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Abstract. We propose a general framework for studying pseudo-Anosov homeomorphisms
on translation surfaces. This new approach, among other consequences, allows us to com-
pute the systole of the Teichmüller geodesic flow restricted to the hyperelliptic connected
components, settling a question of [Far06]. We stress that all proofs and computations are
performed without the help of a computer. As a byproduct, our methods give a way to
describe the bottom of the lengths spectrum of the hyperelliptic components.

1. Introduction

Every affine pseudo-Anosov map φ on a half-translation surface S has an expansion factor
λ(φ) ∈ R recording the exponential growth rate of the lengths of the curves under iteration of
φ. The set of the logarithms of all expansion factors (when fixing the genus g of the surfaces)
is a discrete subset of R: this is the lengths spectrum of the moduli spaceMg.

One can also consider other lengths spectrum spec(H), spec(C) ⊂ spec(Modg) for various
subgroups H < Mod(g) or for various connected components of strata C of the moduli spaces
of quadratic differentials.

These objects have been the subject of many investigations recently (we refer to the recent
work of McMullen, Farb–Leininger–Margalit, Leininger, Agol–Leininger–Margalit).

Describing spec(C) is a difficult problem and, so far, only bounds on the systole L(spec(C))
are known for various cases.

In this paper we present a general framework for studying pseudo-Anosov homeomorphisms.
As a consequence, we provide a complete description of L(spec(C)) when C = Chyp is a
hyperelliptic connected component of the moduli space of Abelian differentials. This is the
very first instance of an explicit computation of the systole for an infinite family of strata.

Theorem A. The minimum value of the expansion factor λ(φ) over all affine pseudo-Anosov
maps φ on a translation surface S ∈ Chyp is given by the largest root of the polynomial

X2g+1 − 2X2g−1 − 2X2 + 1 if S ∈ Hhyp(2g − 2),
X2g+2 − 2X2g − 2Xg+1 − 2X2 + 1 if S ∈ Hhyp(g − 1, g − 1), g is even,
X2g+2 − 2X2g − 4Xg+2 + 4Xg + 2X2 − 1 if S ∈ Hhyp(g − 1, g − 1), g is odd.

Moreover the conjugacy mapping class realizing the minimum is unique.
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This theorem settles a question of Farb [Far06, Problem 7.5] for an infinite family of con-
nected component of strata of the moduli space of Abelian differentials.

With more efforts, our method gives a way to also compute the other elements of the
spectrum Spec(Chyp) where Chyp ranges over all hyperelliptic connected components, for any
genus. As an instance we will also prove (see Theorem 2.3):

Theorem B. For any g even, g 6≡ 2 mod 3, g ≥ 9, the second least dilatation of an affine
pseudo-Anosov maps φ on a translation surface S ∈ Hhyp(2g − 2) is given by the largest root
of the polynomial

X2g+1 − 2X2g−1 − 2Xd4g/3e − 2Xb2g/3c+1 − 2X2 + 1.

Moreover the conjugacy mapping class realizing the minimum is unique.

It is proved in [BL12] that L(Spec(Chyp)) ∈
]√

2,
√

2 + 1
2g−1

[
.

For Hhyp(2) and Hhyp(1, 1), the corresponding systoles are the largest root of the polynomials
X5 − 2X3 − 2X2 + 1 = (X + 1)(X4 −X3 −X2 −X + 1) and X6 − 2X4 − 2X3 − 2X2 + 1 =
(X + 1)2(X4 − 2X3 +X2 − 2X + 1) respectively, recovering previous result of [LT10].

For small values of g, as an illustration of our construction, we are able to produce a
complete description of the bottom of the spectrum of Chyp.

Theorem C. For g ≤ 10, the lengths l of the closed Teichmüller geodesics on Hhyp(2g − 2)
satisfying l < 2 are recorded in the table below. For genus between 4 and 10, we only indicate
the number of geodesic lengths.

g lengths of closed Teichmüller geodesics on Hhyp(2g − 2) less that 2
2 Perron root of X5 − 2X3 − 2X2 + 1 ∼ 1.72208380573904
3 Perron root of X7 − 2X5 − 2X2 + 1 ∼ 1.55603019132268

Perron root of X7 − 2X5 −X4 −X3 − 2X2 + 1 ∼ 1.78164359860800
Perron root of X7 − 3X5 − 3X2 + 1 ∼ 1.85118903363607
Perron root of X7 − 2X5 − 2X4 − 2X3 − 2X2 + 1 ∼ 1.94685626827188

4 11 geodesic lengths
5 22 geodesic lengths
6 79 geodesic lengths
7 142 geodesic lengths
8 452 geodesic lengths
9 1688 geodesic lengths
10 4887 geodesic lengths

Obviously our techniques also provide a way to investigate the bottom of the spectrum for
the stratum Hhyp(g − 1, g − 1) for various g and various bound (not necessarily 2). This will
appear in the forthcoming paper.

Acknowledgments. The authors thank Artur Avila and Jean-Christophe Yoccoz for helpful
conversations and for asking the question on the systoles. This article would not be possible
without the seminal work of Jean-Christophe Yoccoz, whose mathematics is still a source of
inspiration for both authors.
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2. Overall strategy

Our strategy is to convert the computation of mapping classes and their expanding factors
into a finite combinatorial problem. This is classical in pseudo-Anosov theory: the Rauzy–
Veech theory and the train track theory are now well established. However a major difficulty
comes from the very complicated underlying combinatorics.

2.1. Hyperelliptic connected components. In the sequel, for any integer n ≥ 4, we will
consider the hyperelliptic Rauzy diagram Dn of size 2n−1 − 1 containing the permutation

πn =

(
1 2 . . . n
n n− 1 . . . 1

)
and by Chypn the associated connected component. If n = 2g is even then Chypn = Hhyp(2g− 2)

and if n = 2g + 1 is odd then Chypn = Hhyp(g − 1, g − 1). The precise description of these
diagrams was given by Rauzy [Rau79].
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Figure 1. Rauzy diagram for n = 4

Equipped with this and the Kontsevich-Zorich [KZ03] classification, one can convert our
Main Theorem into Theorem 2.1 below:
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Theorem 2.1. For any n ≥ 4, the minimum value of the expansion factor λ(φ) over all
affine pseudo-Anosov map φ on a translation surface S ∈ Chypn is given by the largest root of
the polynomial

Xn+1 − 2Xn−1 − 2X2 + 1 if n is even,
Xn+1 − 2Xn−1 − 2X(n−1)/2+1 − 2X2 + 1 if n ≡ 1 mod 4,

Xn+1 − 2Xn−1 − 4X(n−1)/2+2 + 4X(n−1)/2 + 2X2 − 1 if n ≡ 3 mod 4.

Moreover the conjugacy mapping class realizing the minimum is unique.

The same applies to the theorem for the second least expanding factor :

Theorem 2.2. For any n ≥ 18, if n 6≡ 4 mod 6 is even then the second least element of
Spec(Chypn ) is given by the largest root of the polynomial

X2g+1 − 2X2g−1 − 2Xd4g/3e − 2Xb2g/3c+1 − 2X2 + 1.

Moreover the conjugacy mapping class realizing the minimum is unique.

As mentioned above, one possible way to tackle Theorem 2.1 is by the use of the Rauzy–
Veech induction. It is now well established that closed loops in the Rauzy diagram Dn furnishes
pseudo-Anosov maps fixing a separatrix (see Section 3). Hence the “usual” construction is not
sufficient to capture all relevant maps. In [BL12], it is shown that the square of any pseudo-
Anosov maps fixes a separatrix, up to adding a regular point. The cost to pay is that this
produces very complicated Rauzy diagrams and the computation of the precise systole seems
out of reach with this method.

We will propose a new construction in order to solve these two difficulties at the same time.
The proof of our Main Theorem is divided into three parts of different nature: geometric,
dynamical, combinatoric.

2.2. Geometric part. In this paper we propose a new construction of pseudo-Anosov map,
denoted the Symmetric Rauzy-Veech construction. One key of this construction is the following
definition.

Definition 2.1. A pseudo Anosov homeomorphism is positive (respectively, negative) if it
fixes (respectively, reverses) the orientation of the invariant measured foliations.

The classical Rauzy–Veech construction associates to any closed path γ in the Rauzy di-
agram a non negative matrix V (γ). If this matrix is primitive (we will also say Perron–
Frobenius), i.e. a power of V (γ) has all its coefficients greater than zero, we obtain a positive
pseudo-Anosov map φ(γ) with expansion factor ρ(V (γ)).

In Section 4 we will associate to any non-closed path γ in a given Rauzy diagram D con-
necting a permutation π to its symmetric s(π) (see Section 4), a matrix V (γ). If the matrix
is primitive we obtain a negative pseudo-Anosov map φ(γ) with expansion factor ρ(V (γ)).

The converse holds in the following sense (see Theorem 4.3 and Proposition 4.4).

Theorem (Geometric Statement).
(1) Any affine negative pseudo-Anosov map φ on a translation surface S that fixes a point

is obtained by the Symmetric Rauzy-Veech construction.



LENGTHS SPECTRUM OF HYPERELLIPTIC COMPONENTS 5

(2) Any affine pseudo-Anosov φ on a translation surface S ∈ Chypn is obtained as above,
up to replacing φ by τ ◦ φ, where τ is the hyperelliptic involution.

2.3. Dynamical part. From now on, we assume that the underlying connected component is
hyperelliptic. The theorem above reduces our problem to a combinatorial problem on graphs.
However the new problem is still very complicated since the complexity of paths is too large.
To bypass this difficulty we introduce a renormalization process (ZRL for Zorich Right Left
induction), analogously to the Veech–Zorich and Marmi–Moussa–Yoccoz acceleration of the
Rauzy induction, see Section 5. This allows us to reduce considerably the range of paths to
analyze in the Rauzy diagram Dn.

The particular shape of Dn will be strongly used. We will usually refer to the permutation
πn as the central permutation. For any permutation π ∈ Dn, there is a unique shortest path
from πn to π, that can be expressed as a word w with letters ‘t’ and ‘b’. We will often write
this permutation as πn.w. The loop in Dn composed by the vertices {πn.tk}k=0,...,n−2 will be
referred to as the central loop.

In the next, an admissible path is a path in Dn from a permutation π to s(π) whose
corresponding matrix V (γ) is primitive. The path is pure if the corresponding pseudo-Anosov
map is not obtained by the usual Rauzy–Veech construction. This definition is motivated by
Proposition 3.3 and the main result of [BL12]: pseudo-Anosov homeomorphism in hyperelliptic
connected components with small expansion factors are not obtained by the usual Rauzy–
Veech construction.

We show (see Theorem 5.1):

Theorem (Dynamical Statement). There exists a map (denoted by ZRL) defined on the set
of pure admissible paths on Dn satisfying the following property: The paths γ and ZRL(γ)
define the same pseudo-Anosov homeomorphism up to conjugacy, and there exists an iterate
m ≥ 0 such that γ′ = ZRL(m)(γ) is an admissible path starting from a permutation π that
belongs to the central loop. In addition the first step of γ′ is of type ’b’.

This results allows us to restrict the computation to paths γ starting from the central loop.
As a byproduct one can actually compute all the expansion factors less than two i.e. one can
compute explicitly the finite set

{λ(φ); φ : S → S, S ∈ Hhyp
g and λ(φ) < 2}

for small values of g up to 20 (see Theorem 1).

2.4. Combinatoric part. The last part of the proof deals with the estimates of the spectral
radius of all the paths γ starting from the central loop. We first show that this problem
reduces to a problem on a finite number of paths (for a given n ≥ 4). Then we show how to
compare spectral radius ρ(V (γ)) for various γ starting from the permutation π := πn.t

k for
some k. At this aim, for a given n ≥ 4, we introduce several notations.

Notation. For n ∈ N we set Kn = bn2 c − 1 and Ln = n− 2−Kn.
For any k ∈ {1, . . . ,Kn} we define the path

γn,k : π −→ s(π) : bn−1−ktn−1−2k
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For any k ∈ {1, . . . ,Kn} and l ∈ {1, . . . , 2n− 2− 3k} we define the path

γn,k,l : π −→ s(π) :

{
bltn−1−k−lbn−1−k−ltn−1−2k if 1 ≤ l ≤ n− 2− k
bn−1−ktl−(n−1−k)b2(n−1−k)−lt2n−2−3k−l if n− 2− k < l ≤ 2n− 2− 3k

Loosely speaking γn,k is the shortest path from π to s(π) starting with a label ‘b’, i.e. it is the
concatenation of the small loop attached to π labelled by ‘b’ followed by the shortest path from
π to s(π). Similarly, γn,k,l is a path joining π to s(π) obtained from γn,k by adding a loop: if
l ≤ n − 2 − k then it is a ‘t’ loop based at πn.tkbl, if l ≥ n − 1 − k then it is a ‘b’ loop based
at πn.tl−(n−1−2k) (see Figure 2).
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Figure 2. Half of the Rauzy diagram. In bold the path γn,k.

For any path γ in the Rauzy diagram, we will denote by θ(γ) the maximal real eigenvalue of
the matrix V (γ). We will also use the notations θn,k (respectively, θn,k,l) for θ(γn,k) (respec-
tively, θ(γn,k,l)). Observe that the matrix V (γ) is not necessarily primitive, but the spectral
radius is still an eigenvalue by the Perron–Frobenius theorem. We show (see Proposition 6.1,
Lemma A.1 and Proposition A.4):

Theorem (Combinatoric Statement). Let n ≥ 4 be any integer. The followings hold.
(1) Let γ be an admissible path starting from π = πn.t

k, for some k ≤ n − 1, such that
the first step is ‘b’. We assume that θ(γ) < 2. Then, k ≤ Kn and θ(γ) ≥ θn,k.
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Furthermore, if γ 6= γn,k then there exists l ∈ {1, . . . , 2n− 2− 3k} such that

θ(γ) ≥ θn,k,l.

If V (γn,k) is not primitive, we can also assume that l 6= n − 1 − k in the previous
statement.

(2) For any k ∈ {1, . . . ,Kn}, let d = gcd(n − 1, k). If n′ = n−1
d + 1 and k′ = k

d then the
matrix Vn′,k′ is primitive and θn,k = θn′,k′.

(3) Let n ≡ 3 mod 4 and l ∈ {1, . . . , Ln + 3}. The matrix Vn,Kn,l is primitive if and only
if l is odd. Moreover if l is even then θn,Kn,l = θn′,Kn′ ,l

′ with n′ = (n+ 1)/2, l′ = l/2
and Kn′ = Kn/2.

2.5. Proof of the Main Theorem. Theorems 2.1 and 2.2 will follow from Theorem 2.3,
Theorem 2.5 and Theorem 2.4 below.

Theorem 2.3. The following holds:

(1) If n ≥ 4 is even then L(Spec(Chypn )) = log(θn,Kn).
(2) If n 6≡ 4 mod 6 and n ≥ 18 is even then the second least element of Spec(Chypn ) is

log(θn,Kn−1).
Moreover the conjugacy mapping class realizing the minimum is unique.

Letting Pn,k the characteristic polynomial of V (γn,k) multiplied by X+ 1, by definition θn,k
is the maximal real root of Pn,k. By Lemma A.2 we have, when n is even:

Pn,Kn = Xn+1 − 2Xn−1 − 2X2 + 1

and when n 6≡ 4 mod 6 and gcd(n− 1,Kn − 1) = 1:

Pn,Kn−1 = Xn+1 − 2Xn−1 − 2Xd2n/3e − 2Xbn/3c+1 − 2X2 + 1

that are the desired formulas.

Proof of Theorem 2.3. We will show that L(Spec(Chypn )) = log(θn,Kn). Observe that Kn =
n/2 − 1 thus gcd(n − 1,Kn) = 1 and the matrix Vn,Kn is primitive by the Combinatoric
Statement. This shows L(Spec(Chypn )) ≤ log(θn,Kn). A simple computation shows θn,Kn < 2
(see Lemma A.2).

Now by the Dynamical Statement, L(Spec(Chypn )) = log(θ(γ)) for some path γ starting from
π = πn.t

k with first step of type ’b’. By the Combinatoric Statement, θ(γ) ≥ θn,k for some
k ∈ {1, . . . ,Kn}. Thus θn,k ≤ θn,Kn . We need to show that k = Kn. Let us assume that
k < Kn.

(1) If gcd(k, n− 1) = 1 then Lemma B.3 implies θn,k > θn,Kn that is a contradiction.
(2) If gcd(k, n − 1) = d > 1 then by the second point of the Combinatoric Statement,

θn,k = θn′,k′ where n′ = n−1
d + 1 and k′ = k

d . Since n′ is even, k′ 6= Kn′ and
gcd(k′, n′ − 1) = 1, the previous step applies and θn′,k′ > θn′,Kn′

. By Lemma B.2 the
sequence (θ2n,K2n)n is a decreasing sequence, hence θn′,Kn′

> θn,Kn . Again we run into
a contradiction.
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In conclusion k = Kn and L(Spec(Chypn )) = log(θn,Kn). By construction and since all inequality
above are strict, the conjugacy mapping class realizing this minimum is unique.

We now finish the proof of the theorem with the second least dilatation. The assumption
n 6≡ 4 mod 6 implies gcd(Kn−1, n−1) = 1. Hence Vn,Kn−1 is primitive and the second least
dilatation is less than θn,Kn−1. As before, a simple computation shows that θn,Kn−1 < 2 (see
Lemma A.2).

Conversely, the second least dilatation equals θ(γ) for some admissible path γ starting from
π = πn.t

k, for some k ∈ {1, . . . ,Kn}, with a ’b’ as the first step. If k = Kn, since γ 6= γn,Kn ,
the Combinatoric statements implies that θ(γ) ≥ θn,Kn,l for some l ∈ {1, . . . , 2n− 2−3Kn} =
{1, . . . , Ln+2}. Again the Combinatoric statements shows that if k ≤ Kn−1 then θ(γ) ≥ θn,k.

The theorem will follow from the following two assertions, that are proven in Proposi-
tion B.8.

• For any k = 1, . . . ,Kn − 2 one has θn,k > θn,Kn−1.
• For any l = 1, . . . , Ln + 2 one has θn,Kn,l > θn,Kn−1.

This ends the proof of Theorem 2.3. �

Theorem 2.4. If n ≥ 5 and n ≡ 1 mod 4 then L(Chypn ) = log(θn,Kn).

By Lemma A.2, when n = 1 mod 4, we have that θn,Kn is the maximal real root of

Pn,Kn = Xn+1 − 2Xn−1 − 2X
n+1
2 − 2X2 + 1.

Proof of Theorem 2.4. We follow the same strategy than that of the proof of the previous
theorem. Namely L(Chypn ) ≤ log(θn,Kn) since Vn,Kn is irreducible (by the Combinatoric state-
ment).

Conversely L(Chypn ) = log(θ(γ)), where γ is an admissible path starting from πn.t
k for some

k ∈ {1, . . . ,Kn}, and the path starts by a ‘b’. Recall that we have shown θ(γ) ≤ θn,Kn . We
need to show that for any k ≤ Kn − 1, θn,k > θn,Kn . Again by the Combinatoric statement,
θn,k = θn′,k′ , where n′ = n−1

d + 1, k′ = k
d and d = gcd(n− 1, k). By Proposition B.9

θn′,k′ > θn,Kn .

This finishes the proof of Theorem 2.4. �

Theorem 2.5. If n ≥ 7 and n ≡ 3 mod 4 then L(Chypn ) = log(θn,Kn,Ln).

Proposition A.4 gives that θn,Kn,Ln is the maximal real root of

Pn,Kn,Ln = Xn+1 − 2Xn−1 − 4X(n−1)/2+2 + 4X(n−1)/2 + 2X2 − 1

that gives the desired formula.

Proof of Theorem 2.5. We follow the strategy used in the two previous proofs. Namely L(Chypn ) ≤
log(θn,Kn,Ln) since Vn,Kn,Ln is irreducible (see the Combinatoric statement where n ≡ 3
mod 4 and Ln is odd).

Conversely L(Chypn ) = log(θ(γ)), where γ is an admissible path starting from πn.t
k for some

k ∈ {1, . . . ,Kn}, and the path starts by a ‘b’ (recall that θ(γ) ≤ θn,Kn,Ln).
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Assume k ≤ Kn−1. Then the Combinatoric statement shows that θ(γ) ≥ θn,k. Letting n′ =
(n− 1)/d+ 1 and k′ = k/d where d = gcd(n− 1, k) we have θn,k = θn′,k′ . By Proposition B.6

θn′,k′ > θn,Kn,Ln .

This is a contradiction with θ(γ) ≤ θn,Kn,Ln . Hence we necessarily have k = Kn.
Now, the matrix Vn,Kn is not primitive, hence γ 6= γn,Kn . Thus the Combinatoric statement

implies that θ(γ) ≥ θn,Kn,l for some l ∈ {1, . . . , 2n − 2 − 3Kn} = {1, . . . , Ln + 3} with
l 6= n − Kn − 1 = Ln + 1. We will discuss two different cases depending on the parity of l
(recall that Ln is odd).

Case 1. l is even. By the Combinatoric statement, one has θn,Kn,l = θn′,Kn′ ,l
′ with n′ =

(n + 1)/2, l′ = l/2 and Kn′ = Kn/2. If l < Ln then l′ < Ln′ and Lemma B.7 applies (since
n′ ≥ 4 is even):

θn′,Kn′ ,l
′ > θn′,Kn′ ,Ln′

.

If l > Ln then l = Ln+3. Again the Combinatoric Statement gives θn,Kn,Ln+3 = θn′,Kn′ ,Ln′+2.
In all cases, Proposition B.6 applies and:

θn′,Kn′ ,Ln′
> θn,Kn,Ln

running into a contradiction.

Case 2. l is odd. If l < Ln then by Proposition B.5 we have θn,Kn,l > θn,Kn,Ln . This is
again a contradiction. The case l > Ln, namely l = Ln + 2, is ruled out by Lemma B.4:
θn,Kn,Ln+2 > 2 > θn,Kn,Ln .

In conclusion l = Ln and γ = γn,Kn,Ln . The Main Theorem is proved. �

3. Rauzy–Veech induction and pseudo-Anosov homeomorphism

In this section, we briefly recall the notions of interval exchange transformations, suspension
data, Rauzy–Veech induction, and the associated construction of pseudo-Anosov homeomor-
phisms. We also provide a slight generalization of these standard notions.

3.1. Interval exchange transformation. Let I ⊂ R be an open interval and let us choose
a finite partition of I into d ≥ 2 open subintervals {Ij , j = 1, . . . , d}. An interval exchange
transformation is a one-to-one map T from I to itself that permutes, by translation, the
subintervals Ij . It is easy to see that T is precisely determined by the following data: a
permutation that encodes how the intervals are exchanged, and a vector with positive entries
that encodes the lengths of the intervals.

We use the representation introduced first by Kerckhoff [Ker85] and formalised later by
Bufetov [Buf06] and Marmi, Moussa &Yoccoz [MMY05].

We will attribute a name to each interval Ij . In this case, we will speak of labeled interval
exchange maps. One gets a pair of one-to-one maps (πt, πb) (t for “top” and b for “bottom”)
from a finite alphabet A to {1, . . . , d} in the following way. In the partition of I into intervals,
we denote the kth interval, when counted from the left to the right, by Iπ−1

t (k). Once the
intervals are exchanged, the interval number k is Iπ−1

b (k). Then with this convention, the
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permutation encoding the map T is πb ◦ π−1t . We will denote the length of the intervals by a
vector λ = (λα)α∈A.

We will call the pair (πt, πb) a labeled permutation, and πb ◦ π−1t a permutation (or reduced
permutation). One usually represents labeled permutations π = (πt, πb) by a table:

π =

(
π−1t (1) π−1t (2) . . . π−1t (d)
π−1b (1) π−1b (2) . . . π−1b (d)

)
.

3.2. Suspension data and weak suspension data. The next construction provides a link
between interval exchange transformations and translation surfaces. A suspension datum for
T = (π, λ) is a vector (τα)α∈A such that

• ∀1 ≤ k ≤ d− 1,
∑

πt(α)≤k τα > 0,
• ∀1 ≤ k ≤ d− 1,

∑
πb(α)≤k τα < 0.

We will often use the notation ζ = (λ, τ). To each suspension datum τ , we can associate a
translation surface (X,ω) = X(π, ζ) in the following way.

Consider the broken line Lt on C = R2 defined by concatenation of the vectors ζπ−1
t (j)

(in this order) for j = 1, . . . , d with starting point at the origin. Similarly, we consider the
broken line Lb defined by concatenation of the vectors ζπ−1

b (j) (in this order) for j = 1, . . . , d

with starting point at the origin. If the lines Lt and Lb have no intersections other than the
endpoints, we can construct a translation surface X by identifying each side ζj on Lt with the
side ζj on Lb by a translation. The resulting surface is a translation surface endowed with the
form dz2. Note that the lines Lt and Lb might have some other intersection points. But in
this case, one can still define a translation surface by using the zippered rectangle construction,
due to Veech [Vee82].

We will need to extend a little the definition of a suspension datum.

Definition 3.1. Let T = (π, λ) an interval exchange map. A weak suspension data for T is
an element τ ∈ RA, such that there exists h ∈ R such that:

i- ∀1 ≤ k ≤ d− 1, h+
∑

πt(α)≤k τα > 0,
ii- ∀1 ≤ k ≤ d− 1, h+

∑
πb(α)≤k τα < 0.

iii- If π−1t (1) = π−1b (d), then
∑

πt(α) 6=1 τα < 0

iv- If π−1t (d) = π−1b (1), then
∑

πb(α)6=1 τα > 0

The parameter h above will be called height of the weak suspension datum τ . Note that a
usual suspension datum corresponds to the case h = 0: in this case, the first two conditions
imply the two others.

Observe that, in a very similar way as for the case of suspension data, one can associate to
a pair (π, λ, τ, h) a translation surface X = X(π, λ, τ) and a horizontal interval Ih ⊂ X. One
use a small variation of the zippered rectangle construction: let Ih be a horizontal interval of
length

∑
α λα. For α ∈ A, we consider the rectangle Rα of width λα and of height

hα =
∑

πt(β)≤πt(α)

τβ −
∑

πb(β)≤πb(α)

τβ
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Figure 3. Zippered rectangle construction for a weak suspension datum

By definition of weak suspension datum, hα > 0 for each α. Note that, for instance, Condition
iii- is needed to insure that ha > 0 for a permutation π of the form ( a ∗∗ ∗∗ ∗∗ a )). Then, we glue
the rectangles (Rα)α in a similar way as for the usual zippered rectangle construction. Two
values h1, h2 give canonically isometric surfaces X(π, λ, τ), where the intervals Ih1 and Ih2
differs by a vertical translation (of length h2 − h1). In other words, there is a immersed
Euclidean rectangle of height |h2 − h1| whose horizontal sides are Ih1 and Ih2 . Also, vertical
leaves starting from the endpoints of Ih satisfy the “classical conditions”, i.e. each leaf will hit
a singularity before intersecting Ih (in the positive or negative direction depending on h and
the suspension data).

Conversely, let X be a translation surface and I ⊂ X be a horizontal interval with the same
classical conditions as above. We assume that there are no vertical saddle connections. In a
similar way to the classical case, there exists a (unique) weak suspension datum (π, λ, τ, h) such
that (X, I) = (X(π, λ, τ), Ih). The datum (π, λ) is given by considering the interval exchange
T defined by the first return map of the vertical flow on I, h is the time (positive or negative)
for which the vertical geodesic starting from the left end hits a singularity. The parameters
τα are obtained by considering vertical geodesics starting from the discontinuities of T and
the time where they hit singularities: the corresponding time tk for the k-th discontinuity is
h +

∑
πt(α)≤k τα. Also, if π−1t (1) = π−1b (d) then Condition iii- corresponds to the fact that

the vertical geodesics starting from the right end of I hits a singularity before intersecting I
again (and similarly for Condition iv-).
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3.3. Rauzy-Veech induction and other Rauzy operations. The Rauzy-Veech induction
R(T ) of T is defined as the first return map of T to a certain subinterval J of I (see [Rau79,
MMY05] for details).

We recall very briefly the construction. Following [MMY05] we define the type of T by t
if λπ−1

t (d) > λπ−1
b (d) and b if λπ−1

t (d) < λπ−1
b (d). When T is of type t (respectively, b) we will

say that the label π−1t (d) (respectively, π−1b (d)) is the winner and that π−1b (d) (respectively,
π−1t (d)) is the loser. We define a subinterval J of I by

J =

{
I\T (Iπ−1

b (d)) if T is of type t;
I\Iπ−1

t (d) if T is of type b.

The image of T by the Rauzy-Veech induction R is defined as the first return map of T to
the subinterval J . This is again an interval exchange transformation, defined on d letters (see
e.g. [Rau79]). The data of R(T ) are very easy to express in term of those of T .

There are two cases to distinguish depending whether T is of type t or b; the labeled
permutations of R(T ) only depends on π and on the type of T . If ε ∈ {t, b} is the type of
T , this defines two maps Rt and Rb by R(T ) = (Rε(π), λ′). We will often make use of the
following notation: if ε ∈ {t, b} we denote by 1− ε the other element of {t, b}.

(1) T has type t. Let k ∈ {1, . . . , d − 1} such that π−1b (k) = π−1t (d). Then Rt(πt, πb) =
(π′t, π

′
b) where πt = π′t and

π
′−1
b (j) =


π−1b (j) if j ≤ k
π−1b (d) if j = k + 1
π−1b (j − 1) otherwise.

(2) T has type b. Let k ∈ {1, . . . , d − 1} such that π−1t (k) = π−1b (d). Then Rb(πt, πb) =
(π′t, π

′
b) where πb = π′b and

π
′−1
t (j) =


π−1t (j) if j ≤ k
π−1t (d) if j = k + 1
π−1t (j − 1) otherwise.

(3) Let us denote by Eαβ the d × d matrix of which the α, β-th element is equal to 1,
all others to 0. If T is of type t then let (α, β) = (π−1t (d), π−1b (d)) otherwise let
(α, β) = (π−1b (d), π−1t (d)). Then Vαβλ

′ = λ, where Vαβ is the transvection matrix
I + Eαβ .

If τ is a suspension data over (π, λ) then we define R(π, λ, τ) by

R(π, λ, τ) = (Rε(π), V −1λ, V −1τ),

where ε is the type of T = (π, λ) and V is the corresponding transition matrix. In other terms
Vαβζ

′ = ζ where ζ = (λ, τ).

Remark 3.1. By construction the two translation surfaces X(π, ζ) and X(π′, ζ ′) are naturally
isometric (as translation surfaces).
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Remark 3.2. We can extend the Rauzy–Veech operation on the space of weak suspension data
by using the same formulas. We easily see that V −1ζ is a weak suspension data for Rε(π).
Also, X(R(π, ζ)) and X(π, ζ) are also naturally isometric as translation surfaces.

Now if we iterate the Rauzy induction, we get a sequence (αk, βk) of winners/losers. De-
noting R(n)(π, λ) = (π(n), λ(n)), the transition matrix that relates λ(n) to λ is the product of
the transition matrices: (

n∏
k=1

Vαkβk

)
λ(n) = λ. (1)

Now, we define other Rauzy moves that will be used later. Let π be a labeled permutation.

π =

(
π−1t (1) π−1t (2) . . . π−1t (d)
π−1b (1) π−1b (2) . . . π−1b (d)

)
.

We define the symmetric of π, denoted by s(π), the following labeled permutation.

s(π) =

(
π−1b (d) π−1b (d− 1) . . . π−1b (1)
π−1t (d) π−1t (d− 1) . . . π−1t (1)

)
.

Observe that if τ is a weak suspension datum for (π, λ), then τ is also a weak suspension
datum for (s(π), λ) (it is not necessarily true for usual suspension data). For simplicity, we
define s(π, λ, τ) = (s(π), λ, τ). Also, the translation surfaces X(π, λ, τ) and X(s(π, λ, τ)) are
related by the element −I ∈ SL(2,R).

Left Rauzy induction can be defined analogously as the Rauzy induction, by “cutting” the
interval on the left. It can also be defined by RL = s ◦ R ◦ s. From the above study, we
see that RL preserves weak suspension data, and that X((π, λ, τ)) and X(RL(π, λ, τ)) are
naturally isometric as translation surfaces.

3.4. Labeled Rauzy diagrams. For a labeled permutation π, we call the labeled Rauzy
diagram, denoted by D(π), the graph whose vertices are all labeled permutations that we can
obtained from π by the combinatorial Rauzy moves. From each vertices, there are two edges
labeled t and b (the type) corresponding to the two combinatorial Rauzy moves. We will
denote by π α,β−−→ π′ for the edge corresponding to Rε(π) = π′ where ε ∈ {t, b} and α/β is the
winner/loser. To each path γ of this diagram, there is thus a sequence of winners/losers. We
will denote by Ṽ (γ) the product of the transition matrices in Equation (1).

Similarly, one can define the reduced Rauzy diagram Dred(π) by considering (reduced)
permutations as vertices. There is clearly a canonical map D(π)→ Dred(π).

3.5. Coordinates on the hyperelliptic Rauzy diagrams. The hyperelliptic Rauzy dia-
gram Dn of size 2n−1 − 1 is the one that contain the permutation

πn =

(
1 2 . . . n
n n− 1 . . . 1

)
.

When n is even, it corresponds to the hyperelliptic connected component Hhyp(n − 2) and
when n is odd, it corresponds to the hyperelliptic component Hhyp(n−12 , n−12 ).
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The precise description of these diagrams was given by Rauzy [Rau79]. See also [BL12,
Section 3.7.1]. An easy corollary is the following proposition.

Proposition 3.1. Let n ≥ 2. For any π ∈ Dn there exists a unique shortest path joining πn
to π.

For a permutation π in Dn as above. We can write the path of the proposition as a unique
sequence of n1 > 0 Rauzy moves of type ε ∈ {t, b}, then n2 > 0 Rauzy moves of type 1−ε, etc.
The sequence of non negative integers n1, . . . , nk−1 defines the permutation π once ε is chosen.
Observe that replacing the starting Rauzy type ε by 1− ε changes π = (πt, πb) by (πb, πt) up
to renaming. For our purpose, we wont need to distinguish these two cases. Observe also that
we necessarily have

∑
i=1,...,k−1 ni < n− 1.

Definition 3.2. Let π be a permutation in Dn and let n1, . . . , nk−1 be as above, the coordinates
of π are

(n1, . . . , nk−1, n− 1−
∑

i=1,...,k−1
ni)

This definition is motivated by the following easy proposition.

Proposition 3.2. Let π be a permutation in Dn. The followings hold:
• If π has coordinates (n1, . . . , nk) then s(π) has coordinates (nk, . . . , n1).
• If k is even then π and s(π) belong to the same component of Dn\{πn}.
• If k is odd then π and s(π) belong to a different component of Dn\{πn}.

Proof of Proposition 3.2. The proof is straightforward. To see that the last two assertions
hold, we can remark that π and s(π) belong to the same connected component of Dn\{πn} if
and only if the minimal paths (from πn) to π and s(π) have the same starting Rauzy type. �

We end this section by recalling the construction of Veech on pseudo-Anosov homeomor-
phisms.

3.6. Pseudo-Anosov homeomorphism and Rauzy-Veech induction. We follow Veech’s
work [Vee82]. To any path γ in the labeled Rauzy diagram, whose image in the reduced Rauzy
diagram is closed, one can associate a matrix V as follows. We denote by (πt, πb) and (π′t, π

′
b)

the labeled permutations corresponding to the endpoints of γ. By definition of γ, they both
define the same underlying permutation. We associate to it a matrix Ṽ as before. Let P
be the permutation matrix defined by permuting the columns of the d × d identity matrix
according to the maps πt, π′t, i.e. P = [pαβ]α,β∈A2 , with pαβ = 1 if β = π−1t (π′t(α)) and 0
otherwise. The transition matrix associated to the path γ is then:

V = Ṽ · P. (2)

Observe that V is obtained from C̃ by replacing, for each k ∈ {1, . . . , d}, the column π−1t (k)

by the column π
′−1
t (k) or for each letter α, the column labelled α by the column labelled

π′−1t ◦ πt(α).
Assume now that the matrix V is a primitive (i.e. it as a power with only positive entries).

Let θ > 1 be its Perron-Frobenius eigenvalue. We choose a positive eigenvector λ for θ. It can
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be shown that V is symplectic [Vee82], thus let us choose an eigenvector τ for the eigenvalue
θ−1 with τπ−1

t (d) > 0. It turns out that τ defines a suspension data over T = (π, λ). Indeed,
the set of suspension data is an open cone, that is preserved by V −1. Since the matrix V −1
has a dominant eigenvalue θ (for the eigenvector τ), the vector τ must belong to this cone. If
ζ = (λ, τ), one has, for some integer k

Rk(π, ζ) = (π, V −1ζ) = (π, V −1λ, V −1τ) = (π, θ−1λ, θτ) =

= gt(π, λ, τ), where t = log(θ) > 0.

Hence the two surfaces X(π, ζ) and gtX(π, ζ) differ by some element of the mapping class
group (see Remark 3.1). In other words there exists a pseudo-Anosov homeomorphism φ
affine with respect to the translation surface X(π, ζ) and such that Dφ = gt. The action of φ
on the relative homology of (X,ω) is V (γ) thus the expanding factor of φ is θ.

By construction φ fixes the zero on the left of the interval I and thus it fixes a horizontal
separatrix adjacent to this zero (namely, the oriented half line corresponding to the interval
I). Conversely:

Theorem (Veech). Any pseudo-Anosov homeomorphism (preserving a orientable foliation,
and) fixing a horizontal separatrix is obtained by the above construction.

Recall that the main result of [BL12] was based on the following key proposition:

Proposition 3.3 ([BL12], Propositions 4.3 & 4.4). For any n ≥ 2 and any pseudo-Anosov
homeomorphism φ that is affine with respect to (X,ω) ∈ Chypn , if φ fixes a horizontal separatrix
attached to a zero of ω, or a marked point, then its expanding factor is bounded from below
by 2.

4. Obtaining all “small” pseudo-Anosov homeomorphisms

The proof of Theorem 2.1 uses a generalization of the Rauzy–Veech construction of pseudo-
Anosov homeomorphisms. We explain in Appendix C why a naive generalization of the Rauzy
induction does not work.

4.1. Construction of negative pseudo-Anosov maps. The usual Rauzy–Veech construc-
tion naturally produces pseudo-Anosov maps that preserve the orientation of the stable and
unstable foliation. The proposed generalization produces maps that reverse the unstable foli-
ation.

We consider a non closed path γ in the labeled Rauzy diagram such that its starting point
π and its ending point π′ satisfy s(π) = π′ up to a relabelling. By a slight abuse of language
we say that γ is a path from π to s(π).

As above, we associate to such path a matrix V by multiplying the corresponding product
of the transition matrices by a suitable permutation matrix that corresponds to the relabelling
between s(π′) and π. As before, V is symplectic, thus let us choose an eigenvector λ for the
eigenvalue θ and τ for the eigenvalue θ−1. It turns out that τ is not necessarily a suspension
datum, but it is a weak suspension datum, as we show in the next Proposition.
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Proposition 4.1. Let γ by a path in a Rauzy diagram from π to s(π), and let V := V (γ)
be the corresponding matrix. We assume that V is primitive. If λ, τ are the eigenvectors as
above then

• up to multiplying τ by −1, (λ, τ) is a weak suspension data for π.
• the constructed surface S(π, λ, τ) admits an affine map φ whose derivative is(

−θ 0
0 −1/θ

)
where θ is the maximal eigenvalue of M .
• Furthermore, φ admits a regular fixed point (with positive index).

Proof of Proposition 4.1. Let C(h) be the cone of weak suspension data of heights h over
π. We have a map V −1 : PC(h) −→ PC(h′). Observe that C(h) is open and the union
C =

⋃
pC(p) is an open convex cone. Hence there is an element τ ∈ C such that [τ ] ∈ PC

is fixed by V −1. Hence there is θ ∈ R such that V −1τ = θτ . If τ ∈ ∂C then it still defines
a nice translation surface since there is no vertical saddle connection (see [BL09, Figure 14]
for a detailed argument). In this case the corresponding horizontal segment contains some
singularities and thus [τ ] cannot be fixed by V −1 that is a contraction. Hence V −1τ = θτ ∈ C̊.
Furthermore, θ is the greatest eigenvalue of V −1, hence of V . We construct the surface
(X,ω) = X(π, λ, τ). If ζ = (λ, τ), one has, for some integer k

Rk(π, ζ) = (s(π), V −1ζ) = (s(π), θ−1λ+ iθτ)

Now, there is a natural map from f1 from S1 = X(π, ζ) = X(s(π), θ−1λ + iθτ) to S2 =
X(s(π), ζ) with Df1 =

(−1 0
0 −1

)
and a natural map f2 from S2 = X(s(π), ζ) to S1 =

X(s(π), θ−1λ + iθτ) with Df2 =
(
θ−1 0
0 θ

)
and the composition φ = f2 ◦ f1 gives a pseudo-

Anosov map affine on S1 with θ as expansion factor and that reverse vertical and horizontal
foliations.

Now we prove that φ has a regular fixed point. Let h be a height of (π, λ, τ), and Ih the
corresponding interval. Then, Rauzy–Veech induction gives a subinterval I ′h of Ih, and the
image of Ih by φ gives a interval I ′h2 defining the same weak suspension datum, with a different
height (see Figure 4). Hence, there is a map from φ(Ih) to I ′h1 ⊂ Ih with derivative −θ−1.
It as a fixed point x, hence x and φ(x) are the endpoint a vertical segment Jx that do not
contain a singularity. There is a fixed point of φ in Jx, which concludes the proof. �

4.2. Converse of the Symmetric Rauzy–Veech construction. As for the usual Rauzy–
Veech construction, we have a converse.

Definition 4.1. Let φ be an affine pseudo-Anosov on S, that that reverse the orientation of
the foliations, and with a regular fixed point (with positive index). A curve L is suitable for φ
if

(1) it is made by a horizontal segment, starting from p, and then followed by a vertical
segment, ending at a singular point. We do not allow L to have self-intersections.

(2) L and φ(L) do not have intersections in their interior.
Given a suitable curve, we call base segment the horizontal part of L ∪ φ(L)
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Figure 4. The Symmetric Rauzy–Veech construction

Proposition 4.2. A base segment defines, by considering first return map of the vertical flow,
an interval exchange transformation and weak suspension datum that can be obtained by the
above construction.

Proof. The fact that the base segment I =]a, b[ determines an interval exchange transformation
T = (π, λ) and a weak suspension datum τ, h for T is similar to the case for classical suspension
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data, except that the segment is not attached on the left to a singularity. This is left to the
reader.

We only need to check that T defines a Rauzy path from π to s(π) such that λ, τ are the
corresponding eigenvectors.

The key remark is the following: the horizontal part of φ(L) ∪ φ2(L) is a segment I ′ ⊂ I
that has the same left end as I. Observe that φ(L) and φ2(L) do not have intersection on their
interior hence, by a classical argument, the interval exchange transformation T ′ associated to
I ′ is obtained from T by applying a finite number of time the Rauzy induction on the right
to T . Similarly, for the weak suspension datum, we get (π′, λ′, τ ′) = (π(n), λ(n), τ (n)).

Rotating by 180◦ the picture we have, up to relabelling, s(π(n)) = π, λ(n) = 1/θλ and
τ (n) = θτ . This ends the proof. �

Now we prove the first part of the Geometric Statement.

Theorem 4.3. Let φ be an affine pseudo-Anosov on S having a regular fixed point P and that
reverse horizontal and vertical foliations. Then S is obtained by the above construction.

Proof of Theorem 4.3. By Proposition 4.2, all we need to show is to produce a suitable curve
L for φ.

We start from any oriented curve L in X made by a finite horizontal segment, starting from
P , and then followed by a finite vertical segment, ending at a singular point. We do not allow
L to have self-intersections. Such a curve always exists (e.g. by using the Veech’s polygonal
representation of translation surfaces). We denote by Lx and Ly the (oriented) components
of L: they bound a rectangle R whose opposite corners are P and a zero σ of ω. We denote
by {c(L)} = Lx ∩ Ly and by h the length of Ly.

Now if φ(L)∩
◦
L = ∅ we are done. Otherwise one of the following intersections is non empty

(possibly the two):

φ(Lx) ∩
◦
Ly 6= ∅ or φ(Ly) ∩

◦
Lx 6= ∅.

We will perform several operations on L, in order to obtain the required condition. The
strategy is the following:

• 1st Step: arrange that L bounds an immersed euclidean rectangle i(R).

• 2nd Step: arrange that φ(Lx) ∩
◦
Ly = ∅.

• 3nd Step: change the fixed point in order to get suitable curve.
1st Step. We assume that h is minimal in the following sense: for each x ∈ Lx, the unit
speed vertical geodesic starting from x (in the same direction as Ly), does not hit a singularity
at a time less than h. Now, let R ⊂ R2 be the open rectangle of width |Lx| and of height
h.There is a natural translation map i : R → S that sends the bottom side of R to Lx. By
the above hypothesis, i(R) does not contain any singularity. Note that i might not be an
embedding but just an immersion. However, P is not in i(R), otherwise one easily see that
the interior of Lx intersects the interior of Ly (see also Figure 5).

Assume that h is not minimal, then there is a x0 ∈ Lx whose corresponding vertical geodesic
hits a singularity for a time h0 minimal. We then consider the new oriented curve L0, starting
from P such that L0x is the segment joining P to x0 and L0y is the vertical segment of length
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h0. Note that L0 still satisfies the no self intersection hypothesis otherwise we would find an
element x1 ∈ Lx with h1 < h0, contradicting the minimality hypothesis.

Note also that if φ(Lx) ∩
◦
Ly = ∅, then it is still also the case for L0. Indeed, the rectangle

R0 of width |Lx| and of height h0 immerses in S (in a similar way as R). If φ(L0x)∩
◦
L0y 6= ∅,

then we find P in i(R0), which is not possible for the same reason as above (see Figure 5).

×P
Lx

•

Ly
•

×
P

φ(L0)

Lx

Figure 5. Step 1: If φ(Lx) ∩ Ly = ∅, and h is not minimal

2d Step. Now we assume φ(Lx) ∩
◦
Ly 6= ∅. We first show that φ(Ly) ∩

◦
Lx 6= ∅. Let Q be the

point in the intersection φ(Lx)∩
◦
Ly such that the vertical distance from c(L) to Q is minimal.

Since |φ(Lx)|= λ−1|Lx|< |Lx| one has φ(c(L)) ∈ i(R). If φ(Ly) ∩
◦
Lx = ∅ then the vertical

segment φ(Ly) is contained in i(R), in particular φ(σ) ∈ i(R): this contradicts the 1st Step
since there is no singularity inside i(R).

Now we replace L by L′ as follows: We choose Q′ in φ(Ly) ∩
◦
Lx such that the horizontal

distance from P to Q′ is minimal. Then, we define L′ by considering the horizontal segment,
starting from P and ending at Q′, and the vertical segment from Q′ and ending at φ(σ). Since

φ(L′x) ∩ L′y ⊂ φ(Lx) ∩ φ(Ly) = {φ(c(L))}, one has φ(L′x) ∩
◦
L
′

y = ∅ as required. Now, up to
shortening L′ as in the first step, we can assume that L′x and L′y bound an immerse rectangle

R′ and we still have φ(L′x) ∩
◦
L′y = ∅.

3d Step. Let S̃ be the universal covering of S. Choose P̃ a preimage of P , L̃ a preimage
of L attached to P̃ . Now the rectangle R, as defined in the 1st Step, embeds as a rectangle
R̃ in S̃ with L̃ as bottom and right sides. For any lift φ̃ of φ, such that φ̃(L̃y) intersects R̃,
φ̃(L̃y) intersects the interior of L̃x (in a unique point Q, since we are working on the universal
cover). Now, we choose a lift φ̃ of φ that minimize the length d of the vertical segment joining
Q to the singular point that is the end of φ̃(L̃y). Now, we easily see that φ̃(R̃) intersects R̃ as
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in Figure 6. As in the proof of Proposition 4.1, we find x ∈ Lx such that the corresponding
vertical leaf is fixed by φ̃. Then, we find in R̃ a fixed point P̃ ′ for φ.

•

•

×
P̃ ′

L̃′R̃

φ̃(R̃)

×P̃

Figure 6. Step 3: changing the fixed point

Now we consider L̃′ obtained as follows: take the horizontal segment with left end P̃ ′ and
whose right end is in L̃x, then consider the vertical segment that ends in the same singularity
as L̃ (see Figure 6). We claim that L̃′ projects in S into a suitable curve L′. Indeed, otherwise
L′x ∪ φ(L′x) either intersects the interior of L′y or the interior of φ(L′y). In both cases, we
find another intersection point between Lx and φ(L′y) which contradicts the minimality of d.
Therefore, we have found a suitable curve, the theorem is proven. �

The next proposition implies the second part of the Geometric Statement.

Proposition 4.4. Let φ be an affine pseudo-Anosov map on a surface S in a hyperelliptic
component, and τ be the hyperelliptic involution. Then, τ ◦ φ is also an affine pseudo-Anosov
map on S. Denote {φ, τ ◦φ} = {φ+, φ−} such that φ+ preserves the orientation of the vertical
and horizontal foliations. We have the following:

• φ− is obtained by the symmetric Rauzy–Veech construction.
• If φ+ is not obtained by the usual Rauzy–Veech construction, then there are exactly
two regular fixed points for φ−, that are interchanged by the hyperelliptic involution.

Proof. We prove the first part. From the previous theorem, all we need to show is that φ−
has a regular fixed point. For a homeomorphism φ, we denote by φ∗ the linear action of φ on
the homology H1(S,R). We recall the Lefschetz formula:

2− Tr(φ∗) =
∑

φ(x)=x

Ind(φ, x).

When φ is of type pseudo-Anosov, and x a fixed point, we can show that:
• Ind(φ, x) < 0 if there is a fixed separatrix.
• Ind(φ, x) = 1 otherwise.
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Assume that φ = φ+ and the underlying translation surface is in H(2g− 2). Then the unique
singularity P is necessarily fixed and has index ≤ 1. All the other fixed point (possibly zero)
are regular point so have negative index. Hence 2 − Tr(φ∗) ≤ 1. Since Tr(τ ◦ φ) = −Tr(φ),
we conclude that 2− Tr(φ−∗ ) ≥ 3. Therefore, there must be at least 2 regular fixed points for
φ−.

Now assume that the underlying translation surface is inH(g−1, g−1). The two singularities
P1, P2 are either fixed or interchanged by φ+.

• If P1, P2 are fixed. Then, as before, 2 − Tr(φ+∗ ) ≤ 2 hence 2 − Tr(φ−∗ ) ≥ 2. So there
are a least two fixed points. But P1, P2 are interchanged by φ−, hence the two fixed
points are regular.
• If P1, P2 are interchanged by φ+, then 2 − Tr(φ+∗ ) ≤ 0, hence 2 − Tr(φ−∗ ) ≥ 4, there
are at least four fixed points so, at least 2 regular fixed points.

Now, we see that in the above proof, the case where φ+ is not obtained by the usual Rauzy–
Veech construction (i.e. when φ+ does not have negative index fixed point) corresponds to
the equality case. There is exactly one pair of regular fixed points {Q1, Q2}. Since φ− and
τ commute, we see that τ(Q1) is a fixed point, hence Q1 or Q2. It cannot be Q1 otherwise
τ ◦ φ− = φ+ has a regular fixed point, contradicting the hypothesis. Hence, τ(Q1) = Q2, this
concludes the proof. �

We end this section with the following useful proposition.

Proposition 4.5. If an admissible path from π to s(π) passes through the central permutation
then τ ◦ φ is obtained by the usual Rauzy–Veech construction, where τ is the hyperelliptic
involution.

Proof of Proposition 4.5. The map ψ = τ ◦ φ preserves the orientation of the vertical and
horizontal leafs. Hence, all we need to show is that there is a fixed separatrix.

Let (π, λ, τ) be the weak suspension data associated to the admissible path. Let h be a
height, and I = Ih ⊂ X(π, λ, τ).

We claim that there is an immersed Euclidean rectangle with ψ(I) as one horizontal side,
and the other one is a subinterval of I. Assuming the claim, there is an isometry f from ψ(I)
to I obtained by following a vertical leaf. The map f ◦ ψ is therefore a contracting map from
I to itself (its derivative is θ−1), hence has a fixed point. It means that there is an element
x in I whose image by ψ is in the vertical leaf l passing through x. Thus, this vertical leaf
l is preserved by ψ. Since ψ, restricted to l as derivative θ 6= 1, there is a fixed point of ψ
on l. This fixed point is either a conical singularity or a regular point. In any case, ψ fixes a
vertical separatrix. Hence ψ fixes also a horizontal separatrix. It is therefore obtained by the
usual Rauzy–Veech construction.

Now we prove the claim. By construction of φ, there is base segment I such that I ′ = φ(I) ⊂
I. This subinterval I ′ is obtained from I after doing Rauzy–Veech induction until the end of
the defining path in the Rauzy diagram. By hypothesis, there is a step of the form (πn, λ

′′, τ ′′),
where πn is the central permutation, and that corresponds to a interval I ′′, with I ′ ⊂ I ′′ ⊂ I.
Now, we easily see that τ(I ′′) and I ′′ are the horizontal sides of a immersed rectangle. We
now conclude as in the proof of Proposition 4.1 that there is a fixed separatrix. �
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5. Renormalization and changing the base permutation

The aim of this section is to reduce our analysis to the set of paths of Dn starting from the
central loop. First, recall that, from [BL12], pseudo-Anosov homeomorphisms in hyperelliptic
connected components obtained by the Rauzy–Veech construction have expansion factors at
least 2, and are not the minimal ones. Recall that an admissible path is pure if the corre-
sponding map is not obtained by the usual Rauzy–Veech construction.

Theorem 5.1. Let γ be a pure admissible path in Dn joining a permutation π to its symmetric
s(π), and let φ be the corresponding pseudo-Anosov map. Then, φ can also be obtained by a
path γ′ starting from the central loop. In addition the first step of γ′ is on a secondary loop
(i.e. of type ’b’).

The construction of γ′ in terms of γ is not obvious. To prove the theorem, we appeal to the
dynamics of the induction.

5.1. Renormalization: The ZRL acceleration. In this section we will consider only pure
admissible paths from π to s(π). If we denote by (n1, . . . , nk) the coordinates of π then k is
even (otherwise Proposition 3.2 implies that γ passes through the central permutation and
Proposition 4.5 is a contradiction with the path being pure).

Convention 1. We will always assume that the first Rauzy move is ’t’, i.e. π is obtained by
applying the sequence tn1bn2 . . . tnk−1 to πn.

Proposition 5.2. Let α = π−1b (n) and β = π−1t (1). Then φ(ζα) = ζβ.
In particular there exists a canonical base segment I ′ obtained from the previous one as

follows: We apply a right induction until α is is loser ( i.e. Rauzy path of type blt, for some
l ≥ 0) followed by a left induction until β is loser ( i.e. left Rauzy path of type t̄mb̄, for
some m ≥ 0). This segment I ′ defines a new Rauzy path γ′ starting point π′ of γ′ satisfying
Convention 1 (up to permuting top and bottom).

Definition 5.1. The map ZRL from the space of pure admissible paths satisfying Convention 1
to itself is defined by ZRL(γ) = γ′, where γ, γ′ are as in Proposition 5.2.

Proof of Proposition 5.2. By hypothesis, π is in the connected component of Dn\{πn} where
β = π−1t (1) is never winner. Since γ does not pass through the central permutation, α is never
winner, hence the parameter ζβ is unchanged during the whole Rauzy path. In particular, by
definition of φ (see Figure 4), the segment corresponding to ζα is sent by φ to the segment
corresponding to ζα. Hence, the curve L′ as in Figure 7 is admissible and defines a new
admissible path γ′ from a permutation π′ to s(π′). The horizontal part of L′ ∪φ(L′) defines a
new base segment I ′ and parameters (π′, ζ ′) as described in Section 3.2. We obtain (π′, ζ ′) by
the sequence of right and left Rauzy move described in the statement of the proposition. If π′
does not satisfy Convention 1, we interchange the two lines, that is equivalent to interchanging
"up" and "down" on the surface, and therefore conjugating φ with the surface orientation
changing homeomorphism. �

Remark 5.1. ZRL stands for Zorich acceleration of Right-Left induction. By construction
the two surfaces S(γ) and S(γ′) are in the same Teichmüller orbit (perhaps up to an affine
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ζ1 = φ(ζ2)

• ζ2
•

ζ3

•

ζ4

•
ζ2

•

ζ3

•ζ1

•

ζ4

•

•
L′

•

φ(L′)

Figure 7. Finding a new suitable curve: φ(ζ2) = ζ1.

isometry with derivative map
(
1 0
0 −1

)
). It is difficult to express the path γ′ in a simple way in

terms of the path γ. However the coordinates for the permutations (introduced in Section 3.5)
allow us to express the new starting point π′ in an easier way, only in terms of the old starting
point (see Proposition 5.4 below).

In view of considering iterates of the map ZRL, we will use the following lemma.

Lemma 5.3. Assume that γ is a pure admissible path. Then the ZRL orbit of γ is infinite
and all the letters are winner and loser infinitely often.

Proof. By Proposition 5.2, the new path γ′ is a pure admissible path. Hence, the ZRL orbit
is infinite. In this proof, we do not interchange top and bottom line in order to follow Con-
vention 1, but consider a sequence of base segment (In)n∈N on the same underlying surface
S, with In+1 ⊂ In. Note that the vertical flow on S is minimal (and uniquely ergodic) since
S carries an affine pseudo-Anosov homeomorphism. We identify those segments as subsets of
the real line, In =]bn, an[, with (bn) increasing and (an) decreasing. As for the usual Rauzy
induction, all letter are winner infinitely often if and only if |In|= an−bn tends to zero. Let us
assume that it is not the case. Then an → a, bn → b with φ(a) = b. We consider the sequence
(λn, τn) of corresponding suspension data. Define tn to be the time when the vertical unit
speed geodesic starting from an reach a singularity, note that tn can be positive or negative,
observe that |tn|→ ∞ otherwise the set of singularities in the surface S would not be discrete.
Without loss of generalities, we can assume that there is a subsequence (nk) such that tnk

> 0.
There are two cases.

(1) If the geodesic in the positive direction starting from a, denoted as ga, is infinite,
then it follows the (finite) one starting from ank

for a longer and longer time. By
density there is a time t such that gb(t) intersects ]b, a[, hence for k large enough, the
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geodesics starting from bnk
intersects ]b, a[, hence In,k before reaching a singularity.

Contradiction.
(2) If the geodesic ga is finite in the positive direction, then it is necessarily infinite in the

negative direction. If there is a subsequence tmk
< 0, the same argument as above gives

a contradiction. Hence, for n large enough tn > 0. The same argument also works for
an non accelerated Right-Left induction. Hence for n large enough, the ‘right’ part of
the ZRL move is necessarily b. Similarly, the ‘left’ part of the ZRL move is necessarily
t̄. But such move cannot hold for an infinite number of step. Contradiction.

The lemma is proved. �

5.2. Action of ZLR on the starting point. As promised we now explain how ZRL acts
on the starting point, in terms of the coding introduced in Section 3.5.

Proposition 5.4. Let γ be an admissible path, starting from a permutation π. Let (n1, . . . , nk),
k ≥ 4 be the coding of π. The coding of the starting point of ZRL(γ) is obtained by the fol-
lowing rules.

• we replace (nk−1, nk) by

 (nk−1 + 1, nk − 1), or
(nk−1, nk − 1, 1), or
(nk−1, l̄, 1, nk − 1− l̄).

• we replace (n1, n2) by

 (n1 − 1, n2 + 1), or
(1, n1 − 1, n2), or
(n1 − 1− m̄, 1, m̄, n2).

where l,m are positive integers with l < nk − 1, m < n1 − 1, and l̄, respectively m̄, is the
remainder of the Euclidean division of l, respectively m, by nk, respectively n1.

Proof of Proposition 5.4. By convention, the starting permutation π is of the form tn1bn2 . . . tnk−1 .
The map ZRL acts on π by a sequence of Rauzy moves of the form bltt̄mb̄ and then followed
(perhaps) by a permutations of the lines (which does not change the coding).

The Rauzy moves blt acts on the coding as:
(1) (n1, . . . , nk) 7→ (n1, . . . , nk−1 + 1, nk − 1) if l = 0 mod (nk).
(2) (n1, . . . , nk) 7→ (n1, . . . , nk−1, nk − 1, 1) if l = −1 mod (nk).
(3) (n1, . . . , nk) 7→ (n1, . . . , nk−1, l̄, 1, nk − 1− l̄) otherwise.

(where l̄ is the remainder of the Euclidean division of l by nk).
This gives the first part of the proposition.

The remaining part is obtained similarly: we must act on the left by the moves t̄mb̄, which
is equivalent to the moves s.bm.t.s. This proves the proposition. �

5.3. Proof Theorem 5.1. We are now ready to prove the theorem announced at the begin-
ning of this section.

Proof Theorem 5.1. Let γ be an admissible path, with corresponding expansion factor λ < 2.
We need to show that there exists an iterate of ZRL which starts from a permutation π starting
from the central loop, i.e. satisfying π−1t (n) = π−1b (1).

We first observe the following: let (l, . . . , l′) be a coordinate of π, then l ≤ l′. Indeed, if
l > l′, then a path joining π to s(π) must pass through the central permutation.
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Now, let (n1, , n2, . . . , nk−1, nk) = (l, x, . . . , x′, l′) be the coding of a permutation, with k ≥ 4
even. We prove by induction the following property P(l):

(1) l = l′

(2) After applying a finite sequence of ZRL, we reach the permutation coded by (l +
x, . . . , x′+ l′), and during this sequence, the letters “between the blocks corresponding
to x and x′”, i.e. π−1ε (j) for j ∈ {l+ x+ 2, . . . , n− 1− l′ − x′} are constant along the
ZRL-orbit and non-winner. Note that if k ≥ 4, this set of letters is nonempty.

Initialisation corresponds to the case (1, x, . . . , x′, l′). Assume that l′ > 1, then after one
step of ZRL, the left part must be (1+x, . . . ), but in this case, in order to preserve the parity
of the numbers of blocks, we must have:

(x+ 1, . . . , x′, l′ − 1, 1)

with x+ 1 > 1, which contradicts the initial observation. So, we have l′ = 1, and ZRL maps
(1, x, . . . , x′, 1) to (x+ 1, . . . , x′+ 1), and we see directly that the second condition is fulfilled.

Now, let 1 < l ≤ l′ and let the initial permutation be coded by (l, x, . . . , x′, l′). Assume
P(l′′) for any l′′ < l. By Proposition 5.4 and observing again that the parity of the number of
blocks is constant, after one step of ZRL the coding is one of the following:

(1) (1, l − 1, x, . . . , x′, l′ − 1, 1).
(2) (l − 1, x+ 1, . . . , x′ + 1, l′ − 1).
(3) (l − 1, x+ 1, . . . , x′, l′2, 1, l

′
1), for some l′1, l′2 satisfying l′1 + l′2 + 1 = l′.

(4) (l1, 1, l2, x, . . . , x
′ + 1, l′ − 1), for some l1, l2 satisfying l1 + l2 + 1 = l.

(5) (l1, 1, l2, x, . . . , x
′, l′2, 1, l

′
1), for l1, l2, l′1, l′2 as above.

Now, we study these different cases:

(1) The following step is necessarily (l, x, . . . , x′, l′).
(2) By the induction hypothesis, l − 1 = l′ − 1, and after some steps, we obtain (l +

x, . . . , l′ + x′).
(3) By induction hypothesis, we have l − 1 = l′1, and after some steps of ZRL we have

(l + x, . . . , x′, l′2, l), which again contradicts the first observation.
(4) By induction hypothesis, we have l1 = l′ − 1. But, l1 = l − 1 − l′2 < l − 1 ≤ l′ − 1.

Contradiction.
(5) By induction hypothesis, we have l′1 = l1 and after some steps, we have (l1+1, l2, x, . . . , x

′, l′2, l1+
1), and again after some steps, we have (l, x, . . . , x′, l′). During these two sequences of
ZRL, all the letters between the blocks corresponding to l2 and l′2 are unchanged and
non-winner, and this set is nonempty.

Note that it is impossible to repeat infinitely the steps (1) or (5) by Lemma 5.3, hence we will
eventually get Step (2), proving P(l).

Hence, after a finite number of ZRL steps, we obtain a permutation with a coding with two
blocks (k=2), which corresponds to a starting point in the central loop. This proves the first
part of Theorem 5.1.

We now turn into the proof of the second part: the first step of the corresponding admissible
Rauzy path leaves the central loop, i.e. is of type b. In this case, ZRL acts on the starting
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point π by tb̄. Write π as: (
a ∗ ∗ ∗ b
b ∗ ∗ ∗ c

)
We easily see that tb̄ preserves π, and λb becomes λb − λa − λc. Iterating ZRL, after a finite
number of steps, b is not winner any more. Theorem 5.1 is proved. �

6. Reducing to a finite number of paths

In view of Section 4, for a given n, one needs to control the spectral radii of matrices V (γ)
for all paths γ in Dn. Section 5 shows that it is enough to consider paths γ starting from the
central loop of Dn. However this still produces an infinite number of paths to control. The
proposition below shows how one can restrict our problem to a finite number of paths.

Proposition 6.1. Let γ be an admissible path starting from a permutation π = πn.t
k in the

central loop. We assume that the first step goes in the secondary loop.

(1) If k > Kn, then θ(γ) > 2.
(2) If k ≤ Kn then θ(γ) ≥ θn,k.
(3) If V (γn,k) is not primitive, then either θ(γ) > 2 or there exists l ∈ {1, . . . , 2n−2−3k},

l 6= n− 1− k, such that θ(γ) ≥ θn,k,l.

For two paths γ, γ′ we will write γ′ ≤ γ if the path γ′ is a subset of the graph γ (viewed as a
ordered collection of edges). For a real matrix A ∈Mn(R), we will write A ≥ 0 (respectively,
A� 0) to mean that Aij ≥ 0 (respectively, Aij > 0) for all indices 1 ≤ i, j ≤ n, and similarly
for vectors v ∈ Rn. The notation A ≥ B means A − B ≥ 0. Before proving Proposition 6.1,
we will use the following:

Proposition 6.2. Let γ′ ≤ γ i.e. the path γ is obtained from the path γ′ by adding (possibly
zero) closed loops. Then V (γ′) ≤ V (γ) and θ(γ′) ≤ θ(γ). Moreover if V (γ) is primitive and
γ 6= γ′ then θ(γ′) < θ(γ).

Proof of Proposition 6.2. If V (γ′) = V1 · V2 · . . . · Vl · P ′ is the matrix associated to the path
γ′, where Vi are the elementary Rauzy–Veech matrices and P ′ is a permutation matrix, then
the matrix associated to γ has the form

V (γ) = V1 ·N1 · V2 ·N2 · . . . · Vl ·Nl · P,

where:

• N1, . . . , Nl are products of (possibly empty) elementary Rauzy–Veech matrices, hence
of the type I+N ′i , where I is the identity matrix and N ′i is a matrix with nonnegative
coefficients.
• P is the permutation matrix corresponding to the end point of γ.

Since the labeled Rauzy diagram and the reduced Rauzy diagram coincide, the endpoints of γ
and γ′ also coincide in the labeled Rauzy diagram, hence P = P ′. From these facts we deduce
that V (γ′) ≤ V (γ). Let us show that θ(γ′) ≤ θ(γ).
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Recall that V (γ′) is not necessarily primitive. However there is a permutation matrix Pσ

such that PσV (γ′)Pσ−1 =


A1 0 . . . 0
∗ A2 0 0
...

. . .
...

∗ . . . ∗ As

 , where the matrices Ai are primitive matri-

ces. Up to a change of basis one can assume that the spectral radius of As is achieved by θ(γ′).
Thus there is a non-negative vector w such that Asw = θ(γ′)w. Now v′ := Pσ−1

(
0 . . . 0 w

)T
is a non-negative right eigenvector of V (γ′) for the eigenvalue θ(γ′).

Let v be a positive left eigenvector of V (γ): vV (γ) = θ(γ)v and v > 0. From V (γ′) ≤ V (γ)
one has

vV (γ)v′ ≥ vV (γ′)v′.

Hence θ(γ)vv′ ≥ θ(γ′)vv′ and since vv′ > 0 we draw θ(γ) ≥ θ(γ′) as desired.
We now prove that last claim: assume V (γ′) ≤ V (γ) and V (γ) 6= V (γ′). Then there

exists k ∈ Z>0 such that V (γ)k � V (γ′)k. In particular we can find α > 1 such that
V (γ)k ≥ αV (γ′)k. Thus ρ(γ)k ≥ αρ(γ′)k proving the proposition. �

Proof of Proposition 6.1. We prove the first assertion. Let k be any integer satisfying k >
(n− 1)/2. Then n− 1− k < k, hence s(π) = tn−1−kπn is “before” π in the central loop. Since
γ is admissible, γ is passes thought the central permutation. Now if k = (n − 1)/2 then, up
to relabeling, π = s(π). By using the alphabet A = {1, . . . , n}, we have:

π =

(
1 2 . . . n
n n−1

2 . . . n+1
2

)
.

Hence the relabeling does not changes the letter n. In particular it must be winner at least
once. This imply that γ contains the step π → t.π, hence passes through the central permu-
tation. In both situation θ > 2.

We now turn to the proof of the second part of the proposition. The Rauzy diagram that
we consider have the particular property that removing any vertex disconnects it (except the
the particular ones that satisfies t.π = π or b.π = π). This implies that the path γ is obtained
from the path γn,k by adding (possibly zero) closed loops, namely γn,k ≤ γ. Hence we are in
a position to apply Proposition 6.2: this finishes the proof of this part.

The proof of the last statement is similar, once we remark that if Vn,k is not primitive, then
the path γ is obtained from γn,k by adding at least one closed loop. Assuming that θ(γ) < 2
this gives by definition a path of the form γn,k,l for some l ∈ {1, . . . , 2n − 2 − 3k}. Thus
γn,k,l ≤ γ and Proposition 6.2 again applies. If l = n − 1 − k then γn,k,l is obtained from
γn,k by adding twice the same loop. Hence Vn,k,l is not primitive and γ 6= γn,k,l. The same
argument above applies and γ must contain γn,k,l for some l 6= n − 1 − k. We conclude with
Proposition 6.2. �

Appendix A. Matrix computations

The aim of this section is the computation of the different Rauzy–Veech matrices in Mn(Z)
and especially their characteristic polynomials. The rome technique (see below) reduces these
computations to matrices in M2(Z[X]) and M3(Z[X]) making them possible.
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In the sequel we will denote by Pn,k (respectively, Pn,k,l) the characteristic polynomial of
the matrices V (γn,k) (respectively, V (γn,k,l)) multiplied by (X + 1). Their maximal real root
are θn,k and θn,k,l, respectively.

A.1. The rome technique (after [BGMY1980]). To compute the characteristic polynomial
of matrices we will use the rome method, developed in [BGMY1980]. To this end it is helpful
to represent a matrix V into the form of a combinatorial graph which amounts to draw all
paths of length 1 associated to V .

Given a n×n matrix V = (vij), a path η = (ηi)
l
i=0 of width w(η) and length l is a sequence

of elements of {1, 2, . . . , n} such that w(η) =
∏l
j=1 vηj−1ηj 6= 0. If ηl = η0 we say that η is a

loop.
A subset R ⊂ {1, 2, . . . , k} is called a “rome” if there is no loop outside R. Given ri, rj ∈ R,

a path from ri to rj is a “first return path” is it does not intersect R, except at its starting and
ending points. This allows us to define an r × r matrix-valued real function VR(X), where r
is the size of R, by setting VR(X) = (aij(X)), where aij(X) =

∑
η w(η) · X−l(η), where the

summation is over all first return paths beginning at ri and ending at rj .

Theorem (Theorem 1.7 of [BGMY1980]). If R is a rome of cardinality r of a n × n matrix
V then the characteristic polynomial χV (X) of V is equal to

(−1)n−rXn det(VR(X)− Idr).

Remark A.1. The matrices V = Vn,k or V = Vn,k,l can be seen as the action of homeo-
morphisms on absolute homology if n is even and relative homology otherwise. Thus their
characteristic polynomials are reciprocal polynomials (resp. anti-reciprocal polynomials) i.e.
χV (X) = XnχV (X−1) (resp. χV (X) = −XnχV (X−1)). Thus

χV = (−1)r det(VR(X−1)− Idr)

A.2. The paths γn,k. We briefly recall Notation 2.4 (see also Figure 2).
For any k = 1, . . . ,Kn and any l = 1, . . . , n− 2− k we define the path

γn,k : π := πn.t
k −→ s(π) : bn−1−ktn−1−2k

Lemma A.1. Let n ≥ 4 and 1 ≤ k ≤ Kn. Set d = gcd(n− 1, k). We denote by n′ = n−1
d + 1

and k′ = k
d . Then the matrix Vn′,k′ is primitive and θn,k = θn′,k′.

Proof of Lemma A.1. We first assume that k and n− 1 are relatively prime. We compute the
matrix Vn,k associated to the path γn,k. For the sequel, in order to be able to compare the
top eigenvalues of the matrices Vn,k we will compute them with a labelling depending on k,
with alphabet A = {1, . . . , n}. To do this, we start from the central permutation, with the
following labelling

πn =

(
α1 α2 . . . αn−1 n
n αn−1 . . . α2 α1

)
where we have for each i ≤ n−1 αik = i−1 mod (n−1) and αi ∈ {1, . . . , n−1}. This is well
defined since k and n− 1 are relatively prime. In particular 1 = αk+1, 2 = α2k+1, α1 = n− 1,
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and more generally, αi+k = αi + 1 mod n− 1. The starting point of γk,n is(
α1 α2 . . . . . . αn−1 n
n . . . α1 αn−1 . . . αk+1

)
The path γn,k consists of the Rauzy moves bn−1−ktn−1−2k, hence we have the following se-
quence of winners/losers:

• 1 = αk+1 is successively winner against αk+2, . . . , αn−1, n
• then, n is successively winner against αk+1, . . . , αn−1−k. Note that k+ 1 < n− 1− k.

also, the first line of the labeled permutation s(π′), where π′ is the endpoint of γn,k is

(α′1, . . . , α
′
n−1, n) = (αn−k, αn−k+1, . . . , αn−1, α0, . . . , αn−1−k, n)

i.e. α′i = αi−k or α′i = α′i+n−1−k depending which of i− k or i+n− 1− k is in {1, . . . , n− 1}.
In any case, we obtain, α′i = αi − 1. Hence the matrix Vn,k is obtained from the product of
elementary Rauzy–Veech matrices by translating cyclically the first n−1 columns by 1 on the
right. Finally, we have

Vn,k =



an−1 2 a2 . . . . . . an−2 1
0 0 1 0 . . . . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 . . . . . . . . . 0 1 0
1 0 . . . 0 0

bn−1 1 b2 . . . . . . bn−2 1


Where for i ∈ {2, . . . , n− 2}, we have:

ai =

 2 if i ∈ {αk+2, . . . , αn−1−k}
1 if i ∈ {αn−k, . . . , αn−1}
0 if i ∈ {α1 . . . αk}

and bi = 1 if and only if ai = 2, and bi = 0 otherwise. Note that an−1 = 0, hence bn−1 = 0.
The matrix Vn,k is clearly irreducible (see Figure 8) and thus primitive since there is a non
zero diagonal element.

Now if d = gcd(n− 1, k) > 2, we define α in the following way:
• α1 = n − 1, and α[1+ik] = i for i ≤ n−1

d , where [1 + ik] is the representative modulo
n− 1 of 1 + ik, which is in {1, . . . , n− 1}.
• The other αi are chosen in any way.

The matrix Vn,k, with this labelling, is Vn−1
d

+1, k
d
∗

0 ∗


where the bottom right corner is a permutation matrix. This ends the proof of the lemma. �
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Lemma A.2. Let n ≥ 4 and 1 ≤ k ≤ Kn. If gcd(n− 1, k) = 1 then

Pn,k = Xn+1 − 2Xn−1 − 2
∑
j∈Jn,k

Xj − 2X2 + 1

where Jn,k = {3, . . . , n− 2} \
{
d i(n−1)k e+ ε | i = 1, . . . , k − 1 and ε = 0, 1

}
. In particular:

(1) For even n
Pn,Kn = Xn+1 − 2Xn−1 − 2X2 + 1.

and if n 6≡ 4 mod 6, gcd(n− 1,Kn − 1) = 1 and

Pn,Kn−1 = Xn+1 − 2Xn−1 − 2Xd2n/3e − 2Xbn/3c+1 − 2X2 + 1.

(2) For n = 1 mod 4, we have gcd(n− 1,Kn) = 1 and

Pn,Kn = Xn+1 − 2Xn−1 − 2X
n+1
2 − 2X2 + 1

(3) For n = 3 mod 4, we have gcd(n− 1,Kn − 1) = 1 and

Pn,Kn = Xn+1 − 2Xn−1 − 2Xn−2bn−5
8
c−2 − 2X

n+1
2 − 2X2bn−5

8
c+3 − 2X2 + 1

(4) More generally, for n even, and k ≤ Kn − 1, the highest nonzero monomial (except
Xn+1 and −2Xn−2) has degree at least d2n3 e.

Proof of Lemma A.2. We will use the rome method as explained in Section A.1. We use the
notation of the proof of Lemma A.1. We will write Vn,k as Vn,k = An −Bn,k where

An =


0 2 2 ... ...2 1 1
...
. . . 1 0 ... ... 0

...
. . . . . . . . .

...
...

. . . . . . . . .
...

0 ... ... ... 0 1 0
1 0 ... 0
0 1 1 ... ...1 0 1

 ,

and the only non zero entries of Bn,k are as follows:

For anyi = 1, . . . , k − 1, set l := b i(n− 1)

k
c+ 1. Then

 b1,l = 1
b1,l+1 = 2
bn,l = bn,l+1 = 1

Observe that 1 ≤ k ≤ n/2− 1, hence for i ∈ {1, . . . , k − 1}

2 < 2i
(n− 1)

n− 2
≤ i(n− 1)

k
≤ (k − 1)(n− 1)

k
= n− 1− n− 1

k
< n− 3.

In particular, all integers of the form di(n− 1)/ke+ ε for i ∈ {1, . . . , k− 1} and ε ∈ {0, 1} are
mutually disjoint and in {3, . . . , n− 2}.

Clearly the set R = {1, n} is a rome for An. Thus it is also a rome for Vn,k (since we pass
from An to Vn,k by removing some paths). The 2× 2 matrix (An)R is easily obtained as

(An)R =
(
X2+2Sn X

Sn X

)
where Sn =

n−1∑
i=3

Xi.
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1 2 3 4 . . . l l + 1 . . . n− 3 n− 2 n− 1

n

1 1 1 1 1 1 1 1 1

1 1 1 1
1 1 1

1

-1 -1

1

1

2
2

2
2

2
2

2
2

2

2

-1 -2

Figure 8. The graph associated to Vn,k. In dashed line we have represented
arrow that need to be removed from the graph in blue. Multiplicity are also
indicated. To be more more precise, there is one arrow from vertex labelled
1 to the vertex labelled l and no arrow from vertex labelled 1 to the vertex
labelled l+1. In the graph l = b i(n−1)k c+ 1 for any i = 1, . . . , k − 1. Obviously
the graph associated to An is drawn in blue colour

To obtain the matrix (Vn,k)R one has to subtract the polynomial corresponding to the paths
passing through arrows in dashed line (passing through vertices l and l+1 where l = b i(n−1)k c+1
for some i = 1, . . . , k − 1). At this aim we define{

Tn,k =
∑k−1

i=1 X
n−1−(b i(n−1)

k
c+1)

Qn,k =
∑k−1

i=1 X
n−1−b i(n−1)

k
c =

∑k−1
i=1 X

di(n−1)/ke.

The polynomial Tn,k (respectively, 2Qn,k) takes into account all simple paths from the vertex
1 to the vertex 1 passing through an arrows in dashed line connecting 1 to l (respectively, to
l + 1). Hence

(Vn,k)R =
(
X2+2Sn−Tn,k−2Qn,k X

Sn−Tn,k−Qn,k X

)
Note that Tn,k = XQn,k. By using [BGMY1980], a straightforward computation gives:

χVn,k
= X3 −X2 −X + 1 + Sn · (X − 2) + 2Qn,k
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Hence,

Pn,k = Xn+1 − 2
n−1∑
i=2

Xi + 1 + 2
k−1∑
i=1

(
Xdi(n−1)/ke +Xdi(n−1)/ke+1

)
which implies the first statement of the lemma.

We give a little more information on the set Jn,k. We write Jn,k = {j1, . . . , jr} with
j1 < · · · < jr (possibly, r = 0). We have d i(n−1)k e = 2i+d i(n−1−2k)k e. In particular, we see that
js = 2is+s, where is ≥ 0 is the smallest integer such that is(n−1−2k)k > s, i.e is = b sk

n−1−2kc+1.
Note also that Pn,k must be reciprocal, hence j ∈ Jn,k if and only if n+ 1− j ∈ Jn,k.

Now we compute particular cases.
(1) If n is even, Kn = n/2− 1. We have n− 1− 2Kn = 1, 2i1 + 1 = n− 1 > n− 2, hence

Jn,Kn = ∅. For k = Kn − 1 = n/2− 2 and n even, n 6= 4 mod 6 we have

2i1 + 1 = 2b(n− 4)/6c+ 3 = bn/3c+ 1 = j1

2i2 + 2 = 2b(n− 4)/3c+ 4 = d2n/3e = j2 = n+ 1− j1

Hence Jn,Kn−1 = {bn/3c+ 1, d2n/3e}.
(2) If n = 1 mod 4, Kn = (n− 1)/2− 1 = n−3

2 , we have n− 1− 2Kn = 2, hence:

2i1 + 1 = 2b(n− 3)/4c+ 3 =
n+ 1

2
= j1

So, Jn,Kn = {n+1
2 }.

(3) If n = 3 mod 4, k = Kn − 1 = n−5
2 , n− 1− 2k = 4, hence

2i1 + 1 = 2b(n− 5)/8c+ 3 = j1

2i2 + 2 = 2b(n− 5)/4c+ 4 =
n+ 1

2
= j2

2i3 + 3 = 2b3(n− 5)/8c+ 5 = n+ 1− j1
So, Jn,Kn = {2b(n− 5)/8c+ 3, n+1

2 , n− 2b(n− 5)/8c − 2}
(4) More generally, for n even and k ≤ Kn − 1 we evaluate j1.

2i1 + 1 = 2bn− 1− 2k

k
c+ 3 ≤ 2bn− 1− 2(Kn − 1)

Kn − 1
c+ 3 = bn/3c+ 1

since k 7→ n−1−2k
k is increasing, and we conclude by using that the polynomial is

reciprocal.
This finishes the proof. �

A.3. The paths γn,Kn,l. We recall Notation 2.4 (see also Figure 2) when k = Kn. For any
l ∈ {1, . . . , 2n− 2− 3Kn} we define the path

γn,k,l : π −→ s(π) :

{
bltLn+1−lbLn+1−ltn−1−2Kn if 1 ≤ l ≤ Ln
bLn+1tl−(Ln+1)b2(Ln+1)−lt2n−2−3Kn−l if Ln < l ≤ 2n− 2− 3Kn

Note that when n is even 2n− 2− 3Kn = Ln + 2 otherwise 2n− 2− 3Kn = Ln + 3.
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Proposition A.3. Let n ≥ 4 be an even integer.
(1) If l ∈ {1, . . . , Ln} then

Pn,Kn,l = Pn,Kn −
Xn−2l+2 +Xn−2l+4 + 2Xn−1 −X2l+1 −X2l−1 − 2X4

(X + 1)(X − 1)

(2) For l = Ln one has

Pn,Kn,Ln = Xn+1 − 2Xn−1 −Xn−3 −X4 − 2X2 + 1

(3) For l = Ln + 2 Vn,Kn,Ln+2 = Vn,Kn +Bn where Bn = (bi,j) and b1,2j = bn−2,2j = 1, for 1 ≤ j ≤ Kn − 1,
b1,n = bn−2,n = 1,
bi,j = 0 otherwise.

Proof. Again we appeal to the rome method in oder to compute the characteristic polynomial.
Since n is even, the matrix Vn,Kn is primitive. Thus Lemma A.1 applies and we have a nice
expression for the matrix Vn,Kn (see the proof of Lemma A.1). Let l ∈ {1, . . . , Ln}. By
construction, γn,Kn,l is a path obtained from γn,Kn by adding a closed loop (of type ’t’ and
of length n − 1 −Kn − l) at bltKnπn. Hence the matrices Vn,Kn and Vn,Kn,l differ by a non
negative matrix, namely Vn,Kn,l − Vn,Kn = Cn,l = (ci,j) where c2l,2 = c2l,2l+1 = 1,

c2l,2j+3 = 2 for l ≤ j ≤ Kn − 1,
ci,j = 0 otherwise.

On the way, the same argument applied to the matrix Vn,Kn,Ln+2 applies, proving the last
statement.

We are now in a position to compute Pn,Kn,l. The graph associated to the matrix Vn,Kn

is already presented in the proof of Lemma A.2. For readability purposes, we reproduce this
graph below, where we have added the edges corresponding to the graph associated to Cn,l.

Clearly the set R = {1, 2l, n} is a rome for Vn,Kn,l, and thus for Vn,Kn (since we pass from
Vn,Kn,l to Vn,Kn by removing some paths). The 3× 3 matrix (Vn,Kn)R is easily obtained as

(Vn,Kn)R =



n−2l∑
i=2

i even

Xi 2X2l−1 +
2l−2∑
i=2

i even

Xi X

n−2l∑
i=2

i even

Xi X2l−1 0

0 X2l−1 X


where

2l−2∑
i=2

i even

Xi = 0 if l = 1.

Adding the matrix Cn,l consists of adding two arrows form the vertex labelled by 2l to the
vertices 2, 2l+ 1 (with multiplicity 1) and Kn− l arrows to the vertices 2l+ 3, . . . , n− 3, n− 1
(with multiplicity 2). In this situation R is still a rome. To compute the matrix (Vn,Kn,l)R
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we need to consider all paths passing through a dashed edge in the graph in Figure 9. Thus
(Vn,Kn,l)R(X) = (Vn,Kn)R(X) + C(X) where

C(X) =


0 0 0

2
n−2l−2∑
i=2

i even

Xi +Xn−2l X2l−1 0

0 0 0


Hence by [BGMY1980] we draw χVn,Kn,l

= −det((Vn,Kn)R(X) + C(X) − Id3). By multi-
linearity, one has:

Pn,Kn,l = Pn,Kn − (1 +X) · det(Wn,l)

where

Wn,l =



n−2l∑
i=2

i even

Xi − 1 2X2l−1 +
2l−2∑
i=2

i even

Xi X

2
n−2l−2∑
i=2

i even

Xi +Xn−2l X2l−1 0

0 X2l−1 X − 1


A direct computation gives

det(Wn,l) =
Xn−2l+2 +Xn−2l+4 + 2Xn−1 −X2l+1 −X2l−1 − 2X4

(X + 1)2(X − 1)

that is the desired result.
The second assertion comes for free since 2Ln = n− 2 and by Lemma A.2 one has Pn,Kn =

Xn+1 − 2Xn−1 − 2X2 + 1. Proposition A.3 is proved. �

Proposition A.4. Let n ≥ 4 be an integer with n ≡ 3 mod 4. Fix l ∈ {1, . . . , Ln + 3}:
(1) If l is even then Vn,Kn,l is reducible and θn,Kn,l = θn′,Kn′ ,l

′ with n′ = (n+1)/2, l′ = l/2
and Kn′ = Kn/2.

(2) If l ≤ Ln is odd then Vn,Kn,l is primitive and

Pn,Kn,l =
Sn(X) + 2

(
X

n+7
2
−l −X l +X l+n−1

2 −Xn+3−l
)

(X − 1)(X + 1)

where Sn = 1− 3X2 − 2X
n−1
2 + 8X

n+3
2 − 2X

n+7
2 − 3Xn+1 +Xn+3.

(3) If l = Ln + 2 then Vn,Kn,l =


0Kn×Kn IdKn×Kn 0Kn×3
2 · · · 2 0 · · · 0 2 3 2
1 · · · 1 0 · · · 0 0 2 1

IdKn×Kn 0Kn×Kn 0Kn×3
0 · · · 0 0 · · · 0 1 1 1


Proof of Proposition A.4. We follow the strategy of the proof of the previous proposition. The
first point is clear. In the sequel, let m = Kn + 1 = (n− 1)/2. Again we appeal to the rome
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method in oder to compute the characteristic polynomial. We have Vn,Kn,l = An +Bn,l where

An =


0Kn×Kn IdKn×Kn 0Kn×3
1 · · · 1 0 · · · 0 2 2 1
0 · · · 0 0 · · · 0 0 1 0

IdKn×Kn 0Kn×Kn 0Kn×3
0 · · · 0 0 · · · 0 1 1 1


and the only non zero entries of Bn,l = (bi,j) are

bn−l,i = 2 for i = 1, . . . ,m− l
bn−l,l = 1
bn−l,n−1 = 2
bn−l,n−2 = 1

It is helpful to represent the matrices in form of a combinatorial graph which amounts to draw
all paths.

The graph associated to An is rather simple. Clearly a rome is made of the subsets labelled
R = {n, n− 1,m}. The matrix AR(X) in this label is

AR(X) =

 X X Xm

0 Xm 0
X R S


R = 2X +

∑m
i=3,i oddX

i = 2X +X3 · 1−Xm−1

1−X2

S = 2Xm +
∑m−1

i=2,i evenX
i = 2Xm +X2 · 1−Xm−1

1−X2

Adding the matrix Bn,l consists of adding arrows form the vertex labelled by n − l to the
vertices 1, . . . ,m− l, n− 2 with multiplicity 1 and to the vertex n− 1 with multiplicity 2. In
this situation R is still a rome. To compute the matrix (Vn,Kn,l)R we need to consider all paths
passing through a dashed edge on the graph in Figure 9. Thus (Vn,Kn,l)R(X) = AR(X)+C(X)
where

C(X) =

 0 0 0
0 P Q

0
∑(l−1)/2−1

i=0
P
X2i

∑(l−1)/2−1
i=0

Q
X2i


and

P = Xm + 2
m−2∑

i=l,i i odd

Xi = Xm + 2X l · 1−Xm−l

1−X2
,

Q = Xm+l−1 + 2

m−1∑
i=l+1,i i even

Xi = Xm+l−1 + 2X l+1 · 1−Xm−l

1−X2
.

Hence by [BGMY1980] we draw χVn,Kn,l
= −det(AR(X) + C(X) − Id3). By using the fact

that C(X) =

(
0 0 0
0 P Q

0 1−X1−l

1−X−2 P
1−X1−l

1−X−2 Q

)
and Q = Xm(X l−1 − X) + XP we easily obtained the

desired equality.
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1 . . . m− 4 n− 4 m− 2 m m− 1 n− 3 m− 3 n− 5 . . . n− l . . . 2

n− 2 n− 1

n

2
2

2

n−m

2

2

2
2

Figure 9. The graph associated to Vn,Kn,l. In dashed line we have represented
arrow coming from the matrix Bn,l. The multiplicity is indicated only when it
is 2, otherwise it is 1.

The last assertion is also easy to derive from the fact that γn,Kn,Ln+2 is obtained from
γn,Kn by adding a ’b’ loop at tKn+1πn and from the shape of An. This ends the proof of
Proposition A.4. �

Appendix B. Comparing roots of polynomials

This section is devoted to comparing θn,k and θn,k,l (the maximal real roots of the polynomi-
als Pn,k and Pn,k,l introduced in Appendix A) for various n, k, l. Observe that by construction
θn,k >

√
2 and θn,k,l >

√
2.

One key ingredient for comparing maximal real roots of these polynomials is the easy

Lemma B.1. Let P1, P2 be two unitary polynomials of degree at least one such that for x >
√

2,
P1(x)− P2(x) > 0. We assume that P1 has a root θ1 >

√
2. Then P2 has a root θ2 > θ1.
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Proof. The assumption implies P2(θ1) < 0. Since P2 is unitary, the result follows by the mean
value theorem. �

Lemma B.2. The followings hold:
(1) The sequence (θ2n,Kn)n is a decreasing sequence.
(2) The sequence (θ1+4n,Kn)n is a decreasing sequence.
(3) The sequence (θ3+4n,Kn,Ln)n is a decreasing sequence.

Proof of Lemma B.2. We establish the lemma case by case.
Case 1. By Lemma A.2, θ2n,K2n is the largest root of

P2n = X2n+1 − 2X2n−1 − 2X2 + 1.

Observe that P2n+2−X2P2n = 2X4−X2 + 1. Thus P2n+2(x)−x2P2n(x) > 0 for x >
√

2 and
Lemma B.1 gives that θ2n,K2n < θ2n+2,K2n+2 .

Case 2. We observe that θ1+4n,K1+4n is the largest root of

P1+4n,K1+4n = X4n+2 − 2X4n − 2X2n+1 − 2X2 + 1.

Again a simple computation establishes P5+4n,K5+4n −X4P1+4n,K1+4n = 2X2n+5 − 2X2n+3 +

2X6 − 2X2 − X4 + 1. Hence P5+4n,K5+4n(x) − x4P1+4n,K1+4n(x) > 0 for x >
√

2 and by
Lemma B.1:

θ5+4n,K < θ1+4n,K .

Case 3. Similarly

P3+4n,K,L = X4n+4 − 2X4n+2 − 4X2n+3 + 4X2n+1 + 2X2 − 1.

Hence, for x >
√

2:

P7+4n,K,L−x4P3+4n,K,L = (x2−1)(4x2n+5−4x2n+3−2x4−x2+1) > 4x2n+3−2x4−x2+1 > 0.

Hence Lemma B.1 applies and θ7+4n,K,L < θ3+4n,K,L. The lemma is proved. �

Lemma B.3. Let n ≥ 4 and 1 ≤ k < k′ ≤ Kn. If gcd(n− 1, k) = gcd(n− 1, k′) = 1 then

θn,k′ < θn,k.

Proof of Lemma B.3. From the proof of Lemma A.2, we have Pn,k′−Pn,k = (X+1)
(
Qn,k′ −Qn,k

)
,

whereQn,k =
∑k−1

i=1 X
di(n−1)/ke. From Lemma B.1, we need to show that Pn,k′(x)−Pn,k(x) > 0

for x >
√

2. First we observe that

Qn,k′ −Qn,k =
k′−1∑
i=k

Xd
i(n−1)

k′ e +
k−1∑
p=1

Xd
(k′−p)(n−1)

k′ e −Xd
(k−p)(n−1)

k
e.

Now for any p ∈ {1, . . . , k − 1}

d(k − p)(n− 1)

k
e ≤ d(k

′ − p)(n− 1)

k′
e.

So, for any x > 1, Pn,k′(x)− Pn,k(x) > 0, proving the lemma. �

Before comparing roots using polynomials, we end this subsection with a simple lemma:
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Lemma B.4. Let n ≥ 7 be an integer satisfying n ≡ 3 mod 4. Then θn,Kn,Ln+2 > 2.
Let n ≥ 4 be an even integer. Then θn,Kn,Ln+1 > 3

1
2 .

Let n ≥ 6 be an even integer. Then θn,Kn,Ln+2 > 6
1
4 .

Proof of Lemma B.4. We will use the following classical inequality for the Perron root ρ(A) of
a non negative primitive matrixA = (aij)i,j=1,...,n: ρ(A) > δ(A) where δ(A) = minnj=1

∑n
i=1 aij

(see e.g. [BL12, Proposition 4.2.]).
We prove the first assertion. The matrix V (γn,Kn,Ln+2) is primitive (by Proposition A.4)

and θ2n,Kn,Ln+2 is the Perron root of V 2
n,Kn,Ln+2. It suffices to show that δ(V 2

n,Kn,Ln+2) > 4.
By Proposition A.4 one has

Vn,Kn,Ln+2 =


0Kn×Kn IdKn×Kn 0Kn×3
2 · · · 2 0 · · · 0 2 3 2
1 · · · 1 0 · · · 0 0 2 1

IdKn×Kn 0Kn×Kn 0Kn×3
0 · · · 0 0 · · · 0 1 1 1


The result then follows from an easy matrix computation.

For the second claim, The matrix V (γn,Kn,Ln+2) is primitive (by Lemma A.1). By Propo-
sition A.3 and a matrix computation, we draw δ(V 4

n,Kn,Ln+2) = 6 for any n ≥ 6. Hence
θn,Kn,Ln+2 > 6

1
4 . Lemma B.4 is proved. �

B.1. Comparing θn,k,l when n ≡ 3 mod 4.

Lemma B.5. Let n ≥ 7 such that n ≡ 3 mod 4. If l, l′ ∈ {1, . . . , Ln} are odd and l < l′ then

θn,Kn,l > θn,Kn,l′ .

Proof of Lemma B.5. We follow the notation of the proof of Proposition A.4. A simple com-
putation shows:

Pn,Kn,l − Pn,Kn,l′ =
2(X l −X l′)(Xm − 1)(X l+l′ +X4+m)

X l+l′(X − 1)(X + 1)
.

In particular Pn,Kn,l(x)− Pn,Kn,l′(x) < 0 for x >
√

2. Lemma B.1 gives θn,Kn,l > θn,Kn,l′ . �

Proposition B.6. Let n ≥ 7 be an integer satisfying n ≡ 3 mod 4.
(1) If n′ = n+1

2 then θn′,Kn′ ,Ln′
> θn,Kn,Ln.

(2) If n′ = n+1
2 then θn′,Kn′ ,Ln′+2 > θn,Kn,Ln.

(3) Let 1 ≤ k ≤ Kn−1. If d = gcd(k, n−1), n′ = n+1
d and k′ = k/d then θn,Kn,L < θn′,k′ .

Proof of Proposition B.6. Case (1). We start with the first statement. Using Proposition A.3
and Proposition A.4, we have:

Pn′,Kn′ ,Ln′
= xn

′+1 − 2xn
′−1 − xn′−3 − x4 − 2x2 + 1

Pn,Kn,Ln = xn+1 − 2xn−1 − 4x(n+3)/2 + 4x(n−1)/2 + 2x2 − 1

Noticing that n− n′ = n−1
2 , hence n− n′ + 2 = n+3

2 , we have:

Pn,Kn,Ln − xn−n
′
Pn′,Kn′ ,Ln′

= xn−3 + x4+n−n
′ − 2x2+n−n

′
+ 3xn−n

′
+ 2x2 − 1
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This polynomial clearly takes only positive values for x >
√

2, which proves the required
inequality.

Case (2). Now we come to the second statement. Assume n ≥ 11 (for n = 7 we directly
prove the inequality). In this situation n′ ≥ 4 and Lemma B.4 gives

θn′,Kn′ ,Ln′+2 > 6
1
4

Let θ = θn,Kn,Ln for simplicity. By Proposition A.4, we have:

θn−1(θ2 − 2) = 4θ(n+3)/2 − 4θ(n−1)/2 − 2θ2 + 1

Hence

θ −
√

2 =
1

θ +
√

2

4θ(n−1)/2(θ2 − 1) + 1− 2θ2

θn−1
<

4

θ(n−1)/2
<

1
√

2
(n−5)/2

Obviously 1√
2
(n−5)/2 < 6

1
4 −
√

2 for n ≥ 23. Hence θn,Kn,Ln < 6
1
4 < θn′,Kn′ ,Ln′+2 >. For n < 23

we check directly the that this inequality holds.

Case (3). Finally we prove the last statement. Assume first that gcd(n − 1, k) = 1, then
n′ = n and k′ = k. Note that gcd(n− 1,Kn−1 − 1) = 1. From Lemma B.3 θn,k ≥ θn,Kn−1 for
any k = 1, . . . ,Kn − 1. Since L is odd we have, by Proposition A.4 and Lemma A.2:

Pn,Kn−1 = xn+1 − 2xn−1 − 2xn−2b
n−5
8
c−2 − 2x

n+1
2 − 2x2b

n−5
8
c+3 − 2x2 + 1

Pn,Kn,L = xn+1 − 2xn−1 − 4x(n+3)/2 + 4x(n−1)/2 + 2x2 − 1

Hence, for x >
√

2

Pn,Kn,L − Pn,Kn−1 = 2xn−2b
n−5
8
c−2 − 4x(n+3)/2 + 2x

n+1
2 + 4x(n−1)/2 + 2x2b

n−5
8
c+3 + 4x2 − 2

> 2xn−2b
n−5
8
c−2 − 4x(n+3)/2

For n ≥ 11, n− 2dn−58 e − 2 ≥ n+3
2 + 2, hence Pn,Kn,L − Pn,Kn−1 > 0. For n = 7, we compute

directly the roots: we have θn,Kn−1 ≈ 1, 96 and θn,Kn,L ≈ 1, 84.

Now we assume that gcd(k, n− 1) = d > 1.
(1) If n′ is odd (thus n′ ≡ 3 mod 4) then by the above case θn′,k′ > θn′,Kn′ ,Ln′

. We
conclude with Lemma B.2.

(2) If n′ is even then we need to show directly that θn′,k′ > θn,Kn,L. Note n′ even implies
that d is an odd multiple of 2. There are two cases:
• d ≥ 6. In this case, θn′,k′ ≥ θn′,Kn′

(k′ = Kn′ is possible). We have

Pn,Kn,L − xn−n
′
Pn′,Kn′

= 2x2+n−n
′ − xn−n′ − 4x

n+3
2 + 4x

n−1
2 + 2x2 − 1

> 2xn−n
′ − 4x

n+3
2

We necessarily have n > 10 hence n− n′ ≥ n+3
2 + 2 hence the above polynomial

is positive for x >
√

2.
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• d = 2. In this case θn′,Kn′
= θn,Kn < θn,Kn,L, but k′ < Kn′ . Hence the previous

strategy does not work. Since n′ and Kn′ − 1 are not necessarily relatively prime,
we compare directly θn′,k′ with θn,Kn,L by using Statement 4 of Lemma A.2. We
have

Pn,Kn,L − xn−n
′
Pn′,k′ ≥ 2xn−n

′+d 2n
′

3
e − 4x

n+3
2

For n ≥ 8, we have n− n′ + d2n3 e ≥
n+3
2 + 2, implying the desired inequality. For

n = 7, we necessarily have d = 1.
This ends the proof of the proposition. �

B.2. Comparing θn,k,l when n ≡ 0 mod 2.

Lemma B.7. Let n ≥ 4 be an even integer. If l, l′ ∈ {1, . . . , Ln} satisfy l < l′ then

θn,Kn,l > θn,Kn,l′ .

Proof of Lemma B.7. Proposition A.3 and a simple computation show

Pn,Kn,l − Pn,Kn,l′ =
(X l −X l′)(X2 + 1)(X2l+2l′ +Xn+3)(X l +X l′)

X2l+2l′+1(X + 1)(X − 1)
.

In particular Pn,Kn,l(x)− Pn,Kn,l′(x) < 0 for x >
√

2. Lemma B.1 gives θn,Kn,l > θn,Kn,l′ . �

Proposition B.8. Let n ≥ 18 be an even integer satisfying n 6≡ 4 mod 6. Then, gcd(n −
1,Kn − 1) = 1 and the followings hold:

(1) For any k = 1, . . . ,Kn − 2 one has θn,k > θn,Kn−1.
(2) For any l = 1, . . . , Ln one has θn,Kn,l > θn,Kn−1.
(3) For l = Ln + 1, one has θn,Kn,Ln+1 > θn,Kn−1.
(4) For l = Ln + 2, one has θn,Kn,Ln+2 > θn,Kn−1.

Proof. Let us consider the first claim and set d = gcd(k, n− 1). If d = 1 then θn,k > θn,Kn−1
by Lemma B.3. Otherwise let n′ = n−1

d + 1 < n and k′ = k
d . Note that gcd(k′, n′− 1) = 1 and

θn,k = θn′,k′ . By Lemma B.3 θn′,k′ > θn′,Kn′
. It suffices to show θn′,Kn′

> θn,Kn−1. We have,
for x >

√
2,

Pn,Kn−1 − xn−n
′
Pn′,Kn′

= 2x2+n−n
′ − xn−n′ − 2xd2n/3e − 2xbn/3c+1 − 2x2 + 1

> 2xn−n
′ − 2xd2n/3e + xn−n

′ − 2xbn/3c+1 − 2x2 + 1

Note that n− 1 is odd and not a multiple of 3, hence d ≥ 5. Since n is large enough, we have

n− n′ − 2n

3
= (n− 1)(1− 1

d
)− 2n

3
≥ 4

5
(n− 1)− 2n

3
≥ 0

Hence, bn− n′ − 2n
3 c = n− n′ − d2n3 e ≥ 0. Similarly, n− n′ ≥ 4 + bn/3c+ 1.

Hence
Pn,Kn−1 − xn−n

′
Pn′,Kn′

> 2xbn/3c+1 − 2x2 + 1 > 0.

The inequality θn′,Kn′
> θn,Kn−1 follows by Lemma B.1.

We now prove the second claim for l = 1, . . . , Ln. Since θn,Kn,l > θn,Kn,L by Lemma B.7, it
suffices to show θn,Kn,L > θn,Kn−1. We have:

Pn,Kn−1 − Pn,Kn,L = xn−3 − 2xd2n/3e − 2xbn/3c+1 + x4
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If n ≥ 24, we get n− 3 ≥ 4 + d2n/3e, hence:

Pn,Kn−1 − Pn,Kn,L > 2xd2n/3e − 2xbn/3c+1 + x4 > 0

For n ∈ {18, 20}, we check directly that Pn,Kn−1 − Pn,Kn,L > 0. The inequality θn,Kn,L >
θn,Kn−1 follows by Lemma B.1.

Next we prove the third claim for l = Ln + 1 (in this case, the computation is different).
By Lemma B.4 we have θn,Kn,Ln+1 > 3

1
2 . For simplicity let θ = θn,Kn−1. By Lemma A.2:

θn−1(θ2 − 2) = 2θd2n/3e + 2θbn/3c+1 + 2θ2 − 1 < 2θd2n/3e + 2θbn/3c+1 + 2θ2

Thus
θ −
√

2 <
2

θ +
√

2

(
1

θn−1−d2n/3e
+

1

θn−2−bn/3c
+

1

θn−3

)
<

3
√

2
n/3−1

since θ >
√

2 and n > 3. Clearly 3√
2
n/3−1 < 3

1
2 −
√

2 for n > 22 hence θ < 3
1
2 < θn,Kn,Ln+1

that is the desired inequality. For n = 20, 22 we directly check the inequality.
Finally we prove the last claim for l = Ln+2. By Lemma B.4 we have θn,Kn,Ln+2 > 6

1
4 . We

can check that 3√
2
n/3−1 < 6

1
4 −
√

2 for n > 28 hence θ < 6
1
4 < θn,Kn,Ln+2 that is the desired

inequality (for n < 30 we directly check the inequality). The proposition is proved. �

B.3. Case n ≡ 1 mod 4.

Proposition B.9. Let n ≥ 5 such that n ≡ 1 mod 4. For any 1 ≤ k ≤ Kn − 1 we define
d = gcd(k, n− 1) and n′ = n−1

d + 1, k′ = k/d. Then θn′,k′ > θn,Kn.

Proof of Proposition B.9. Let k ∈ {1, . . . ,Kn − 1}. If gcd(k, n − 1) = 1 then Lemma B.3
implies that θn,k > θn,Kn as desired.
If gcd(k, n− 1) = d > 1 there are three cases depending the value of n′ mod 4.

(1) If n′ ≡ 1 mod 4 then the previous argument shows that θn′,k′ > θn′,Kn′
. By Lemma B.2,

the sequence (θn,Kn)n is decreasing for n ≡ 1 mod 4, so we have θn′,Kn′
> θn,Kn as

desired.
(2) If n′ is even then Lemma B.3 implies θn′,k′ > θn′,Kn′

. By Lemma A.2, for any x >
√

2:

Pn,Kn − xn−n
′
Pn′,Kn′

= 2x2+n−n
′ − xn−n′ − 2x

n+1
2 − 2x2 + 1

> 3xn−n
′ − 2x

n+1
2 − 2x2 > 0

(the last inequality comes from d ≥ 4 and n ≥ 5). By Lemma B.1 θn′,Kn′
> θn,Kn .

(3) If n′ ≡ 3 mod 4 then Proposition B.6 implies θn′,k′ > θn′,Kn′ ,Ln′
. For x >

√
2:

Pn,Kn − xn−n
′
Pn′,Kn′ ,Ln′

= 4xn−n
′+n′+3

2 − 4xn−n
′+n′−1

2 − 2x2+n−n
′
+ xn−n

′ − 2x
n+1
2 − 2x2 + 1

> 4xn−n
′+n′−1

2 − 2x2+n−n
′ − 2x

n+1
2 + xn−n

′ − 2x2

Assumption on n, n′ implies that n 6= 5, 9, hence n ≥ 13 and n′ ≥ 7. This implies that
n − n′ + n′−1

2 = (n − 1)(1 − 1
2d) ≥ n+1

2 , n − n′ + n′−1
2 ≥ 2 + n − n′ and n − n′ ≥ 4.

Thus Pn,Kn − xn−n
′
Pn′,Kn′ ,Ln′

> 0 and Lemma B.1 implies θn,Kn < θn′,Kn′ ,Ln′
.

Proof of Proposition B.9 is complete. �
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Appendix C. A naive attempt to generalize the Rauzy–Veech construction

The classical construction of pseudo-Anosov homeomorphism by Rauzy induction neces-
sarily produces maps that preserves a singularity, and a horizontal separatrix. This clearly
comes from the fact that only right Rauzy induction is used. So, it is natural to expect to
produce pseudo-Anosov homeomorphism that do not fix a separatrix by combining right and
left induction.

For instance, we consider a path γ in the labeled (extended) Rauzy diagram such that.
• the image of γ in the reduced extended Rauzy diagram is closed.
• γ is the concatenation of a path γ1 that consists only of right Rauzy moves, and a
path γ2 that consists only of left Rauzy moves.

As above, we associate to such path a matrix V by multiplying the corresponding product
of the transition matrices by a suitable permutation matrix. Assume now that the matrix V
is a primitive. Let θ > 1 be its Perron-Frobenius eigenvalue. We choose a positive eigenvector
λ for θ. As before, V is symplectic, thus let us choose an eigenvector τ for the eigenvalue θ−1.
It turns out that τ is not necessarily a suspension datum, but it is a weak suspension datum
(up to replacing it by its opposite). Indeed, the set of weak suspension data is a open cone
W , which is by construction invariant by V −1, and we conclude as previously (the proof is
the same as in Proposition 4.1).

Proposition C.1. A pseudo-Anosov homeomorphism affine on a translation surface, and
constructed as above fixes a vertical separatrix. In particular it is obtained by the usual Rauzy–
Veech construction.

Proof. Let (π, λ, τ) be the weak suspension datum defined as above and h be a height. We will
denote the associated surface by X = X(π, λ, τ) and by I = Ih the corresponding horizontal
interval.

After the prescribed the prescribed sequence of right and left Rauzy induction, we obtain
the suspension datum (π, λ′, τ ′) = (π, 1θλ, θτ) defining the same surface X, with corresponding
interval I ′h′ = I ′ ⊂ I (recall the Rauzy–Veech induction corresponds to cutting the interval on
the right, or on the left). Also, θh is an obvious height for (π, 1θλ, θτ), and the corresponding
interval I ′θh is the image by φ of the interval Ih.

Hence there is an isometry f from I ′θh to I ′h′ obtained by following a vertical leaf (see
Section 3.2). The map f ◦ φ is therefore a contracting map from Ih to itself (its derivative
is θ−1), hence has a fixed point. It means that there is an element x in Ih whose image
by φ is in the vertical leaf l passing through x. Thus, this vertical leaf l is preserved by φ.
Since φ, restricted to l as derivative θ 6= 1, there is a fixed point of φ on l. This fixed point
is either a conical singularity or a regular point. In any case, φ fixes a vertical separatrix.
Hence φ fixes also a horizontal separatrix. It is therefore obtained by the usual Rauzy–Veech
construction. �
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