tion joining two di�erent sin-gularities and is very small 
ompared to any other saddle 
on-ne
tion of S, then there exists a �at surfa
e S0 and ν0 ⊂ S0 su
hthat S = Ψ(S0, ν0, ε) (see [Boi08℄, proof of Proposition 4.6).(3) The �at surfa
e Ψ(S0, ν0, ε) does not 
hange under small per-turbations of ν0 (see [Boi08℄, Corollary 3.5).(4) Let ν1 be another path on S0 that does not interse
t any sin-gularities ex
ept P and starts and ends on se
tors I, II of Prespe
tively. There exists S1 in a neighborhood of S0 su
hthat Ψ(S0, ν1, ε) = Ψ(S1, ν0, ε), and S1 
an be 
hosen arbitrar-ily 
lose to S0 as soon as ε is small enough ([Boi08℄, proof ofLemma 4.5).
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PSfrag repla
ements

ν
III

γFigure 2. Breaking up a zero of order two into twozeros of order one.2. Rauzy 
lasses2.1. Interval ex
hange maps and linear involutions. The �rstreturn map of the verti
al �ow of a translation surfa
e on a horizontalopen segment X de�nes an interval ex
hange map. That is, a one-to-one map from X\{x1, . . . , xd−1} to X\{x′
1, . . . , x

′
d−1} whi
h is anisometry and preserves the natural orientation of X . The relation be-tween translation surfa
es and interval ex
hange transformations hasbeen widely studied in the last 25 years (see [Kea75, Kat80, Vee82,Ma82, MMY05, AGY06, AV07℄ et
. . . ).We en
ode an interval ex
hange map T in the following way: the set

X\{x1, . . . , xd−1} is a union of d intervals that we label by {1, . . . , d}from the left to the right. The length of these intervals is then a ve
tor
λ with positive entries. Applying the map T , the interval number i ismapped to the interval number π(i). This de�nes a permutation π of
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π = ( 1 2 3 4
4 3 2 1 )Figure 3. An interval ex
hange map and its 
orre-sponding permutation.

{1, . . . , d}. The ve
tor λ is 
alled the 
ontinuous datum of T and π is
alled the 
ombinatorial datum. We usually represent π by a table oftwo lines:
π =

(
1 2 . . . d

π−1(1) π−1(2) . . . π−1(d)

)
.The verti
al foliation of a translation surfa
e is a oriented measuredfoliation on a smooth oriented surfa
e. A generalization of intervalex
hange maps for any measured foliation on a surfa
e (oriented or not)was introdu
ed by Danthony and Nogueira [DN90℄ as linear involution.The linear involutions 
orresponding to oriented �at surfa
es with Z/2Zlinear holonomy were studied in detail by Lanneau and the author in[BL09℄.Let X ⊂ S be an open horizontal segment. We 
hoose on X anorientation. This is equivalent to �x a �left end� on X , or to �x a�positive verti
al dire
tion� in a neighborhood ofX . A linear involutionmust en
ode the su

essive interse
tions of X with a verti
al geodesi
.It is done in the following way: we say that we are in X × {0} if thegeodesi
 interse
ts X in the positive dire
tion and in X × {1} in the
omplementary 
ase. Then, the �rst return map with this additionaldire
tional information gives a map from X × {0, 1} to itself.De�nition 2.1. Let f be the involution ofX×{0, 1} given by f(x, ε) =

(x, 1−ε). A linear involution is a map T , from X×{0, 1} into itself, ofthe form f◦T̃ , where T̃ is an involution ofX×{0, 1} without �xed point,
ontinuous ex
ept on a �nite set of points ΣT , and whi
h preserves theLebesgue measure. In this paper we will only 
onsider linear involutionswith the following additional 
ondition: the derivative of T̃ is −1 at
(x, ε) if (x, ε) and T̃ (x, ε) belong to the same 
onne
ted 
omponent,and +1 otherwise.On a �at surfa
e, the �rst return map of the verti
al foliation on ahorizontal segment de�nes a linear involution. The fa
t that the un-derlying �at surfa
e is oriented 
orresponds pre
isely to our additional
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e.


ondition. A linear involution su
h that T (X × {0}) = X × {0} (upto a �nite subset) 
orresponds to an interval ex
hange map T0, by re-stri
ting T on X × {0} (note that the restri
tion of T on X × {1} isnaturally identi�ed with T−1
0 ). Therefore, we 
an identify the set ofinterval ex
hange maps with a subset of the linear involutions.



RAUZY CLASSES 13A linear involution is en
oded by a 
ombinatorial datum 
alled gen-eralized permutation and by 
ontinuous data. This is done in the fol-lowing way: X × {0}\ΣT is a union of l open intervals X1 ⊔ . . . ⊔Xl,where we assume by 
onvention that Xi is the interval at the pla
e i,when 
ounted from the left to the right. Similarly, X × {1}\ΣT is aunion of m open intervals Xl+1 ⊔ . . . ⊔ Xl+m. For all i, the image of
Xi by the map T̃ is a interval Xj, with i 6= j, hen
e T̃ indu
es aninvolution without �xed points on the set {1, . . . , l + m}. To en
odethis involution, we attribute to ea
h interval Xi a symbol su
h that Xiand T̃ (Xi) share the same symbol. Choosing the set of symbol to be
{1, . . . , d}, we get a two-to-one map π : {1, . . . , l + m} → {1, . . . , d},with d = l+m

2
. Note that π is not uniquely de�ned by T sin
e we 
an
ompose it on the left by any permutation of {1, . . . , d}.De�nition 2.2. A generalized permutation of type (l, m), with l+m =

2d, is a two-to-one map π : {1, . . . , 2d} → {1, . . . , d}. It is 
alledredu
ed if for ea
h k, the �rst o

urren
e in {1, . . . , l+m} of the label
k ∈ {1, . . . , d} is before the �rst o

urren
e of any label k′ > k.We will usually represent su
h generalized permutation by a table oftwo lines of symbols, with ea
h symbol appearing exa
tly two times.

π =

(
π(1) . . . π(l)

π(l + 1) . . . π(l +m)

)
.In the table representation of a generalized permutation, a symbolmight appear two times in a line, and zero time in the other line.Therefore, we do not ne
essarily have l = m. A linear involution de�nesa redu
ed generalized permutation by the previous 
onstru
tion in aunique way.Example 2.3. The redu
ed generalized permutation π asso
iated to thelinear involution of Figure 4 is:

π =

(
1 2 3 2 4
4 5 1 3 5

)
.Remark 2.4. As we have seen before, an interval ex
hange map 
anbe seen as a linear involution. Also, the table representations of the
orresponding 
ombinatorial data are the same. In the sequel, thede�nitions and statements that we give are valid for linear involutionsand for interval ex
hange maps.2.2. Rauzy indu
tion and Rauzy 
lasses. When T : X → X isa interval ex
hange transformation, the �rst return map of T on asubinterval X ′ ⊂ X is still an interval ex
hange map. The image of Tby the Rauzy indu
tion R is the �rst return map of T on the biggest



14 CORENTIN BOISSYsubinterval X ′ ( X whi
h has the same left end as X , and su
h that
R(T ) has the same number of intervals as T (see [Vee82, MMY05℄).Similarly, we 
an de�ne Rauzy indu
tion for linear involutions by
onsidering �rst return maps on X ′ × {0, 1}, when X ′ ⊂ X (see Dan-thony and Nogueira [DN90℄).Let T = (π, λ) be a linear involution on X and denote by (l, m) thetype of π. We identify X with the interval (0, L). If λπ(l) 6= λπ(l+m),then the Rauzy indu
ed R(T ) of T is the linear involution obtained bythe �rst return map of T to

(
0,max(L− λπ(l), L− λπ(l+m))

)
× {0, 1}.The 
ombinatorial data of the new linear involution depends only on the
ombinatorial data of T and whether λπ(l) > λπ(l+m) or λπ(l) < λπ(l+m).We say that T has type 0 or type 1 respe
tively. The 
orresponding
ombinatorial operations are denoted by R0 and R1 
orrespondingly.Note that if π is a given generalized permutation, the subsets {T =

(π, λ), λπ(l) > λπ(l+m)} or {T = (π, λ), λπ(l) < λπ(l+m)} 
an be emptybe
ause π(l) = π(l+m) or be
ause the nontrivial relation ∑l
i=1 λπ(i) =∑l+m

j=l+1 λπ(j) that must be ful�lled by λ.Let us �x some terminology: given k ∈ {1, . . . , l + m}, the othero

urren
e of the symbol π(k) is the unique integer k′ ∈ {1, . . . , l +
m}, distin
t from k, su
h that π(k′) = π(k). In order to des
ribethe 
ombinatorial Rauzy operations R0 and R1, we �rst de�ne twointermediary maps R̃0, R̃1:(1) We de�ne R̃0 in the following way:

• If the other o

urren
e k of the symbol π(l) is in {l+1, . . . , l+

m− 1}, then we de�ne R̃0(π) to be of type (l, m) obtained byremoving the symbol π(l + m) from the o

urren
e l +m andputting it at the o

urren
e k + 1, between the symbols π(k)and π(k + 1).
• If the other o

urren
e k of the symbol π(l) is in {1, . . . , l−1},and if there exists another symbol α, whose both o

urren
esare in {l + 1, . . . , l +m− 1}, then we we de�ne R̃0(π) to be oftype (l + 1, m− 1) obtained by removing the symbol π(l +m)from the o

urren
e l +m and putting it at the o

urren
e k,between the symbols π(k−1) and π(k) (if k = 1, by 
onventionthe symbol π(l+m) is put on the left of the �rst symbol π(1)).
• Otherwise R̃0π is not de�ned.(2) The map R̃1 is obtained by 
onjugating R̃0 with the transforma-tion that inter
hanges the two lines in the table representation.



RAUZY CLASSES 15Then, R0(π) (resp. R1(π)) is obtained by renumbering R̃0(π) (resp.
R̃1(π)) to get a redu
ed generalized permutation. For another de�ni-tion of R0 and R1 in terms of the map π, we refer to [BL09℄.Example 2.5. Let us 
onsider the generalized permutation π = ( 1 2 3 4 3

2 4 5 5 1 ).We have
R̃0(π) =

(
1 2 1 3 4 3
2 4 5 5

)
= R0(π),and

R̃1(π) =

(
1 3 2 3 4
2 4 5 5 1

) so R1(π) =

(
1 2 3 2 4
3 4 5 5 1

)
.PSfrag repla
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( 1 2 3 4
2 4 1 3 )01Figure 5. An example of a Rauzy diagram for permutations.De�nition 2.6. A Rauzy 
lass is a minimal subset of redu
ed gener-alized permutations (or permutations) whi
h is invariant by the 
om-binatorial Rauzy maps R0,R1. A Rauzy diagram is the oriented graphwhose verti
es are the set of elements of a Rauzy 
lass, and whose edges
orrespond to the transformations R0 and R1.Remark 2.7. In this paper, we will speak only of Rauzy 
lass of irre-du
ible permutations or generalized permutations (see De�nition 2.8 inthe next paragraph, and the dis
ussion that follows about irredu
ibil-ity).2.3. Suspension data and Zippered re
tangles 
onstru
tion.Starting from a linear involution T , we want to 
onstru
t a �at surfa
e

S and an horizontal segment X su
h that the 
orresponding �rst returnmap of the verti
al foliation gives T . Su
h pair (S,X) will be 
alled asuspension over T , and the parameters en
oding this 
onstru
tion willbe 
alled suspension datum.
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01Figure 6. An example of a Rauzy diagram for general-ized permutations.De�nition 2.8. Let T = (π, λ) be a linear involution and let (λk)k∈{1,...,d}be the lengths of the 
orresponding intervals. Let {ζk}k∈{1,...,d} be a 
ol-le
tion of 
omplex numbers su
h that:(1) ∀k ∈ {1, . . . , d} Re(ζk) = λk.(2) ∀1 ≤ i ≤ l − 1 Im(
∑

j≤i ζπ(j)) > 0(3) ∀1 ≤ i ≤ m− 1 Im(
∑

1≤j≤i ζπ(l+j)) < 0(4) ∑
1≤i≤l ζπ(i) =

∑
1≤j≤m ζπ(l+j).The 
olle
tion ζ = {ζi}i∈{1,...,d} is 
alled a suspension datum over T .The existen
e of a suspension datum depends only on π, hen
e we willsay that π is irredu
ible if (π, λ) admits a suspension data.We refer to [BL09℄ (Se
tion 3) for a 
ombinatorial 
riterion of ir-redu
ibility for the 
ase when π does not 
orrespond to an intervalex
hange map.This notion of irredu
ibility is relevant when we 
onsider Rauzy
lasses for generalized permutations. Indeed, if π is irredu
ible andif π′ is in the Rauzy 
lass generated by π (i.e. the set of des
endants of

π after iterating the 
ombinatorial Rauzy indu
tions), then π′ is irre-du
ible and π is in the Rauzy 
lass generated by π′. Therefore, beingin the same Rauzy 
lass is then an equivalent relation on the set ofirredu
ible generalized permutations. However, this is not ne
essarilytrue if we 
onsider generalized permutations that are not ne
essarilyirredu
ible: indeed, there exists �nonirredu
ible� generalized permu-tations whose asso
iated Rauzy 
lass 
ontains irredu
ible generalizedpermutations (see [BL09℄, se
tion 5 and Appendix A).
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ζ5Figure 7. A suspension over a linear involution.Given an interval ex
hange map T and a suspension data, thereis a well known 
onstru
tion due to Vee
h, that gives a translationsurfa
e and a horizontal segment whose 
orresponding return map ofthe verti
al geodesi
 �ow is T (see [Vee82, MMY05℄). This 
onstru
tionis 
alled the zippered re
tangles 
onstru
tion. One 
an generalize this
onstru
tion to linear involutions ([Boi08, BL09℄). Given a suspensiondatum ζ over a linear involution T = (π, λ), we get a �at surfa
e Sand an open horizontal segment X (see Figure 7) with an orientation.The �rst return map of the verti
al foliation of S on X is pre
isely thelinear involution (π,Re(ζ)). Furthermore, the segment X also satis�esthe following properties:(1) the segment X is adja
ent to a singularity on its left,(2) there is a verti
al geodesi
 of S that starts from a singularityand passes through the right end of X before interse
ting X ,(3) any verti
al geodesi
 of S interse
ts X .We write (S,X) = Z(π, ζ). In fa
t, the 
onverse is true:Lemma 2.9. Let S be a �at surfa
e and X be an open horizontalsegment S with a 
hoi
e of orientation. We assume that X satis�es theproperties (1)�(2) stated previously, and interse
ts any verti
al saddle
onne
tion.There exists a unique suspension datum (π, ζ), with π redu
ed, su
hthat (S,X) = Z(π, ζ).Remark 2.10. In the above lemma, one need X open for te
hni
al rea-sons: it allows us to repla
e property (3) above, by a 
ondition whi
his mu
h simpler sin
e there are only a �nite number of verti
al saddle
onne
tions. If X is 
losed, then X might interse
t all verti
al saddle
onne
tions, but not all verti
al geodesi
s.Proof. For the 
ase of translation surfa
es, the fa
t that S is obtainedby the zippered re
tangles 
onstru
tion is a well known fa
t, and the
orresponding permutation and suspension data 
ome from the �rst



18 CORENTIN BOISSYreturn map of the verti
al geodesi
 �ow. For the 
ase of quadrati
di�erentials, a proof when the surfa
e has no verti
al saddle 
onne
tions
an be found in [Boi08℄ (Proposition 2.2.). The proof in our 
ase issimilar. We give a sket
h and refer to [Boi08℄ for details.Let T = (π, λ) be the linear involution asso
iated toX . Up to a �nitesubset ΣT , X×{0, 1} is a �nite union of open subsetsX1 . . . , Xl+m, su
hthat T|Xi
is a translation or a half-turn. Let k 6= k′ be in {1, . . . , l+m}su
h that π(k) = π(k′). There is an embedded re
tangle R whosehorizontal edges are identi�ed with Xk and Xk′. A point in X 
annotbe in the interior of R sin
e T is the �rst return map on X of theverti
al foliation. Assume that a verti
al side of R 
ontains at leasttwo singularities, then it 
ontains a verti
al saddle 
onne
tion, whi
htherefore interse
ts X . Sin
e X is an open interval, a subset of X is
ontained in the interior of R, whi
h 
ontradi
ts the previous assertion.With this additional argument, one 
an 
he
k that the 
onstru
tiongiven in [Boi08℄, Proposition 2.2 de�nes the suspension datum ζ in asimilar way.

�The Rauzy indu
tion on interval ex
hange maps or on linear invo-lutions admits a natural extension on the spa
e of suspension data.This is 
alled the Rauzy�Vee
h indu
tion. Let T = (π, λ) be a linearinvolution and let ζ be a suspension data over T . We de�ne R̃(π, ζ) asfollows.
• If T = (π, λ) has type 0, then R̃(π, ζ) = (R̃0π, ζ̃), with ζ̃k = ζkif k 6= π(l) and ζ̃π(l) = ζπ(l) − ζπ(l+m).
• If T = (π, λ) has type 1, then R̃(π, ζ) = (R̃π, ζ̃), with ζ̃k = ζkif k 6= π(l +m) and ζ̃π(l+m) = ζπ(l+m) − ζπ(l).Re
all that the generalized permutations R̃0(π), R̃1(π) are not ne
-essarily redu
ed. Hen
e, after renumerating R̃(π, ζ) in order to get aredu
ed generalized permuation, we get the pair R(π, ζ).Remark 2.11. The pair R(π, ζ) = (π′, ζ ′) de�nes a suspension datumover R(T ). If we denote (S,X) = Z(π, ζ) and (S ′, X ′) = Z(π′, ζ ′), thetwo �at surfa
es S and S ′ are naturally isometri
 sin
e one 
an obtainone surfa
e from the other by �
utting and pasting� (see Figure 8).Also, under this identi�
ation, we have X ′ ⊂ X .Let π be a permutation or a generalized permutation and let ζ bea suspension data. Sin
e the set of suspension data asso
iated to π is
onne
ted (in fa
t 
onvex) and the zippered re
tangles 
onstru
tion is
ontinuous with respe
t to the variations of ζ , then all surfa
es obtained
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h indu
tion on a suspension overan interval ex
hange transformation.from a permutation π with the zippered re
tangles 
onstru
tion belongto the same 
onne
ted 
omponent C(π) of the stratum.Let C be a 
onne
ted 
omponent of a stratum of the moduli spa
eof Abelian di�erentials or of quadrati
 di�erentials. We denote by TCthe set
TC = {(π, ζ), C(π) = C, ζ is a suspension data for π},and HC the quotient of this set by the Rauzy�Vee
h indu
tion. Thefollowing proposition is 
lear.Proposition 2.12. The set of 
onne
ted 
omponents of HC is in one-to-one 
orresponden
e with the set of Rauzy 
lasses C 
orrespondingto a 
onne
ted 
omponent of the moduli spa
e of Abelian or quadrati
di�erentials.3. Rauzy 
lasses and 
overing of a stratumA

ording to remark 2.11, the zippered re
tangles 
onstru
tion pro-vides a natural map Ẑ from HC to the rami�ed 
overing Ĉ of C, ob-tained by 
onsidering the pairs (S, l), where S ∈ C and l is a horizontalseparatrix adja
ent to a singularity of S.Lemma 3.1. The map Ẑ is a homeomorphism on its image.Proof. First, let S be su
h that there exists (π, ζ) ∈ TC with Z(π, ζ) =

(S, ∗).We 
laim that ζ , with the 
ondition∑l
i=1 ζπ(i) =

∑l+m
j=l+1 ζπ(j), de�neslo
al 
oordinates of the ambient stratum. Indeed, in the Abelian 
ase,the sides of the polygon de�ned by the parameters ζi form a basis ofthe relative homology, and integrating ω along this basis gives pre
isely

ζ1, . . . , ζd. In the quadrati
 
ase, one must 
onsider the natural double
over Ŝ → S , and it is easy to 
he
k that integrating the one form
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orresponding to Ŝ along a basis of homology gives 2ζ . This proves the
laim. This implies that Z is open, and so is Ẑ.Now we show that Ẑ is inje
tive. The pair (S, l) ∈ Ĉ is in the imageof Ẑ if and only if there exists a segment X ⊂ l, that satis�es thehypothesis of Lemma 2.9. For su
h segment, there exists a unique (π, ζ)su
h that Z(π, ζ) = (S,X). Now let X ′ be another su
h segment, thenwe must have X ⊂ X ′ or X ′ ⊂ X , and X ′ de�nes a new suspensiondata (π′, ζ ′). We assume for instan
e that X ′ ⊂ X . We 
laim thatthere exists an integer n ≥ 0 su
h that Rn(π, ζ) = (π′, ζ ′). Assumingthe 
laim, we 
an 
on
lude that there exists a unique 
lass [(π, ζ)] ∈ HCin the preimage of (S, l) by the map Ẑ.When S is a translation surfa
e without verti
al saddle 
onne
tions,the 
laim is Proposition 9.1 of [Vee82℄. We prove the 
laim in thegeneral 
ase. Let us 
onsider the (possibly �nite) sequen
e of iteratesof (π, ζ) by the Rauzy indu
tion. We denote Rn(π, ζ) = (π(n), ζ (n)) and
T (n) the 
orresponding linear involution. We identify the interval X(n)(resp. X ′) with the interval ]0, x(n)[ (resp. ]0, x′[) of R. Three 
ases arepossible.(1) There exists n > 0 su
h that x(n) < x′. We denote by n0 thebiggest integer su
h that x(n0) > x′. By de�nition of X ′, there isa verti
al geodesi
 γ starting from x′ and that hits a singularitybefore interse
ting the interval ]0, x′[. We 
laim that it doesn'tinterse
t the interval ]x′, x(n0)[. Indeed, if γ interse
ts ]x′, x(n0)[before hitting a singularity, then we 
onsider x′′ ∈]x′, x(n0)[ therightmost interse
tion point. We must have x′′ ≤ x(n0+1) whi
h
ontradi
ts the hypothesis on n0.It follows that T (n0) is not de�ned on (x′, ε), for ε 
orre-sponding to the dire
tion of γ. We know by hypothesis that

R(π(n0), ζ (n0)) exists, and by de�nition of the Rauzy indu
tion,we have x(n0+1) = x′. Hen
e, (π′, ζ ′) = R(n0+1)(π, ζ).(2) There exists n su
h that x(n) > x′ and R(π(n), ζ (n)) is notde�ned. This means that there exists x(n+1) ≥ x′ su
h that
T (n)(x(n+1), 0) and T (n)(x(n+1), 1) are not de�ned. Then thereis a saddle 
onne
tion γ that interse
ts X(n) only in the point
x(n+1). Hen
e, X ′ =]0, x′[ does not interse
t γ, 
ontradi
tingthe hypothesis on X ′.(3) The sequen
e (π(n), ζ (n)) is in�nite and for all n, x(n) > x′. Thesequen
e (x(n))n is de
reasing and bounded from below. Hen
eit 
onverges to a limit x(∞) whi
h is greater than, or equal to x′.A

ording to the proof of Proposition 4.2 in [BL09℄ T (n)(x(∞), 0)



RAUZY CLASSES 21and T (n)(x(∞), 1) are not de�ned for n large enough. Then, thereis a saddle 
onne
tion γ that interse
t X(n) only in the point
x(∞). Hen
e, X ′ =]0, x′[ does not interse
t γ, 
ontradi
ting thehypothesis on X ′.

�Proposition 3.2. The 
omplement of Ẑ(HC) is 
ontained in a subsetof Ĉ whi
h is a 
ountable union of real analyti
 
odimension 2 subsets.Proof. If S has no horizontal saddle 
onne
tions, any horizontal geo-desi
 is dense. Hen
e, a horizontal segment X adja
ent to a singularitywill interse
t all the verti
al saddle 
onne
tions, as soon as this segmentis long enough and by Lemma 2.9, the pair (S,X) is in the image of Zfor a well 
hosen X . We 
an also apply Lemma 2.9 if S has no verti
alsaddle 
onne
tion.Now if (S, l) ∈ Ĉ is su
h that S has no verti
al or no horizontal saddle
onne
tions, then (S, l) is in the image of Ẑ. Hen
e, the 
omplementof the image of Ẑ is 
ontained in the set of elements in Ĉ whose 
or-responding �at surfa
e has at least a verti
al and a horizontal saddle
onne
tions. This set is a 
ountable union of real analyti
 
odimension2 subsets. �Corollary 3.3. The number of Rauzy 
lasses 
orresponding to a 
on-ne
ted 
omponent C of the moduli spa
e of Abelian or quadrati
 di�er-entials is equal to the number of 
onne
ted 
omponents of Ĉ.Proof. From Proposition 2.12 and Lemma 3.1, we just need to provethat the number of 
onne
ted 
omponents of Ĉ is equal to the numberof 
onne
ted 
omponent of Ẑ(HC). It is a standard fa
t that removinga 
odimension two subset to a smooth manifold does not 
hange itsnumber of 
onne
ted 
omponents. In our 
ase, we remove from anorbifold a 
ountable union of 
odimension 2 subsets.Let x1 and x2 be elements of Ẑ(HC) and in the same 
onne
ted 
om-ponent of Ĉ. We want to 
onstru
t a path in Ẑ(HC) that joins x1 and
x2. Up to 
onsidering a lo
al 
hart of Ĉ, we 
an assume that x1 and
x2 are in an open subset Ω of Ck, and there is a �nite group G a
t-ing on Ω su
h that Ω/G is homeomorphi
 to an open subset U of Ĉ.By de�nition, a real analyti
 
odimension 2 subset in U 
orrespondsto a real analyti
 
odimension 2 subset of Ω. Hen
e, the elements of
U\Ẑ(HC) 
orrespond to a 
ountable union ∪i∈NFi of smooth 
odimen-sion 2 subsets of Ω. Without loss of generality, we 
an assume that
Ω is 
onvex. Consider a real hyperplane H separating x1 and x2. Forea
h 
odimension 2 subset Fi, the set of elements y ∈ H su
h that at
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ontains an element of Fi is ofmeasure zero for the natural Lebesgue measure in H . Hen
e, the set ofelements y ∈ H su
h that at least one of the segments [x1, y] or [x2, y]interse
ts ∪i∈NFi is of measure zero. So, there is an element x ∈ H ∩Ωsu
h that neither [x1, x] nor [x, x2] interse
ts ∪i∈NFi. This de�nes asuitable path joining x1 and x2. This 
on
ludes the proof. �Proposition 3.4. The number of distin
t Rauzy 
lasses 
orrespondingto a 
onne
ted 
omponent C of the moduli spa
e of Abelian or quadrati
di�erentials, is equal to the number of 
onne
ted 
omponents of the
overing of C that we obtain by marking a singularity.Proof. Remark that if two separatri
es l1 and l2 are adja
ent to thesame singularity, the two pairs (S, l1) and (S, l2) are in the same 
on-ne
ted 
omponent of Ĉ, then apply Corollary 3.3. �4. Marked flat surfa
esIn this se
tion, we 
ompute the 
onne
ted 
omponents of the modulispa
e of �at surfa
es with a marked singularity. We will study sepa-rately the Abelian and quadrati
 
ase.4.1. Moduli spa
e of Abelian di�erentials with a marked singu-larity. Here, we assume that C is a 
onne
ted 
omponent of the modulispa
e of Abelian di�erentials. Re
all that the degree of a singularityin a translation surfa
e is the integer k su
h that the 
orresponding
oni
al angle is (k + 1)2π.We 
onsider the rami�ed 
overing Cm of C to be the moduli spa
e ofpairs (S, P ), where S ∈ C and P is a singularity of S. A

ording toProposition 3.4, we must 
ount the number of 
onne
ted 
omponentsof Cm.The goal of this se
tion is to prove Proposition 4.1, whi
h will 
om-plete the proof of Theorem A for Abelian di�erentials.Proposition 4.1. Let C be a 
onne
ted 
omponent of a stratum inthe moduli spa
e of Abelian di�erentials and let H(kα1

1 , . . . , kαr
r ), with

ki 6= kj for i 6= j, and ki ≥ 0 and αi > 0 for ea
h i, be the ambientstratum. Then Cm admits exa
tly r 
onne
ted 
omponents.We want to show that (S1, P1) and (S2, P2) in Cm are in the same
onne
ted 
omponent if and only if the degree of P1 is equal to thedegree of P2. If (S1, P1) and (S2, P2) are in the same 
onne
ted 
ompo-nent of Cm, then the degree of P1 is 
learly equal to the degree of P2.We want to prove the 
onverse. Sin
e Cm is a rami�ed 
overing of C, itis enough to show this for S1 = S2.
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onne
tion persistsunder any small deformation of the surfa
e inside the ambient stratum.De�nition 4.2. Let S be a translation surfa
e. A saddle 
onne
tionon S is simple if, up to a small deformation of S inside the ambientstratum, there are no other saddle 
onne
tions parallel to it.Lemma 4.3. Let S ∈ C and P1, P2 be two singularities of the samedegree. If there exists a simple saddle 
onne
tion between P1 and P2,then (S, P1) and (S, P2) are in the same 
onne
ted 
omponent of Cm.Proof. We denote by γ the simple saddle 
onne
tion between P1 and
P2, and by k the degree of P1 and P2. We 
an also assume that γ isverti
al and up to a slight deformation of S, there is no saddle 
onne
-tions parallel to γ. Re
all that the Tei
hmüller �ow a
ts 
ontinuously,so we 
an apply to S the Tei
hmüller geodesi
 �ow, and obtain a sur-fa
e surfa
e S ′ = gtS in the same 
onne
ted 
omponent as S. Thereis a natural bije
tion from the saddle 
onne
tions of S to the saddle
onne
tions of gtS. The holonomy ve
tor v = (v1, v2) of a saddle 
on-ne
tion be
omes vt = (et/2v1, e

−t/2v2). This implies that the length of agiven saddle 
onne
tion in S ′ divided by the length of γ′ 
orrespondingto γ tends to in�nity, as t tends to in�nity. The set of holonomy ve
torsof saddle 
onne
tions is dis
rete, and therefore, if t is large enough, we
an assume that the saddle 
onne
tion γ′ is very small 
ompared to anyother saddle 
onne
tion of S ′. The two singularities 
orresponding to
P1 and P2, that we denote by P ′

1 and P ′
2, are the endpoints of γ′. It issu�
ient to show that (S ′, P ′

1) and (S ′, P ′
2) are in the same 
onne
ted
omponent of Cm. If t is large enough, then S ′ = gt.S is obtained afterbreaking up a zero of degree 2k into two zeroes of degree k, using thelo
al 
onstru
tion des
ribed in se
tion 1.5.The small saddle 
onne
tion that appear in the pro
edure 
orre-sponds to γ′. In this pro
edure, we 
an 
ontinuously turn the param-eter de�ning γ′, and therefore (S ′, P ′

1) and (S ′, P ′
2) are in the same
onne
ted 
omponent of Cm (see Figure 9).

�Now given a �at surfa
e S ∈ C and two singularities P,Q of the samedegree, one would like to �nd a simple saddle 
onne
tion that joins Pand Q. In fa
t, it is enough to �nd a broken line that 
onsists of simplesaddle 
onne
tions whose endpoints are singularities of the same degreeas P and Q. This is the main idea of the proof of Proposition 4.1.
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Figure 9. Inter
hanging two zeros of the same degree.Proof of Proposition 4.1. For ea
h k, we show that the subset of Cm
orresponding to a singularity of degree k is 
onne
ted. For this, itis enough to �nd a surfa
e S ∈ C, and a 
olle
tion of simple saddle
onne
tions 
onne
ting all the singularities of degree k. Without lossof generality, we assume that k = k1.We use the following 
onstru
tion: we start from a surfa
e S0 ∈
H(α1k1, k

α2

2 , . . . , kαr
r ). Then, we break up the singularity of degree

α1k1 into a singularity of degree k1 and a singularity of degree (α1 −
1)k1. We get a surfa
e S1 ∈ H(k1, (α1−1)k1, k

α2

2 , . . . , kαr
r ), and a smallsimple saddle 
onne
tion between a singularity P1 of degree k1 and asingularity Q1 of degree (α1 − 1)k1. Then, we break up the singularity

Q1 into a singularity P2 of degree k1 and a singularity Q2 of degree
(α1 − 2)k1. There is a simple saddle 
onne
tion between P2 and Q2, ifwe 
hoose well our breaking pro
edure, and if the newly 
reated saddle
onne
tion is small enough, then the saddle 
onne
tion between P1 and
P2 persists.Iterating this pro
ess, we �nally get a surfa
e S inH(kα1

1 , kα2

2 , . . . , kαr
r )and P1, . . . , Pα1

with a saddle 
onne
tion γi between Pi and Pi+1, for all
1 ≤ i ≤ α1−1. Moreover, all the singularities Pi and the 
orrespondingsaddle 
onne
tions γi are in a �at disk D. Ea
h γi 
an be assumed tobe very short 
ompared to any other saddle 
onne
tion whi
h is notentirely in D. Now assume that one of the saddle 
onne
tion γi is notsimple. Then, up to a small deformation of S, there is another saddle
onne
tion γ′

i ⊂ D whi
h is homologous to γi. Hen
e, γi and γ′
i arethe boundary of a metri
 disk D′ ⊂ D. The boundary of D′ 
onsistsof two parallel saddle 
onne
tions of the same length. Therefore, we
an glue them together by a suitable isometry, and obtain a �at spherethat 
ontains at most two poles that 
orrespond to the end points of

γi and γ′
i. Su
h �at sphere 
annot satisfy the Gauss-Bonnet equality,whi
h 
ontradi
ts the fa
t that γi is not simple.
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e, we have proven that our 
onstru
tion provides a surfa
e S,with a broken line that 
onsists of a union of simple saddle 
onne
tionsjoining all the singularities of degree k. We 
an apply Lemma 4.3for ea
h pairs (Pi, Pi+1), and we get that the {(S, Pi)}i∈{1,...,α} are inthe same 
onne
ted 
omponent of the 
orresponding moduli spa
e ofmarked translation surfa
es. It remains to 
he
k that S 
an be takenin any 
onne
ted 
omponent of H(kα1

1 , . . . , kαr
r ).Without loss of generality, we 
an assume that there are no singular-ities of degree zero, sin
e these degree zero singularities just 
orrespondto regular marked point on the surfa
e, and this is dedu
ed from theother 
ase in a trivial way.If S0 is in H(2g − 2), and S is in H(g − 1, g − 1), then S is in thehyperellipti
 
onne
ted 
omponent if and only if the same is true for

S0 (see [KZ03℄).If S0 is not in the hyperellipti
 
onne
ted 
omponent of H and if allthe singularities of S have even degree, then breaking up a singularitydoes not 
hange the parity of the spin stru
ture. Indeed, the breakingpro
edure does not 
hange the metri
 outside a small disk and thepaths that we 
hoose to 
ompute the parity of spin stru
ture 
an avoidthis disk. Hen
e, starting from S0 with even or odd spin stru
ture, weget an even or an odd spin stru
ture.Therefore, in any 
onne
ted 
omponent C, there is a surfa
e S ob-tained by the 
onstru
tion. This proves the proposition. �4.2. Moduli spa
e of quadrati
 di�erentials with a marked sin-gularity.Remark. Here, we deal with the moduli spa
e of quadrati
 di�erentials.Therefore, the order of a singularity is the integer k ≥ −1 su
h thatthat the 
orresponding 
oni
al angle is (k + 2)π. Re
all that k = 0
orresponds to a regular marked point on the surfa
eWe want to prove Proposition 4.4, whi
h will 
omplete the proof ofTheorem A. This proposition is a �quadrati
 analogous� of Proposi-tion 4.1.Proposition 4.4. Let C be a 
onne
ted 
omponent of a stratum inthe moduli spa
e of quadrati
 di�erentials. Let Q(kα1

1 , . . . , kαr
r ) be theambient stratum, with ki 6= kj for i 6= j, and ki ≥ −1 and αi > 0.Then Cm admits exa
tly r 
onne
ted 
omponents.Although the main ideas of the proof are similar, there are some te
h-ni
al di�
ulties. For instan
e, the �quadrati
 version� of Lemma 4.3is still true, but the proof needs some additional tools. Indeed, the
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edure� introdu
ed in se
tion 1.5 does notwork when we break up a singularity of even order into two singulari-ties of odd order. So we must use the non lo
al pro
edure des
ribed inse
tion 1.6.The next two lemma are �quadrati
� versions of Lemma 4.3. Lemma 4.5is for singularities of non-negative order and Lemma 4.6 is for poles.Lemma 4.5. Let C be a 
onne
ted 
omponent of a stratum in the mod-uli spa
e of quadrati
 di�erentials. Let S ∈ C and P1, P2 be two sin-gularities of the same order k, with k 6= −1. We assume that thereexists a simple saddle 
onne
tion between P1 and P2. Then (S, P1) and
(S, P2) are in the same 
onne
ted 
omponent of Cm.Proof. When k is even, the proof is exa
tly the same as in Lemma 4.3.So we assume that k is odd. As in the proof of Lemma 4.3, we 
anassume that the simple saddle 
onne
tion γ of the hypothesis is verysmall 
ompared to any other saddle 
onne
tion.There exists S0, a path ν0 ⊂ S0, and ε su
h that (S, P1) = Ψ(S0, ν0, ε)(see se
tion 1.6 for the de�nition of the mapΨ). Fixing S0, we 
an make
ε arbitrarily small sin
e ε 7→ Ψ(S0, ν0, ε) is 
ontinuous.Then, we 
onsider a homotopy (νθ)θ∈[0,(k+1)π], su
h that ν0 = ν0, and
νθ is a polygonal 
urve transverse to the foliation Fθ in a neighborhoodof P . The map θ 7→ Ψθ(S0, ν

θ, ε) is well de�ned and 
ontinuous for εsmall enough. This way, we get a surfa
e Ψ(S0, ν1, ε). The path ν1starts from the se
tor II and ends in the se
tor I of P . It is natural to
ompare ν1 with ν−1
0 (i.e. ν0 with reverse orientation), but these twopaths are a priori very di�erent (see Figure 10).Using the results stated in se
tion 1.6, there exists S1 in a neighbor-hood of S0 su
h that Ψ(S0, ν1, ε) = Ψ(S1, ν

−1
0 , ε). The surfa
e S1 
anbe arbitrarily 
lose to S0 as soon as ε is small enough. Then, we 
hoosea small path joining S1 and S0, and we get therefore a path joining

Ψ(S1, ν
−1
0 , ε) to Ψ(S0, ν

−1
0 , ε).Hen
e, we have built a path joining Ψ(S0, ν0, ε) to Ψ(S0, ν

−1
0 , ε). The�rst (marked) surfa
e is (S, P1) while the se
ond one is (S, P2). Thelemma is proven. �A surfa
e in Cm might 
ontain poles. The previous lemma does notwork if the marked point is a pole. We need the following:Lemma 4.6. Let C be a 
onne
ted 
omponent of a stratum in the mod-uli spa
e of quadrati
 di�erentials. Let S ∈ C and P1, P2 two poles. Weassume that there exists a saddle 
onne
tion between P1 and P2. Then

(S, P1) and (S, P2) are in the same 
onne
ted 
omponent of Cm.



RAUZY CLASSES 27
PSfrag repla
ements ν0

νθ ν1

Ψ(S0, ν0, ε) Ψθ(S0, ν
θ, ε) Ψ(S0, ν1, ε)

S0S0S0

Figure 10. Inter
hanging two singularities of odd orderProof. The saddle 
onne
tion γ joining P1 and P2 is never simple. In-deed, P1 and P2 are in the boundary of a 
ylinder whose waist 
urvesare parallel to γ. One side of this 
ylinder 
onsists of γ, the oppositeside is a union of saddle 
onne
tions that are ne
essary parallel to γ.So γ 
annot be simple.In this 
ase, (S, P1) and (S, P2) 
an be joined by performing a suitableDehn twist on the 
orresponding 
ylinder. �Now we have the ne
essary tools to prove Proposition 4.4.Proof of Proposition 4.4. We must show that the subset of Cm that
orresponds to surfa
es with a marked point of order k, where k is a�xed element of k1, . . . , kr is 
onne
ted. Without loss of generality, we
an assume that k = k1. Also, we 
an assume that all ki are nonzero.First we assume that k1 = −1. A

ording to Lanneau ([Lan08℄),there is a surfa
e S in C whose horizontal foliation 
onsists of one
ylinder. This means we 
an present su
h surfa
e as a re
tangle withthe following indenti�
ations on its boudary:
• the two verti
al sides are identi�ed by a translation,
• the horizontal sides admit a partition of segments whi
h 
omeby pairs of segments of the same length
• for ea
h su
h pair, we identify the 
orresponding segments bytranslation or by a half-turn.
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an also assume that the 
orners of the re
tangle 
orrespond tosingularities. Now, let P1 and P2 be two singularities of order −1. Ea
hpole 
orresponds to two adja
ent segments that are identi�ed with ea
hother by a half-turn. If these two singularities are on opposite sides ofthe re
tangle, then we get a saddle 
onne
tion joining P1 and P2 by
onsidering the line joining P1 and P2 in the re
tangle. If P1 and P2are in the same side of the re
tangle, then we 
an slightly deform the
orresponding segments in the 1-
ylinder de
omposition, and this wayjoin the two poles P1 and P2 by a saddle 
onne
tion (see Figure 11). Inany 
ase, we have the desired result (when k = −1) in view of Lemma4.6.
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Figure 11. Inter
hanging two poles on a surfa
e witha 1-
ylinder de
omposition.Now we assume that k1 6= −1. We �rst explain the general 
on-stru
tion. By a similar argument as in Proposition 4.1, we start froma surfa
e S0 with a singularity P of order α1k1 and we break up thissingularity into α1 singularities P1, . . . , Pα1
of order k1. There is a 
ol-le
tion of saddle 
onne
tions joining Pi to Pi+1 for ea
h 1 ≤ i ≤ α1−1.We 
an assume that P1, . . . , Pα1

are in a small metri
 disk D. Nowassume that one of the saddle 
onne
tion γi is not simple. Then, upto a slight deformation of S, there is another saddle 
onne
tion γ′
i par-allel to γi, su
h that S\(γi ∪ γ′

i

) admits a 
onne
ted 
omponent withtrivial linear holonomy (sin
e γi and γ′
i are �homologous, see [MZ08℄,Proposition 1 and Theorem 1). However, sin
e S0 has nontrivial lin-ear holonomy, S\D has nontrivial linear holonomy too. Hen
e, γi and

γ′
i are the boundary of a small metri
 disk D′ ⊂ D, whi
h is a 
on-tradi
tion. However, as we will see, we 
annot rea
h any 
onne
ted
omponent C in this way.



RAUZY CLASSES 291- We �rst assume that the stratum Q = Q(kα1

1 , . . . , kαr
r ) does not
ontain a hyperellipti
 
onne
ted 
omponent and is not one of the ex-
eptional stratum. Then our 
onne
ted 
omponent C is the whole stra-tum. If we start from an initial �at surfa
e S0 ∈ Q(α1k1, k
α2

2 , . . . , kαr
r )and perform the previous 
onstru
tion, we get a surfa
e S ∈ C and sim-ple saddle 
onne
tions joining all its singularities of order k1. We must
he
k that the stratum Q(α1k1, k

α2

2 , . . . , kαr
r ) is not empty. The onlystrata that are empty are Q(∅),Q(1,−1),Q(3, 1) and Q(4). Hen
e, wemust have Q 6= Q(2, 2) and Q 6= Q(1, 1, 1, 1). But these two strata
onsist only of hyperellipti
 �at surfa
es, hen
e Q is not one of themby assumption. Therefore, using Lemma 4.5, we see that (S, P ) is inthe same 
onne
ted 
omponent of Cm for any singularity P of order k1.2- Now we assume that the stratum Q is Q(k1, k1, k2, k2), with k1 6=

k2, or Q(k1, k1, 2k2 + 2). This stratum has one or two 
onne
ted 
om-ponents, one of them being hyperellipti
. One 
an show that in ea
h
onne
ted 
omponent, on almost every surfa
e S, there are simplesaddle 
onne
tions joining the singularities of order k1. (see [Boi07℄,Theorem 3.1 in the 
ase of the hyperellipti
 
omponent and [Boi07℄Lemma 4.1 for the other 
omponent), and by Lemma 4.5 we are done.If Q = Q(2k1 + 2, 2k2 + 2) with k1 6= k2, there is nothing to prove.3- Assume that Q = Q(−1, 3, 3, 3). This stratum has two 
onne
ted
omponents Cred and Cirr. If we start from S0 ∈ Q(−1, 9) and break upthe singularity of order 9 into three singularities of order 3 as explainedpreviously, we obtain either a surfa
e in Cred or a surfa
e in Cirr depend-ing in whi
h 
onne
ted 
omponent we start (see Lanneau [Lan08℄) and
on
lude as previously. If the stratum Q is one of the other ex
eptionalstrata, there is nothing to prove.4- We assume that Q = Q(k, k, k, k). Let C be the hyperellipti

onne
ted 
omponent of Q and S ∈ C. We denote by P1,1,P1,2, P2,1and P2,2 the singularities of S, su
h that the hyperellipti
 involution
τ inter
hange Pi,1 and Pi,2 for i ∈ {1, 2}. Suppose there is a saddle
onne
tion γ joining P1,i to P2,j for some i, j. Then, τ(γ) is distin
t from
γ and is parallel to γ, even after a small deformation of S. Therefore
γ is not simple. Hen
e, S is not obtained from Q(4k) by breaking upthe singularity as before.We 
an assume that k 6= −1, sin
e the other 
ase was alreadystudied. There is a one-to-one mapping from C to Q(k, k,−12k+4).Hen
e, Cm is a 
overing of Q(k, k,−12k+4). There exists a surfa
e
S0 ∈ Q(k, k,−12k+4) with a simple saddle 
onne
tion joining its two



30 CORENTIN BOISSYsingularities P1 and P2 of order k. We 
an assume that S is the double
overing of S0 rami�ed over the poles, and that the singularities 
or-responding to Pi are Pi,1 and Pi,2. For ea
h i, there is a simple saddle
onne
tion joining Pi,1 and Pi,2 (see 
ase (2)), hen
e the two markedsurfa
es (S, Pi,1) and (S, Pi,2) are in the same 
onne
ted 
omponent of
Cm. Now we start from (S, P1,1) ∈ Cm. The 
orresponding markedsurfa
e in Q(k, k,−12k+4) is (S0, P1). We then 
onsider a path join-ing (S0, P1) and (S0, P2) and 
an lift it to a path joining (S, P1,1) to
(S, P2,k), for some k ∈ {1, 2}. Hen
e, (S, P1,1) and (S, P2,1) are in thesame 
onne
ted 
omponent of Cm. This proves that Cm is 
onne
ted.Let C be the nonhyperellipti
 
onne
ted 
omponent of Q(k, k, k, k).The 
lassi�
ation of 
onne
ted 
omponents by Lanneau implies that
k ≥ 2. Then, starting from S0 ∈ Q(4k) and breaking up the singularityinto four singularities of degree k as before gives a surfa
e S ∈ C, sin
eit 
annot be in the hyperellipti
 
onne
ted 
omponent as explainedbefore. Hen
e Cm is 
onne
ted.5- If Q = Q(2k + 2, 2k + 2), the proof is analogous to the previous
ase. �Appendix A. Computation of the 
onne
ted 
omponentasso
iated to a permutationCorollary B states that two irredu
ible permutations are in the sameRauzy 
lass if and only if the degree of the singularity atta
hed on theleft in the Vee
h 
onstru
tion is the same, and if they 
orrespond to thesame 
onne
ted 
omponent of the moduli spa
e of Abelian di�erentials.The �rst invariant is very easy to 
ompute 
ombinatorially. We givehere referen
es for the se
ond invariant.

• The parity of the spin stru
ture 
an be 
omputed expli
itlyfrom the permutation. This is explained in the paper of Zori
h[Zor08℄, Appendix C. One 
an also �nd in Zori
h's webpage1some Mathemati
a program that 
ompute expli
itely this in-variant.
• It is strangely not obvious to see whether a permutation 
or-responds to a hyperellipti
 
onne
ted 
omponent or not. How-ever, in ea
h Rauzy 
lass, we 
an �nd a permutation π su
hthat π(1) = d and π(d) = 1, where d is the number of inter-vals of the 
orresponding interval ex
hange. Su
h permutationis 
alled 
ylindri
al sin
e it appears naturally for �at surfa
eswith a one-
ylinder de
omposition. This was �rst proven by1http://perso.univ-rennes1.fr/anton.zori
h/



RAUZY CLASSES 31Rauzy [Rau79℄, but we 
an �nd a more 
onstru
tive proof in[KZ03℄, Appendix A.3. It is easy to see that the asso
iated
onne
ted 
omponent is the hyperellipti
 one if and only if π isthe permutation π(k) = d+ 1− k. Su
h permutation π 
an bebuild from another permutation after at most d2 steps of theRauzy indu
tion in an expli
it way (see [KZ03℄).For the 
ase of quadrati
 di�erentials, the non
onne
ted strata arethe ones that 
ontain hyperellipti
 
onne
ted 
omponents and the ex-
eptionnal ones. In this 
ase, there is no simple way to de
ide if twogeneralized permutations are in the same Rauzy 
lass.
• An analogous of the 
ylindri
al permutations exists in ea
hRauzy 
lasses of generalized permutations, but there is no ex-pli
it 
ombinatorial way to �nd it starting from a given gener-alized permutation.
• For the four ex
eptionnal strata, the only known proof of theirnon
onne
tedness is the expli
it 
omputation of the 
orrespond-ing (extended) Rauzy 
lasses.For related work, see the paper of Fi
kens
her [Fi
11℄.Referen
es[AGY06℄ A. Avila, S. Gouëzel and J.-C. Yo

oz � �Exponential mixing forthe Tei
hmüller �ow �, Publ. Math. IHES 104 (2006), pp. 143�211.[AV07℄ A. Avila, andM. Viana � �Simpli
ity of Lyapunov spe
tra: proof of theZori
h-Kontsevi
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