
CLASSIFICATION OF RAUZY CLASSES IN THEMODULI SPACE OF ABELIAN AND QUADRATICDIFFERENTIALSCORENTIN BOISSYAbstrat. We study relations between Rauzy lasses oming froman interval exhange map and the orresponding onneted om-ponents of strata of the moduli spae of Abelian di�erentials. Thisgives a riterion to deide whether two permutations are in thesame Rauzy lass or not, without atually omputing them. Weprove a similar result for Rauzy lasses orresponding to quadratidi�erentials. IntrodutionRauzy indution was �rst introdued as a tool to study the dynamisof interval exhange transformations [Rau79℄. These mappings appearnaturally as �rst return maps on a transverse segment, of the dire-tional �ow on a translation surfae. The Veeh onstrution presentstranslation surfaes as suspensions over interval exhange maps, andextends the Rauzy indution to these suspensions [Vee82℄. This pro-vides a powerful tool in the study of the Teihmüller geodesi �ow andwas widely studied in the last 30 years.An interval exhange map is enoded by a permutation and a ontin-uous datum. A Rauzy lass is a minimal subset of irreduible permuta-tions whih is invariant by the two ombinatorial operations assoiatedto the Rauzy indution. The Veeh onstrution enables us to asso-iate to a Rauzy lass a onneted omponent of the moduli spaeof Abelian di�erentials with presribed singularities. Suh onnetedomponents are in one-to-one orrespondene with the extended Rauzylasses, whih are unions of Rauzy lasses and are de�ned by addinga third ombinatorial operation. Historially, these extended Rauzylasses were used to prove the nononnetedness of some strata in lowDate: January 23, 2012.2000 Mathematis Subjet Classi�ation. Primary: 37E05. Seondary: 37D40.Key words and phrases. Interval exhange maps, Linear involutions, Rauzylasses, Quadrati di�erentials, Moduli spaes.1



2 CORENTIN BOISSYgenera [Vee90℄, before Kontsevih and Zorih performed the ompletelassi�ation [KZ03℄.One an also onsider �rst return maps of the vertial foliation ontransverse segments for �at surfaes de�ned by a quadrati di�erentialon a Riemann surfae. We obtain a partiular ase of linear invo-lutions, that were de�ned by Danthony and Nogueira [DN90℄ as �rstreturn maps of measured foliations on surfaes. In this paper, we speakonly of linear involutions orresponding to quadrati di�erentials. Asbefore, a linear involution is enoded by a ombinatorial datum, thegeneralized permutation and a ontinuous datum. For linear involu-tions with irreduible generalized permutations, we an generalize theVeeh onstrution and Rauzy lasses [BL09℄.In this paper, we give a preise relation between Rauzy lasses andthe onneted omponents of the moduli spae of Abelian or quadratidi�erentials. We prove the following:Theorem A. Let Q be a stratum in the moduli spae of Abelian dif-ferentials or in the moduli spae of quadrati di�erentials. Let r be thenumber of distint orders of singularities of an element of Q. For anyonneted omponent C of Q, there are exatly r distint Rauzy lassesthat orrespond to this onneted omponent.This gives a positive answer to Conjeture 2 stated in [Zor08℄. Notethat in the previous theorem, r is not the number of singularities: forinstane, in the stratum that onsists of translation surfaes with twosingularities of degree 1 (i.e. the stratum H(1, 1)), we have r = 1.Theorem A will be obtained as a diret ombination of Proposi-tions 3.4 and 4.1 for the ase of Abelian di�erentials, and Proposi-tions 3.4 and 4.4 for the ase of quadrati di�erentials.A �at surfae obtained from a permutation or a generalized permuta-tion π using the Veeh onstrution admits a marked singularity. Theorder of this singularity α(π) is preserved by the Rauzy indution, andwe an therefore assoiate to a Rauzy lass an integer, whih is theorder of a singularity in the orresponding stratum. Hene, a orollaryof Theorem A is the following riteria:Corollary B. Let π1 and π2 be two irreduible permutations or gen-eralized permutations. They are in the same Rauzy lass if and only ifthey orrespond to the same onneted omponent and α(π1) = α(π2).See Appendix A for further omments onerning this orollary.



RAUZY CLASSES 3Reader's guide. In setion 1, we reall the de�nition and some fatsabout �at surfaes. In partiular, we present the �breaking up singu-larities" surgeries on �at surfaes that will be an essential tool for theproof of the main result. Note that the surgery presented in setion 1.6is more tehnial and an be skipped in a �rst reading.In setion 2, we reall the de�nitions about interval exhange, linearinvolutions, and Rauzy lasses.In setion 3, we show that there is a one-to-one orrespondene be-tween Rauzy lasses and onneted omponents of the moduli spae of�at surfaes with a marked singularity. This is Proposition 3.4 .In setion 4, we lassify the onneted omponents of the moduli spaeof �at surfaes with a marked singularity. This will orrespond toProposition 4.1 for Abelian di�erential and Proposition 4.4 for qua-drati di�erentials. Then, Theorem A will follow diretly from themain results of Setion 3 and Setion 4.Aknowledgments. I thank Anton Zorih, Pasal Hubert and ErwanLanneau for enouraging me to write this paper, and for many dis-ussions. I am gratefull to the Max-Plank-Institut at Bonn for itshospitality. I also thank the anonymous referee for omments and re-marks. 1. Flat surfaes1.1. De�nition. A �at surfae is a real, ompat, onneted surfaeof genus g equipped with a �at metri with isolated onial singulari-ties and suh that the linear holonomy group belongs to Z/2Z. Hereholonomy means that the parallel transport of a vetor along any loopbrings the vetor bak to itself or to its opposite. This implies that allone angles are integer multiples of π. We also �x a hoie of a parallelline �eld in the omplement of the onial singularities. This parallelline �eld will be usually referred as the vertial diretion. Equivalentlya �at surfae is a triple (S,U ,Σ) suh that S is a topologial ompatonneted surfae, Σ is a �nite subset of S (whose elements are alledsingularities) and U = {(Ui, zi)} is an atlas of S \ Σ suh that thetransition maps zj ◦ z−1
i : zi(Ui ∩ Uj) → zj(Ui ∩ Uj) are translations orhalf-turns: zi = ±zj + c, and for eah s ∈ Σ, there is a neighborhoodof s isometri to a Eulidean one. Therefore, we get a quadrati dif-ferential de�ned loally in the oordinates zi by the formula q = dz2i .This quadrati di�erential extends to the points of Σ to zeroes, simplepoles or marked points (see [MT02℄). Slightly abusing voabulary, apole will be referred to as a zero of order −1, and a marked point will



4 CORENTIN BOISSYbe referred to as a zero of order 0. Then, a zero of order k ≥ −1orresponds to a onial singularity of angle (k + 2)π.Observe that the linear holonomy given by the �at metri is trivialif and only if there exists a sub-atlas suh that all transition funtionsare translations or equivalently if the quadrati di�erential q is theglobal square of an Abelian di�erential. We will then say that S is atranslation surfae. In this ase, we an hoose a parallel vetor �eldinstead of a parallel line �eld, whih is equivalent in �xing a squareroot ω of q. Also, a zero of degree k ≥ 0 of ω orresponds to a onialsingularity of angle (k + 1)2π.When a �at surfae is not a translation surfae, i.e. if the orrespond-ing quadrati di�erential is not the square of an Abelian di�erential, weoftently use the terminology half-translation surfaes, sine the hangeof oordinates are either translations or half-turns.Following a onvention of Masur and Zorih (see [MZ08℄, setion 5.2),we will speak of the degree of a singularity in a translation surfae,and of the order of a singularity in half-translation surfae, sine oneof them refer to a zero of an Abelian di�erential and the other to aquadrati di�erential.Example 1.1. Consider a polygon whose sides ome by pairs, and suhthat, for eah pair, the orresponding sides are parallel and have thesame length. We identify eah pair of sides by a translation or a half-turn so that it preserves the orientation of the polygon. We obtain a �atsurfae, whih is a translation surfae if and only if all the identi�ationsare done by translation. One an show that any �at surfae an berepresented by suh a polygon (see [Boi08℄, Setion 2).A saddle onnetion is a geodesi segment (or geodesi loop) joiningtwo singularities (or a singularity to itself) with no singularities in itsinterior. Even if q is not globally a square of an Abelian di�erential, wean �nd a square root of q along the interior of any saddle onnetion.Integrating q along the saddle onnetion we get a omplex number(de�ned up to multipliation by −1). Considered as a planar vetor,this omplex number represents the a�ne holonomy vetor along thesaddle onnetion. In partiular, its Eulidean length is the modulusof its holonomy vetor.1.2. Moduli spaes. For g ≥ 0, we de�ne the moduli spae of qua-drati di�erentials Qg as the moduli spae of pairs (X, q) where X is agenus g (ompat, onneted) Riemann surfae and q a non-zero qua-drati di�erential X . The term moduli spae means that we identifythe points (X, q) and (X ′, q′) if there exists an analyti isomorphism



RAUZY CLASSES 5
f : X → X ′ suh that f ∗q′ = q. Equivalently, in terms of polygonrepresentations, two �at surfaes are identi�ed in the moduli spae ofquadrati di�erentials if and only if the orresponding polygons anbe obtained from eah other by some �nite number of �utting andgluing�, preserving the identi�ations. The moduli spae of Abeliandi�erentials Hg, for g ≥ 1 is de�ned in a analogous way.We an assoiate to a quadrati di�erential the set with multiplii-ties {kα1

1 , . . . , kαr
r } of orders {k1, . . . , kr} of its poles and zeros, where

ki 6= kj for i 6= j, and ki ≥ −1 and αi ≥ 1 is the multipliity of
ki. The Gauss�Bonnet formula asserts that ∑

i αiki = 4g − 4. Con-versely, if we �x a set with multipliities {kα1

1 , . . . , kαr
r } of integers,greater than or equal to −1 satisfying the previous equality, we de-note by Q(kα1

1 , . . . , kαr
r ) the moduli spae of quadrati di�erentialswhih are not globally squares of Abelian di�erentials, and whih have

{kα1

1 , . . . , kαr
r } as orders of poles and zeros. By a result of Masurand Smilie [MS93℄, this spae is nonempty exept for Q(∅), Q(3, 1),

Q(4) and Q(−1, 1). In the nonempty ase, it is well known that
Q(kα1

1 , . . . , kαr
r ) is a omplex analyti orbifold, whih is usually alled astratum of the moduli spae of quadrati di�erentials on a Riemann sur-fae of genus g. In a similar way, we denote byH(nα1

1 , . . . , nαr
r ) the mod-uli spae of Abelian di�erentials having zeroes of degree {nα1

1 , . . . , nαr
r },where ni ≥ 0 and ∑r

i=1 αini = 2g − 2.There is a natural ation of SL2(R) on eah strata: let (Ui, φi)i∈Ibe an atlas of �at oordinates of S, with Ui open subset of S and
φi(Ui) ⊂ R2. An atlas of A.S is given by (Ui, A ◦ φi)i∈I . The ation ofthe diagonal subgroup of SL2(R) is alled the Teihmüller geodesi �ow.In order to speify notations, we denote by gt the matrix (

et/2 0
0 e−t/2

).Loal oordinates for a stratum of Abelian di�erentials are obtainedby integrating the holomorphi 1�form along a basis of the relativehomology H1(S,Σ;Z), where Σ denotes the set of onial singularitiesof S. Equivalently, this means that loal oordinates are de�ned by therelative ohomology H1(S,Σ;C).Loal oordinates in a stratum of quadrati di�erentials are obtainedin the following way (see for instane [DH75℄): one an naturally as-soiate to a quadrati di�erential (S, q) ∈ Q(kα1

1 , . . . , kαr
r ) a doubleover p : Ŝ → S suh that p∗q is the square of an Abelian di�eren-tial ω. Let Σ̂ = p−1(Σ). The surfae Ŝ admits a natural involution

τ , that indues on the relative homology H1(Ŝ, Σ̂;Z) an involution τ ∗.It deomposes H1(Ŝ, Σ̂;Z) into an invariant subspae H+
1 (Ŝ, Σ̂;Z) andan anti-invariant subspae H−

1 (Ŝ, Σ̂;Z). Then loal oordinates for a



6 CORENTIN BOISSYstratum of quadrati di�erential are obtained by integrating ω along abasis of H−
1 (Ŝ, Σ̂;Z).1.3. Conneted omponents of the moduli spae of Abeliandi�erentials. Here, we reall the lassi�ation of the onneted om-ponents of the strata of the moduli spae of Abelian di�erentials, dueto Kontsevih and Zorih [KZ03℄.De�nition 1.2. A �at surfae S is alled hyperellipti if there existsan orientation preserving involution τ whih preserves the �at metrisuh that S/τ is a (�at) sphere.Sometimes, a onneted omponent of a stratum onsists only ofhyperellipti �at surfaes. In this situation it is alled a hyperelliptionneted omponent.Let γ be a smooth urve in S that does not ontains any singularity.We parametrize γ by ar length. In a translation surfae, there is anatural identi�ation between C and the tangent spae of a regularpoint. Hene, one an identify γ′ to a losed path in the unit irleof C, e.g. using the Gauss map, and ompute its index that we denoteby Ind(γ).De�nition 1.3 (Kontsevih-Zorih). Let (αi, βi)i∈{1,...,g} be a olletionof paths representing a sympleti basis for the homologyH1(S;Z). Wede�ne the parity of the spin struture of S to be:

g∑

i=1

(Ind(αi) + 1) (Ind(βi) + 1) mod 2.If all the singularities of the surfae are of even degree, one an showthat the parity of the spin struture does not depend on the hoieof the paths and is an invariant of the onneted omponent of theorresponding stratum. Now we an state the lassi�ation of theseonneted omponents.Theorem (Kontsevih-Zorih). Let H = H(kα1

1 , . . . , kαr
r ) be a stratumin the moduli spae of Abelian di�erentials, with ki 6= kj for i 6= j, andwith ki > 0 and αi > 0 for all i. Let g be the orresponding genus. Thestratum H admits one, two, or three onneted omponents aordingto the following rules:(1) If H = H(2g − 2) or H(g − 1, g − 1), then H ontains onehyperellipti onneted omponent. If g = 2, this omponentis the whole stratum, and if g = 3, there is exatly one otheronneted omponent.



RAUZY CLASSES 7(2) If g ≥ 4 and if k1, . . . , kr are even, then there are exatly twoonneted omponents of H, with di�erent parity of spin stru-tures, and that are not hyperellipti omponents.(3) In any other ase, the stratum H is onneted.Note that in the previous statement, the ases 1 and 2 an oursimultaneously. For instane, the stratum H(6) has three onnetedomponents: one hyperellipti, and two others that are distinguishedby the parities of the orresponding spin strutures.Remark 1.4. The theorem above is given for strata with no markedpoints. The lassi�ation for strata with marked points, i.e. where weauthorize ki = 0, is dedued in an obvious way.1.4. Conneted omponents of the moduli spae of quadratidi�erentials. In this setion, we reall the lassi�ation of onnetedomponents of the strata in the moduli spae of quadrati di�erentials,that will be needed (see [Lan04, Lan08℄).Theorem (E. Lanneau). The hyperellipti onneted omponents aregiven by the following list:(1) The subset of surfaes in Q(k1, k1, k2, k2), that are a double ov-ering of a surfae in Q(k1, k2,−1s) rami�ed over s poles. Here
k1 and k2 are odd, k1 ≥ −1 and k2 ≥ 1, and k1 + k2 − s = −4.(2) The subset of surfaes in Q(k1, k1, 2k2 + 2), that are a doubleovering of a surfae in Q(k1, k2,−1s) rami�ed over s poles andover the singularity of order k2. Here k1 is odd and k2 is even,
k1 ≥ −1 and k2 ≥ 0, and k1 + k2 − s = −4.(3) The subset of surfaes in Q(2k1 + 2, 2k2 + 2), that are a dou-ble overing of a surfae in Q(k1, k2,−1s) rami�ed over all thesingularities. Here k1 and k2 are even, k1 ≥ 0 and k2 ≥ 0, and
k1 + k2 − s = −4.Theorem (E. Lanneau). In the moduli spae of quadrati di�erentials,the nononneted strata have two onneted omponents and are in thefollowing list (up to marked points):

• The strata that ontain a hyperellipti onneted omponent, ex-ept the following ones, that are onneted: Q(−1,−1,−1,−1),
Q(−1,−1, 1, 1), Q(−1,−1, 2), Q(1, 1, 1, 1), Q(1, 1, 2) andQ(2, 2).

• The exeptionnal strata Q(−1, 9), Q(−1, 3, 6), andQ(−1, 3, 3, 3)and Q(12).1.5. Breaking up a singularity: loal onstrution. Here we de-sribe a surgery, introdued by Eskin, Masur and Zorih (see [EMZ03℄,Setion 8.1) for Abelian di�erentials, that �break up� a singularity of



8 CORENTIN BOISSYdegree k1 + k2 ≥ 2 into two singularities of degree k1 ≥ 1 and k2 ≥ 1respetively. This surgery is loal, sine the metri is modi�ed only ina neighborhood of the singularity of degree k1 + k2. The ase k1 = 0or k2 = 0 is trivial.PSfrag replaements
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Figure 1. Breaking up a zero, after Eskin, Masur and ZorihWe start from a singularity of degree k1 + k2. A neighborhood ofsuh singularity is obtained by gluing (2k1 + 2k2 + 2) Eulidean halfdisks in a yli order. The singularity breaking proedure onsists inhanging ontinuously the way these half disks are glued together, as inFigure 1. This breaks the singularity of degree k1+k2 into singularitiesof degree k1 and k2 respetively, and with a small saddle onnetionjoining them.Note that sine the previous proedure purely loal, it is also validfor quadrati di�erentials, as soon as we break up a singularity of evenorder into two singularities of even order. One an also in a similarway break up a singularity of odd order into a pair of singularities (see[MZ08℄ for instane) although we will not need that ase. One anshow that it is not possible to break a singularity of even order intotwo singularities of odd order by a loal surgery. We need for this anonloal onstrution.1.6. Breaking up a singularity: nonloal onstrutions. Herewe desribe a surgery, introdued by Masur and Zorih (see [MZ08℄,Setion 6) for quadrati di�erentials, that �break up� a singularity oforder k1 + k2 into two singularities of order k1 and k2 respetively. Itis valid for any k1, k2 ≥ −1, with (k1, k2) 6= (−1,−1).We start from a surfae S0 with a singularity of order k1 + k2, andother singularities of order n1, . . . , ns. Consider an angular setor ofangle π between two onseutive vertial separatries of P . We denoteby I this setor and by II the image of I by a rotation of angle (k1+1)π,



RAUZY CLASSES 9and of enter P . Then, hoose a losed path ν transverse to the vertialfoliation that starts from the singularity P , setor I and ends at P ,setor II. We also ask that the path ν does not interset any singularityexept P in its end points. Then, we ut the surfae along this path andpaste in a �urvilinear annulus� with two opposite sides isometri to ν,and with vertial height of length ε (see Figure 2). We get a surfaewith singularities of order k1, k2, n1, . . . , ns, with the same holonomyas S0, and with a simple saddle onnetion γ joining the two newlyreated singularities of order k1 and k2 . We denote this �at surfae by
S = Ψ(S0, ν, ε). Similarly, we an perform the same onstrution, usingthe foliation Fθ of angle θ, and a path ν transverse to the foliation Fθ.We get a surfae Ψθ(S0, ν, ε).Note that giving an orientation to ν gives an orientation to γ in thefollowing way: ν de�nes a element [ν] in the homotopy group of S\Σ,where Σ is the set of onial singularities of S. The intersetion numberbetween γ and [ν] is ±1 depending on the orientation of γ. We then �xthe orientation of γ suh that this intersetion number is one. Then,we an onsider S = Ψ(S0, ν, ε) as an element of the moduli spae ofquadrati di�erentials with a marked singularity by saying that themarked point of S is the starting point of γ.This onstrution was generalized by the author to polygonal urvesin [Boi08℄, setion 3. Suh urve must still be transverse to the vertialfoliation in a neighborhood of the singularity P and must have non-trivial linear holonomy (if k is odd). If ν is suh path, then for ε smallenough, we get a surfae S = Ψ(S0, ν, ε) as desribed in the previousparagraph (by a surgery performed in a neighborhood of ν). This newonstrution is more �exible and we have the following fats.(1) Ψ(S0, ν, ε) depends ontinuously on ε and on S0.(2) If γ ⊂ S is a vertial saddle onnetion joining two di�erent sin-gularities and is very small ompared to any other saddle on-netion of S, then there exists a �at surfae S0 and ν0 ⊂ S0 suhthat S = Ψ(S0, ν0, ε) (see [Boi08℄, proof of Proposition 4.6).(3) The �at surfae Ψ(S0, ν0, ε) does not hange under small per-turbations of ν0 (see [Boi08℄, Corollary 3.5).(4) Let ν1 be another path on S0 that does not interset any sin-gularities exept P and starts and ends on setors I, II of Prespetively. There exists S1 in a neighborhood of S0 suhthat Ψ(S0, ν1, ε) = Ψ(S1, ν0, ε), and S1 an be hosen arbitrar-ily lose to S0 as soon as ε is small enough ([Boi08℄, proof ofLemma 4.5).
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′
d−1} whih is anisometry and preserves the natural orientation of X . The relation be-tween translation surfaes and interval exhange transformations hasbeen widely studied in the last 25 years (see [Kea75, Kat80, Vee82,Ma82, MMY05, AGY06, AV07℄ et. . . ).We enode an interval exhange map T in the following way: the set

X\{x1, . . . , xd−1} is a union of d intervals that we label by {1, . . . , d}from the left to the right. The length of these intervals is then a vetor
λ with positive entries. Applying the map T , the interval number i ismapped to the interval number π(i). This de�nes a permutation π of
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{1, . . . , d}. The vetor λ is alled the ontinuous datum of T and π isalled the ombinatorial datum. We usually represent π by a table oftwo lines:
π =

(
1 2 . . . d

π−1(1) π−1(2) . . . π−1(d)

)
.The vertial foliation of a translation surfae is a oriented measuredfoliation on a smooth oriented surfae. A generalization of intervalexhange maps for any measured foliation on a surfae (oriented or not)was introdued by Danthony and Nogueira [DN90℄ as linear involution.The linear involutions orresponding to oriented �at surfaes with Z/2Zlinear holonomy were studied in detail by Lanneau and the author in[BL09℄.Let X ⊂ S be an open horizontal segment. We hoose on X anorientation. This is equivalent to �x a �left end� on X , or to �x a�positive vertial diretion� in a neighborhood ofX . A linear involutionmust enode the suessive intersetions of X with a vertial geodesi.It is done in the following way: we say that we are in X × {0} if thegeodesi intersets X in the positive diretion and in X × {1} in theomplementary ase. Then, the �rst return map with this additionaldiretional information gives a map from X × {0, 1} to itself.De�nition 2.1. Let f be the involution ofX×{0, 1} given by f(x, ε) =

(x, 1−ε). A linear involution is a map T , from X×{0, 1} into itself, ofthe form f◦T̃ , where T̃ is an involution ofX×{0, 1} without �xed point,ontinuous exept on a �nite set of points ΣT , and whih preserves theLebesgue measure. In this paper we will only onsider linear involutionswith the following additional ondition: the derivative of T̃ is −1 at
(x, ε) if (x, ε) and T̃ (x, ε) belong to the same onneted omponent,and +1 otherwise.On a �at surfae, the �rst return map of the vertial foliation on ahorizontal segment de�nes a linear involution. The fat that the un-derlying �at surfae is oriented orresponds preisely to our additional
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ondition. A linear involution suh that T (X × {0}) = X × {0} (upto a �nite subset) orresponds to an interval exhange map T0, by re-striting T on X × {0} (note that the restrition of T on X × {1} isnaturally identi�ed with T−1
0 ). Therefore, we an identify the set ofinterval exhange maps with a subset of the linear involutions.



RAUZY CLASSES 13A linear involution is enoded by a ombinatorial datum alled gen-eralized permutation and by ontinuous data. This is done in the fol-lowing way: X × {0}\ΣT is a union of l open intervals X1 ⊔ . . . ⊔Xl,where we assume by onvention that Xi is the interval at the plae i,when ounted from the left to the right. Similarly, X × {1}\ΣT is aunion of m open intervals Xl+1 ⊔ . . . ⊔ Xl+m. For all i, the image of
Xi by the map T̃ is a interval Xj, with i 6= j, hene T̃ indues aninvolution without �xed points on the set {1, . . . , l + m}. To enodethis involution, we attribute to eah interval Xi a symbol suh that Xiand T̃ (Xi) share the same symbol. Choosing the set of symbol to be
{1, . . . , d}, we get a two-to-one map π : {1, . . . , l + m} → {1, . . . , d},with d = l+m

2
. Note that π is not uniquely de�ned by T sine we anompose it on the left by any permutation of {1, . . . , d}.De�nition 2.2. A generalized permutation of type (l, m), with l+m =

2d, is a two-to-one map π : {1, . . . , 2d} → {1, . . . , d}. It is alledredued if for eah k, the �rst ourrene in {1, . . . , l+m} of the label
k ∈ {1, . . . , d} is before the �rst ourrene of any label k′ > k.We will usually represent suh generalized permutation by a table oftwo lines of symbols, with eah symbol appearing exatly two times.

π =

(
π(1) . . . π(l)

π(l + 1) . . . π(l +m)

)
.In the table representation of a generalized permutation, a symbolmight appear two times in a line, and zero time in the other line.Therefore, we do not neessarily have l = m. A linear involution de�nesa redued generalized permutation by the previous onstrution in aunique way.Example 2.3. The redued generalized permutation π assoiated to thelinear involution of Figure 4 is:

π =

(
1 2 3 2 4
4 5 1 3 5

)
.Remark 2.4. As we have seen before, an interval exhange map anbe seen as a linear involution. Also, the table representations of theorresponding ombinatorial data are the same. In the sequel, thede�nitions and statements that we give are valid for linear involutionsand for interval exhange maps.2.2. Rauzy indution and Rauzy lasses. When T : X → X isa interval exhange transformation, the �rst return map of T on asubinterval X ′ ⊂ X is still an interval exhange map. The image of Tby the Rauzy indution R is the �rst return map of T on the biggest



14 CORENTIN BOISSYsubinterval X ′ ( X whih has the same left end as X , and suh that
R(T ) has the same number of intervals as T (see [Vee82, MMY05℄).Similarly, we an de�ne Rauzy indution for linear involutions byonsidering �rst return maps on X ′ × {0, 1}, when X ′ ⊂ X (see Dan-thony and Nogueira [DN90℄).Let T = (π, λ) be a linear involution on X and denote by (l, m) thetype of π. We identify X with the interval (0, L). If λπ(l) 6= λπ(l+m),then the Rauzy indued R(T ) of T is the linear involution obtained bythe �rst return map of T to

(
0,max(L− λπ(l), L− λπ(l+m))

)
× {0, 1}.The ombinatorial data of the new linear involution depends only on theombinatorial data of T and whether λπ(l) > λπ(l+m) or λπ(l) < λπ(l+m).We say that T has type 0 or type 1 respetively. The orrespondingombinatorial operations are denoted by R0 and R1 orrespondingly.Note that if π is a given generalized permutation, the subsets {T =

(π, λ), λπ(l) > λπ(l+m)} or {T = (π, λ), λπ(l) < λπ(l+m)} an be emptybeause π(l) = π(l+m) or beause the nontrivial relation ∑l
i=1 λπ(i) =∑l+m

j=l+1 λπ(j) that must be ful�lled by λ.Let us �x some terminology: given k ∈ {1, . . . , l + m}, the otherourrene of the symbol π(k) is the unique integer k′ ∈ {1, . . . , l +
m}, distint from k, suh that π(k′) = π(k). In order to desribethe ombinatorial Rauzy operations R0 and R1, we �rst de�ne twointermediary maps R̃0, R̃1:(1) We de�ne R̃0 in the following way:

• If the other ourrene k of the symbol π(l) is in {l+1, . . . , l+

m− 1}, then we de�ne R̃0(π) to be of type (l, m) obtained byremoving the symbol π(l + m) from the ourrene l +m andputting it at the ourrene k + 1, between the symbols π(k)and π(k + 1).
• If the other ourrene k of the symbol π(l) is in {1, . . . , l−1},and if there exists another symbol α, whose both ourrenesare in {l + 1, . . . , l +m− 1}, then we we de�ne R̃0(π) to be oftype (l + 1, m− 1) obtained by removing the symbol π(l +m)from the ourrene l +m and putting it at the ourrene k,between the symbols π(k−1) and π(k) (if k = 1, by onventionthe symbol π(l+m) is put on the left of the �rst symbol π(1)).
• Otherwise R̃0π is not de�ned.(2) The map R̃1 is obtained by onjugating R̃0 with the transforma-tion that interhanges the two lines in the table representation.



RAUZY CLASSES 15Then, R0(π) (resp. R1(π)) is obtained by renumbering R̃0(π) (resp.
R̃1(π)) to get a redued generalized permutation. For another de�ni-tion of R0 and R1 in terms of the map π, we refer to [BL09℄.Example 2.5. Let us onsider the generalized permutation π = ( 1 2 3 4 3

2 4 5 5 1 ).We have
R̃0(π) =

(
1 2 1 3 4 3
2 4 5 5

)
= R0(π),and

R̃1(π) =

(
1 3 2 3 4
2 4 5 5 1

) so R1(π) =

(
1 2 3 2 4
3 4 5 5 1

)
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∑

j≤i ζπ(j)) > 0(3) ∀1 ≤ i ≤ m− 1 Im(
∑

1≤j≤i ζπ(l+j)) < 0(4) ∑
1≤i≤l ζπ(i) =

∑
1≤j≤m ζπ(l+j).The olletion ζ = {ζi}i∈{1,...,d} is alled a suspension datum over T .The existene of a suspension datum depends only on π, hene we willsay that π is irreduible if (π, λ) admits a suspension data.We refer to [BL09℄ (Setion 3) for a ombinatorial riterion of ir-reduibility for the ase when π does not orrespond to an intervalexhange map.This notion of irreduibility is relevant when we onsider Rauzylasses for generalized permutations. Indeed, if π is irreduible andif π′ is in the Rauzy lass generated by π (i.e. the set of desendants of

π after iterating the ombinatorial Rauzy indutions), then π′ is irre-duible and π is in the Rauzy lass generated by π′. Therefore, beingin the same Rauzy lass is then an equivalent relation on the set ofirreduible generalized permutations. However, this is not neessarilytrue if we onsider generalized permutations that are not neessarilyirreduible: indeed, there exists �nonirreduible� generalized permu-tations whose assoiated Rauzy lass ontains irreduible generalizedpermutations (see [BL09℄, setion 5 and Appendix A).
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18 CORENTIN BOISSYreturn map of the vertial geodesi �ow. For the ase of quadratidi�erentials, a proof when the surfae has no vertial saddle onnetionsan be found in [Boi08℄ (Proposition 2.2.). The proof in our ase issimilar. We give a sketh and refer to [Boi08℄ for details.Let T = (π, λ) be the linear involution assoiated toX . Up to a �nitesubset ΣT , X×{0, 1} is a �nite union of open subsetsX1 . . . , Xl+m, suhthat T|Xi
is a translation or a half-turn. Let k 6= k′ be in {1, . . . , l+m}suh that π(k) = π(k′). There is an embedded retangle R whosehorizontal edges are identi�ed with Xk and Xk′. A point in X annotbe in the interior of R sine T is the �rst return map on X of thevertial foliation. Assume that a vertial side of R ontains at leasttwo singularities, then it ontains a vertial saddle onnetion, whihtherefore intersets X . Sine X is an open interval, a subset of X isontained in the interior of R, whih ontradits the previous assertion.With this additional argument, one an hek that the onstrutiongiven in [Boi08℄, Proposition 2.2 de�nes the suspension datum ζ in asimilar way.

�The Rauzy indution on interval exhange maps or on linear invo-lutions admits a natural extension on the spae of suspension data.This is alled the Rauzy�Veeh indution. Let T = (π, λ) be a linearinvolution and let ζ be a suspension data over T . We de�ne R̃(π, ζ) asfollows.
• If T = (π, λ) has type 0, then R̃(π, ζ) = (R̃0π, ζ̃), with ζ̃k = ζkif k 6= π(l) and ζ̃π(l) = ζπ(l) − ζπ(l+m).
• If T = (π, λ) has type 1, then R̃(π, ζ) = (R̃π, ζ̃), with ζ̃k = ζkif k 6= π(l +m) and ζ̃π(l+m) = ζπ(l+m) − ζπ(l).Reall that the generalized permutations R̃0(π), R̃1(π) are not ne-essarily redued. Hene, after renumerating R̃(π, ζ) in order to get aredued generalized permuation, we get the pair R(π, ζ).Remark 2.11. The pair R(π, ζ) = (π′, ζ ′) de�nes a suspension datumover R(T ). If we denote (S,X) = Z(π, ζ) and (S ′, X ′) = Z(π′, ζ ′), thetwo �at surfaes S and S ′ are naturally isometri sine one an obtainone surfae from the other by �utting and pasting� (see Figure 8).Also, under this identi�ation, we have X ′ ⊂ X .Let π be a permutation or a generalized permutation and let ζ bea suspension data. Sine the set of suspension data assoiated to π isonneted (in fat onvex) and the zippered retangles onstrution isontinuous with respet to the variations of ζ , then all surfaes obtained
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TC = {(π, ζ), C(π) = C, ζ is a suspension data for π},and HC the quotient of this set by the Rauzy�Veeh indution. Thefollowing proposition is lear.Proposition 2.12. The set of onneted omponents of HC is in one-to-one orrespondene with the set of Rauzy lasses C orrespondingto a onneted omponent of the moduli spae of Abelian or quadratidi�erentials.3. Rauzy lasses and overing of a stratumAording to remark 2.11, the zippered retangles onstrution pro-vides a natural map Ẑ from HC to the rami�ed overing Ĉ of C, ob-tained by onsidering the pairs (S, l), where S ∈ C and l is a horizontalseparatrix adjaent to a singularity of S.Lemma 3.1. The map Ẑ is a homeomorphism on its image.Proof. First, let S be suh that there exists (π, ζ) ∈ TC with Z(π, ζ) =

(S, ∗).We laim that ζ , with the ondition∑l
i=1 ζπ(i) =

∑l+m
j=l+1 ζπ(j), de�nesloal oordinates of the ambient stratum. Indeed, in the Abelian ase,the sides of the polygon de�ned by the parameters ζi form a basis ofthe relative homology, and integrating ω along this basis gives preisely

ζ1, . . . , ζd. In the quadrati ase, one must onsider the natural doubleover Ŝ → S , and it is easy to hek that integrating the one form



20 CORENTIN BOISSYorresponding to Ŝ along a basis of homology gives 2ζ . This proves thelaim. This implies that Z is open, and so is Ẑ.Now we show that Ẑ is injetive. The pair (S, l) ∈ Ĉ is in the imageof Ẑ if and only if there exists a segment X ⊂ l, that satis�es thehypothesis of Lemma 2.9. For suh segment, there exists a unique (π, ζ)suh that Z(π, ζ) = (S,X). Now let X ′ be another suh segment, thenwe must have X ⊂ X ′ or X ′ ⊂ X , and X ′ de�nes a new suspensiondata (π′, ζ ′). We assume for instane that X ′ ⊂ X . We laim thatthere exists an integer n ≥ 0 suh that Rn(π, ζ) = (π′, ζ ′). Assumingthe laim, we an onlude that there exists a unique lass [(π, ζ)] ∈ HCin the preimage of (S, l) by the map Ẑ.When S is a translation surfae without vertial saddle onnetions,the laim is Proposition 9.1 of [Vee82℄. We prove the laim in thegeneral ase. Let us onsider the (possibly �nite) sequene of iteratesof (π, ζ) by the Rauzy indution. We denote Rn(π, ζ) = (π(n), ζ (n)) and
T (n) the orresponding linear involution. We identify the interval X(n)(resp. X ′) with the interval ]0, x(n)[ (resp. ]0, x′[) of R. Three ases arepossible.(1) There exists n > 0 suh that x(n) < x′. We denote by n0 thebiggest integer suh that x(n0) > x′. By de�nition of X ′, there isa vertial geodesi γ starting from x′ and that hits a singularitybefore interseting the interval ]0, x′[. We laim that it doesn'tinterset the interval ]x′, x(n0)[. Indeed, if γ intersets ]x′, x(n0)[before hitting a singularity, then we onsider x′′ ∈]x′, x(n0)[ therightmost intersetion point. We must have x′′ ≤ x(n0+1) whihontradits the hypothesis on n0.It follows that T (n0) is not de�ned on (x′, ε), for ε orre-sponding to the diretion of γ. We know by hypothesis that

R(π(n0), ζ (n0)) exists, and by de�nition of the Rauzy indution,we have x(n0+1) = x′. Hene, (π′, ζ ′) = R(n0+1)(π, ζ).(2) There exists n suh that x(n) > x′ and R(π(n), ζ (n)) is notde�ned. This means that there exists x(n+1) ≥ x′ suh that
T (n)(x(n+1), 0) and T (n)(x(n+1), 1) are not de�ned. Then thereis a saddle onnetion γ that intersets X(n) only in the point
x(n+1). Hene, X ′ =]0, x′[ does not interset γ, ontraditingthe hypothesis on X ′.(3) The sequene (π(n), ζ (n)) is in�nite and for all n, x(n) > x′. Thesequene (x(n))n is dereasing and bounded from below. Heneit onverges to a limit x(∞) whih is greater than, or equal to x′.Aording to the proof of Proposition 4.2 in [BL09℄ T (n)(x(∞), 0)



RAUZY CLASSES 21and T (n)(x(∞), 1) are not de�ned for n large enough. Then, thereis a saddle onnetion γ that interset X(n) only in the point
x(∞). Hene, X ′ =]0, x′[ does not interset γ, ontraditing thehypothesis on X ′.

�Proposition 3.2. The omplement of Ẑ(HC) is ontained in a subsetof Ĉ whih is a ountable union of real analyti odimension 2 subsets.Proof. If S has no horizontal saddle onnetions, any horizontal geo-desi is dense. Hene, a horizontal segment X adjaent to a singularitywill interset all the vertial saddle onnetions, as soon as this segmentis long enough and by Lemma 2.9, the pair (S,X) is in the image of Zfor a well hosen X . We an also apply Lemma 2.9 if S has no vertialsaddle onnetion.Now if (S, l) ∈ Ĉ is suh that S has no vertial or no horizontal saddleonnetions, then (S, l) is in the image of Ẑ. Hene, the omplementof the image of Ẑ is ontained in the set of elements in Ĉ whose or-responding �at surfae has at least a vertial and a horizontal saddleonnetions. This set is a ountable union of real analyti odimension2 subsets. �Corollary 3.3. The number of Rauzy lasses orresponding to a on-neted omponent C of the moduli spae of Abelian or quadrati di�er-entials is equal to the number of onneted omponents of Ĉ.Proof. From Proposition 2.12 and Lemma 3.1, we just need to provethat the number of onneted omponents of Ĉ is equal to the numberof onneted omponent of Ẑ(HC). It is a standard fat that removinga odimension two subset to a smooth manifold does not hange itsnumber of onneted omponents. In our ase, we remove from anorbifold a ountable union of odimension 2 subsets.Let x1 and x2 be elements of Ẑ(HC) and in the same onneted om-ponent of Ĉ. We want to onstrut a path in Ẑ(HC) that joins x1 and
x2. Up to onsidering a loal hart of Ĉ, we an assume that x1 and
x2 are in an open subset Ω of Ck, and there is a �nite group G at-ing on Ω suh that Ω/G is homeomorphi to an open subset U of Ĉ.By de�nition, a real analyti odimension 2 subset in U orrespondsto a real analyti odimension 2 subset of Ω. Hene, the elements of
U\Ẑ(HC) orrespond to a ountable union ∪i∈NFi of smooth odimen-sion 2 subsets of Ω. Without loss of generality, we an assume that
Ω is onvex. Consider a real hyperplane H separating x1 and x2. Foreah odimension 2 subset Fi, the set of elements y ∈ H suh that at



22 CORENTIN BOISSYleast one of the segments [x1, y] or [x2, y] ontains an element of Fi is ofmeasure zero for the natural Lebesgue measure in H . Hene, the set ofelements y ∈ H suh that at least one of the segments [x1, y] or [x2, y]intersets ∪i∈NFi is of measure zero. So, there is an element x ∈ H ∩Ωsuh that neither [x1, x] nor [x, x2] intersets ∪i∈NFi. This de�nes asuitable path joining x1 and x2. This onludes the proof. �Proposition 3.4. The number of distint Rauzy lasses orrespondingto a onneted omponent C of the moduli spae of Abelian or quadratidi�erentials, is equal to the number of onneted omponents of theovering of C that we obtain by marking a singularity.Proof. Remark that if two separatries l1 and l2 are adjaent to thesame singularity, the two pairs (S, l1) and (S, l2) are in the same on-neted omponent of Ĉ, then apply Corollary 3.3. �4. Marked flat surfaesIn this setion, we ompute the onneted omponents of the modulispae of �at surfaes with a marked singularity. We will study sepa-rately the Abelian and quadrati ase.4.1. Moduli spae of Abelian di�erentials with a marked singu-larity. Here, we assume that C is a onneted omponent of the modulispae of Abelian di�erentials. Reall that the degree of a singularityin a translation surfae is the integer k suh that the orrespondingonial angle is (k + 1)2π.We onsider the rami�ed overing Cm of C to be the moduli spae ofpairs (S, P ), where S ∈ C and P is a singularity of S. Aording toProposition 3.4, we must ount the number of onneted omponentsof Cm.The goal of this setion is to prove Proposition 4.1, whih will om-plete the proof of Theorem A for Abelian di�erentials.Proposition 4.1. Let C be a onneted omponent of a stratum inthe moduli spae of Abelian di�erentials and let H(kα1

1 , . . . , kαr
r ), with

ki 6= kj for i 6= j, and ki ≥ 0 and αi > 0 for eah i, be the ambientstratum. Then Cm admits exatly r onneted omponents.We want to show that (S1, P1) and (S2, P2) in Cm are in the sameonneted omponent if and only if the degree of P1 is equal to thedegree of P2. If (S1, P1) and (S2, P2) are in the same onneted ompo-nent of Cm, then the degree of P1 is learly equal to the degree of P2.We want to prove the onverse. Sine Cm is a rami�ed overing of C, itis enough to show this for S1 = S2.



RAUZY CLASSES 23For the following de�nition, note that a saddle onnetion persistsunder any small deformation of the surfae inside the ambient stratum.De�nition 4.2. Let S be a translation surfae. A saddle onnetionon S is simple if, up to a small deformation of S inside the ambientstratum, there are no other saddle onnetions parallel to it.Lemma 4.3. Let S ∈ C and P1, P2 be two singularities of the samedegree. If there exists a simple saddle onnetion between P1 and P2,then (S, P1) and (S, P2) are in the same onneted omponent of Cm.Proof. We denote by γ the simple saddle onnetion between P1 and
P2, and by k the degree of P1 and P2. We an also assume that γ isvertial and up to a slight deformation of S, there is no saddle onne-tions parallel to γ. Reall that the Teihmüller �ow ats ontinuously,so we an apply to S the Teihmüller geodesi �ow, and obtain a sur-fae surfae S ′ = gtS in the same onneted omponent as S. Thereis a natural bijetion from the saddle onnetions of S to the saddleonnetions of gtS. The holonomy vetor v = (v1, v2) of a saddle on-netion beomes vt = (et/2v1, e

−t/2v2). This implies that the length of agiven saddle onnetion in S ′ divided by the length of γ′ orrespondingto γ tends to in�nity, as t tends to in�nity. The set of holonomy vetorsof saddle onnetions is disrete, and therefore, if t is large enough, wean assume that the saddle onnetion γ′ is very small ompared to anyother saddle onnetion of S ′. The two singularities orresponding to
P1 and P2, that we denote by P ′

1 and P ′
2, are the endpoints of γ′. It issu�ient to show that (S ′, P ′

1) and (S ′, P ′
2) are in the same onnetedomponent of Cm. If t is large enough, then S ′ = gt.S is obtained afterbreaking up a zero of degree 2k into two zeroes of degree k, using theloal onstrution desribed in setion 1.5.The small saddle onnetion that appear in the proedure orre-sponds to γ′. In this proedure, we an ontinuously turn the param-eter de�ning γ′, and therefore (S ′, P ′

1) and (S ′, P ′
2) are in the sameonneted omponent of Cm (see Figure 9).

�Now given a �at surfae S ∈ C and two singularities P,Q of the samedegree, one would like to �nd a simple saddle onnetion that joins Pand Q. In fat, it is enough to �nd a broken line that onsists of simplesaddle onnetions whose endpoints are singularities of the same degreeas P and Q. This is the main idea of the proof of Proposition 4.1.
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Figure 9. Interhanging two zeros of the same degree.Proof of Proposition 4.1. For eah k, we show that the subset of Cmorresponding to a singularity of degree k is onneted. For this, itis enough to �nd a surfae S ∈ C, and a olletion of simple saddleonnetions onneting all the singularities of degree k. Without lossof generality, we assume that k = k1.We use the following onstrution: we start from a surfae S0 ∈
H(α1k1, k

α2

2 , . . . , kαr
r ). Then, we break up the singularity of degree

α1k1 into a singularity of degree k1 and a singularity of degree (α1 −
1)k1. We get a surfae S1 ∈ H(k1, (α1−1)k1, k

α2

2 , . . . , kαr
r ), and a smallsimple saddle onnetion between a singularity P1 of degree k1 and asingularity Q1 of degree (α1 − 1)k1. Then, we break up the singularity

Q1 into a singularity P2 of degree k1 and a singularity Q2 of degree
(α1 − 2)k1. There is a simple saddle onnetion between P2 and Q2, ifwe hoose well our breaking proedure, and if the newly reated saddleonnetion is small enough, then the saddle onnetion between P1 and
P2 persists.Iterating this proess, we �nally get a surfae S inH(kα1

1 , kα2

2 , . . . , kαr
r )and P1, . . . , Pα1

with a saddle onnetion γi between Pi and Pi+1, for all
1 ≤ i ≤ α1−1. Moreover, all the singularities Pi and the orrespondingsaddle onnetions γi are in a �at disk D. Eah γi an be assumed tobe very short ompared to any other saddle onnetion whih is notentirely in D. Now assume that one of the saddle onnetion γi is notsimple. Then, up to a small deformation of S, there is another saddleonnetion γ′

i ⊂ D whih is homologous to γi. Hene, γi and γ′
i arethe boundary of a metri disk D′ ⊂ D. The boundary of D′ onsistsof two parallel saddle onnetions of the same length. Therefore, wean glue them together by a suitable isometry, and obtain a �at spherethat ontains at most two poles that orrespond to the end points of

γi and γ′
i. Suh �at sphere annot satisfy the Gauss-Bonnet equality,whih ontradits the fat that γi is not simple.



RAUZY CLASSES 25Hene, we have proven that our onstrution provides a surfae S,with a broken line that onsists of a union of simple saddle onnetionsjoining all the singularities of degree k. We an apply Lemma 4.3for eah pairs (Pi, Pi+1), and we get that the {(S, Pi)}i∈{1,...,α} are inthe same onneted omponent of the orresponding moduli spae ofmarked translation surfaes. It remains to hek that S an be takenin any onneted omponent of H(kα1

1 , . . . , kαr
r ).Without loss of generality, we an assume that there are no singular-ities of degree zero, sine these degree zero singularities just orrespondto regular marked point on the surfae, and this is dedued from theother ase in a trivial way.If S0 is in H(2g − 2), and S is in H(g − 1, g − 1), then S is in thehyperellipti onneted omponent if and only if the same is true for

S0 (see [KZ03℄).If S0 is not in the hyperellipti onneted omponent of H and if allthe singularities of S have even degree, then breaking up a singularitydoes not hange the parity of the spin struture. Indeed, the breakingproedure does not hange the metri outside a small disk and thepaths that we hoose to ompute the parity of spin struture an avoidthis disk. Hene, starting from S0 with even or odd spin struture, weget an even or an odd spin struture.Therefore, in any onneted omponent C, there is a surfae S ob-tained by the onstrution. This proves the proposition. �4.2. Moduli spae of quadrati di�erentials with a marked sin-gularity.Remark. Here, we deal with the moduli spae of quadrati di�erentials.Therefore, the order of a singularity is the integer k ≥ −1 suh thatthat the orresponding onial angle is (k + 2)π. Reall that k = 0orresponds to a regular marked point on the surfaeWe want to prove Proposition 4.4, whih will omplete the proof ofTheorem A. This proposition is a �quadrati analogous� of Proposi-tion 4.1.Proposition 4.4. Let C be a onneted omponent of a stratum inthe moduli spae of quadrati di�erentials. Let Q(kα1

1 , . . . , kαr
r ) be theambient stratum, with ki 6= kj for i 6= j, and ki ≥ −1 and αi > 0.Then Cm admits exatly r onneted omponents.Although the main ideas of the proof are similar, there are some teh-nial di�ulties. For instane, the �quadrati version� of Lemma 4.3is still true, but the proof needs some additional tools. Indeed, the



26 CORENTIN BOISSY�singularity breaking up proedure� introdued in setion 1.5 does notwork when we break up a singularity of even order into two singulari-ties of odd order. So we must use the non loal proedure desribed insetion 1.6.The next two lemma are �quadrati� versions of Lemma 4.3. Lemma 4.5is for singularities of non-negative order and Lemma 4.6 is for poles.Lemma 4.5. Let C be a onneted omponent of a stratum in the mod-uli spae of quadrati di�erentials. Let S ∈ C and P1, P2 be two sin-gularities of the same order k, with k 6= −1. We assume that thereexists a simple saddle onnetion between P1 and P2. Then (S, P1) and
(S, P2) are in the same onneted omponent of Cm.Proof. When k is even, the proof is exatly the same as in Lemma 4.3.So we assume that k is odd. As in the proof of Lemma 4.3, we anassume that the simple saddle onnetion γ of the hypothesis is verysmall ompared to any other saddle onnetion.There exists S0, a path ν0 ⊂ S0, and ε suh that (S, P1) = Ψ(S0, ν0, ε)(see setion 1.6 for the de�nition of the mapΨ). Fixing S0, we an make
ε arbitrarily small sine ε 7→ Ψ(S0, ν0, ε) is ontinuous.Then, we onsider a homotopy (νθ)θ∈[0,(k+1)π], suh that ν0 = ν0, and
νθ is a polygonal urve transverse to the foliation Fθ in a neighborhoodof P . The map θ 7→ Ψθ(S0, ν

θ, ε) is well de�ned and ontinuous for εsmall enough. This way, we get a surfae Ψ(S0, ν1, ε). The path ν1starts from the setor II and ends in the setor I of P . It is natural toompare ν1 with ν−1
0 (i.e. ν0 with reverse orientation), but these twopaths are a priori very di�erent (see Figure 10).Using the results stated in setion 1.6, there exists S1 in a neighbor-hood of S0 suh that Ψ(S0, ν1, ε) = Ψ(S1, ν

−1
0 , ε). The surfae S1 anbe arbitrarily lose to S0 as soon as ε is small enough. Then, we hoosea small path joining S1 and S0, and we get therefore a path joining

Ψ(S1, ν
−1
0 , ε) to Ψ(S0, ν

−1
0 , ε).Hene, we have built a path joining Ψ(S0, ν0, ε) to Ψ(S0, ν

−1
0 , ε). The�rst (marked) surfae is (S, P1) while the seond one is (S, P2). Thelemma is proven. �A surfae in Cm might ontain poles. The previous lemma does notwork if the marked point is a pole. We need the following:Lemma 4.6. Let C be a onneted omponent of a stratum in the mod-uli spae of quadrati di�erentials. Let S ∈ C and P1, P2 two poles. Weassume that there exists a saddle onnetion between P1 and P2. Then

(S, P1) and (S, P2) are in the same onneted omponent of Cm.
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Figure 10. Interhanging two singularities of odd orderProof. The saddle onnetion γ joining P1 and P2 is never simple. In-deed, P1 and P2 are in the boundary of a ylinder whose waist urvesare parallel to γ. One side of this ylinder onsists of γ, the oppositeside is a union of saddle onnetions that are neessary parallel to γ.So γ annot be simple.In this ase, (S, P1) and (S, P2) an be joined by performing a suitableDehn twist on the orresponding ylinder. �Now we have the neessary tools to prove Proposition 4.4.Proof of Proposition 4.4. We must show that the subset of Cm thatorresponds to surfaes with a marked point of order k, where k is a�xed element of k1, . . . , kr is onneted. Without loss of generality, wean assume that k = k1. Also, we an assume that all ki are nonzero.First we assume that k1 = −1. Aording to Lanneau ([Lan08℄),there is a surfae S in C whose horizontal foliation onsists of oneylinder. This means we an present suh surfae as a retangle withthe following indenti�ations on its boudary:
• the two vertial sides are identi�ed by a translation,
• the horizontal sides admit a partition of segments whih omeby pairs of segments of the same length
• for eah suh pair, we identify the orresponding segments bytranslation or by a half-turn.



28 CORENTIN BOISSYWe an also assume that the orners of the retangle orrespond tosingularities. Now, let P1 and P2 be two singularities of order −1. Eahpole orresponds to two adjaent segments that are identi�ed with eahother by a half-turn. If these two singularities are on opposite sides ofthe retangle, then we get a saddle onnetion joining P1 and P2 byonsidering the line joining P1 and P2 in the retangle. If P1 and P2are in the same side of the retangle, then we an slightly deform theorresponding segments in the 1-ylinder deomposition, and this wayjoin the two poles P1 and P2 by a saddle onnetion (see Figure 11). Inany ase, we have the desired result (when k = −1) in view of Lemma4.6.
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Figure 11. Interhanging two poles on a surfae witha 1-ylinder deomposition.Now we assume that k1 6= −1. We �rst explain the general on-strution. By a similar argument as in Proposition 4.1, we start froma surfae S0 with a singularity P of order α1k1 and we break up thissingularity into α1 singularities P1, . . . , Pα1
of order k1. There is a ol-letion of saddle onnetions joining Pi to Pi+1 for eah 1 ≤ i ≤ α1−1.We an assume that P1, . . . , Pα1

are in a small metri disk D. Nowassume that one of the saddle onnetion γi is not simple. Then, upto a slight deformation of S, there is another saddle onnetion γ′
i par-allel to γi, suh that S\(γi ∪ γ′

i

) admits a onneted omponent withtrivial linear holonomy (sine γi and γ′
i are �homologous, see [MZ08℄,Proposition 1 and Theorem 1). However, sine S0 has nontrivial lin-ear holonomy, S\D has nontrivial linear holonomy too. Hene, γi and

γ′
i are the boundary of a small metri disk D′ ⊂ D, whih is a on-tradition. However, as we will see, we annot reah any onnetedomponent C in this way.



RAUZY CLASSES 291- We �rst assume that the stratum Q = Q(kα1

1 , . . . , kαr
r ) does notontain a hyperellipti onneted omponent and is not one of the ex-eptional stratum. Then our onneted omponent C is the whole stra-tum. If we start from an initial �at surfae S0 ∈ Q(α1k1, k
α2

2 , . . . , kαr
r )and perform the previous onstrution, we get a surfae S ∈ C and sim-ple saddle onnetions joining all its singularities of order k1. We musthek that the stratum Q(α1k1, k

α2

2 , . . . , kαr
r ) is not empty. The onlystrata that are empty are Q(∅),Q(1,−1),Q(3, 1) and Q(4). Hene, wemust have Q 6= Q(2, 2) and Q 6= Q(1, 1, 1, 1). But these two strataonsist only of hyperellipti �at surfaes, hene Q is not one of themby assumption. Therefore, using Lemma 4.5, we see that (S, P ) is inthe same onneted omponent of Cm for any singularity P of order k1.2- Now we assume that the stratum Q is Q(k1, k1, k2, k2), with k1 6=

k2, or Q(k1, k1, 2k2 + 2). This stratum has one or two onneted om-ponents, one of them being hyperellipti. One an show that in eahonneted omponent, on almost every surfae S, there are simplesaddle onnetions joining the singularities of order k1. (see [Boi07℄,Theorem 3.1 in the ase of the hyperellipti omponent and [Boi07℄Lemma 4.1 for the other omponent), and by Lemma 4.5 we are done.If Q = Q(2k1 + 2, 2k2 + 2) with k1 6= k2, there is nothing to prove.3- Assume that Q = Q(−1, 3, 3, 3). This stratum has two onnetedomponents Cred and Cirr. If we start from S0 ∈ Q(−1, 9) and break upthe singularity of order 9 into three singularities of order 3 as explainedpreviously, we obtain either a surfae in Cred or a surfae in Cirr depend-ing in whih onneted omponent we start (see Lanneau [Lan08℄) andonlude as previously. If the stratum Q is one of the other exeptionalstrata, there is nothing to prove.4- We assume that Q = Q(k, k, k, k). Let C be the hyperelliptionneted omponent of Q and S ∈ C. We denote by P1,1,P1,2, P2,1and P2,2 the singularities of S, suh that the hyperellipti involution
τ interhange Pi,1 and Pi,2 for i ∈ {1, 2}. Suppose there is a saddleonnetion γ joining P1,i to P2,j for some i, j. Then, τ(γ) is distint from
γ and is parallel to γ, even after a small deformation of S. Therefore
γ is not simple. Hene, S is not obtained from Q(4k) by breaking upthe singularity as before.We an assume that k 6= −1, sine the other ase was alreadystudied. There is a one-to-one mapping from C to Q(k, k,−12k+4).Hene, Cm is a overing of Q(k, k,−12k+4). There exists a surfae
S0 ∈ Q(k, k,−12k+4) with a simple saddle onnetion joining its two



30 CORENTIN BOISSYsingularities P1 and P2 of order k. We an assume that S is the doubleovering of S0 rami�ed over the poles, and that the singularities or-responding to Pi are Pi,1 and Pi,2. For eah i, there is a simple saddleonnetion joining Pi,1 and Pi,2 (see ase (2)), hene the two markedsurfaes (S, Pi,1) and (S, Pi,2) are in the same onneted omponent of
Cm. Now we start from (S, P1,1) ∈ Cm. The orresponding markedsurfae in Q(k, k,−12k+4) is (S0, P1). We then onsider a path join-ing (S0, P1) and (S0, P2) and an lift it to a path joining (S, P1,1) to
(S, P2,k), for some k ∈ {1, 2}. Hene, (S, P1,1) and (S, P2,1) are in thesame onneted omponent of Cm. This proves that Cm is onneted.Let C be the nonhyperellipti onneted omponent of Q(k, k, k, k).The lassi�ation of onneted omponents by Lanneau implies that
k ≥ 2. Then, starting from S0 ∈ Q(4k) and breaking up the singularityinto four singularities of degree k as before gives a surfae S ∈ C, sineit annot be in the hyperellipti onneted omponent as explainedbefore. Hene Cm is onneted.5- If Q = Q(2k + 2, 2k + 2), the proof is analogous to the previousase. �Appendix A. Computation of the onneted omponentassoiated to a permutationCorollary B states that two irreduible permutations are in the sameRauzy lass if and only if the degree of the singularity attahed on theleft in the Veeh onstrution is the same, and if they orrespond to thesame onneted omponent of the moduli spae of Abelian di�erentials.The �rst invariant is very easy to ompute ombinatorially. We givehere referenes for the seond invariant.

• The parity of the spin struture an be omputed expliitlyfrom the permutation. This is explained in the paper of Zorih[Zor08℄, Appendix C. One an also �nd in Zorih's webpage1some Mathematia program that ompute expliitely this in-variant.
• It is strangely not obvious to see whether a permutation or-responds to a hyperellipti onneted omponent or not. How-ever, in eah Rauzy lass, we an �nd a permutation π suhthat π(1) = d and π(d) = 1, where d is the number of inter-vals of the orresponding interval exhange. Suh permutationis alled ylindrial sine it appears naturally for �at surfaeswith a one-ylinder deomposition. This was �rst proven by1http://perso.univ-rennes1.fr/anton.zorih/



RAUZY CLASSES 31Rauzy [Rau79℄, but we an �nd a more onstrutive proof in[KZ03℄, Appendix A.3. It is easy to see that the assoiatedonneted omponent is the hyperellipti one if and only if π isthe permutation π(k) = d+ 1− k. Suh permutation π an bebuild from another permutation after at most d2 steps of theRauzy indution in an expliit way (see [KZ03℄).For the ase of quadrati di�erentials, the nononneted strata arethe ones that ontain hyperellipti onneted omponents and the ex-eptionnal ones. In this ase, there is no simple way to deide if twogeneralized permutations are in the same Rauzy lass.
• An analogous of the ylindrial permutations exists in eahRauzy lasses of generalized permutations, but there is no ex-pliit ombinatorial way to �nd it starting from a given gener-alized permutation.
• For the four exeptionnal strata, the only known proof of theirnononnetedness is the expliit omputation of the orrespond-ing (extended) Rauzy lasses.For related work, see the paper of Fikensher [Fi11℄.Referenes[AGY06℄ A. Avila, S. Gouëzel and J.-C. Yooz � �Exponential mixing forthe Teihmüller �ow �, Publ. Math. IHES 104 (2006), pp. 143�211.[AV07℄ A. Avila, andM. Viana � �Simpliity of Lyapunov spetra: proof of theZorih-Kontsevih onjeture �, Ata Math. 198 (2007), no. 1, pp. 1�56.[Boi07℄ C. Boissy � �Con�gurations of saddle onnetions of quadrati di�eren-tials on CP1 and on hyperellipti Riemann surfaes �, Comment. Math.Helv. 84 (2009), no. 4, pp. 757�791.[Boi08℄ C. Boissy � �Degenerations of quadrati di�erentials on CP1 �, Geometryand Topology 12 (2008) pp. 1345-1386[BL09℄ C. Boissy , and E. Lanneau � �Dynamis and geometry of the Rauzy-Veeh indution for quadrati di�erentials �, Ergodi Theory Dynam. Sys-tems 29 (2009), no. 3, pp. 767�816.[DN90℄ C. Danthony, and A. Nogueira ��Measured foliations on nonori-entable surfaes�, Ann. Si. Éole Norm. Sup. (4) 23 (1990), pp. 469�494.[DH75℄ A. Douady, and J. Hubbard ��On the density of Strebel di�erentials�,Inventiones Math. 30 (1975), pp. 175�179.[EMZ03℄ A. Eskin , H. Masur, and A. Zorih� �Moduli spaes of Abeliandi�erentials: the prinipal boundary, ounting problems, and the Siegel�Veeh onstants �. Publ. Math. IHES 97 (2003), pp. 61�179.[Fi11℄ J. Fikensher � �Self-inverses in Rauzy Classes �, preprint 2011arXiv:1103.3485.[Kat80℄ A. Katok � �Interval exhange transformations and some speial �owsare not mixing �, Israel J. Math., 35 (1980) no. 4, pp. 301�310.
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